# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a188490 Showing 1-1 of 1 %I A188490 #6 Mar 30 2012 18:37:26 %S A188490 1,1,2,10,146,6010,636428,163326124,98126803670,134925234752998, %T A188490 417644922244986812,2873459543869519132876,43497844823465975411261876, %U A188490 1436705096446765490152625035300,102817732537500055044863771641124696 %N A188490 Exponential transform of A003024, number of acyclic digraphs with n labeled nodes. %F A188490 G.f.: A(x) = exp( Sum_{n>=1} A003024(n)*x^n/n ) where A003024(n) is the number of acyclic digraphs with n labeled nodes. %e A188490 G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 146*x^4 + 6010*x^5 +... %e A188490 log(A(x)) = x + 3*x^2/2 + 25*x^3/3 + 543*x^4/4 + 29281*x^5/5 + 3781503*x^6/6 +...+ A003024(n)*x^n/n +... %o A188490 (PARI) {A003024(n)=polcoeff(1-sum(k=0, n-1, A003024(k)*x^k/(1+2^k*x+x*O(x^n))^(k+1)), n)} %o A188490 {a(n)=polcoeff(exp(sum(m=1,n,A003024(m)*x^m/m)+x*O(x^n)),n)} %Y A188490 Cf. A003024 (log). %K A188490 nonn %O A188490 0,3 %A A188490 _Paul D. Hanna_, Apr 01 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE