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Preface 

In a time not too long ago and in a land not too far away, there lived a simple 

people who sought evolvement by application of their sacred myths and symbols. They 

held that Art and Science were servants of nature and that the medium though which 

the energies of these two servants flowed and mixed was a third servant known to folks 

of other lands as games. This manuscript is, in part, a record of selected conversations 

between two of its inhabitants which took place in the unfolding of one such game. 

The story begins one fine morning when Pekanini goes in search of her mentor, 

Kimo. She is full of excitement with the desire to tell Kimo of the announcement of 

this year's Challenge of the Third Servant and to begin their assault on it. 

As Pekanini stepped onto the beach which had been left smooth by the receded tide, 

she began her spiral dance. This dance, an art form unique, by all accounts, to this 

Land, is performed with strong and decisive movements over a carpet of sand. The 

movements must deliver bird-like flight while simultaneously sketching a pattern of 

artistic expression by dragging a combination of toes over the surface of the sand. 

Half way up the beach, Pekanini broke off the dance to survey her etchings glis­

tening in the moist sand. Only partially pleased with her efforts, she turned and out 

of the corner of her eye, she saw sitting cross legged in the sand the familiar figure of 

Kimo, who had been watching her dance from its beginning. 
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Spiral Architecture for Machine Vision 
Phillip Sheridan 

2 

This thesis presents a new and powerful approach to the development of a general 

purpose machine vision system. The approach is inspired from anatomical consid­

erations of the primate's vision system. The geometrical arrangement of cones on a 

primate's retina can be described in terms of a hexagonal grid. The importance of the 

hexagonal grid is that it possesses special computational features that are pertinent 

to the vision process. The fundamental thrust of this thesis emanates from the obser­

vation that this hexagonal grid can be described in terms of the mathematical object 

known as a Euclidean ring. The Euclidean ring is employed to generate an algebra of 

linear transformations which are appropriate for the processing of multidimensional 

vision data. A parallel autonomous segmentation algorithm for multidimensional vi­

sion data is described. The algebra and segmentation algorithm are implemented 

on a network of transputers. The implementation is discussed in the context of the 

outline of a general purpose machine vision system's design. 



Chapter 1 

Introduction 

Shouting to him as she ran, "Kimo, Kimo, this year's Challenge of the Third Servant 

is to create a machine endowed with vision. " 

After considerable conversation on the issue, the pair fell into silence before Kimo 

spoke. "We might be well served by commencing with a search for the simplicity that 

emanates from those things we wish to see. " 

3 
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1.1 The Perplexities of Vision 

One of the grand challenges in computer science is to produce a machine that is 

capable of emulating certain aspects of intelligent human processes. An example of 

such a pro~ess that has remained particularly elusive is vision. Fundamentally, vision 

is the process of recognising objects of interest from an image. The perplexities that 

surround this process are immense not the least of which is the perplexity of the 

nature of the objects themselves. Martin Gardner, in (32] put it as follows: 

If the cosmos were suddenly frozen, and all movement ceased, a survey of its 

structure would not reveal a random distribution of parts. Simple geometrical 

patterns, for example, would be found in profusion - from the spirals of galaxies 

to the hexagonal shapes of snow crystals. Set the clockwork going and its parts 

move rhythmically to laws that can often be expressed by equations of surprising 

simplicity. And there is no logical or a priori reason why these things should 

be so. 

Given this powerful statement describing the structure of the objects of interest, 

how then does a biological vision system recognise these objects? The perplexities 

surrounding the recognition of objects have been addressed by many people from 

many quarters [77]. These range from the epistemological concerns of the Gestalt1 

laws of visual perception formulated at the turn of this century [57] to the analytical 

tools of the discipline of modern pattern recognition2 [9]. 

Finally, one comes to the perplexity of the process itself. The perceptual psychol­

ogist J. J. Gibson (34] described this process as follows: 

1Gestalt is a school of psychology whose origins go back to the beginning of the 20th century. A 
principal tenet of this school is that an organism must be viewed as an organised whole in which 
every part affects each of its other parts. Their work in this regard is largely qualitative. 

2The theory of pattern recognition is a highly mathematical discipline. This quantitative ap­
proach is in contrast to the Gestalt school. 
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When no constraints are put on the visual system, we look around, walk 

up to something interesting and move around it so as to see it from all sides, 

and go from one vista to another. 

5 

Gibson describes this active process in terms that suggest it is more than the sum 

of its parts. That is, if the process of vision is to be fully understood, not only must 

the various components of vision, eye [53], brain [72, 110], light, objects being viewed 

[41], be understood, but all of the components must be understood as a totality in 

relationship to one another. Therein lies the difficulty. Biological vision systems have 

evolved in response to a multitude of subtle influences some of which may no longer 

be evident today. Consequently, the act of now trying to deduce the effects of these 

influences on the totality of vision may well be impossible. 

1.2 Machine Vision 

The emergence of the pursuit to create a machine capable of vision is a rather recent 

event. Given the nature of vision, it is easy to appreciate Barrow's [8] view of the 

progress made in this endeavour. Although this statement was made in 1978 it is 

equally pertinent today: 

Despite considerable progress in recent years, our understanding of the prin­

ciples underlying visual perception remains primitive. Attempts to construct 

computer models for the interpretation of arbitrary scenes have resulted in such 

poor performance, limited range of abilities and inflexibility that, were it not 

for the human existence proof, we may have been tempted long ago to conclude 

that high performance, general purpose vision is impossible. 

This dire statement was used by Charniak in [18] to introduce a discussion of an 

overview of both the vision problem and the classical approaches taken in its solution. 
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Barrow's statement also explains why the path to the solution of the vision problem 

has generated two schools of thought on the matter: the reconstructive and the pur­

posive. The former works from the belief that the organising principles inherent in 

biological systems have optimised the mechanism for processing visual information 

[51, 96]. The latter group believes that the silicon based machine is so fundamen­

tally different from the carbon based biological systems that the task is better served 

by attempting to solve specific vision application problems independent of biological 

considerations. However, some researchers [45, 97] including this author suggest that 

there is a productive middle ground between these two schools. This middle ground 

might also be well served to incorporate the principles of an inter-disciplinary ap­

proach; one which involves the expertise of electrical and mechanical engineers, neuro 

human anatomists and neurophysiologists, computer scientists, perceptual psychol­

ogists, physicists and mathematicians. In any case, there is at least some general 

agreement of the elements of a powerful machine vision system [19, 76, 98]. These 

elements can be classified as representation issues and control issues. The issues are 

summarized in Table 1.1 and have mostly been taken from [16] where they are dis­

cussed in detail. 

1.3 Goal of this Thesis 

The goal of this thesis is to unveil a new approach to machine vision; one with sufficient 

power required for the development of a general purpose machine vision system. The 

approach will traverse a path between the reconstructive and purposive schools of 

thought on machine vision. It will also embrace two further essential principles: 

i) A vision system is an organized whole in which each individual part affects 

every other. 
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Table 1.1: Burt's list of elements that make up a machine vision system 

Representation : 

i) Controlled Resolution Use the lowest resolution for the task 

ii) Restricted Windows Restrict high resolution analysis to windows of 
interest 

iii) Integrated Measures Represent feature measures at reduced positional 
resolution 

iv) Compressed Ranges Represent samples with few bits 

Control : 

i) Peripheral Alerting Monitor the full field at low resolution to detect 
critical events 

ii) Model-Based Guidance Direct foveal analysis to resolve ambiguities 
and verify hypothesis 

iii) Coarse-to-Fine Analysis Compute rough estimates at low resolution, 
then refine at higher resolutions 

iv) Concurrency Independent tasks should be processed concurrently 
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ii) A general purpose machine vision system must operate without a priori infor-

mation about the environment that it explores. 

The first of these principles simultaneously embodies the spirit of concurrency in 

parallel processing and is compliant with the fundamental tenet of the Gestalt view 

of vision. The second principle expresses the essence of the vision process. 

The approach initiates from a key observation which was made by the author 

regarding the shape and distribution of the cones on the retina of a primate. It is 

the properties of this shape and its arrangement that provides a crucial component of 

the approach to machine vision taken in this thesis. The key observation leads to the 

development of a new data structure and the development of new algorithms which 

are capable of supporting the two principles of this approach to machine vision. 

1.4 0 bservation of this Thesis 

Theodor Schwenk [89] has investigated in great depth the formative forces of water 

and air and in the process he came to certain conclusions regarding living forms 

and their origins. In particular, he suggests that the retina of the human eye, as 

mediator between the visual world and the brain, embodies a form which is compatible 

with the structure of the visual world and the function of the brain. To illustrate 

this, consider the shape and arrangement of the petals of a chrysanthemum. They 

bear a striking resemblance to the shape and distribution of the rods and cones 

on the retina of a primate's eye. See Figures 1.2 and 1.1. According to Schwenk, 

this structural resemblance is not merely a curious coincidence; both entities emerge 

from the archetypal pattern of the spiral which is associated with the growth of an 

organism. 

One of the evolutionary effects on the human vision system pertains to the retina 

which is the photo receiving device at the back of the eye. On the top layer of the 
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retina are rods and cones which are the photo receiving elements of the retina. There 

is no longer any doubt as to the shape of the cones on the primate's retina. They 

have the shape of hexagons and are arranged as a triangular mosaic [106]. It is the 

observation of the thesis that the rods and cones are arranged in spiralling rosette 

like clusters of seven. Figure 1.1 is a highly magnified view of the retina and displays 

this geometrical arrangement. 

Figure 1.1: Distribution of cones on a primate's retina, taken from [23]. 

This observation pertains to functional implications of the spiralling clusters of 

cones on the primate's retina. The geometry of this distribution has inherent or­

ganization and is endowed with powerful computational features. The cones have 

the shape of hexagons and are arranged in spiralling rosette-like clusters. Figure 1.3 

displays the spiralling pattern of the nerve fibre connecting the rods and cones in 

the retina. The rosette-like cluster is composed of seven hexagons and is an organi­

zational unit of vision. It will be referred to as the fundamental unit of vision (see 

Figure 1.4) and it will play a critical role throughout this thesis. This disarmingly 

simple observation gives rise to three geometrical properties of the hexagons: 
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Figure 1.2: Distribution of hexagonal shaped petals on the flower of a chrysanthemum. 

Figure 1.3: Nerve fibre around the fovea and point of exit at the optic disc showing 
the spiralling effect, taken from [90] page 63. 
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i) The distances from the centre hexagon of the fundamental unit of vision to each 

of its six surrounding hexagons are all equal. 

ii) Each of the six cusps of the centre hexagon on the fundamental unit of vision 

is a junction where exactly three hexagons join. 

iii) Any hexagon on a uniform grid of hexagons may be considered as the centre 

hexagon of a fundamental unit of vision. 

There is no other geometrical object which possesses these three properties.3 This 

observation will be exploited to the extent that the development of all of the original 

work presented in this thesis can be traced back to it. 

Figure 1.4: The fundamental unit of vision. Seven hexagons arranged such that a 
centre hexagon is adjacent to six other hexagons. 

1.5 Significance of this Thesis 

The most significant aspect of this thesis is that it provides access to the computa­

tional power required for machine vision that hitherto has not been available. This 

3 Although no mathematical proof of this statement is given, it is a simple matter to check its 
validity with regards to the classical forms of spatial data structures which are discussed in [86]. 
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access is a direct result from the observation of the thesis which is: 

The three geometrical properties of the hexagons can be em­

ployed to describe the spiralling clusters of cones on a primate's 

retina in terms of the mathematical object known as a Euclidean 

rmg. 

12 

The existence of this Euclidean ring makes possible the construction of a rich 

collection of other mathematical objects that take the form of image transformations. 

The collective properties of these transformations results in the formulation of a new 

data structure that possesses considerable computational utility. This data structure 

can be described in terms of the mathematical object known as an algebra. This data 

structure provides access to computational features inherent in the organization of 

the primate's retina. It is important for two reasons: 

• The data structure provides the means by which a solid theoretical foundation 

that unifies the wide range of image transformations in a manner consistent 

with considering the process of vision as a totality can be formulated. 

• The data structure can be practically implemented as a fundamental component 

of a general purpose machine vision system. 

1.6 Organization of this Thesis 

Chapter 2 provides the theoretical foundations on which the rest of the thesis is 

based. A new data structure for machine vision, named Spiral Honeycomb Lie Algebra 

(SHLA), will be described. This data structure is inspired from the geometry of 

the retina of primates and is consistent with the requirements of machine vision 

as described in Table 1.1. Chapter 3 will describe an implementation of SHLA on 
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a parallel architecture of a network of transputers. The main result of Chapter 4 

describes an algorithm to perform one of the essential components of machine vision, 

known as segmentation. It will be shown that the segmentation algorithm can be 

implemented on a network of transputers that is compatible with the implementation 

of SHLA. Chapter 5 will extend the results of Chapter 4 to multidimensional visual 

data. In particular, it will outline an algorithm that can be employed in the perception 

of motion in three-dimensional space. Chapter 6 discusses the future directions of 

this work. It explores the implications of SHLA from two perspectives. The first 

describes the design of a general purpose machine vision system which is based on 

SHLA and is in keeping with the principles of Table 1.1. The second speculates on 

some open questions in the field of biological vision systems. Chapter 7 provides the 

concluding remarks to this thesis. There are two appendices. The first will provide 

the mathematical details of the proofs to the theorems stated in Chapter 2. The 

second contains a glossary of a few of the more peculiar terms that have invaded the 

field of machine vision. 



Chapter 2 

A Detailed Look at the Theory 

On the next morning, Pekanini and Kimo described the patterns they each had seen 

on their journey though the mountains the previous day. 

Reflectively, Kimo then said, "Now we must describe these patterns with numbers 

and to do this one must learn to count." 

14 
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2.1 Introduction 

The theoretical foundation on which the results of this thesis are based is presented 

in this chapter. The primary goal of this chapter is to describe a new data structure 

for machine vision in both qualitative and mathematical terms. The name given to 

this data structure is Spiral Honeycomb Lie Algebra (SHLA). The first part of the 

name, Spiral Honeycomb, is derived from a description of the structure from which it 

was inspired - a primate's retina. The arrangement of cones on the primate's retina 

forms a pattern of spiralling clusters of hexagons. 

The importance of this arrangement of spiralling clusters, apart from its intrigu­

ingly beautiful geometry, is that it possesses powerful computational advantages 

to machine vision. This computational power associated with this arrangement of 

hexagons emerges from the algebraic structure which will be unveiled in this chapter. 

This structure is a Lie Algebra and provides the second part of the name, SHLA. 

In essence, SHLA is a rich collection of image transformations on a space which 

is composed of hexagons. The hexagons hold the picture elements of an image. 

These transformations are visually meaningful because they achieve rearrangements 

of an image in a manner compatible with the way an object is perceived to move 

in the visual world. A crucial characteristic of this collection of transformations is 

that for any given sequence of transformations applied to an image there is a unique 

transformation that achieves the same final result of the sequence when applied to 

the original image. Thus, any visually meaningful rearrangement of the hexagons can 

be obtained directly from any given arrangement. It is for this reason that SHLA can 

be considered as a clustering structure1 as opposed to a hierarchical structure such as 

a Quadtree, which has a definite starting and ending point in its representations. 

1The author is unaware of the existence of the term clustering structure in the machine vision 
literature. As such it is anticipated that the term will connotate certain geometrical qualities which 
will contrast it with the geometrical qualities of other structures. 
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In Chapter 1, reference was made to Table 1.1 presenting the criteria for an ac­

tive machine vision system. One of the criteria, multiple resolution representation, 

relates to the problem of extracting information about a scene for which no a priori 

information is known. The recognition of many objects is related to their size. For 

example, the representation of a person makes sense only over a range of sizes. If 

that representation is too small, it might be classed as a doll. On the other hand, if 

it were too large, it may be perceived as a monster. Consequently, a vision system 

must be able to reconcile the scale of an image. This problem amounts to the selec­

tion of an appropriate scale to start the recognition process. One strategy is to start 

the process at all possible scales concurrently and let the data be the driving force 

of the recognition process. SHLA provides the means by which such a strategy can 

be implemented. With regards to the representation of the image at different scales, 

SHLA has a number of important features that result from its algebraic structure: 

i) all possible scales are achievable with equal computational complexity, 

ii) all scales, contractions or magnifications, can be obtained from any single scale 

without intermediate transformations, 

iii) any number of scalings can be performed without degrading the input image, 

and 

iv) a change of scale never results in the loss of information contained in the rep­

resentation. 

It is important to emphasise the point that, although the SHLA was inspired from 

the organising principles inherent in the retina of primates, no claim is made that 

SHLA is a model of the primate vision system. Rather, SHLA is explored from the 

point of view of a computational tool for use on a computer. The speculation, relating 

SHLA to the psychophysics of human perception, will be discussed in Chapter 6. 
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Section 2.2 of this chapter places SHLA in the context of other works; indicating 

similarities and differences to other data structures for machine vision. Section 3 

describes a structure called the Spiral Honeycomb Mosaic, (SHM) which is then 

employed to impart the main result of the chapter, in section 4. The chapter concludes 

with a summary and discussion of the main points presented in the chapter. The main 

results of the chapter are presented in the form of theorems. However, the proofs of 

the theorems do not lead to a greater understanding of the ideas expressed so the 

proofs will be relegated to Appendix A. 

2.2 Related Other Works 

The facility of SHLA to produce multiple scale representations has certain similarities 

to the scale space concept as introduced by Witken. The literature on the subject is 

now extensive and Lindeburg provides an excellent treatment of it in [60]. However, 

one of the major differences between SHLA and the scale space is that SHLA does 

not smooth the data to obtain the scale; it obtains the effect by merely re-grouping 

the data. The use of hexagons as the elements of an image representation is certainly 

not new. This structure has been described by Burt [15]. It has been used in the 

context of Generalized Balanced Trees (GBT) by Gibson and Lucas [36]. Samet 

in [86] discusses this structure in the context of spatial Quadtrees in which certain 

considerations of the shape of the elements (hexagon) leads to the conclusion that 

the data structure has severe limitations for its practical use. This is an assertion 

which this thesis refutes. According to Samet, the primary limitation results from the 

requirement that the edges of certain elements would need to correlate to the edges of 

objects in the image. This in turn has implications for the segmentation process. The 

segmentation process of SHLA, which will be treated in Chapter 4, does not have the 

requirement of edge correlation. The covering properties of the hexagon have been 
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exploited in the design of an optical telescope to improve focusing as described in [59]. 

Ahuja in [2] discusses the role of the hexagon in the context of hierarchical structures. 

It is important to realize that the hierarchical representations are fundamentally 

different from a clustering representation such as SHLA. Hierarchical approaches at­

tempt to fit recursively subdividible elements optimally into regions. The decompo­

sition of the elements takes place at lower levels in order to obtain a better fit of 

the elemental shapes (squares, triangles, hexagons, etc). It has a starting level. Any 

given level of the hierarchy is derived from the immediate predecessor. The process 

is generally not reversible. 

By contrast, the role of the pixel's shape in SHLA is immaterial. It is equally 

consistent to consider these elements as points at a location rather than the shape 

of a particular two dimensional object. Also the multi-scale representations of SHLA 

have arbitrary starting points but not necessarily ending points. Any scale can be 

derived directly from any other scale and the process is reversible. Most importantly, 

the transformations on SHLA enable multiple scale representation of an image without 

the inefficiencies of a hierarchy. 

The use of Lie Algebras in both the modeling of the human vision system and as a 

tool in machine vision is not new. Hoffman in [46] uses Linear Transformation Groups 

as elements of a Lie Algebra to model the human vision system. Although there are 

some striking parallels of SHLA and Hoffman's model, the discussion of this will be 

deferred to Chapter 6. Gu in [39] reviews the use of Lie Algebras in robotic vision for 

the purpose of perceiving motion in three dimensional space. All of the Lie Algebras 

mentioned by Gu operate on a real or complex-valued space and consequently suffer 

the rounding effects of reconciling a continuous space to a discrete machine. SHLA, 

on the other hand, is a purely discrete data structure. Its elements are discrete and 

the operations performed on its elements are discrete. 
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There have also been a wide ranging number of approaches that attempt to cap­
ture the scale invariance property of the primate vision system. A few of these are: 
Ebrahimi in [29] discusses the application of the Gabor Transform to data compres­
sion; Rojer and Schwartz in (80] employ a complex logarithmic geometry to achieve 
a space invariant transform. One of the problems with the logarithmic geometry is 
that what it gains with the scale invariance it loses in the translation process (70, 17]. 

The use of wavelet analysis has been explored in [47]. It employs data smoothing 
to fit curves to the internal boundaries of an image. This smoothing process results 
in the discarding of information from the image. 

Spiral functions applied to image processing representations is not new. Such 
issues are discussed by J. Bigun in [ll]. In contrast, the important feature of the 
spiral function associated with SHLA is that it is a discrete function. 

2.3 The Spiral Honeycomb Mosaic {SHM) 

This section will describe the fundamental mathematical structure which underpins 
the main theoretical results to be presented in this chapter. The name given to 
this structure is Spiral Honeycomb Mosaic (SHM). It turns out that SHM has the 
structure of the important mathematical object known as a Euclidean ring. 2 It is this 
rich algebraic structure that provides the tool to create the transformations that will 
be presented later in this chapter. 

The development of SHM will unfold in the following five steps. The first step is 
to describe the elements of SHM. A collection of definitions and terminology will be 
developed for use in subsequent steps. The third step will reveal the symmetries of 
a process called Spiral Counting. The fourth step will formalise Spiral Counting to 

2The concept of a Euclidean ring is of fundamental importance to mathematics. By analogy, it is to many branches of mathematics what electricity is to the light bulb. It is also of crucial importance to this thesis. 
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obtain the algebraic operations on SHM. This section culminates with a summary of 

the results. 

2.3.1 Elements of SHM 

Intuitively, the elements of SHM may be considered as the collection of pixels (pic­

ture elements) of an image. These elements correspond to the position of the photo 

receiving cells of the image capturing device. In the case of the human eye, these 

elements would represent the relative position of the rods and cones on the retina. 

Assume that each pixel is in the shape of a hexagon with its own unique "address" 

and light intensity. This location corresponds to a point in the visual world, and the 

light intensity corresponds to the amount of light emanating from that point in the 

visual world. Ultimate knowledge of the visual world is derived from the relative 

positions of the light intensities captured at the hexagons. 

The most important aspect of each hexagon is not its six sides but that it has 

six neighbouring hexagons. This establishes the property that for all hexagons in a 

grid of hexagons, the centre of each hexagon is a constant distance from every one of 

its six neighbours3 . An algorithm is used to determine the address of each hexagon. 

The property of equal distance between adjacent hexagons is the source of a deeper 

reason for the importance of this data structure. The hexagonal shape of the elements 

has relevance only at the photo receiving stage of the process4
. In order to reinforce 

the idea of a particular grouping of seven elements, the addresses of these elements 

(centres of hexagons) will be referred to as hexagons. 

The first task at hand is to label each of the individual hexagons with a unique 

3It is a simple matter to confirm this property of the fundamental unit of vision by performing 
the following exercise. Use a compass to draw a circle of some desired radius on a sheet of paper. At 
an arbitrary point on the circle use the compass to construct another circle of the same radius. At 
all points where two circles intersect construct another circle. Each point of intersection represents 
the centre of a hexagon. 

4 A group of seven polygons achieves optimal covering when each polygon is a hexagon. 
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address. This will be achieved by describing a process that begins with a collection 

of seven hexagons. 

Each of the hexagons is labelled consecutively in base seven with address 0, 1, 2, 

3, 4, 5, 6 as displayed in Figure 2.1. 

\, __ 4-_j 5 
3 / \ 

I ~-
\, 0 I 
\---<, 6 

2 I \ 

Figure 2.1: A fundamental unit of vision. A collection of seven hexagons where the 
centrernost is labelled with address 0 and each neighbour is labelled consecutively. 

Repeatedly apply the following three steps as illustrated in Figures 2.2, 2.3 and 

2.4. 

Step 1 Multiply the address of each hexagon by 10. See Figure 2.2 

Figure 2.2: Step 1. Each of the original addresses from 2.1 are multiplied by 10. 
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Step 2 Dilate the structure so that six additional hexagons can be placed about each 

addressed hexagon. See Figure 2.3 

Figure 2.3: Step 2 . The cluster from Step 1 is dilated so that six additional hexagons 
can be placed about each of the addressed hexagons. 

Step 3 For each new cluster label each of the six enclosing hexagons consecutively 

from the centre address. See Figure 2.4 

The repetition of the steps permits the collection of hexagons to grow in powers 

of seven with uniquely assigned addresses. It is this pattern of growth that generates 

the spiral. Further, the addresses are consecutive in base seven. Figure 2.5 displays 

the results of applying the inductive step for the third time. 

2.3.2 Definitions and Terminology 

In order to facilitate both the development of the data structure in this chapter and 

the narrative throughout the thesis, the following definitions and terminologies will 

be employed. Some of the terms presented here originate in what might seem to be 
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Figure 2.4: Step 3. Each new group of seven hexagons from Step 2 is labelled con­
secutively. 

unrelated contexts. However, it is intended that the intuition associated with the 

common usage of such terms will enhance the understanding of the concepts being 

presented. 

Definition 2.1 A cluster is an arrangement of six hexagons around a centre 

hexagon with each hexagon a constant distance from the centre hexagon. See Fig­

ure 2.1 

Definition 2.2 An octave is a sequence of eight hexagons each of which has associ­

ated with it one of the notes doh, ray, me, fah, soh, lah, te, doh. The first seven notes 

correspond to the addresses of a cluster. The eighth note (second doh) corresponds 

to the address of the centre hexagon of a cluster determined by the following rule: 

move from te to ray and then in the same direction twice again. See Figure 2.6 
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Figure 2.5: Collection of 73 

base seven. 
343 hexagons with labelled address from 0 to 666 m 
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Figure 2.6: An octave. 

Associated with an octave is the concept of the key. 

Definition 2.3 The key of an octave is the address of ray in the octave. It has 

two numbers associated with it. The first number is the metre which is the length of 

the line segment joining the centre of the hexagon at the first doh to the centre of the 

hexagon at ray. The second number is the orientation of the line segment relative to 

some fixed position. The key completely determines the octave. 

The next definition facilitates the concept of linking two distinct octaves. 

Definition 2.4 A next higher octave, of a given octave, is that octave obtained 

by taking as its ray, the second doh of the given octave. 

With these definitions in hand, the fundamental concept underpining the visually 

meaningful transformations that constitute SHLA can be described. 

2.3.3 Spiral Counting 

Spiral Counting is an algorithm that designates a sequence of hexagons in SHM. It 

may be thought of in qualitative terms as a process of movement through the SHM, 

tracing a pattern prescribed by a particular octave. This is a spiralling movement 

that has a commencing hexagon, counts a pre-determined number of hexagons and 
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terminates at a distinct hexagon. This is accomplished by recursively applying the 

pattern of a given octave. The recursive process works as follows: 

Given the three inputs- key, commencing address and the number of hexagons to 

be counted-

i) Establish the pattern of a primary octave from the key. Let the commencing 

address coincide with the first doh of the octave. Call this the present octave. 

ii) Specify the sequence of address of the SHM which corresponds to the notes of 

the present octave. Call this the established pattern. 

iii) Specify the next higher octave and at each one of the notes ray to te employ 

the established pattern to continue the count. 

iv) Let the pattern, which was determined by the counting to this point, be the 

established pattern and let the present octave be the next higher octave. 

v) Repeatedly apply steps iii) and iv) until the number of hexagons to be counted 

has been reached. 

To illustrate how the algorithm is applied, consider the following three examples 

of spiral counting. 

First Example Spiral counting in the key of 1 commencing at address 0: 

i) The present octave is established by the key of 1 as displayed in Figure 2. 7. 

ii) The first seven counts associated with the pattern of the present octave 

produces visits at the following sequences of addresses: 0, 1, 2, 3, 4, 5, 6. 

iii) The next higher octave is established by the key of 10. See Figure 2.8. 

The addresses associated with this octave are 

0, 10, 20, 30, 40, 50, 60, 100. Employing the established pattern at each 
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Figure 2. 7: Octave established by key of 1. 
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Figure 2.8: Octave established by key of 10. 

27 
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of the notes ray through te results in visits at the following sequence of 
addresses: 

10, 11, 12, 13, 14, 15, 16, 

20, 21, 22, 23, 24, 25, 26, 

30, 31, 32, 33, 34, 35, 36, 

40, 41, 42, 43, 44, 45, 46, 

50, 51, 52, 53, 54, 55, 56, 

60, 61, 62, 63, 64, 65, 66 

A close inspection of Figure 2.5 will reveal the pattern of this sequence of 
addresses. 

iv) The address associated with the last note of the octave, 100, once again 
establishes the key for the next higher octave. 

Second Example Consider the process of Spiral Counting in the key of 1 from a 
non-zero commencing address. Spiral Counting in the key of 1 from address 6 
proceeds as follows (the octaves are the same as those displayed in Figure 2.7 
and Figure 2.8): 

i) The first octave is the same as the previous example. 

ii) The addresses associated with this octave are 6, 64, 1, 0, 52, 65, 16. 

iii) The addresses associated with the second octave are 6, 16, 26, 36, 46, 
56, 66, 106. The counting associated with this octave yields visits at the 
following sequences of addresses: 

ray: 16, 644, 11, 10, 15, 63, 62, 

me: 26, 14, 21, 20, 25, 3, 2, 

fah: 36, 4, 31, 30, 35, 43, 42, 

soh: 46, 54, 41, 40, 45, 423, 422, 
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lah: 56, 524, 51, 50, 55, 413, 412, 

te: 66, 524, 61, 60, 65, 533, 532 

iv) 106 establishes the key of the next higher octave 

Third Example Consider Spiral Counting in the key of 15 from address 0. 

29 

i) The key of 15 establishes the pattern of the primary octave as displayed 
in Figure 2.9. 

~ 
Figure 2.9: The octave established by the key of 15. 

ii) The sequence of addresses associated with the primary octave are 0, 15, 
26, 31, 42, 53, 64, 150 

iii) The key of the next higher octave is 150. The addresses associated with 
the next higher octave are 0, 150, 260, 310, 420, 530, 640, 1500 
The sequence of addresses to be visited are 

ray: 150, 165, 106, 141, 22, 13, 634, 

me: 260, 216, 201, 252, 33, 24, 145, 

fah: 310, 321, 302, 363, 44, 35, 256, 
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soh: 420, 432, 403, 414, 55, 46, 361, 

lah: 530, 543, 504, 525, 66, 51, 412, 

te: 640, 654, 605, 636, 11, 62, 523 
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iv) The second repetition of steps iii) and iv) commences with the key of the 

next higher octave which is 1500. 

2.3.4 Operations on SHM 

SHM, as it stands at this point, is merely a collection of elements endowed with a 

certain symmetry. Spiral Counting will now be used to define two operations on SHM 

that will give it the desired structure of a Euclidean ring. 

Define Spiral Addition of address a and b as: 

a+ b = that address found by spiral counting baddresses in the key of 1 from a. 

(2.1) 

Define Spiral Multiplication of a by b as: 

a x b = that address found by spiral counting b addresses in the key of a from 0. 

(2.2) 

A few examples will serve to illustrate the processes of Spiral Addition and Spiral 

Multiplication before considering the arithmetic modular form of these operations. 

The following examples would be most easily understood by tracing the particular 

octave pattern through the sequences of address on Figure 2.10. 

Examples of Spiral Addition : 

i) 2 + 3 = that address found by counting 3 addresses in the key of 1 from 

2. The first address from 2 is 15. The second is 14 and the third is 26. 



CHAPTER 2. A DETAILED LOOK AT THE THEORY 

2 + 1 = 15 
2 + 2 = 14 
2 + 3 = 26 

2 X 3= 4 
15 X 2 = 26 

31 

Figure 2.10: Three examples of Spiral Addition and two examples of Spiral Multipli­
cation. 
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Thus 2 + 3 = 26. 

ii) 5 + 12 = 10, which is the 12th address in the sequence 6, 0, 4, 42, 41, 53, 

15, 16, 10. 

Examples of Spiral Multiplication 

i) 2 x 3 = that address found by Spiral Counting in the key of 2 from 0 for 

3 counts. The sequence of three addresses is 2, 3, 4. 

Thus 2 x 3 = 4. 

ii) 15 x 2 = 26, which is the address found by Spiral Counting in the key of 

15 from 0 for 2 counts. The sequence of addresses is 15, 26. 

Although the cardinality of SHM is infinite, in practice the use to which the SHM 

will be put is that of a finite space with modular forms of the arithmetic defined. 

The modular arithmetic, in turn, results from a modular form of Spiral Counting. 

Intuitively, the modular operations are a pruning and grafting process. That is, the 

collection of elements that would be moved outside of the designated range (the prune) 

by an operation, must be mapped back into the range in such a way as to preserve its 

relative position to the other elements in the collection (the graft). In other words, 

the modular arithmetic must possess a Euclidean-like property. 

The following examples illustrate the process. 

Example 1: Addition modulo 10. From Figure 2.3 it can be verified that 

1 + 1 = 63 , which is greater than 10. 

In order to determine the position of 63 in the range 0 to 6, the process com­

mences at 0 and counts through the first seven hexagons and returns to 0 any 

time the pattern departs from these seven hexagons. The sequence of counts 

would be: 
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0, 1, 2, 3, 4, 5, 6, (for each of 6 repetitions) 

0, 1, 2, 3 (for counts 60, 61, 62, 63 respectively) 

Thus (1 + 1) mod 10 = 3. 
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This tedious process is short circuited by performing remainder division in base 
7. In general, modular addition of two addresses a and bE SH M is defined as 
follows: 

Step 1: Perform Spiral Addition of a and b as defined in Equation 2.1. 

Step 2: Perform remainder division of the result from Step 1 using the modulus. 

Symbolically, the algorithm is expressed as: 

(a+ b) mod (modulus)= result (2.3) 

The remainder on division of 63 by 10 is 3. These two methods are equiva­
lent. The first method embodies the geometrical significance of Spiral Counting 
but the second method is the one most easily implemented for computational 
purposes. 

Example 2: Addition modulo 100. 1 + 62 = 645 

Addition modulo 100 amounts to dropping all but the two least significant 
digits. 

Thus (1 + 62) mod 100 = 45. 

The general case of modular multiplication is motivated by the following obser­
vation: All of the addresses in SHM which are multiples of the modulus are, in 
effect, zero elements. That is, each acts as an additive unit element. In order to 
create multiplicative inverses for all of the non-zero addresses, these addresses 
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must not be mapped to zero under modular multiplication. Otherwise SHM 
would contain zero-divisors and the possibility for achieving a multiplicative in­
verses for all non-zero addresses would be lost. The following two step algorithm 
that will define modular multiplication on SHM insures that the operation of 
multiplication is compatible with the criteria of a multiplicative inverse. 

Modular Multiplication 

Step 1 Let p be the product of two elements a and b E SHM. p = a x b as 
defined in Equation 2.2. 

Step 2 If p ~ (modulus), then if the element a is a multiple of 10 map p to 

(p + (p +(modulus))) mod (modulus); (2.4) 

Otherwise, map p to 

pmod (modulus). (2.5) 

Example 3: Multiplication modulo 100. Observe that 10 x 15 = 150 

As the value of a, 10, is a multiple of 10, the hexagon whose address is in the 
range 0 to 66 and corresponds to 150 is determined as follows: 

(150 + (150 + 100)) mod 100 =51. 

Example 4: Multiplication modulo 100. 15 x 10 = 150 

As 15 is not a multiple of 10, the product is mapped to 

150 mod 100 = 50. 

These last two examples illustrate an important property of the multiplication 
operation. The non-modular form is commutative while the modular form is not 
commutative. The other algebraic properties of the operations are presented in the 
next section. 
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2.3.5 Algebraic Properties of SHM 

The SHM together with the operations of Spiral Addition and Spiral Multiplication 

possesses some important algebraic properties. These are: 

The operations are associative : 

a+ (b+c) = (a+b) +c 

a X (b X c) = (a X b) XC 

The operations are distributive : 

a x (b +c) =a x b +a x c and 

(b +c) x a= b x a+ c x a 

0 is the additive identity : 

O+a=a+O=a 

1 is the multiplicative identity : 

lxa=axl=a 

Each address has a unique additive inverse 

a+ (-a)= (-a)+ a= OVa E SHM. 

-a denotes the additive inverse of a. 

Each non-zero address has a unique multiplicative inverse : 

a x a-1 = a- 1 x a= l'Va =P 0. 

a- 1 denotes the multiplicative inverse of a. 

Commutative property : 

a+b=b+a 

(a+ b) mod (modulus) = (b +a) mod (modulus) 

axb=bxa 

(a x b) mod (modulus) =P (b x a) mod (modulus) 
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Non-existence of zero-divisors There are no elements a =P 0 and b =P 0 E SH M 
such that a x b = 0. 

Euclidean property For every a E SH M there is defined a nonnegative integer 
d(a) such that: 

(1) For all bE SH M, d(a) :S d(a x b) 

(2) For any a, b E SH M there exist t, r E SH M such that a = t x b + r where 
either r = 0 or d(r) < d(b). 

Every address of SHM can be obtained by repeatedly adding the address 1. 

2.3.6 Algebraic Significance of SHM 

The algebraic properties of Spiral Counting developed in the preceding subsections 
are summarised in the following theorem. The mathematical proof of the theorem is 
found in Appendix A. 

Theorem 1 Suppose that the SHM is defined with the operations of Spiral Addition 
and Spiral Multiplication, as defined in Equations 2.1 and 2. 2. Then, 

i) SHM is an abelian cyclic 7-group under the operation of Spiral Addition. 

ii) SHM is a Euclidean ring. 

Let the number of hexagons in SHM be 

K = 7n for n ~ 0 and let the arithmetical operations be modulo K as defined in 
Equations 2.3, 2.4 and 2.5. 

Then, 

iii) The subset of SHM given by { 0, 1, 2, 3, 4, 5, 6} is a finite field. 
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iv) The collection of addresses of SHM which are not a multiple of 10 form an 

abelian group under the operation of Spiral Multiplication and has order 6 x T'-1 . 

The principal algebraic significance of this theorem emerges from the fact that 
SHM is a Euclidean ring. The algebraically rich structure of a ring is well known 

[42]. The immediate significance of the Euclidean ring in this context is that geomet­

rical properties associated with images represented on the SHM can be dealt with in 

purely algebraic terms. More specifically, it will facilitate the creation of a collection 
of image processing transformations that include translation, rotation, dilation and 
contraction. These transformations will be developed in the next section. 

2.4 Spiral Honeycomb Lie Algebra (SHLA) 

In this section, the algebraic properties of SHM (a Euclidean ring), will be employed 

to describe the data structure referred to at the beginning of the chapter. This data 
structure, Spiral Honeycomb Lie Algebra (SHLA) has, as its name implies, the prop­
erties of a Lie Algebra. This mathematical structure will be described in detail. This 
eloquent algebraic structure is not a theoretical end for its own sake. Rather, this 
theory has two important features. Firstly, it provides the unification for the devel­

opment of a collection of image processing transformations. Secondly, it provides a 
technique for producing other computational image processing tools. Its importance 
to this thesis emerges from the use to which the tools are put; namely, to the creation 
of invariant transformations required for an active machine vision system. The trans­
formations observable in Figures 2.12 to 2.22 are examples of the transformations 
referred to and that which will now be described in formal mathematical terms. In 
particular, it will be demonstrated how to achieve the primitive operations of trans­
lation, rotation and scaling. The theory will also be used to produce non-primitive 
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operations from the primitives. 

2.4.1 Transformations on SHM 

Consider the following two sets of transformation on SHM. 

Define for each x E S H M the mappings: 

Ax: SHM-+ SHMbyaAx = (a+ x) modKVa E SHM. (2.6) 

Mx: SHM-+ SHM; byaMx =(a x x)modKVa E SHM. (2.7) 

Let A= {Ax IVx E SHM} and M= {Mx I Vx E SHM}. 

The sets A and M, at this point are without algebraic structure. The definition 

of operations on these sets will provide them with the desired structure. 

Let Tx be a transformation from either of these sets: Then, define 

addition Tx + Ty = Tx+y 

multiplication Tx x Ty = Txxy 

scalar multiplication bTx = nx 

(2.8) 

(2.9) 

(2.10) 

Note that the operations of addition and multiplication on the left side of the 

equal sign refers to the operations on the transformations (the ones being defined) 

and those on the right refers to operations on the elements of SHM, as defined in 

the previous section. It also follows directly from the definition that Tx is a bijective 

transformation. 

Theorem 2 With regards the transformations on SHM: 

i} Each of the sets A and M forms an algebra under the operations of addition, 

multiplication and scalar multiplication (equations 2. 8 through 2.10). 
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ii} The external direct sum of AE9M forms an algebra under the pairwise operations 

of addition, multiplication and scalar multiplication. Let this algebra be denoted 

by T. 

2.4.2 Lie Multiplication 

A fourth operation, called bracket multiplication or Lie multiplication, which has the 

effect of intertwining the other three operations is defined as: For X, Y E T and a E 

SHM let 

(2.11) 

In words, the bracket multiplication is that transformation which is equivalent to 

the successive applications of X followed by Y followed by the inverse of X followed 

by the inverse of Y. 

Bracket multiplication is a rather special operation which possesses the following 

properties: 

Multiplication is left and right associative with respect to addition : 

[X+ Y,Z] = [X,Z] + [Y,Z] and[X,Y+ Z] = [X,Y] + [X,Z] (2.12) 

The identity transformation is : 

[X, X]= I (2.13) 

The third property is known as the Jacobi identity: 

[[X, Y], Z] + [[Y, Z], X]+ [[Z, X], Y] =I 'v'X, Y, Z E A, M. (2.14) 

Let SHLA denote the algebra described in Theorem 2 above plus bracket multi­

plication. Then, the following theorem summarises the main algebraic result of this 

chapter. 
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Theorem 3 SHLA is a Lie Algebra and is a subspace of the dual of SHM. 

The elements of SHLA are ordered pairs of elements from A and M, respectively. 

The identity element is (A0 , MI) and the inverse of element (Ax, My), denoted by 

(Ax, My)- 1 is (Ax-1, My-1 ). 

2.5 Interpretation of SHLA 

The elements of SHLA derive their relevance to machine vision for three reasons: 

• The transformations are visually meaningful 

• SHLA is computational 

• The transformations possess invariant properties 

2.5.1 Meaningful Transformations 

The term meaningful transformations is used in the sense of Gibson's meaning in [35]. 

When an object moves in the visual world relative to an observer, the visual field of the 

observer undergoes a transformation. The fact that the objects in the transformed 

image preserve critical properties of the objects is an essential component of the 

recognition process. The relationship of the elements of SHLA to the collection of 

meaningful transformations can be readily appreciated by considering a few examples 

of the effects of these transformations on an image. 

The image of the can of Pal dog food in Figure 2.11 is represented with six octaves, 

rs pixels. 

Figures 2.12 and 2.13 shows the effect of applying A1000 and A100000 respectively 
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Figure 2.11: (left) Pal can of dog food represented by 384x288 pixels, (right) shows 
the relative position of the 76 hexagon SHM to the rectangular figure. 

Figure 2.12: Transformation by A1000 • The effect is one of translating the image a 
small distance along the line segment joining addresses 0 and 1000. 
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Figure 2.13: Transformation by A10s. The effect is one of translating the image along 
a line segment joining the addresses 0 and 100000. The amount of translation makes 
visible a wrap around effect. 

Observe that the first of these two transformations is a translation of the input 

image by a small amount. However, the second is a translation of a larger amount 

in the direction of 5 o 'clock from the centre. In this translation, part of the can has 

been shifted out of view. However, it is not lost as it has been wrapped around and 

is visible in the 11 o'clock direction from the centre. The original image in 2.11 is 

recoverable by applying the inverse transformations, A4000 and A400000 to 2.12 and 

2.13 respectively. 

Figures 2.14, 2.15, 2.16, 2.17 and 2.18 display the effect of applying M2 , M3 , M4 , M5 , 

and M 6 respectively. These images represent rotations of 60, 120, 180, 240 and 300 

degrees about the address zero. 

The results displayed in Figure 2.19 are the effects of applying M10 , M100 , M1000 , 

M10ooo, M10oooo, and M1000000 and are somewhat more complex and interesting illus-

trations of the transformations of SHLA. 

5The transformations A10oo and A100000 result from replacing x in Equation 2.6 with 1000 and 
100000, respectively 
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Figure 2.14: Transformation by M2 . The effect is one of rotation by 60 degrees. 

Figure 2.15: Transformation by M3 . The effect is one of rotation by 120 degrees. 
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Figure 2.16: Transformation by M4 , The effect is one of rotation by 180 degrees. 

Figure 2.17: Transformation by M5 • The effect is one of rotation by 240 degrees. 
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Figure 2.18: Transformation by M 6 • The effect is one of rotation by 300 degrees. 

In these figures, four effects on the input image are observable: 1. contraction, 2. 

dilation, 3. rotation, and 4. apparent production of multiple copies. Recall that 

the key of an octave has associated with it a metre and an orientation. The application 

of Mx to the input image has the effect of changing the metre and orientation of the 

primary octave to those associated with the key of x. This change in metre induces 

a simultaneous contraction and dilation. Observe that each of the seven can's image 

in 2.19 (upper right) are approximately one third the size of the can in the input 

image (upper left). Likewise, each of the images represented in 2.19-b to 2.19-f is a 

contraction of approximately one third of the preceding image. The exact contraction 

factor is the ratio of the distances between the addresses 0 to 1 and 0 to 10. 

The dilation effect is observable in only the lower right image of 2.19. Although 

the figure represents the 5th contraction ( M10 ) -s, it also contains a magnification 

of the figure in (upper left) by the same factor. Observe that the dog on the can 

in the upper left is magnified and has a ghost-like appearance in lower right. The 

magnification effect is also present in each of the other five figures. However, due to 
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Figure 2.19: (upper left) original image, (upper right) application of M 100000 to the 
original image, (middle left) application of M10000 to the original image, (middle 
right) application of M 1000 to the original image, (lower left) application of M 100 

to the original image, (lower right) application of M 10 to the original image. The 
observable effects in these transformations are 1. rotation, 2. scaling, 3. production 
of multiple near copies of the original image. 
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the magnitude of the magnification, it is not apparent. 

The effect of changing the key also induces a new orientation. Observe that 

the rotation in Figure 2.19 corresponds to the angle subtended by the straight line 

segments joining centres of the cells at address 1, 0 and 10. This is approximately 25 

degrees. Again, each of the remaining figures in Figure 2.19 represents a rotation of 

the previous image by this same amount. 

The fourth effect of producing multiple copies is somewhat more curious and 

possibly a bit more difficult to appreciate. First, an effect that is difficult to observe 

is that the copies are only near copies. This is due to the fact that each copy results 

from a unique sampling of the input image. Each sample is mutually exclusive and the 

collection of all such samples represents a partitioning of the input image. Secondly, 

observe the number of near copies in each successive figure. This number is related 

to the degree of scaling of the image (the metre). In this case, the number grows by 

a factor of seven in each successive image. To further illustrate this effect of multiple 

copies, consider the images represented in Figures 2.20 and 2.21. These two images 

result from the application of M15-1 and M12-1 respectively6 . Observe that the copies 

in the periphery of each are incomplete and that the number of copies in the latter 

are not a power of seven. 

The immediate consequences of this fourth effect, (multiple near copies), are three 

fold. The first is an implication for concurrency. That is, there is the possibility of 

pursuing different recognition strategies in parallel. This issue is treated in some 

detail in Chapter 4. The second consequence is the potential for handling images 

that can be represented in a multidimensional space involving depth and time. This 
6There are at least two computational methods that can be used to find the inverse of a trans­

formation in SHLA. One method is provided by raising the transformation to a power one less than 
is required to produce the identity transformation. Another method would employ the algorithm 
derived in the proof given in Appendix A that established the existence of the multiplicative inverse 
of all non-zero elements in SHM. The inverse of Mts is M456123. 
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Figure 2.20: The inverse transformation of M15 . The observable effects are 1. rota­
tion, 2. seven contractions of the original image of which six are partial representations 
of the original image. 

Figure 2.21: The inverse transformation of M12 . The observable effects are similar 
to those of MP:/ differing in the amount of rotation, degree of contraction and the 
number of multiple copies. 
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Figure 2.22: A compound transformation, inverse transformation of M15 followed by 
A100000 • The partial copies observable in Figure 2.20 have been wrapped around by 
the translation. 
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will be explored in Chapter 5. The final consequence to be considered is possibly the 

most important. As the scaling in effect represents the viewing of the image at a 

lower resolution, each copy has less information. However, as none of the individual 

light intensities have been altered in any way, the scaled image still holds all of the 

information contained in the original. This means that the computational complexity 

has been both reduced and nicely partitioned without giving away any information. 

The reduction of computational complexity results from the fact that the object is 

represented with fewer pixels. The production of the multiple copies results in the 

effect of partitioning the computations in a manner compatible with certain parallel 

computer architectures. These issues will be taken up again in Chapters 3 and 6. 

2.5.2 SHLA is Computational 

The claim that SHLA is computational partly results from the fact that each ele­

ment of M has associated with it a particular scaling and rotation. An arbitrary 

rotation on the SHM is achieved by a trade off in scale, not by incurring rounding 

error. Likewise, an arbitrary scaling is achieved by a trade off in orientation. The 

computational consequence of not incurring any rounding error when performing a 

transformation is that the image will not suffer any degradation no matter how many 

transformations are performed on it. This has important consequences for the cre­

ation of the non-primitive transformations which can be arbitrary long sequences of 

primitive transformations. The deeper reason for the occurrence of this desirable 

property is due to the fact that SHM has the structure of a Euclidean ring and that 

all non-zero addresses possess unique inverses. When the SHM is restricted to a finite 

set of hexagons and the arithmetic operators are defined modularly a Euclidean-like 

property is induced. Technically the modular multiplication does not have the Eu­

clidean property globally. Rather, the modular effect of the operation imposes an 



CHAPTER 2. A DETAILED LOOK AT THE THEORY 51 

inverse Euclidean property. That is, the points are transformed closer together. The 

net effect of multiplication on the image represented in the SHM is that a simultane­

ous dual Euclidean effect is induced. The result of this dual Euclidean effect is that 

the image is both dilated and contracted. An example of this effect can be observed 

in Figure 2.19 where the image of the dog on the original figure is dilated and overlaid 

on the contracted image. 

It is also worth noting that the Euclidean property of SHM has a computational 

implication. Although the concept of Spiral Counting can be applied to a rectangular 

grid (where the cluster is composed of a centre square with 8 neighbours and whose 

integer base is 9), the structure cannot be made to have the Euclidean property. For 

example, a rotation of 45 degrees would distort the original image. This loss of the 
Euclidean property results from the fact that each of the neighbours of the centre 

square are of different distances from the centre. This observation also represents the 

first significant difference between the hexagonal and rectangular grids. 

The fact that the transformations are bijective also adds to the computational 

claim. Intuitively, one would expect a bijective transformation to be easily paral­

leliseable. It turns out that this is so and will be demonstrated in Chapter 3. 

2.5.3 Invariant Properties 

In its own right, the Lie (bracket) multiplication has relevance to the SHM for two 

reasons. Firstly, as a mathematical tool it can be employed to study the structure of 

SHM. There are techniques which use Lie multiplication to obtain the automorphisms 

of a p-group [38] p209 and [12]. Secondly, according to the equations of Forbinious 

[46], all elements of the Algebra are representable as linear combinations of the ba­
sis (primitive) transformations. However, the Lie multiplication coupled with the 
Euclidian property of Spiral Counting provides an additional powerful tool for the 
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analysis of images. One of the ecologically meaningful 7 transformations on an im­

age relates to the image appearing the same before and after the transformation. A 

simple example of this situation is the rotation of a circle about its centre. Such a 

rotation, by any amount, would be unnoticeable to an observer. This transformation, 

which holds the circle invariant, can be used to characterise the circle. At present 

there are no techniques for finding an invariant transformation for an arbitrary image. 

Hoffman's Linear Transformation Group approach has made a considerable thrust in 

this direction. This issue will be taken up in greater detail in Chapter 6. 

2.6 Summary 

The unique geometrical properties of the fundamental unit of vision, as displayed 

in Figure 2.1, has the algebraic properties of a finite field. It was shown how the 

fundamental unit of vision could be employed as the atomic units of a larger structure, 

SHM, while retaining the important algebraic properties of the Euclidean ring. The 

SHM was employed to create SHLA which is a rich collection of image transformations 

and has the algebraic structure of a Lie Algebra. These transformations possess three 

important properties relevant to machine vision: 

• The transformations are visually meaningful 

• SHLA is computational 

• The transformations posses invariant properties. 

The above properties of SHLA which are possessed by no other data structure 

result directly from the structure of the fundamental unit of vision. 

7This term was coined by J. J. Gibson in [34] to distinguish the types of transformations performed 
by biological vision systems from image transformations in general. 



Chapter 3 

Implementation of the SHLA 

On the third day, after hearing Pekanini 's tale of counting, Kimo said, "Counting 

accurately is one thing. But, one must also count swiftly." 

53 
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3.1 Introduction 

This chapter will demonstrate how the Spiral Honeycomb Lie Algebra (SHLA) can 

be implemented on a parallel processing architecture. The significance of the results 

presented in this chapter is that it provides further evidence to support the claims 

made in Chapter 2 about the relevance of SHLA to machine vision. In particular, it 

will be demonstrated that SHLA is computational. 

The mathematical structure of SHLA and its implementation evolved together. A 

synergistic relationship arose between the theory and the practice where at times the 

theory drove the implementation and at other times the reverse was the case. The 

basis of this relationship nurtured the belief that a real-time machine vision system 

must possess the property of concurrency. Consequently, the development of the 

theory was pursued only in the event that it supported this paradigm. 

Recall that SHLA is a collection of transformations of a space on which an image 

is represented. The nature of these transformations possesses both global and local 

expressions. Their global nature has the effect of re-arranging the picture elements 

of the image while preserving some critical properties of the image, such as shape, 

orientation and size. However, these global effects are achieved by purely local actions. 

The local action is an operation which is performed on an address which determines 

a unique address to which information is sent. The derivation of the new addresses 

is dependent on the process of Spiral Counting. Consequently, the implementation 

will amount to the coding of this process. The resulting transformations may then be 

considered as a collection of independent operations that may proceed concurrently. 

The intensive computational demands of machine vision appears to be well suited 

to parallel architectures in general [66]. The transputer was selected as an appropriate 

parallel architecture on which to implement the SHLA for three primary reasons. 

These are: 
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i) As the transformations of the SHLA will be performed at many levels of the 
vision process, the Multiple Instruction Multiple Data (MIMD) capability of 
the transputer was considered to be desirable. 

ii) The transputer has the potential for the parallel input of an image. 

iii) The lego like flexibility enables the addition/substraction of transputers to meet 
specific timing requirements according to the particular application. 

This chapter is organized as follows: Section 2 provides a brief description of the 
general architecture of the transputer and the particular network of transputers em­
ployed for the simulation tests. Section 3 discusses related work in this area. Section 
4, 5 and 6 address three key issues associated with the development of the software 
implementation of SHLA: Theses are: data structure, algorithms and configuration. 
Section 7 provides a report on the simulation trials of the implementation. The 
chapter concludes with a discussion of some of the problems encountered with the 
implementation. 

3.2 Transputers 

A brief description of the salient features of the software and hardware follows. The 
reader is referred to [44] for more details of these matters. 

OCCAM1 is the language of the transputer. It is a high level language designed so 
that parallel algorithms can be implemented on a network of processing components. 
OCCAM is highly structured and is similar to Pascal in many ways. The two distin­
guishing features from Pascal-like languages are concurrency and communication. 

10CCAM was named after the 14th century philosopher William of Occam and captures the spirit of the now popular term, "Occam's razor". 
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Concurrency is expressed in a number of ways. The most important of these are 

the PAR and ALT construct. PAR facilitates the replication of processes that may 

progress concurrently. ALT provides the mechanism for outputs from a variety of 

parallel processes to be input to a single process. 

Communication takes place through channels which are software constructs that 

may be mapped to hardware links. The channels connect processes at both logical 

and physical levels. 

David May, one of the developers of the transputer, gives a long term vision for the 

prospects of this architecture in (68]. The language is tightly coupled to its intended 

hardware, the transputer. This device is a microcomputer that has been placed on a 

single chip. The individual transputers may be connected in the form of a network by 

physical communication links. The networks may be configured in a variety of ways; 

the most popular of which are the pipeline, ring and grid. 

3.3 Related Other Works 

There have been many worthy applications of transputers to the field of machine 

vision. See [95, 103] for details of a few of these. The Eastman Kodak Co. (20] has 

developed a parallel image processor capable of performing a variety of imaging tasks, 

including an imaging editing workstation, an address block location finder for mail 

parcels, and a special effects film editing workstation. A team at The National Uni­

versity of Singapore has employed the transputer to develop a multi-resolution scene 

analysis system [95]. This work configured the network as a pyramid structure to 

handle a resolution of an image at each layer. Sandon [87] has developed a method of 

dynamically reconfiguring an array of processors in a pyramid arrangement. Groups 

based at Monash University are applying the transputer to robotic vision and are 
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developing parallel image processing algorithms and implementing them on trans­

puters. BHP has a research group working on the implementation of dynamically 

reconfiguring the processors [28]. 

SIMD and other parallel architectures are also being employed extensively in com­

puter vision [7, 43, 58, 84]. For a review of these developments see [24, 66]. 

Yasrebi [108] gives a review of the different philosophical approaches to the design 

and implementation of parallel based vision systems. 

3.4 Data Structure 

This section commences the analysis of the three components of the software imple­

mentation of SHLA: data structure, algorithms and configuration. In the introduction 

to this chapter, it was suggested that a belief in the MIMD paradigm was a driving 

force in the development of SHLA. At the outset, the target of the implementation 

was to maximize its parallelism. A natural strategy for achieving this target mani­

fested when the one-to-one correspondence between the SHM and the integers was 

considered. The parallelism should occur at the most local level, the hexagon. The 

correspondence is illustrated by unwinding the SHM into a one dimensional represen­

tation. Each hexagon has associated with it an integer address. See Figure 3.1. 

3.4.1 Elements of the Data Structure 

The elements of the data structure are the hexagons each of which is identified by 

its address in the SHM. Each element will be associated with a concurrent process. 

The primary benefit to be gained by assigning each hexagon to a unique concurrent 

process is that the transputer can handle either the logical or the physical parallelism 



CHAPTER 3. IMPLEMENTATION OF THE SHLA 58 

s 
J: 

w 
et 

Bi 

t 

~~ 
n 

~ 

\: d 
!:l 

tj "'-< ~ c c ·c 

F n. 
~ ~ 

~ 

~F '"). 

j®~ ~ 

0 

Figure 3.1: The unwinding of the Spiral Honeycomb Mosaic indicates; i) the one-to­one correspondence between SHM and the integers; ii) the spiral pattern contained within it. 
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without the apparent need to consider efficiency issues2 • At a logical level each process 

(hexagon) can operate in parallel with all other processes, while at the physical level 

the processes may be grouped into as many physical processors as is desired. The 

number of physical processors will be constrained by such factors as the availability 

of transputers or the speed requirements of the particular application. Consequently, 

each of the elements of the data structure is associated with a logical process. 

The arrangement of the elements is a function of the adjacency properties of the 

hexagons of SHM. The method of addressing the hexagons of the SHM amounted to 

tracing a spiral pattern from the centre of the SHM and designating the addresses 

sequentially. In general, hexagons with similar addresses tend to be in close proximity 

even when the spiral is unwound into a one-dimensional representation. It is worth 

making two points with regard to the parallelism taking place at the hexagon level. 

Although it is not imagined that there will be a physical processor for every logical 

process at present3 , the convenience gained by considering the logical and physical 

levels as equivalent did simplify the development process. The second point stems 

from a remark made by David May at the 1991 WATUG Conference. He suggested 

that by the end of this decade, it would be possible to have 109 processors in a single 

network. If and when this prediction eventuates, parallelism at the hexagon level is 

feasible. 
2The developers of the transputer had intended that the design of an Occam program should be 

to achieve optimal parallelism with minimal consideration of the physical resources. Although this 
is largely achievable, the design approach employed for this implementation did experience some 
difficulty by ignoring the hardware issue at the design stage. 

3The CM5 might have sufficient processors to accomplish this. 
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Table 3.1: Spiral Addition and Multiplication Tables. 
Addition Multiplication 

0 1 2 3 4 5 6 0 1 2 3 4 5 6 
1 1 63 15 2 0 6 64 0 0 0 0 0 0 0 0 
2 2 15 14 26 3 0 1 1 0 1 2 3 4 5 6 
3 3 2 26 25 31 4 0 2 0 2 3 4 5 6 1 
4 4 0 3 31 36 42 5 3 0 3 4 5 6 1 2 
5 5 6 0 4 42 41 53 4 0 4 5 6 1 2 3 
6 6 64 1 0 5 53 52 5 0 5 6 1 2 3 4 

6 0 6 1 2 3 4 5 

3.4.2 Operations 

The Lie multiplication of the SHLA assures that an arbitrary number of the transfor­

mations of SHLA are representable as linear combinations of the primitive transfor­

mations from A and M, which in turn result from the operations of Spiral Addition 

and Spiral Multiplication. Each of these arithmetic operations is considered in turn. 

Spiral Addition 

Spiral Addition was defined in terms of Spiral Counting. This process, as introduced 

in Chapter 2, is largely a pattern tracing exercise. That is, Spiral Counting commences 

at a particular address and then traces an octave pattern from that address for a given 

number of counts. The task at hand then is to derive an algorithm to emulate this 

tracing process. This is achieved in two steps. First, the addition of single digit 

numbers is obtained by the coding of values listed in Table 3.1. The table provides 

the atomic operations of addition. For example, from the table 1 + 1 = 63 and 3 

+ 4 = 31. Secondly, the simple carry rule is implemented to handle the addition 

of numbers composed of more than one digit. To illustrate the algorithm, consider 

the example of adding the addresses 6 and 21. The tracing method from Chapter 2 

indicates that their sum is 14. Now employing Table 3.1 and the carry rule, the steps 

are: 
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i) 6+1 = 64; put down the 4 carry the 6 

ii) 2+6 = 1 put down the 1 carry nothing 

iii) sum= 14 

Spiral Multiplication 

61 

Spiral Multiplication was defined in terms of Spiral Counting which was described 

as a visual task of tracing a pattern. The difficulty associated with the implementa­

tion resulted from the need to express the algorithm in non-visual terms. As Spiral 

Counting in a given key is just a generalization of Spiral Counting in the key of one, 

the algorithm for Mx will employ and build on the algorithm developed for Ax. Its 

development will also proceed in a similar manner. The first requirement is the im­

plementation of scalar multiplication. This is achieved by the coding of the scalar 

multiplication table of Table 3.1. The next step is to establish the scalar multiplica­

tion of numbers (addresses) composed of more than one digit. Recall that any address 

from SHM can be represented as an n-tuple of digits from the set (0,1,2,3,4,5,6), where 

n is the number of octaves of SHM. More formally, let an address a E SH M be rep­

resented as, 

a= an, an-1, ... , a1 Vai E (0, 1, 2, 3, 4, 5, 6) (3.1) 

Multiplication of address a by the scalar alpha is obtained by applying scalar 

multiplication to the components of a. That is, 

(3.2) 

For example, 
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3 X 426 (3 X 4,3 X 2,3 X 6) 

(6,4,2) 

642 

The last step is to achieve the multiplication of an address by a non-scalar. Given 

two addresses a, b E S H M, let 

a X b a x bn x 1on-1 

+a X bn-1 X lOn-2 

i=n 

La x bi x lOi-1 

i=1 

For example, consider the multiplication of 15 by 23. As defined in Chapter 2, 

this would amount to Spiral Counting from zero for 23 counts in the key of 15. The 

answer is 201, which can be verified from an inspection of Figure 2.5. Performing the 

same multiplication employing the algorithm just described yields: 

23 X 15 2 X 15 X 101 + 3 X 15 X 10° 

26 X 10 + 31 X 1 

260 + 31 

201 
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This example illustrates that although the operations of addition and multiplication 

as defined in SHM are quite different from their more commonly known counter 

parts, the relationship between addition and multiplication is analogous. In essence, 

the relationship in both systems is that multiplication is equivalent to repetitive 

addition. 

The final task to complete the multiplication algorithm is the implementation of 

the modular form of the operation. The product is first checked to see if it is within 

the specified range (the modulus). If it is in the range, no further work needs to be 

done. Otherwise, the key is checked to see if it is a multiple of 10. If the key is a 

multiple of 10 Equation 2.4 is employed; otherwise, Equation 2.5 is used. 

For example, suppose the modulus is 100. Then there are 49 addresses ranging 

from 0 to 66 in base seven. Consider the multiplication of 10 by 15. 

15 X 10 = 150. 

As the key, which is 15, is not a multiple of 10, Equation 2.5 will map it to 50. 

Consider multiplication of 10 by 20. 

10 X 20 = 200. 

As the key, which is 10, is a multiple of 10, Equation 2.4 will map it to 2. 

3.5 Algorithms 

In this section, the primitive image processing transformations of translation, rotation 

and scaling are discussed. As these transformations form the building blocks for many 

of the other transformations of SHLA, it is imperative that they can execute in real-

time4. 

4real-time: This term refers to the performance of a computing system. If the desired outputs of 
the system can be delivered at a rate commensurate with handling subsequent inputs to the system, 
it is said to be operating in real-time. By necessity, a biological vision system must be a real-time 
system. 
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A translation can be thought of as a shift that re-centres the image to a particular 

distinct point while holding the relative position of all pixels fixed. This operation, in 

terms of the SHM, is exactly the transformation Ax. In other words, Ax transforms 

an image centred at the address zero to one centred at the address x. Likewise, the 

transformations of M, namely Mx as defined and discussed in the previous chapter, 

are determined by Spiral Multiplication. 

The achievement of the global effects of the transformations of SHLA amounts to 

the collective local effects of the operations of Spiral Addition and Spiral Multiplica­

tion. The algorithms for the transformations can be described as follows: 

i) Send a message to each process (address) indicating the operation to be per­

formed; for example, add 123 

ii) At each process, perform the arithmetical operation, thus determining the new 

address of the grey-value held at that address 

iii) Concurrently at each address, send its grey-value to the new address and receive 

a grey-value from another address 

The algorithm is described in Occam pseudo code. The reader is alerted to the 

significance of indentation in the expression of the code. All lines of code at the same 

indentation are in the block of code governed by the construct SEQ, PAR or ALT, at 

the beginning of the block. 
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PAR 

send operation to be performed at each address. 

PAR i = 0 for number of address 

PAR 

SEQ 

receive operation to be performed 

compute new address from operation 

send grey value to new address 

receive new grey-value for this address 

3.6 Configuration 

In absence of the T9000 series transputer5 channel routing capabilities, use of the T800 

always begs the question of how the arrangement of the transputers will affect the 

performance. Three different configurations were employed to test the performance 

of the various transformations, (1) pipeline, (2) ring, and (3) grid; see Figure 3.2. 

u 
=D 

Figure 3.2: Processors in a pipe, ring and grid. 

All three configurations required the use of a software multiplexing tool because 

there can be as many logical channels connecting processes on the same processor as is 

desired. However, there is only one physical link connecting two processors and there 
5 Access to the T9000 eventuated near the completion of the writing of this thesis and, to date, 

its possibilities have not been explored for SHLA. 
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can be only one pair of channels mapped to this link. As a transformation algorithm 

requires the passing of data from any given address to any other address, there would 

need to ben! (n being the number of addresses in SHM) if every process had a channel 

to every other process. If all the processes existed on the same processor, this would, 

in theory, be feasible. However, spreading the processes over more than one processor 

necessitates the grouping of channels which would logically cross processors into a 

single virtual channel. This is achieved in Occam with the use of the ALT construct 

which allows the inputs from parallel processes to be output to a single process. 

In addition to the multiplexer, two other algorithms were required. One was to 

achieve two-way communication between adjacent nodes on the network of transput­

ers. The other algorithm was required for the ring and grid configurations to find the 

shortest path between non-adjacent nodes. The Occam code developed to achieve 

the desired multiplexing, communications and shortest path finder was adapted from 

programs presented in [21]. 

3. 7 Simulation 

One of the practical problems to overcome in the implementation of SHLA as part 

of a machine vision system is the building of a device that will act as an interface 

between the camera and the network of transputers. The building of this device 

is in progress and is described in Chapter 6 Section 6.1.2 under the name of Pixel 

Processor. It is intended that this pixel processor will receive input from a camera 

and then, after dividing it into smaller packets of data, deliver it in parallel to a 

network of transputers at a speed commensurate with image capture. The packets 

of data will be in the form of ordered sequences of addresses. Figure 3.1 shows how 

this grouping of ordered sequences of addresses is achieved. As this device as well as 

some of the other components of the proposed vision system have not yet been built, 
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their effects must be simulated. A description of the simulation and the results of 

performing the simulation over a network of transputers follow. 

3.7.1 Description of the Simulator 

The simulator is a software package implemented on a network of transputers. The 

root transputer was assigned the task of handling all of the input/output between 

the host and the rest of the network. A number of images were captured with a 

video camera and stored on the host and made accessible to the root transputer. The 

root then accessed a given image, partitioned it and passed the pieces to designated 

processors. At that point, the time was noted and a command indicating the trans­

formation was passed from the root to each of the processors in the network. The 

individual processes, upon receiving the command from the root, would perform its 

designated operations. When it received its new grey-value, it then passed this new 

grey-value along with its address back to the root. When the root received responses 

from all of the processes, it noted the time. The difference in the two times was then 

taken to be a measure of the time required to complete a given transformation on the 

1mage. 

The time required to complete the transformations should be a function of two 

factors. One factor is the amount of computations to be performed on any one 

processor. The other factor is the amount of communication between processors. 

There would be an expected trade off between these two factors. On the one hand, if 

all the processes resided on the same processor, all the computations would in effect 

be performed sequentially but there would be no communication time penalty. On 

the other hand, if all the processes could be uniformly spread over a large number 

of processors, the amount of computations performed sequentially would be minimal. 

This would be at the expense of having to pass the grey-values over physical links to 
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other processors. It is of interest to determine how the addition of processors into the 

network affects the overall time required to complete a given transformation. 

The size of the images stored on disk was 384 x 288 square pixels. As there is no 

possibility of gaining a one to one correspondence between the square pixels from the 

rectangular image and the hexagons from the SHM, an appropriate algorithm had 

to be determined to optimize the correspondence between the addresses of the two 

coordinate systems. The number of octaves chosen to represent the images was taken 

to be six. Thus the number of hexagons is: 

76 = 117, 649 ::= 100592 = 384 X 288 

The metre of the first octave is approximately equal to the distance between two 

adjacent pixels in the rectangular image. The relative regions represented by the ~ 

hexagons and the 384 x 288 square pixels of the rectangular image is displayed in 

Figure 2 .11. 

3. 7.2 Simulation Results 

In this section evidence is provided that: 

• The transformations of SHLA produced the expected affects when applied to 

an arbitrary image. 

• It is possible to exploit the inherent parallelism of the transformations by im­

plementing them on a network of transputers. 

The evidence that the transformations were performing as expected on the net­

work of transputers was provided by conducting the following experiment. An input 

image was sampled using the SHM. Various transformations were performed. The re­

sulting transformed images were printed and visually compared with the theoretical 
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Table 3.2: Time (measured in ticks) required to complete transformations of transla­
tion, rotation and scaling on transputer networks configured in a pipeline of various 
lengths. 
no. of nodes Ao A1ooo M10 M15 Mn5 A1ooM15A1oo-1 

1 215327 220113 217125 224419 230791 23121 
2 55674 57623 56200 60211 63329 64925 
4 15890 17001 16432 18117 19208 20380 
8 7945 9498 9450 9834 10500 10827 

16 7727 9056 7961 9104 9419 9829 
32 5227 7789 7135 9073 10145 9937 
41 6160 9036 9246 11023 12670 11709 

predictions. Selected examples of the empirical results obtained from this experiment 

have been presented in the Figures 2.12 to Figure 2.22 in Chapter 2. The conclusion 

is that the transformations, as desired, are taking place without any degradation as 

evidenced by the visual presentation. 

With regards to the time required to perform the transformations, three questions 

were posed: 

i) How do the execution times of the various types of transformations compare? 

ii) Is there an optimal number of processors that can be used to perform the 

transformations? 

iii) How do the execution times vary on different configurations? 

The data presented in Table 3.2 represents the timing results of performing a 

sample of transformations on various networks of transputers. The data suggests the 

following answers to the three questions that were posed. The transformations, as 

indicated across the columns, are arranged in order of computational costliness and 

the degree to which data moved between transputers. That is, A0 is an example of a 

transformation which requires one arithmetical operation and all of the data moves 

within the transputer it resides on. In contrast, M115 requires three arithmetical 
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operations and the data will, in general, move to a different transputer. A100M 15A100-1 

is a non-primative transformations which has the effect of rotating the image by 25 

degrees about the address 100. The conclusion is that the various transformations 

require a similar amount of time for a given number of transputers. However, it 

is observable that the amount of variation in times increases with the number of 

transputers employed. 

It would appear that for this implementation of SHLA expressed at the fourth 

octave, 32 is about the optimal number of transputers for a pipeline configuration. 

The rate of decrease in time is greatest over the first eight transputers and then 

gradually falls away as the pipeline is increased to 32 nodes. For a pipeline of 41 

nodes, the time measured to complete all the selected transformations was greater 

than for a network of 32 nodes. 

The rate of decrease in time required to complete the transformations over the 

first 4 transputers in the pipeline exceeded expectations. In general, if the number of 

nodes in the pipeline doubles, then under perfect conditions one would expect at most 

a 50 percent reduction in execution time. However, for this implementation, there 

was a 75 percent reduction in execution time over the first four nodes. Although 

this four fold decrease is surprising at first glance, an analysis of the implementation 

provides an explanation. 

There would appear to be a discrepancy between the semantic expression of OC­

CAM and its realization in hardware. In particular, the ALT construct in OCCAM 

provides the facility of reading from a number of distinct channels from within a sin­

gle process. ALT is supposed to read from the first channel that receives an input. 

However, the way in which this is achieved in hardware is that each input channel is 

assigned a priority based on its textual order in software and before a channel with 

a given priority can be read, all channels with a higher priority must be checked for 
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possible inputs. 

In order to see how this design characteristic of the ALT construct has impacted on 

the implementation of SHLA, consider the flow diagram of Figure 3.3 In the diagram, 

Application 
handler 

0 0 0 

Figure 3.3: A flow diagram indicating the communication between the Application 
Handler and the n x Hi processes. 

each Hi represents a process which is associated with a hexagon of SHM. All of these 

processes are concurrent and must be able to communicate with every other process. 

The Application Handler is a process that facilitates this communication by managing 

the n input channels from each of the His with an ALT. For the nth channel to be 

read, the first n-1 channels must be checked for inputs. Thus, for all n channels to 

be read, the number of channel checks is calculated as follows: 

Channel read Number of checks required 

1 0 

2 1 

3 2 
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n 

Sum of the checks for then channels 

n-1 

1+2+3+···+(n-1) 

n(n- 1)/2 

n2
- n/2 
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This means that ALT is O(n2
). In the case of this implementation of SHLA, 

each time the number of transputers doubled, the number of input channels to the 

Application Handler halved. This in turn is compatible with the speed up experienced 

by the implementation of the first four nodes. 

Unfortunately, a comparison of the implementation's execution time on different 

configurations has not yet been realized. This is due to the occurrence of a hardware 

fault in the transputer network at the time of conducting the experiment. Although 

the code is in place for the ring and grid configurations for the implementation, the 

results of testing the implementation will probably have to wait until the hardware 

fault is corrected. 

3.8 Interpretation of Results 

The parallel implementation of SHLA discussed in this chapter has revealed that 

considerable speed up in execution time can be realized with increased numbers of 

transputers. One point made abundantly clear by the test results is that there is 

considerable scope for improvement in the coding of the algorithms. Over the period 

of development of the implementation, many design considerations were discovered, 

not the least of which was provided by experimentation with the ALT construct. It is 

anticipated that a second pass at an implementation of SHLA will result in improved 
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performance of execution time. 



Chapter 4 

A Segmentation Algorithm for 

SHLA 

Kimo: "Can you now group that which you have counted, each with its own kind?" 

74 
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4.1 Introduction 

Segmentation is the process of subdividing an image into its constituent parts. The 

resulting subdivisions must be meaningful and the process should embody an organiz­

ing principle that reflects the innate organization of the visual world. The overriding 

purpose of the process is to reduce the complexity of the image. For purely economic 

reasons, it is a crucial component of most image analysis systems. 

An image may be regarded as a collection of pixels (light intensities, each of which 

is associated with a unique location). If a pattern had to be recognized based on the 

analysis of pixels alone, the problem would be intractable for all but images composed 

of the smallest number of pixels. Mathematically, the number of possible patterns 

detectable within a given image is equal to the number (number of possible light 

intensities) raised to the power (number of pixels). For example, consider an image 

composed of a trivial number of pixels, as indicated in Figure 4.1. If each of the 

seven pixels had one of a possible 256 light intensities, then the number of possible 

patterns to be considered would be 2567 = a big number. An image of moderate size 

might contain one million pixels. If the number that represents the number of possible 

patterns from such an image were to be included in this thesis, it would require about 

400 pages. Suffice to say there is no machine ever imagined that could cope with 

that kind of computational complexity. Consequently, the need for a process that 

will reduce the complexity of pixel data is overwhelming. The name given to the 

process is segmentation. Apart from the need for an effective segmentation algorithm 

for machine vision, there still remains a major challenge in biological vision research 

- to understand this process. 

There have been many different types of segmentation algorithms devised to op­

erate under a variety of conditions. Most of the segmentation algorithms derived 

to date require a priori information to be effective. That is, information about the 
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operational environment is required prior to the commencement of the segmentation 

process. This constraint of a priori information for many industrial applications is 

quite acceptable because information about the working environment is available. 

However, a general purpose machine vision system operating without a priori infor­

mation requires an autonomous segmentation algorithm. That is, one which provides 

consistent and reliable results that is largely independent of the environment. For 

example, this would require the algorithm to produce consistent partitioning regard­

less of the object's orientation and source of illumination. Although a fully general 

purpose segmentation algorithm has yet to be described, it would appear that most 

biological vision systems possess such a segmentation facility. For example, the hu­

man vision system would perceive a typical kitchen fork irrespective of whether the 

fork is lying on a table or being held in a person's hand. A human would also experi­

ence these perceptions in a wide range of lighting conditions. Despite the ubiquitous 

occurrence of autonomous segmentation algorithms across the spectrum of biological 

vision systems, it has proven to be a tall order to produce one for a machine vision 

system. 

Most traditional approaches to the problem of creating a segmentation algorithm 

considers the process of interpretation of an image as a separate and distinct process 

to that of segmentation. In contrast, segmentation, as considered in this work, is a 

dynamic process. It is composed of two levels of processing; a low level process that 

partitions on the basis of light intensity and locality alone, and a high level process 

which operates in accordance with learned rules of association. By analogy with the 

human, the rules of association are best thought of as the Gestalt rules of proximity, 

similarity, closure, continuation, symmetry and familiarity [46]. The segmentation 

process is then a concurrent interplay between these two levels of processing. 
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This chapter, for the most part, concentrates on the low level aspect of segmen­

tation. The usual classification of segmentation algorithms places them in either the 

category of partitioning on the basis of grey-level discontinuities or on the basis of 

grey-level similarities. For a detailed account of the traditional methods, see [37]. 

The segmentation algorithm presented here falls into both categories, as it deter­

mines boundaries on the bases of abrupt grey-level changes and grows regions on the 

bases of similarities. 

The algorithm is named 2DSA, (short for Two Dimensional Segmentation Algo­

rithm) and has a number of distinctive features: 

• The algorithm embodies a high degree of parallelism. That is, pieces of the 

image reside on a number of distinct processors and the segmentation process 

begins concurrently on all processors employing purely local (to the processor) 

information. The processors communicate the results of their local segmentation 

with other processors as the process evolves. 

• The segmentation proceeds concurrently on all resolutions. Information gained 

at each resolution is passed to the high level process for interpretation 

• The segmentation evolves in a top-down fashion. It commences with the par­

titioning based on the most abrupt and therefore most significant grey-level 

change. It then repeatedly produces finer partitionings based on the next most 

significant grey-level change. The process logically terminates when the number 

of equivalence classes equals the number of pixels in the original image. This 

is, in effect, a convergence property of complexity. 

• The process of repeated refinements of the partitioning is concurrent with the 

interpretation process. Each refinement is interpreted. Consequently, the inter­

pretation may conclude before the segmentation logically finishes. 
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• The low level process is completely autonomous. It is data driven; based only 

on the grey-level changes. 

• The algorithm is intrinsically linked to SHLA. It is dependent on the adjacency 

properties of the hexagonal grid. That is, any vertex of a hexagon can be 

adjacent to, at most, two other hexagons. 

4.2 Related Other Works 

The literature abounds with descriptions of segmentation algorithms possessing the a 

priori information constraint and [81] provides an extensive review of the techniques. 

There have been a number of approaches that exploit the possibilities of represent­

ing the input images at various resolutions [62, 54, 105, 56, 22, 102, 109]. Other 

researchers have tried to utilize computational features adapted from biological vi­

sion systems. An aspect of the frog's vision system is treated in [5]. It is argued in 

[100] that vision must be understood at the complexity level and concludes that a 

bottom-up approach to segmentation is ineffective. 

A paper that investigates segmentation in a spirit close to that of the one presented 

in this chapter is found in [3]. The paper presents a method of first representing the 

image in a particular manner and then employs a variety of modules to generate a 

description that satisfies certain Gestalt criteria. 

4.3 Definitions and Terminologies 

Before describing the algorithm in detail, it will be convenient to establish a few 

definitions and notations. 

The cluster is an arrangement of seven hexagons, as displayed in Figure 4.1. It is 

characterised by the fact that the distance between the centres of adjacent hexagons 
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Figure 4.1: A collection of 7 pixels each of which is initialized with four pieces of 
information as indicated within the detached hexagon. 

are equal. The term image will be used to denote a collection of pixels that can 

be partitioned into a collection of clusters. Thus, the clusters can be considered 

as the atomic elements of an image. Let S represent the entire image space (the 

collection of all hexagons, each of which is identified by a unique address). The 

segmentation algorithm will partitions into sub-spaces SI, s2, ... , Sn in accordance 

with a connectedness relationship. This relationship, denoted by C, forms equivalence 

classes. That is, C has three properties: 

reflexive property 

aCaVa E S 

symmetric property 

aC(3 => (3CaVa, (3 E S 

transitive property : 

aC(3 and f3Cr => aC1V a, {3, 1 E S 
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The reflexive property insists that any element is connected to itself (intuitively 

trivial). The symmetric property insists that the connection applies in both directions. 

The transitive property states that any element in a chain of connected elements is 

connected to every other element in the chain. This property, in relation to the 

implementation of the algorithm, is the important one. The equivalence relation 

properties of C on S establishes the following three conditions: 

n 

usi s 

Sin Sj 0Vi =f. j 

All elements Si E S are connected 

The establishment of these three properties represents the first step in fulfilling the 

requirement that the partitioning is meaningful, both mathematically and visually. 

That is, each equivalence class Ai corresponds to an entity in the image. However, 

this does not guarantee that any particular entity is of value or interest at the inter­

pretation stage. The following notation will denote the negation of the connected-ness 

property: 

Let (i D j) symbolise the condition that the pixel at address i is not connected to 

the pixel at address j (reads address i has been disconnected from address j). Note 

that D is not an equivalence relation and is required to facilitate the execution of the 

algorithm. 

A disconnection between adjacent addresses will be made on the basis of the 

significance of the differences in grey-levels at the addresses concerned. 

Let c5 denote the significance of the change in grey-level across two adjacent pixels, 

91,92 which are in the range 0 to 2551. 

1The J function can be generalized to any range of light intensities. 
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For example, 6(255, 255) = 1 the smallest and least significant change in grey-level. 
6(0, 255) = 32895, the most significant change in grey-level. 
The 6 function was derived in such a manner so as to embody the following 

heuristic: distinct pairs of grey-levels give rise to a unique 6 and that for a given 
absolute difference in grey-level, the 6 is inversely proportional to the magnitude of 
the individual grey-levels. This approach imitates a characteristic of human vision. 
That is, grey-level changes at low light intensities are more noticeable than equal 
changes at higher intensity values. More specifically, a change in grey-level from 0 
to 1 is more noticeable than a change from 254 to 255 even though the difference in 
grey-levels for both is one. 

With this notation in mind consider the hypothetical image as represented in 
Figure 4.1. The image is composed of seven hexagons (pixels) each of which has 
associated with it four values, an address (number between 0 and 6), a grey-level 
(number between 0 and 255), a conjugacy class value (initially zero indicating that 
it is connected to address 0) and a splitting coefficient (initially the value is zero, 
indicating that it has not been disconnected) indicates the 6 value used to determine 
a disconnection from another pixel. 

4.4 Informal Statement of 2DSA 

The notation and terminology of the previous section will now be employed to describe 
a segmentation algorithm named 2DSA (Two Dimensional Segmentation Algorithm). 
The description of this low level algorithm will unfold in a bottom up fashion. The 
first section will treat the three sub-procedures that operate at the cluster level. 
The second sub-section will demonstrate how these sub-procedures interact to handle 
images of arbitrary number of clusters. 
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Table 4.1: Cluster Computations. 

iCj gl- g2 0 
OC1 20- 18 747 

OC2 20-15 1506 

OC3 20-14 1757 

OC4 20-13 2007 

OC5 20-12 2256 

OC6 20- 11 2495 
1C6 18-11 2009 

2C1 15- 18 1003 
3C2 14- 15 497 

4C3 15- 16 496 

5C4 16- 17 495 

6C5 17-18 494 

4.4.1 The Local Actions 

Atomic Initialization : 

Step 1: Compute the o values for each of the twelve adjacency relations in the 

cluster. Table 4.1 illustrates the computations associated with the cluster 

of Figure 4.1. 

Step 2: Initialize the Splitting Value to the largest o value in the cluster. In 

this case, the splitting value is 2495. Set all twelve adjacency relations to 

connected and set the seven conjugacy class values to minus one. 

Atomic Fission The second procedure to consider is a process of disconnection 

called Atomic Fission, which operates at the cluster level. The process corn-

rnences with the input of two addresses that have been disconnected. Then 
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further disconnections are made to resolve any contradictions to the laws gov­

erning equivalence relations. 

To illustrate the process consider the data from Figure 4.1 where OC6 is the input 

disconnection. If this were the only disconnection to be made, the equivalence 

relationship criteria of transitivity would be violated. That is, 0 is still connected 

to 6 through both 1 and 5. The violations must be resolved. First, through 1 by 

disconnecting either OC1 or 1C6. Disconnect the one with the greater 6 (both, 

if they are equal). In this case 1C6 is the larger so re-label it as 1D6 and the 

violation is resolved. The second violation, through 5, is resolved in a similar 

manner. Here OC5 is disconnected as its 6 is greater than that of 5C6. Re-label it 

as OD5. However, this creates a violation through 4. Thus, resolve this violation 

and continue the process of disconnecting and resolving until the equivalence 

relationship is restored. In this case the following sequence of disconnections 

will be made: OD4, OD3, OD2 and 2Dl. At this point, the fission process is 

complete. 

Atomic Fusion: The third procedure to be described is a fusion process which es­

tablishes a pattern for a cluster that is independent of grey-levels. This process 

has a hexagon address and a conjugacy class value as its inputs. The process 

assigns this conjugacy class value to all hexagons which are connected to the 

hexagon of the input address. 

To illustrate how this works, continue with the example from Figure 4.1. In 

this case, the inputs are (0, 0) which indicates the address and conjugacy class 

value of the centre hexagon. The assignments will be conjugacy class value, 

0, to addresses 0 and 1. Further, if the inputs were address 2 and conjugacy 

class value 2, the addresses 2, 3, 4, 5 and 6 would be assigned the conjugacy 

class value 2. The fusion is complete and the segmentation of the cluster is also 
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complete. This partitioning generated two equivalence classes. One contains 

the hexagons at addresses (0, 1) and the other has the addresses (2, 3, 4, 5, 6). 

Observe that the relative positions of the hexagons in each conjugacy class, as 

designated by the address of each hexagon, establishes a pattern which is now 

independent of the grey-level of the individual hexagons. 

4.4.2 The Global Actions 

The three local processes just described have global counterparts that extend the 

process so that images composed of more than one cluster can be segmented. The 

global activity is governed by a synchronization process that coordinates the atomic 

activity. This synchronizing process communicates with and controls the processing 

at each of the 7n (one for each hexagon) processes, Hi· In the present example, 

the processes are H0 , ... , H 48 • The processing associated with each hexagon is the 

combined processing of the three atomic processes. Observe that the atomic processes 

are essentially sequential. The global processing, on the other hand, is a collection of 

processes that operates concurrently at all resolutions. Figure 4.2 is a diagram of the 

aforementioned processes. 

Figure 4.2: A flow diagram of the segmentation program. 

Once again, each hexagon which now may be identified by the process Hi, has 
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associated with it four values: an address (in this case a number between 0 and 66 
in base 7), grey-level (number between 0 and 255), a conjugacy class value (all minus 
one) and a splitting value (initially zero). In addition, each Hi is classified as being 
either active or passive. The active Hi's are identified by Spiral Counting in the key 
of 15. There are 19 such addresses in a 49 hexagon SHM. They are the addresses 0, 
15, 26, 31, 42, 53, 64, 11, 13, 22, 24, 33, 35, 44, 46, 55, 51, 66, 62 and are marked 
with a * in Figure 4.3 

Figure 4.3: The diagram indicates the relationship between the active and passive processes of 2DSA for a 49 hexagon SHM. The active processes are marked with a*· 

Each of the above active ( *) processes is associated with a hexagon that represents 
the centre hexagon of a cluster which has the following properties: 

• Each cluster overlaps with at least one other active neighbouring cluster. 

• An overlapping pair of clusters has two hexagons in common. 

The global processes will be illustrated by considering a synthetic image repre­
sented on the 49 hexagons of Figure 4.3. Let the first seven hexagons, addresses 0 to 
6, be initialized with grey-values as in Figure 4.1 and let the remaining hexagons all 
have a grey-value of 13. 
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Synchronization This process governs the three processes of global Initialization, 

Fission and Fusion. It communicates with each of the 7n processes where atomic 

initialization, fission and fusion occur. The process passes appropriate messages 

that initiate and terminate the three global processes. 

Global Initialization This is the collective term for initialization at each of the 

Hi's. Each passive process passes its grey-level to each of its neighbouring active 

processes and awaits a response. Each active process receives a grey-level from 

each of its neighbours and performs Atomic Initialization on this data. Each 

then passes its Splitting Value to the Synchronizer which selects the largest of 

these Splitting Values. The Synchronizer then passes this largest splitting value 

back to each of the Hi's, so that the fission process may commence. 

In the example, the largest c5 value is, once again, 2495 and is associated with 

OC6. This value emanates from H0 and is assigned to the Splitting Value by the 

Synchronizer. 

Global Fission The process commences when the Synchronizer passes the Splitting 

Value to each of the active Hi's. At each active Hi, perform Atomic Fission 

with the Splitting Value which has been passed to it. Thus, a disconnection will 

occur at each Hi that possesses a c5 equal to the Splitting Value. If a disconnec­

tion has occurred between any two non-centre hexagons of a Hi, this will create 

a possible violation to the equivalence relation for some other H1, i # j. In 

this case, the disconnection information is passed to the appropriate H1; other­

wise an inactive message is passed to the Synchronizer. If any process receives 

disconnection information, it performs another Atomic Fission and the appro­

priate communication. This Global Fission terminates when the Synchronizer 

receives the inactive message from all of the H/s. 
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In the example, H0 will produce disconnections as described in the previous 

Section. This will generate disconnection information for H 15 and H64 ; namely, 

2Dl and 1D6, respectively. Atomic Fission at H 15 will make disconnections at 

1D15 and 1D64 while H64 will disconnect 1D64 and 1D63. The two processes 

will pass the disconnection information 1D63 to each other. When this informa­

tion is received, no further violations of the equivalence relation will have been 

generated. At this point, the Synchronizer will have received inactive messages 

from all processes and it can then commence the Global Fusion process. 

Global Fusion When Ho receives the appropriate message from the Synchronizer, 

Atomic Fusion with inputs (0,0) commences at this address. This seeds the 

fusion process and a wave of effects passes to other Hi's in the following manner: 

H1s, H26, H 31 , H42, H53 , H64 receive conjugacy class assignments from H0 about 

the hexagons that each has in common with H0 . Atomic Fusion is initiated 

on any of the hexagons that are connected to the common ones. If any of 

these processes produce effects on other Hi's, they pass this fusion information 

to the appropriate Hj, and so on. When this first wave of conjugacy class 

labelling subsides, the Synchronizer starts the second wave at the next active 

process. The Synchronizer repeats this process until all of the hexagons have 

been labelled. When Global Fusion terminates the Synchronizer then passes a 

message to all of the Hi's to send their conjugacy class information to the higher 

level segmentation process and selects the next largest 6 value and re-starts the 

Global Fission with this as its Splitting Value. The Synchronizer repeats this 

process until either it completes the smallest 6 value or it receives a stop message 

from the higher level segmentation process. 

In the case of this example, the Global Fusion will be completed in the first wave 

as follows: as previously described, H0 will generate two conjugacy classes; one with 
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addresses (0, 1) and labelled with conjugacy class value 0 and the other with addresses 

(2, 3, 4, 5, 6) labelled with conjugacy class value 2. H0 then passes the appropriate 

fusion information to its six active neighbours where the following assignments take 

place: 

H 15 address 1 is labelled 0 and the rest of its addresses, (15, 16, 10, 14, 2, 63) are 

labelled 2. The fusion information is passed on to its active neighbours where 

similar labelling occurs. 

H26 labels all of its hexagons with 2 and passes this information to H 15 , H 13 , H 22 , H 24 

and H 31 . Likewise, each of H 31 , H 42 and H 53 label all of their hexagons with 2 

and pass this information to each of their active neighbours. 

H64 labels address 1 with conjugacy class value 0 and addresses (64, 60, 63, 6, 52 and 

63)) with 2 and passes this information on to its active neighbours. 

All remaining processes label the rest of their hexagons with 2 and the wave will 

subside. 

The Synchronizer passes a message to the Hi's to pass the conjugacy class information 

to the higher level process and commences the Fission process at the next highest 6 

value. 

4.5 Formal Statement of 2DSA 

The description of 2DSA from the preceding section is summarized in the following 

more formal statement of the algorithm. Here Pascal-like pseudo code, with an added 

parallel construct is employed. 

Let the term PAR be used as a replica tor of a block of statements that are to be 

executed concurrently over some index. Let an image I be of size 7n. The highest 

level block has four concurrent procedures. 
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(* begin main body of program*) 

PAR over all resolutions of image 

PAR 

Synchronizer 

Global Initializer 

Global Fission 

Global Fusion 

(* end main body*) 

(* procedures called from main body *) 

procedure Synchronizer 

REPEAT (synchronizing) 

PAR 

Output message to commence Global Initialization 
Input message from each process indicating its largest delta value 
Output message to commence Global Fission 

89 

Input messages from all processes indicating the result of their Atomic 
Fission 

Output message to commence Global Fusion when Global Fission has completed 
UNTIL there are no more delta values 
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procedure Global Initialization 

PAR at all addresses 

PAR 

Input message of commencement 

90 

IF address is identified in Spiral counting in the key of 15 for each 
near copy, then the address is Active; otherwise the 

address is Passive. 

IF Address is Passive then Output grey-level; otherwise Input grey-levels. 
Atomic Initialization 

Output message to Synchronizer, indicating the 

maximum delta value for the cluster 

procedure Global Fission 

PAR at all addresses 

PAR 

Input fission information from Synchronizer 

WHILE fission information indicates that there is more fission to perform 
Atomic Fission 

Output messages to Synchronizer and all affected processes, 
the results of Atomic Fission 

procedure Global Fusion 

PAR 

Input fusion information 

WHILE fusion information indicates that there is more fusion to perform 
Atomic Fusion 

Output messages to Synchronizer and all affected processes the results 
of Atomic Fusion 
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procedure Atomic Initialization 

Compute delta values for each of the 

twelve adjacency relations in the cluster 

Set conjugacy class value for each hexagon to -1 

Set Splitting Value for each hexagon to 0 

procedure Atomic Fission 

Input disconnection information 

Resolve any equivalence relationship violations 

procedure Atomic Fusion 

Input an Address and a Conjugacy class value 

Assign Conjugacy Class value to any hexagon connected to Address 

4.6 A Transputer Implementation of 2DSA 

91 

This section describes the implementation strategy adopted for 2DSA. In particular, 

the treatment will include a discussion of the more difficult parts of the algorithm, 

the problems faced and the compromises made in the coding process. 

The algorithm was designed to be fully compatible with SHLA as presented in 

Chapter 3. Consequently, the implementation follows a similar line of development. 

All the transformations referred to in the previous section, Mx, are fully described in 

Chapter 3 and as such will not be mentioned again here. 

The first issue to be considered is the degree of parallelism achieved by the im­

plementation. Although in theory one should design for optimum parallelism in a 

program, in practice one has to make a decision regarding the amount of parallelism 

that is achievable in the implementation. The reason for this is a pragmatic one. 

Sequential constructs tend to be less complicated than concurrent ones. One may 
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observe that the Atomic procedures possess considerable parallel potential but it was 

decided to implement these procedures as sequential segments. The parallelism sought 

was derived from the association of each hexagon with a concurrent process. This 

decision alone meant that in practice very little of the potential parallelism could be 

obtained due to the limited number of transputers available. More specifically, the 

real2 parallelism, as opposed to the functionaP parallelism, was achieved by grouping 

approximately equal numbers of processes on individual processors. 

The processors were then configured in either a pipeline, ring or grid. 

The big programming task of this implementation emerged from the requirements 
of the synchronization process. A Synchronizer was placed at each processor in the 

network. Its job was to coordinate the three processes of Initialization, Fission and 

Fusion on its own processor and to communicate with the Synchronizers on the other 

processors. Upon completing the Initialization process, each Synchronizer would send 

a message of completion to the other Synchronizers. Upon receiving a message of 

Initialization complete from all other processors, it initiates the Fission process on 
its processor. A similar strategy was employed to coordinate each refinement of the 

Fission process and each wave of the Fusion process. 

At the same time that the synchronization was occurring, there was also consid­

erable message passing between the His at each of the three stages: Initialization, 

Fission and Fusion. All of the communications required between processors were 
handled by a multiplexer which established virtual channels between processors. As 
a result of the need for this amount of message passing, considerable programming 
time was spent in the debugging of the diabolical deadlock creeping into the design. 
However, this implementation was deadlock free for all of the test images that were 

2The term real parallelism refers to the situation that two or more processes have the possibility of executing concurrently. 
3The term functional parallelism refers to the situation when the processes are expressed concur­rently for the purpose of ease in the writing of the code. 
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input to it. The main problem of the implementation related to the demand for mem­

ory at each processor. This arose largely from the inefficiencies in the coding of the 

Synchronizer. Most processors in the network had one megabyte of memory. This 

limit was reached with the third octave of SHM. At most only 73 = 343 hexagons 

could be employed to represent any image. Although to date this problem has not 

been overcome, evidence suggests that a re-design of the Synchronizer will remedy 

the situation. It is anticipated that the number of desired octaves to be handled is 

many times greater than the present constraint. 

4. 7 Simulation Results 

The results of the segmentation algorithm on the implementation as previously de­

scribed is treated in this section. Data on four different images will be presented and 

discussed. Three of these images - a circle, annulus and trapezoid (see Figures 4.4, 

4.8, 4.9), are synthetic and were selected to illustrate various points about the algo­

rithm. The fourth image considered is that of the can of Pal4 dog food which was 

used to illustrate the transformations discussed in Chapter 2. Each of the images will 

be considered at three resolutions. 

4.7.1 Synthetic images 

Each of the three synthetic images were created with 73 hexagons. At the lowest res­

olution, obtained by M 10 , there are 49 near copies each of which contains 7 hexagons. 

At the middle resolution obtained by M 100 , there are 7 near copies each of which 

contains 49 hexagons. The highest resolution is represented by the entire collection 

of all 343 hexagons. 

4Pal is a trademark of the Mars Corp. 
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Circle The data generated from the first partitioning pass at the lowest resolution 
of the circle of Figure 4.4 is presented in Figure 4.5 in the form of patterns. 

Figure 4.4: A synthetically generated circle. 

The number of occurrences of each pattern is also indicated. It can be seen 
that of the 49 samples, 41 of them produced the same pattern, two conjugacy 
classes one of which contains the single centre hexagon of the cluster. 

The image was created with only two grey values. Consequently, at the second 
pass for the next highest grey level, the process logically finished because each 
of the samples produced a pattern composed of 7 conjugacy classes. 

The results from the 7 samples produced at the middle resolution are presented 
in Figure 4.6. Each of the 7 patterns is slightly different but each roughly 
approximates the shape of a circle. The sample centred at address 0 represents 
the closest possible approximation to a circle that could be represented with 7 
hexagons. 

The segmentation results of the full 343 hexagon representation of the circle is 
presented in Figure 4.7. Observe that the partitioning produced two conjugacy 
classes. As the shape of the class containing the darkened hexagons is as close 
to the shape of a circle as can be represented with a similar number of hexagons, 
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41 occurances 

1 occurance 2 occurances 

1 occurance 

2 occurances 

1 occurance 

1 occurance 

Figure 4.5: The 49 patterns generated by 2DSA for the representation of the circle 
(Figure 4.4) represented at the lowest resolution. 
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Figure 4.6: The 7 patterns generated by 2DSA for the representation of the circle 
(Figure 4.4) represented at the middle resolution. 
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Figure 4.7: The single pattern generated by 2DSA for the representation of the circle 
(Figure 4.4 represented at the highest resolution. 
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the best guess at the shape represented by this pattern is a circle. 

Annulus The segmentation results for the annulus of Figure 4.8 produced identical 

results to that of the circle for the first partitioning pass. This was not surprising 

Figure 4.8: A synthetically generated annulus. 

as the same equation was employed to generate the edge of the circle and the 

outer edge of the annulus. However, the inner circle of the annulus was generated 

with a different grey-value which produced a smaller 6 value. Consequently, the 

inner circle was not picked up until the second pass. At the lowest resolution, 

the second pass did not produce any change in the variety of patterns. At the 

middle and higher resolutions, the inner circle emerged and generated three 

conjugacy classes roughly correlating to the three distinct forms observable in 

figure of the annulus. 

Trapezoid The performance of 2DSA on the trapezoid of Figure 4.9 indicates how 

a non-circular shape emerges through the resolutions. At the lowest resolution, 

25 of the 49 samples indicated a non-trivial pattern. All of these contained two 

conjugacy classes with a single hexagon in the smaller class. Eleven had the 

class which contained the zero address and twelve had the single element class at 

address five. Although no single shape is strongly discernible at this resolution, 
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Figure 4.9: A synthetically generated trapezoid. 

the analysis of the data would indicate the existence of a form located somewhat 

off centre from the optical axis towards address 50. This type of information 

would be used to manage foveal sensing in which case the sensor would be 

shifted in the direction of the address 50. 

At the middle resolution of the trapezoid, a minor indication of shape is begin­

ning to emerge. See Figure 4.10. The strongest indication is from the pattern 

centred at addresses 200 and 400 where both have four elements in their smallest 

conjugacy class and indicate the same pattern. 

The data for the highest resolution is presented in Figure 4.11, where the trape­

zoidal shape is clearly visible. Given the resolution of the figure, 343 pixels, the 

trapezoidal shape has been captured with near perfect precision. 
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Figure 4.10: The 7 patterns generated by 2DSA for the representation of the trapezoid 
(Figure 4.9) represented at the middle resolution. 
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Figure 4.11: The single pattern generated by 2DSA for the representation of the 
trapezoid (Figure 4.9) represented at the highest resolution. 
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4.7.2 Natural image 

The image of the can of Pal dog food, as presented in Chapter 2, is taken as an 

example of a natural image. Six transformations as generated from M 10 are presented 

in Figure 4.12. Before a discussion is given of the results of applying 2DSA to this 

image, the salient features of these six transformations are recapped. The image in 

the upper left hand corner represents the original image at the highest resolution, 

76 pixels. The image in (upper right) represents the image at a lower resolution as 

produced by applying the inverse of M 10 to the image in (upper left). There are 

seven unique near copies of the image represented. Each of the copies is composed 

of a unique collection of 75 pixels from the original. Likewise, the image in (middle 

left) is obtained from applying the inverse of M 10 to (upper right). It represents 

49 unique near copies of the original. Each of these copies is composed of a unique 

collection of 74 pixels from the original. Subsequent applications of the inverse of 

M10 produces an increase by a factor of seven to the number of unique near copies 

and an accompanying decrease by the same factor in the number of pixels in each 

copy. Thus, after the 5th application of the inverse of M 10 to the input image (lower 

right), there are 75 copies each of which is composed of 7 unique pixels from the 

original. Consequently, each of the six transformations represents the input image 

at a different resolution without any loss of light intensity information. This feature 

of 2DSA facilitates the commencement of the segmentation process at all resolutions 

of the input image without alteration to the light intensity data. This is a crucial 

point as the multi-resolution representations of the original image could have been 

achieved by an averaging process such as a Gaussian filter. However, with such a 

process, potentially important information would be lost at all resolutions bar the 

highest. 

It was originally intended that 2DSA in its entirety be applied to the image at these 
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Figure 4.12: (upper left) original image with 76 pixels, (upper right) application of 
M10oooo to the original image producing 7 unique copies each of which contains 75 

pixels, (middle left) application of M10000 to the original image producing 49 unique 
copies each of which contains 74 pixels, (middle right) application of M1ooo to the 
original image producing 73 unique copies each of which contains 73 pixels, (lower left) 
application of M 100 to the original image producing 74 unique copies each of which 
contains 49 pixels, (lower right) application of M 10 to the original image producing 
75 unique copies each of which contains 7 pixels. 
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six resolutions. However, as the full implementation limited the representation to 73 = 
343 hexagons, a number of compromises were made in order to apply the segmentation 
process to the image represented at higher resolutions. The main compromise was to 
the parallelism inherent in 2DSA. A sequential version of the algorithm was designed. 
The amended 2DSA was implemented on the root transputer of the available network. 
This transputer had four megabytes of memory available and was able to handle 
images of size 75 pixels. 

We can now proceed with the discussion of applying the amended version of 2DSA 
to the image in Figure 4.12. The full implementation of 2DSA would have segmented 
all near copies at all resolutions of the image concurrently. The amended version of 
2DSA permits the segmentation of all of the copies at all resolutions to be performed in 
a sequential fashion. For the purpose of providing visual evidence of the effectiveness 
of the segmentation process, results for one copy from each of three distinct resolutions 
will be presented. The choice of copies for each resolution was arbitrary. First, 
consider the image as represented by the collection of 73 pixels taken from the centre­
most near copy in (middle right) from Figure 4.12. At this resolution, very little of 
the detail contained in the original, highest resolution, image is present. Indeed, only 
the approximate shape of the object can be observed at such a resolution. Purely for 
the sake of visual display, the original 343 hexagonal pixels have been scaled up and 
Figure 4.13 is an attempt to portray the original image of the can of Pal dog food at 
this reduced resolution without sacrifice to size. It is important to stress the point 
that the segmentation was performed on the image as represented by the 343 pixels 
in the centre-most copy displayed in Figure 4.12 (middle right) and not on the image 
portrayed in Figure 4.13. 

The results of segmenting the image at various 6 grey-values are displayed in 
Figure 4.14. The main result of this segmentation is that the shape of a rectangle has 
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Figure 4.13: The image represents a scaling up of one of the copies from 4.12 (middle 
right). 

emerged from the process. This shape results from the projection of a cylinder onto 

a 2-dimensional surface. The rectangular shape evolved as follows: Segmentation at 

the first (highest) 8 grey-value produced two conjugacy classes. These two classes are 

represented in Figure 4.14 (upper left) by the collection of dark connected blobs and 

the collection of lighter shaded blobs. The perceived shape within the image results 

from the boundaries of the two classes. At the completion of this first iteration 

of segmentation, even though there is a definite shape present, the shape is not 

recognisable. 

The results of the second pass of segmentation at the next highest 8 grey-value is 

portrayed in Figure 4.14 (upper right). Here, a third class has emerged and is located 

near the middle of the lighter class and at the left hand side of the dark class. Observe 

that the human eye tends to join the new class with the darker class. This occurs 

for at least two reasons: firstly, the average grey-level of the new class is closer to 

that of the darker class than the lighter class. Secondly, such a joining results in the 

production of a longer straight edge (recognisable shape). The difference in average 
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Figure 4.14: The collection of images represent six iterations of the segmentation 
algorithm as applied to the image from Figure 4.13; (upper left) first iteration at 
highest b grey-value producing 2 conjugacy classes, (upper right) second iteration, 
(middle left) third iteration, (middle right) fourth iteration, (lower left) 8th iteration, 
(lower right) 12th iteration. 
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grey-levels can be quantified by the 6 function, Equation 4.1. The effect of joining 

the new class to the darker class results from taking the complement of the lighter 

class. The third pass at the next highest 6 grey-value resulted in the production of 

a fourth, rather small, class at the border of the field in the direction of 5 o'clock. 

See Figure 4.14 (middle left). The fourth pass isolated another class that seems to 

correspond to the top of the can and the PAL letters. The complement of the lightest 

class now produces a shape approximating three sides of a rectangle. See Figure 4.14 

(middle right). Subsequent passes at progressively smaller 6 grey-values continue to 

isolate other entities in the image. Figure 4.14 (lower left) represents the situation 

after the 8th pass. Observe the new class projecting in from the border near the edge 

of the field at the 7 o'clock location. This class corresponds to the line of intersection 

of the surface the can rests on and the background wall. Although a definite shape 

has emerged by the 12th pass, see Figure 4.14 (lower right), the lower right side of 

the can has remained undetected. 

Figure 4.15 is a scaled up version of one of the 49 near copies displayed in the 

image of Figure 4.12 (middle left). At this slightly higher resolution using 74 pixels, 

in addition to the outline of the can appearing sharper, a somewhat blurred repre­

sentation of the PAL is visible. The results of segmenting this image are displayed 

in the Figure 4.16. The shape of the can emerges in a similar fashion to that of the 

lower resolution. At this resolution though, the boundaries are sharper and more of 

the lower right hand side of the can has been captured. 

The can is displayed at the second highest resolution in Figure 4.17. This figure 

is composed of 75 pixels and represents one of the seven near copies visible in the 

(upper right) image of Figure 4.12. At this resolution the PAL letters are clearly 

visible. The results of segmentation are displayed in Figure 4.18. The first iteration 

at the highest 6 grey-value has included the pixels associated with the PAL letters in 
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Figure 4.15: The image represents a scaling up of one of the 49 copies in Figure 4.12 
(middle left). 

the background class. See Figure 4.18 (upper left). At the next iteration, the PAL 

letters were isolated into a class by themselves. See Figure 4.18 (upper right). At 

subsequent iterations Figures 4.18 (lower left) and (lower right) displays the shape of 

the can with greater detail. In these two figures, the curvature of the top of the can 

is clearly visible. 

It was stated at the outset of this chapter that a segmentation algorithm that is to 

be used as a component of a general purpose machine vision system should be capable 

of commencing the process without a priori information about the input image. A 

consequence of this paradigm is that all resolutions of the input image have equal 

priority at the commencement of the segmentation process. The results presented 

for the PAL image illustrates the significance of this requirement. Observe that 

different information was obtained at each resolution and that this information was 

obtained at differing computational costs. At the lowest resolution, an approximate 

rectangular shape emerged at the cost of considering only 343 pixels. At the highest 

resolution more detailed information, curvature of the top of the can and the PAL 
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Figure 4.16: The collection of images represents six iterations of the segmentation 
algorithm applied to the image in Figure 4.15; (upper left) first iteration, (upper 
right) second iteration, (middle left) third iteration, (middle right) fourth iteration, 
(lower left) fifth iteration, (lower right) sixth iteration. 
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Figure 4.17: The image represents a scaling up of one of the 7 copies in Figure 4.12 
(upper right). 

letters, emerged at a higher computational cost. Thus, there is an inevitable trade-off 

between the density of detail and the computational cost of obtaining that detail. 

4. 7.3 Timing Results 

The timing results of the segmentation of the PAL image are available for only the 

lowest three resolutions of the image. However, the results are of some interest. 

The first iteration at the lowest resolution mimicked the timing results for the trials 

presented for the transformations discussed in Chapter 3. The time increased linearly 

with the number of passes that were made at the lowest resolution. However, the 

time required for the two higher resolutions both increased by a factor of 10. The 

indication is that most of the time was spent in the actual passing of the messages 

between the machines. These results of the timing trials are only indications of 

how the algorithm will perform under arbitrary conditions at this stage. All of the 

problems of the implementation as discussed in Chapter 3 have remained in the 2DSA 

implementation. As such, these problems must be addressed before any store can be 
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Figure 4.18: The collection of images represents four iterations of the segmentation 
algorithm as applied to the image of Figure 4.17; (upper left) first iteration, (upper 
right) second iteration, (lower left) third iteration, (lower right) fourth iteration. 
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placed on timing results for 2DSA. 

4.8 Higher Level Segmentation Algorithms 

2DSA is an application of the Gestalt law of Similarity[46]. It divides the raw image 

purely on the basis of light intensities. The output from this process results in the 

input image being represented at reduced computational complexity. This effect is 

similar to that achieved by the technique known as Thresholding, where the individual 

grey-level pixels are grouped after comparison with the threshold value. However, 

after this low level segmentation (either 2DSA or Thresholding) is complete, a higher 

level segmentation based on the shape of the conjugacy classes can serve to refine 

the process. This higher level segmentation might result from other laws of visual 

perception. Although none of the other Gestalt laws have been implemented to date, 

a few of these laws will be briefly discussed in Chapter 6 Section 6.1.3. 

4. 9 Discussion 

One of the unavoidable problems associated with the creation of an autonomous seg­

mentation algorithm is that it amounts to the exploration of new and uncharted areas. 

Although it is desirable to compare 2DSA with other segmentation algorithms, no 

benchmarks exist at present. Consequently, all analysis is purely subjective. However, 

four points regarding 2DSA can be stated. The first is that it operates autonomously, 

largely independent of the illumination conditions. Secondly, it indicates how the 

unique adjacency properties, see Figure 4.1, of clusters of hexagons provide computa­

tional power. Thirdly, it shows how SHLA can be employed in a parallel environment 

as a useful data structure for one of the low level image processing operations essential 

to machine vision. Fourthly, the choice of the o function, Equation 4.1, appears to 
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produce adequate performance. It is probable that the function is not optimal and 

that further empirical investigations may lead to an even more effective 6 function. 

There is an implicit relation between 2DSA and the process of edge detection. 

A natural interpretation of the 6 function is that it is a discrete derivative. That 

is, it measures the change in light intensity over a unit distance. Consideration of 

maximum 6 grey-values then corresponds to the concept of higher order derivatives 

which are generally employed in conventional edge detecting techniques. The creation 

of each conjugacy class by 2DSA is associated with a contiguous sequence of hexagons 

at the border of the class. These hexagons are identified in the segmentation process 

when the fission process creates a disconnection between two adjacent hexagons. One 

might choose to call this collection of boundary hexagons (pixels) the edge of the 

conjugacy class. This edge detecting feature could be incorporated into 2DSA with 

little cost. Its inclusion would provide an enhancement to the reduction in complexity 

of the image's representation. 

The ability to process multiple near copies of the image at the same resolution 

also has the potential to serve the higher level process of interpretation in at least 

two ways: Firstly, it can be used to centre an object within the image for subse­

quent fovea! sensing. A second potentially powerful feature of processing multiple 

near copies at the same resolution, that has not been explored to date, is its effect 

on noise in an image. Natural images always contain noise. A conundrum in the 

interpretation process pertains to the removal of noise without a priori information. 

Pixels can only be classified as noise after the image has been interpreted. Before 

the process is complete any given pixel or small group of pixels may be of consider­

able significance. Consequently, the removal of arbitrary pixels from an image before 

the interpretation process is complete is fraught with danger. The transformations 

of SHLA that produce multiple near copies of the image all at the same resolution 
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provide an interesting approach to the problem. Each individual near copy represents 
a unique sample of the image and collectively they possess all the information of the 
input image. It is therefore likely that noise will be isolated to only a portion of the 
copies at lower resolutions. This property could serve the interpretation process by 
providing noise reduced copies without discarding information. 

Although 2DSA does exploit parallelism at many levels - multiple resolution, mul­
tiple copies and that the independent construction of boundaries can merge into a 
single boundary without global information - the present implementation does have 
at least one global constraint. Before the splitting operations commence, global in­
formation is required to produce the maximal o grey-value change. At the lower 
resolutions this is an insignificant search but as the resolution increases, the global 
search for the maximal o will increase linearly with the amount of resolution. At 
this stage there is no indication as to the highest resolution that can be considered. 
However, there are a number of possibilities available to deal with this constraint. At 
the point where global high resolution becomes prohibitive, one approach would be 
to employ a windowing technique at high resolution on particular parts of interest in 
the scene. 



Chapter 5 

Perception of Time and Space 

Kimo: "We can count and group patterns within a space, but, now we must try to 

count and group across space and time. " 

115 
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5.1 Introduction 

The perception of motion in three-dimensional space is an essential feature of most 

biological vision systems. Without it, birds could not fly, flies could not avoid being 

swatted and monkeys could not swing in trees. It is no coincidence that the individual 

attributes of depth perception and motion perception are rarely found one without 

the other in biological systems. The attributes are highly interconnected which again 

demonstrates the totality of the vision process. The variety of biological strategies 

that have evolved to generate these attributes is immense. The one thing that all 

of the solutions have in common is that the analysis of two images of the scene is 

required because the photo receiving devices (eyes or cameras) capture the image 

from light projected onto a plane. The co-ordinates of a point projected onto a single 

plane do not correspond to a unique set of co-ordinates for the point represented in 

space. 

Figure 5.1: The projection of two images at different distances from the observer onto 
the retina. 

To illustrate, consider the following two situations: viewing a monkey at close 

range and viewing King Kong at a greater distance. Assuming that the observer has 

no detailed information about primates, the probability that the observer will be able 

to distinguish the primates based solely on information derived from projections of 
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these images, using a single stationary eye or camera, is remote. See Figure 5.1. 
The situation changes to one of easy distinction if any of the following variations 

on the single stationary camera approach is used. 

i) Two distinct cameras capture simultaneous images; 

ii) A single camera captures two images relating movement over time; 

iii) A single camera captures two images from distinct points. 

The first is known as binocular vision, the second is parallactic vision and the 
third is either binocular or parallactic depending on whether the two images were 
captured over space or time respectively. 

The main results of this chapter will show how the SHLA, described in Chapter 
2, and the segmentation algorithm, 2DSA, described in the previous chapter can 
be employed to gain part of the solution to the problem of real-time perception of 
motion in space. The two problems of perceiving depth and perceiving motion will 
be considered separately and then it will be shown how the two solutions integrate. 
In particular, this chapter is organized as follows: Section 2 provides an overview 
of some other related work. Section 3 presents an algorithm that produces a three­
dimensional map from two images. Section 4 extends the results of the previous 
section to accommodate the dimension of time. A brief treatment of the way in 
which the algorithm from Section 3 could be implemented on a network of transputers 
is presented in Section 5. Section 6 considers two types of errors produced by the 
algorithm's method of measuring depth. The chapter concludes with a discussion of 
the results of the chapter. 
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5.2 Related Other Works 

There have been a multitude of approaches that attempt to solve the problem of 

capturing three-dimensional information from two-dimensional images (49, 31, 1, 61, 

48, 107, 99, 73, 71, 101, 64, 74] . Reviews of current techniques for three-dimensional 

image representation for model based systems can be found in (6, 75]. The authors 

treat both active systems, where the system emits an energy pulse and recaptures 

it for range analysis, and passive systems, which rely on the captured signal to be 

emitted from another source. Most of the passive systems reported seem to employ a 

noise reduction filter, such as a Gausian smoothing, to create the 3-D representation. 

The method of representation closest to the one presented in this chapter is the Octree 

structure (86]. However, the Octree is a hierarchical structure that employs smoothing 

to create the various levels of the structure. SHLA is a clustering structure. 

A popular method for determining 3-D motion is that of the analysis of optical 

flow (78, 55]. A contour-based estimation of motion is presented in (25]. There is 

growing interest in the use of parallel algorithms for use in three-dimensional motion 

analysis. See (26, 82] as examples of this interest. 

5.3 Perception of Depth 

Most traditional methods of employing stereoscopic vision to gain the perception of 

depth generally amount to the resolution of triangles. Consider the triangle formed 

by a point P in space and two points E1 and Er each at the centre of a distinct left 

and right eye (or camera). The problem is then to determine the distance, Z, from P 

to the base line joining E1 and Er. See Figure 5.2. 

Information about the focal distance of each eye and the distance separating the 

two eyes together with the angle of displacement of the projection of P from the 
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Figure 5.2: A point P at a distance Z from the base line joining points E1 and Er. 

optical axis are the inputs required to compute Z. The computation then results from 
the consideration of some elementary trigonometric relations. See Figure 5.3. 

There is an assumption that the two eyes are aligned on the horizontal axis. The 
accuracy in the computation of Z is dependent on the precision of the measurements 
of their inputs. The time required to determine Z is mainly determined by the ability 
to obtain the two pairs of coordinates on each of the projections associated with P. 
This is the difficult part of the problem for a variety of reasons, not the least of which 
is that there is never a perfect correlation between points in the two projections. In 
fact, the richer the variation in depth across the scene, the poorer the correlation. 
There have been a number of approaches taken to solve the correlation problem. 
These range from sophisticated statistical techniques to feature detection methods. 

The method of depth perception presented in this chapter is also a variation on 
the general technique of triangulation. It has been named 3DSA (Three Dimensional 
Segmentation Algorithm). It has a number of distinctive features: 

• 3DSA executes concurrently with 2DSA. Output is generated from 2DSA on 
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Figure 5.3: The geometry of stereo vision. 



CHAPTER 5. PERCEPTION OF TIME AND SPACE 121 

completion of its consideration of change in light intensities and then is input 

for a similar stage of 3DSA. 

• The relative distance of various points on a surface to the observer is determined. 

That is, the depth information inferred will be that a given point on a surface 

in space is, relative to the observer, either closer to or further away than each of 

six neighbouring points. The determination of the absolute distance from any 

surface to the observer will be the jurisdiction of a higher level process. 

• Although it is assumed that the two cameras are in horizontal alignment there 

is no requirement for the measurements of the focal length or the base line 

distance. Rather, it is assumed that the focal length and the base line distance 

are both constants for the duration of time it takes to capture the two images. 

• The process generates depth representations concurrently for each of the reso­

lutions of the image. The accuracy of the depth information is a function of the 

degree of resolution. The higher the resolution, the greater the accuracy. 

• The process correlates patches in the two images creating a cyclopedean view 

of the visual world by attempting to match equivalence classes produced by 

the segmentation algorithm (2DSA). The non-matching equivalence classes also 

generate depth information. 

5.3.1 A 3-D View of SHLA 

The SHM introduced in Chapter 2 was inspired by the geometrical arrangement of 

the cones on the retina of primates. As a result, there may be a tacit assumption 

that the SHM is really just a two-dimensional structure but nothing could be further 

from reality. Just as the plane, as defined by the surface of the retina, is mapped 

into the multidimensional structure within the brain, the pixels as defined by the 
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camera, are mapped into SHM. Recall that the mathematical structure of SHM is 

a Euclidean ring ( dimensionless). All spatial references to SHM have purely been 

matters of interpretation. It is just as easy to interpret SHM as a representation of a 

three-dimensional space. 

To illustrate this, let SHM contain 72 = 49 hexagons and let it represent the visual 

world in the following manner. Relative to and centred at an observation point, say 

E1 construct .seven concentric spheres each of which is defined by a distinct radius. 

Let each of the seven clusters lie on the surface of a corresponding sphere such that 

the cluster with centre at address 0 is on the sphere of greatest radius, each of the 

clusters centred at 10, 20, 30, 40, 50, 60 lie on the surface of the next closer sphere, 

respectively. Then let the alignment of the clusters be such that the centre of each lies 

on the straight line segment joining E1 to address 0 (the optical axis). Let the area 

of each hexagon be proportional to its distance from E1. Each cluster then represents 

a section of a distinct sphere and the greater the distance of the cluster from E1 the 

larger is the area of its component hexagons. See Figure 5.4. As a result of this 

geometry, each address has associated with it two numbers. One identifies the sphere 

and the other determines the direction from the centre of the cluster on the sphere. 

In the case of the present simple example where the addresses range from 0 to 66, 

the ten's component of a given address indicates the sphere it lies on and the one's 

component determines its relative position to the other hexagons on that sphere. 

The mathematical dissection of the address is achieved as follows: 

sphere 

direction 

(address /10) 

(address mod 10) 

Thus, SHM may be considered as a representation of a bounded visual world and 

an individual address may be interpreted as the centre of a hexahedron in three­

dimensional space. See Figure 5.5. 
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Figure 5.4: The figure indicates the relationship between the positions of seven clus­ters of the SHM to the seven units of 3-D space that they represent. The optical axis intersects each of the seven clusters. 
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Figure 5.5: The optical axis intersects the centre of each hexagonal end of a hexahe­dron which is a component of the visual world. 

One additional adjustment to the interpretation imposed on SHM in Chapter 2 is 
required to give SHM meaning as a representation of the visual world. This results 
from the fact that light does not emanate from all points in three-dimensional space. 
Rather, light emanates from the surfaces of objects within that space. The point 
is that not all coordinates in space are occupied by objects. The implications for 
SHM is that not all of its hexagons will have a light intensity associated with it. In 
other words, some of the hexagons will be transparent. This concept is, possibly, 
better explored by Gibson's [34] ecological terminology. He chooses to replace the 
geometrical constructs of planes and spaces with the ecologically equivalent notions of 
surfaces and mediums. Gibson's ecological terminology enhances the intuitive notion 
of the vision process. For example, his idea of surfaces moving through a medium 
gives a clear distinction between what it is that light passes through and what it is 
that light emanates from. The geometrical notion of space is a generalization of a 
plane and this tends to blur the distinction between planes and spaces in the visual 
context. 

It is also necessary to re-interpret the physical significance of the elements of 
SHLA (transformations on SHM). Previously, Tx represented a transformation on a 
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two-dimensional space. Now, in order to achieve a transformation in three dimensions, 

the following enhancement of Tx is adopted: 

Let r; = Tx applied exclusively to the sphere component of the addresses. 

Tf = Tx applied exclusively to the direction component of the addresses. 

The short hand form of the combined components is: 

Tx,y = (T; + r;) where the first and second component of the (x, y) pair is the 

scalar value which is applied to the sphere and direction component of the address, 

respectively. A few examples will serve to illustrate the physical significance of the 

transformations: 

Ao,x produces the effect of translation within spheres, by an amount x. That is, none 

of the hexagons change spheres, due to the zero value of the first component. 

Ax,o produces the effect of translation across the spheres. That is, in depth with no 

change of horizontal and vertical position, due to the zero value of the second 

component. 

Ax,y produces the effect of an arbitrary translation through space. 

M1,x produces the effect of rotation and scaling in the horizontal vertical plane. 

Mx,I produces the effect of rotation and scaling in depth. 

Mx,y produces the effect of an arbitrary rotation and scaling in space. 

It is also worth noting that the term scaling has two different interpretations, 

depending on whether it takes place in the horizontal/vertical plane or in depth. 

The former is that which has already been observed in Chapter 2. The effect is one 

of viewing the image at different resolutions. The latter effect is one of receding or 

advancing. Note that translation in depth does not achieve this effect. For an image to 
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have the appearance of receding or advancing, it must have an accompanying decrease 

or increase in size. Translation does not produce a change in size, only position. 

Before considering a few specific examples of the transformations, one additional 

observation should be made in order for the transformations to make sense. The 

transformation of a transparent hexagon need not be considered. This makes sense 

both visually and computationally. The former results from the observation that a 

transformation in space is principally concerned with what has moved into a compo­

nent of space, not what has left it. The latter results from the simple fact that there 

is no point in trying to move nothing (a transparent hexagon). 

With these conventions in mind, consider A1,0 from two points of view. Firstly, 

from the viewpoint of the effect on the shift of the individual spheres: 

Cluster in sphere 0 would move to sphere 1 with no directional shift: 

(0,1,2,3,4,5,6)A1 ~ = (10,11,12,13,14,15,16). 

Cluster in sphere 1 would move to sphere 3: 

(10,11,12,13,14,15,16)A1~= (30,31,32,33,34,35,36). 

Cluster in sphere 2 would move to sphere 5: 

(20,21,22,23,24,25,26)A1 ~ = (50,51,52,53,54,55,56). 

Cluster in sphere 3 would move to sphere 2: 

(30, 31, 32, 33, 34, 35, 36)AI,o = (20, 21, 22, 23, 24, 25, 26). 

Cluster in sphere 4 would move to sphere 0: 

(40, 41, 42, 43, 44, 45, 46)AI,o = (0, 1, 2, 3, 4, 5, 6). 

Cluster in sphere 5 would move to sphere 6: 

(50,51,52,53,54,55,56)A1~= (60,61,62,63,64,65,66). 

Cluster in sphere 6 would move to sphere 4: 

(60,61,62,63,64,65,66)A1~= (40,41,42,43,44,45,46). 
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Secondly, from the viewpoint of the effect on the image contained within the space, 
there are a number of scenarios to consider: 

• If the image (non-transparent hexagons) was exclusively confined to spheres 0 
and 5, the effect would be one of translating the image one sphere closer to E1• 

• If the image was contained in spheres 1 and 6, the shift would be to spheres 3 
and 4 respectively. The visual effect is one of a relative shift of surfaces within 
the image. 

• In general, the effect of the transformation is dependent on the image itself. 
This is an important point as it is related to the idea of an object being de­
fined by the transformation which renders it invariant under the action of the 
transformation. 

In a similar manner, the transformations of Mx,y represent rotations and scalings in a 
three-dimensional space. In particular, M1,x for x = 2, 3, 4, 5, 6 represents rotations 
in the horizontal/vertical plane of 60, 120, 180, 240, 300 degrees respectively. 

Rotations about the north/south axis of an image is achieved by Mx,l· The 
visual effect of this transformation has an interesting interpretation. Observe that 
the cluster in sphere 0 is not moved. Whereas the clusters in spheres 1 to 6 are cycled 
as indicated by the diagram in Figure 5.6. 

If sphere 0 is considered to be at visual infinity, the inference is that an image 
can't be rotated either in, from or out to infinity. This makes visual sense. 

5.3.2 Segmenting the 3-D SHM 

In the previous chapter, considerable attention was devoted to the development of 
a two-dimensional segmentation algorithm, called 2DSA. Because vision is predomi­
nantly three-dimensional, direct applications of the algorithm to natural images are 
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Figure 5.6: The figure indicates the relative movements of the seven clusters from 
Figure 5.4 when a transformation of rotation is applied to the SHM. 

not abundant. The only real examples of two dimensional images in nature occur 
when the scene is far enough from the viewer that all points of the image appear to 
be at the same distance (visual infinity). For example, even though the night sky rep­
resents a richly three-dimensional space, it appears as though it is two-dimensional. 
This is due to the fact that the ratio of the distance from any extra-terrestrial object 
to an Earthly viewer and the distance between the viewer's two eyes is immense. In 
mathematical terms, this means that the value of Z of Figure 5.2 approaches infinity. 
Geometrically, the triangle defined by the points (P, Ez, Er) collapses into a straight 
line segment. In spite of 2DSA's apparent limited applicability, it will be the lynch 
pin of the three-dimensional segmentation algorithm, (3DSA), described here. 

The algorithm executes concurrently at each of the resolutions. The following 
three steps are repeated on inputs from each of the refinements of the 2DSA: 

step 1 : The two images of the same scene captured from distinct points are seg­
mented using 2DSA for a given change of light intensity. 
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step 2 : All new equivalence classes are initialized to sphere zero (furthest away from 

the observer). 

step 3 : Individual equivalence classes from each image are translated forward (closer 

to the observer) so as to maximise matching of the similar equivalence classes. 

Figure 5.7: Horizontal cross section of a simplified left eye viewing a patch P in the 
visual world. The three photo receptors are labelled 1, 2 and 3. 

The third step requires a few points of further explanation. There is an assump­

tion of non-accidental equivalence classes. That is, two equivalence classes from the 

two images, that are of similar shape and lie on the same horizontal, tend to represent 

the same object from the scene. The process of correlating equivalence classes from 

distinct images is, in this context, called matching. Given this assumption, suppose 

further that two equivalence classes, one from each of the images that correspond 

in shape and vertical position, are found to match. A horizontal translation of the 

equivalence class from Er sufficient to have its horizontal positions coincide with its 

counterpart in Et provides the depth information. In order to appreciate the sig­

nificance of the horizontal translation, consider Figure 5.7, 5.8 and 5.9. Figure 5.7 
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I 
Figure 5.8: Cross section of the right eye's view of the same patch P displayed in 
Figure 5.7. 

represents a horizontal cross section of the visual world, as captured by an absurdly 

simplified photo receiving device. The device is composed of a left and right compo­

nent, each of which has three photo receiving elements aligned on the same horizontal 

plane. Suppose that a patch P is observed in the photo receiving element 2 of the 

left component. Note that this positioning only locks the patch into a corridor in the 

horizontal plane. The patch could be located anywhere in the corridor between the 

lens and infinity. Next, suppose that another patch is observed in photo receiving 

element 3 of the right component and that evidence suggests that the two observed 

patches are one and the same (they match). The patch is fixed in the intersection of 

the two corridors, as seen in Figure 5.9. Although the method for fixing a patch in 

space was described in the context of a simplified photo receiving device, the same 

argument applies for a photo receiving device with any number of elements. The only 

alteration being that a greater density of elements will generate more accurate depth 

information. The degree of error can, of course, be quantified in precise mathematical 

terms. 
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Figure 5.9: The combined effects of Figure 5. 7 and 5.8 shows the patch locked in the 
intersection of two corridors. 
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The second issue to be resolved pertains to the generalization of the method of 

connecting and disconnecting hexagons in the cases of higher than two dimensions. 

The concept referred to was originally introduced in Chapter 4 with the definitions 

of section 3. In the higher dimensional SHM, the equivalence classes generated by 

2DSA may exist in distinct spheres. 

There is a problem to overcome. Light intensities, as a measure of the amount 

of light being reflected by an object in space, diminish exponentially as the object is 

moved away from the observer (the statement presupposes an assumption of constancy 

of other variables that affect light intensity). Alternatively, if light from a uniform 

source falls on an object with a surface of uniform, the observed light intensities from 

that object will diminish exponentially across the surface as the object is tilted away 

from the viewer. See Figure 5.10. 

----] 
------------

Figure 5.10: (upper) Trapezoid in a plane which is perpendicular to the optical axis of 
the observer. (lower) Same trapezoidal shape as in (upper) but with shading, giving 
the illusion of a rectangle in space tilted away from the perpendicular to the optical 
axis. 

In order to adjust for the variation of light intensity over depth, the 2DSA is 

applied to a logarithmic transformation on the light intensities of hexagons in dis­

tinct spheres. This will eventuate in a possible adjustment of the labelling of the 
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equivalence classes. 

There are, of course, other transformations on the equivalence classes that effect 

the perception of depth. Many of these have been described by the Gestaltists. One 

of these is the effect of texture on the perception of depth. This would appear to 

be a higher level function as it presupposes the recognition of a recurring pattern. 

Although it seems likely that this effect could be implemented as another concurrent 

module with 3DSA, it will not be treated here. 

5.4 Perception of Motion 

The perception of motion is dependent upon not only a representation of space but 

also of time. This section of the chapter will extend SHLA to incorporate time and 

will explore how SHLA can be employed to facilitate the perception of motion. 

5.4.1 A Representation of Time 

The concept of time is represented and imagined in varying ways by different cul­

tures. In a typical western culture, time is represented on a linear scale with the 

present placed at the origin and extending in negative and positive directions. The 

negative direction represents a backward movement in time and the positive direc­

tion represents a forward movement in time. In Papua New Guinea culture, 1 time is 

perceived as spiralling into the future from the present. The present is placed at the 

centre and contains the past. For the purpose of this thesis, the Papua New Guinean 

representation of time shall be used. 

1The spiral representation of time was explained to the author by a Papua New Guinean. The 
explanation was given in the context of providing insight as to why his son, an electrical engineering 
student, may be having difficulty with the Fourier Series. The son, shortly thereafter, mastered the 
Fourier Series. The author took much non-linear time to appreciate the explanation given him that 
day. 
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Spiral time, as it shall be called, is enumerated by Spiral Counting in a particular 

key. The key is dependent upon what it is that will be associated with the given 

moment in time. Consider a trivial example: if the units of time to be enumerated 

are to have nothing associated with them, the appropriate key is, one. A non trivial 

example is provided when each unit of time has associated with it, a unit of space. In 

the previous section, a simple example of 72 hexagons was used to represent a three 

dimensional space. In this case, Spiral Counting in the key of 100 would enumerate 

time and its associated units of space. 

5.4.2 Transformations of Time and Space 

The SHM can now be thought of as a four dimensional structure that has the potential 

to integrate time and 3-D space. It is the transformations of SHLA that realize the 

potential. Consideration of the following simple example will illustrate the point. 

Once again, let the space be represented by the smallest unit of visual organization: 

a cluster that will represent a surface in the horizontal/vertical plane. Let a darkened 

hexagon represent a patch against the white background of the other six hexagons. 

Thus, the patch in the context of a cluster has a position in space. Figure 5.11 

represents such a space over seven units of time. 

The position of the patch is indicated by its relative position to each of the ad­

dresses (0, 10, 20, 30, 40, 50, 60), which dually represents a moment in time and the 

centre of the visual field at that moment. Figure 5.11 can then be interpreted as a 

pattern of movement in space. The motion in each of the three figures is respectively, 

5.11 along a path of a circle, 5.12, along a path of a straight vertical line, 5.13 a 

stationary object. 

The qualitative description of the transformations of time and space, thus far 

given, can be rendered in mathematical terms with a slight extension to the notation. 
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Figure 5.11: The figure indicates (right) the motion of an object along a circular path 
and (left) the representation of the position of the object in SHM at seven units of 
time. 

• 
object moving in a 
vertical path 

Figure 5.12: The figure indicates (right) the motion of an object along the path of 
a vertical line and (left) the representation in SHM of the object's position at seven 
units of time. 
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stationary object 

Figure 5.13: The figure indicates (right) a stationary object and (left) the represen­
tation in SHM of the stationary object over seven units of time. 

Firstly, the general formulae for the extraction of the components of direction, sphere 

and time from the address are: 

direction 

sphere 

time 

(address mod units- of- direction) 

((addressmod (units- of- space)) I (units- of- direction) 

((address I (units- of- space)) 

Let T; be the transformation Tx applied exclusively to the time component of the 

address. Thus, the previously defined short hand notation may be extended as fol­

lows: Tt,8 ,d is the previously described T8 ,d with the insertion of the component for 

time. Thus, the transformation Tt,8,d'r/t, s, dE SHM represents the visual field in a 

subspace of SHM restricted by (s, d) at a particular moment, t, in time. 

With this notation in hand, it is now possible to give a precise definition to the 

concept of perception of motion in SH M. Motion is determined by a sequence of 

transformations Tt1 ,8 1 ,d1 Tt2 ,82 ,d2 ••• Ttn ,8n ,d.n applied to S H M. 
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For example, the circular motion that was attributed to the representation of SHM 

as displayed in Figure 5.11 may be represented by a sequence of transformations. 

To illustrate this process, first consider an object in the centre of the visual field. 

This is represented most simply by a darkened hexagon, the object, in the centre 

of the fundamental unit of vision. See Figure 5.14. Secondly, apply the following 

sequence of transformations to this figure: AI,o,oM2,1,2M2,1,2M2,1,2M2,1,2M2,1,2M2,1,2· 

This sequence is equivalent to the pair of transformations A1,0,0M6,1,6 . In words, the 

object was translated from the centre of the visual field and then rotated in a circular 

path about the initial position over seven units of time. 

Figure 5.14: The figure shows an object (darkened hexagon) in the centre of the visual 
field. 

5.4.3 Perception of Depth from Parallaxis 

Parallaxis is the perception of depth derived from the analysis of relative positions 

over time. This information can be obtained from a single eye receiving images over 

time. The incorporation of time into the SHM facilitates discussion of parallactic 

vision. In practice, it turns out that the perception of depth from the parallactic 

effect is only a slight variation on the binocular system. 
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In binocular vision, the cyclopedean view of the visual world is produced by the 

merging of two distinct images from the same point in time. The point to note is that 

3DSA merely merges distinct images. There was no requirement for the two images 

to be captured at the same moment. The only requirement from the processing point 

of view is that the time interval between successive images is short enough so that 

the non-accidental assumption is valid. So long as this assumption is valid, the 3DSA 

will be able . to extract depth information. The relevant constraints on the process 

pertain to the smoothness of the movement. In particular, the greater the constancy 

in direction and velocity, the greater is the accuracy of the depth information. In 

general, it would be expected that the perception of depth from parallactic vision 

would be a simpler matter to implement as the binocular system requires additional 

synchronization. That is, the system must be able to keep track of the two streams 

of images. 

5.5 Implementation of 3DSA 

The implementation of 3DSA on a network of transputers is still underway. Conse­

quently, no test results can be reported. However, a few words are in order to describe 

the main issues that are involved in the implementation. The most important point 

about the algorithm is that it is part of a larger module which concurrently executes 

with, and is similar to, the 2DSA. As might be anticipated, the problems associated 

with its implementation are similar to those of 2DSA. Indeed, the two main obstacles 

to be overcome relate to memory and synchronization. 

The biggest problem encountered with the implementation of 2DSA, as described 

in the previous chapter, was the memory constraint imposed by each transputer. It 

was stated that, to date, the largest SHM to meet the memory constraints is 73 = 343 

pixels. This precluded the production of even the simplest non-trivial results possible. 
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The smallest non-trivial representation of three-space requires 73 = 7 x 72 hexagons 

in the SHM. The inclusion of the dimension of time to the three-dimensional space, 

would require a further power of seven hexagons to render the representation non­

trivial. Clearly, a way around the memory constraint must be found in order to 

handle realistic images over the dimension of time. 

The biggest problem that was overcome in the implementation of 2DSA related 

to the synchronization of the multitude of concurrent processes required for the al­

gorithm. The 3DSA will have a similar synchronization problem to solve. This is in 

addition to a layer of synchronization between the dynamic interplay between 2DSA 

and 3DSA. 

In view of the fact that the programming required for the implementation will 

take considerable time to achieve, an alternative approach might have been to imple­

ment the algorithm on a sequential machine. This would avoid both the problems of 

memory and synchronization. Such an approach might have produced demonstrable 

results from the algorithm. However, the approach was not taken for two reasons. 

Firstly, and most importantly, it is felt that the fundamental importance of such an 

algorithm is its scalability on a parallel architecture. This belief has been persistent 

throughout this work and stems from the conviction that the vision process is inher­

ently a parallel one. The second reason for not pursuing a sequential implementation 

is of a more pragmatic nature. As it is intended that this work will ultimately result 

in the engineering of a machine vision system, (to be discussed in the next chapter), 

it is felt that any time spent on a sequential trial is a waste of effort. 

5.6 Error and Illusions 

Any vision system, be it biological or machine, has different types of error unavoidably 

engineered into it. In the case of the human vision system, one rather interesting 
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form of error is called optical illusion. This section considers two types of error in the 

perception of depth that would be generated from the output of 3DSA. 

5.6.1 Error from Spatial Mismeasurement 

The first example is drawn from the illusion experienced by a human binocularly 

viewing a tall, straight column. The illusion is one of seeing a curvature in the 

column2
• If 3DSA was employed to handle input from a binocular system viewing 

the tall, straight column, a similar error in the perception of curvature would be 

predicted. 

The explanation for the error in depth created by 3DSA is rather simple, if not 

expected. Error is incurred from perfect matching of equivalence classes. That is, 

the matching of equivalence classes that do not represent the same patch of a surface. 

For example, consider the equivalence classes generated by the binocular view of 

the cylinder, with uniform surface, depicted in Figure 5.15. The equivalence classes 

produced from the projection of the can onto the retina of the left and right eyes, 

have the shape of a rectangle (perfect match). However, each rectangle represents 

different patches of the cylinder's surface. Hence, the error creeps into the process 

by matching two equivalence classes that, in reality, match only in part. That is, the 

left vertical edge of the class from the left eye is occluded from the right eye and visa 

versa. This false positive match translates into error in depth representation from the 

algorithm by placing the two equivalence classes in the wrong corridor as discussed 

in section 5.3.2. More specifically, it is placed further from the viewer than it really 

is. The amount of error in depth is a function of the distance of the cylinder from the 

viewer. At visual infinity, there is no error; no part of the surface visible to one eye 

is occluded from the other eye. The closer the cylinder is to the viewer, the greater 
2The ancient Greeks understood this phenomenon and compensated for this effect by placing a 

curvature in the opposite direction to make the column appear straight. 
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Figure 5.15: The curvature of the can produces an occluded strip from Er which is 
visible to E1. 
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is the degree of occlusion; accordingly the greater is the error in its positioning in 
depth. 

Now in order to appreciate how the error in placing the depth of a cylinder is 
related to perceived curvature in a column, observe that the column is just a long 
cylinder. In addition, distinct vertical strips of the column are at different distances 
from the observer. The bottom end of the column is closer to the observer than is 
the top end. Consequently, there is greater error in the representation of depth at 
the bottom end of the cylinder than for the top end. This gradient of error in depth 
over the length of the column will translate into the perception of curvature. 

5.6.2 Error from Time Mismeasurement 

Another interesting example of illusion of curvature is provided by the well known 
phenomenon of perceiving the motion of a pendulum to be along the path of an 
ellipsoid when in reality the pendulum is swinging in a plane. This illusion of 3-
D movement is experienced from binocular viewing with one eye receiving the light 
through a filter such as sunglasses while the other eye is receiving the light unimpeded. 
The viewing must be conducted with the head absolutely still and the background to 
the pendulum must be uniform. Otherwise, the vision processes will intervene and 
destroy the illusion. See Figure 5.16. There are a number of aspects to this illusion. 
One results from the fact that the speed at which the signal travels from the retina 
to the visual cortex is a function of the intensity of the light source that produced 
the signal. The effect of having each eye receiving different light intensities from the 
same scene, is that, by the time the images arrive at the visual cortex, they are out 
of synchronization. 

Now, suppose that a binocular machine vision system is viewing the swinging of 
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a pendulum and that, for some reason, the two incoming images are out of synchro­

nization. Suppose further that the incoming image from the right input arrives for 

processing by 3DSA, one unit of time later than the left input. 

ver\<CCJI plcmc 1n wl11cl> 
movement of pendullun 
takes place 

Figure 5.16: Binocular view of swinging pendulum with both eyes receiving unfiltered 
light. 

Given this situation, the predicted error from 3DSA will produce an interesting 

effect. The prediction follows a similar argument to that of the one given for the 

illusion of curvature in the straight column, with the added component of time. As 

the pendulum is moving, it will be at two distinct positions at time ti-l and ti. 
However, a breakdown in the non-accidental assumption causes the two equivalence 
classes, which are of the same shape, to be matched. The position, in depth, is at 

that point of intersection of the corridors from the left and right cameras. The error 

incurred is proportional to the distance the pendulum has moved over the unit of 
time. See Figure 5.18. 
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Figure 5.17: One eye, En receives filtered light. The perceived motion of the pendu­lum is along the path of an ellipsoid. 
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Figure 5.18: Showing the actual position of a swinging pendulum at two points in 
time and the perceived position of a single point in time. 
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If the pendulum was moving at a constant velocity, the error produced by 3DSA 

would also be constant. However, the speed of the pendulum is not constant. Rather, 

it has zero velocity at both points where the pendulum changes direction and has 

maximum velocity at midswing when it is in alignment with the gravitational field. 

The result is that, from the left there is no error, at the mid swing there is maximum 

error and the pendulum will appear to be moving towards the vision system. As 

the pendulum continues its movement to the right, the error decreases causing the 

pendulum to appear to recede from the vision system. When the pendulum changes 

direction, the sign of the error also changes and the error begins to increase again. 

The perceived change in depth will continue to be that the pendulum moves towards 

the vision system until mid swing when it will appear to recede once again. The path 

just described is one of counter clock-wise movement along the trace of an ellipsoid. 

If the synchronization of the inputs were reversed so that the left input arrived later 

than the right input, the perceived motion would be in a clock-wise direction. 

5. 7 Discussion 

The SHM in this chapter has been extended in a natural way to include the dimen­

sions of depth and time. There have been no fundamental changes to the method 

of computation of the transformations. The only real constraint to execution time 

is the degree to which the architecture can deliver scalibility. The implication for 

this extension to SHM pertains to its size and hence to the architecture's memory 

constraints. The size of SHM has increased by orders of magnitude. Consider the 

observation that the dimension of depth increases the memory requirements from 

two dimensions, by a quadratic factor and that time results in a linear increase to 

this. In particular, consider the implications for a one megabit camera operating at 

twenty five frames per second. Assuming that all information is kept, the memory 
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requirements would grow at the rate of 25 x 1012 units per second. At this rate, even 

the largest machines would reach capacity within the hour. 

Obviously, with this capacity for growth of memory utilization, there must be 

a graceful way in which information can be compressed or just forgotten. Further 

discussion of the need for graceful degradation3 is deferred until Chapter 6. 

An interesting implication from 3DSA pertains to the choice of either binocular 

or parallaxis if one was to build a vision system requiring the perception of depth. 

The choice would appear to be a matter of application. In the animal world, birds 
and quadrupeds employ paralaxis and predators and primates use binocular systems. 

Birds and quadrupeds have a need to either spring or grasp at a stationary object from 

a stationary position. A predator requires precise information about the distance of 
the target if it is to leap without the ability to change its trajectory. A primate has 

a similar need if it is to jump from one limb of a tree to another. It can not change 

its trajectory in mid leap. Birds and quadrupeds have no such requirements. The 

implications for a machine system might be similar. The manipulation of a robotic 

arm from a stationary position may require a binocular system whereas a mobile 

robot navigating an obstacle course might find parallaxis superior. 

3This term was coined by David Marr in (67] 
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Kimo: "We have approached the eye of the spiral. It is time to turn around and work 

our way back out. " 
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The philosophical basis from which this work emanates is that the vision process 

must be viewed as a totality. Crucial to realizing this paradigm is demonstrating 

how SHLA relates to the various components of a vision system. This will now be 

demonstrated from two perspectives: 

i) A description of a general purpose machine vision system, named Akamai, will 

be presented 

ii) Intriguing relationships between SHLA and biological vision systems will be 

discussed 

6.1 Akamai 

Akamai (pronounced ock-a-my) is the Hawaiian word for 'intelligent' and is the name 

chosen for the machine vision system currently being developed. One of the goals 

of Machine Vision yet to be attained is to create a general purpose machine vision 

system. Many special purpose machines have been built. These include: [?, 30, 43, 

94, 83, 104, 79, 10, 92, 93]. The image understanding architecture at the University 

of Massachusetts, Amherst, consists of a 256K single-bit, Single Instruction Multiple 

Data (SIMD) processors at low level, 4K 16-bit Multiple Instruction Multiple Data 

(MIMD) processors in the middle and 64 MIMD processors at the top level [94]. 

The Hybrid Pyramidal Vision Machine at the Simon Fraser University has 512 SIMD 

processors at the low level and a 63 node transputer based MIMD processor at the top 

level [30]. The commercially available AIS 5000 consisting of 1K single-bit processors 

with mesh connected architecture [?] is a massive parallel processor. 

These machines all exploit considerable parallelism and deliver enormous process­

ing power but they fall well short of being general purpose machine vision systems. 

None of the machines developed so far can achieve the recognition of arbitrary objects 
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in real-time. 

6.1.1 Overview of Akamai 

Ultimately, it is intended that Akamai will be a general purpose machine vision sys­

tem. At present, it is in the design stage; driven by the processing requirements and 

capacities of SHLA. There are four functional components of Akamai: 

i) Image Acquisition Unit 

ii) Image Analysis Unit 

iii) Knowledge Generation Engine 

iv) Locomotion Unit 

Each of these four components has a biological counterpart and can be subdivided 

into smaller functional units. The Image Acquisition Unit corresponds to the eye. It 

consists of an image capture process (camera system) which corresponds to the front 

part of the eye, and a Pixel processor whose biological counterpart is the retina. The 

Image Analysis Unit may be thought of as the visual cortex of Akamai. It processes 

at three levels, referred to as low, intermediate and high 1. The low level works 

on the raw image (light intensities) and produces a partitioning of the data. The 

intermediate level re-groups the low level partition into more meaningful classes. The 

high level involves various recognition processes. The Knowledge Engine corresponds 

to the cognitive processes of intelligence. The biological counterparts to Akamai's 

Locomotion Unit are the variety of anatomical structures which provide movement; 

for example, legs, neck and the socket of the eye. 
1The terms low, intermediate and high level processes have currency in the vision literature which 

refers to broad classifications only. 
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Figure 6.1 displays the relationship of the functional units of Akamai. Each of 

these components will be discussed in the following sections. 

Parallel 
Pixel 
Processor 

I• Image Acquisitio~~Image Analysi~Knowledge generatio~;ocomoti~1 

Figure 6.1: Architectural overview of Akamai. 

6.1.2 Image Acquisition 

The two functional components of the Image Acquisition Unit will now be described 

in detail. 

Image capture 

A dual camera system performs image capture. Each camera is a CCD high resolu-

tion area array with variable frame rate and sub-millisecond integration time. Each 

camera could be mounted either to act as a binocular system to gain high acuity 

depth perception from a stationary position, or as two monocular systems to gain the 

advantage of full spectrum bird-like viewing. 

Pixel Processor 

The necessity to have a retina-like process in an intelligent vision system can not 

be overstated. Recently, an innovative silicon retina has been developed by (69, 65] 

as an off-the-shelf component for a machine vision system. This apparatus emulates 
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certain aspects of the human retina. The Pixel Processor performs the interface from 

the camera to the Image Analysis Unit. It has four important features: 

i) non-uniform sampling of the input image, 

ii) transformation of the sampled image into multiple resolutions, 

iii) parallel delivery of the multiple resolutions to the Image Analysis Unit, and 

iv) dynamically change resolution delivery. 

Non-Uniform Sampling 

Biological vision systems provide a rich diversity of spatial sampling strategies. The 

retina in rabbits employs a uniform sampling distribution giving snapshot like images 

of their environment. It allows the input of optimal information without the necessity 

of eye or body movement. This is of great advantage to a non-combatant whose 

strategy is to avoid detection and then flee when the strategy fails. 

Primates and predators, on the other hand, requires a more assertive form of 

vision; one which searches and homes in on particular targets. Their retinal sampling 

strategy is one of a non-uniform distribution. The densest sampling occurs at the 

centre of the retina. This is called foveal vision. 

In the periphery of the retina, the spatial sampling decreases from the optical axis. 

See Figure 6.2. This strategy affords a certain computational advantage. The part of 

the scene requiring high resolution viewing can be centred on the fovea with a slight 

eye or body movement. An example of high resolution requirements is the precise 

knowledge of the location of small objects such as claws, branches or characters on 

a page. However, the requirement to detect a new object that has moved into the 

scene or of the general shape of a larger object can be realised by lower resolution 

sampling. 
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Figure 6.2: Cone distribution along the horizontal meridian in humans. Adapted 
from [23]. 

The strategy of non-uniform sampling has the potential for great computational 

saving so long as either the eye can move appropriately or the objects of interest in the 

scene move toward the optical axis. Examples of these two situations as applications 

for a machine vision system might be robotic navigation in the former case, and 

quality inspection of a product travelling a known path along a production line in the 

latter case. 

The SHM lends itself to non-uniform sampling in a natural and computationally 

exploitable manner. By way of a simple illustration, consider the arrangement of 

hexagons in Figure 6.3. The addresses of the first seven hexagons (0 1, 2, 3, 4, 5, 

6) are identified by Spiral Counting in the key of one. The addresses of the next six 

hexagons (10, 20, 30, 40, 50, 60) are identified by Spiral Counting in the key of 10. 

The last six (100, 200, 300, 400, 500, 600) by Spiral Counting in the key of 100. The 

density of hexagons over the three regions of this area yields: 

region 1 7 hexagons per cluster = 7 

region 2 1 hexagon per cluster = 1 

region 3 1 hexagon per 7 clusters = (1/7) 
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Figure 6.3: Distribution of a non-uniform sampling scheme. The shaded hexagons of 
the combined three fundamental units of vision in regions, 1, 2 and 3, indicates the 
distribution of one such scheme. 
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This constitutes an exponential decrease in density from the centre hexagon (line 

of optical axis) to the periphery. 

In order to appreciate the potential decrease in computational complexity, com­

pare the number of hexagons employed in the non-uniform versus uniform sampling 

strategies. The former has (7+6+6 = 19) hexagons and the latter has 73 = 343 

hexagons. The non-uniform strategy has (19 + 343) x 100 ~ 5 % of the hexagons 

in the uniform case. Because the execution time of some of the low-level image 

processing, such as segmentation, grows exponentially with the number of hexagons 

to process, the non-uniform sampling strategy would then represent a potential for 

considerable reduction in computations. 

Continuing the analysis of the hypothetical non-uniform sampling strategy, con­

sider the problem of recognising a small object. If the objects in the environment 

were of a size compatible with being recognised with the foveal acuity, two situations 

may be considered. Firstly, if the eye were stationary or the objects moved in a 

straight line, it would be very unlikely that the objects would be detected by such a 

sampling strategy. This situation would constitute a tunnel vision scenario. On the 

other hand, if the eye was constantly on the move it is highly likely that the outer 

most peripheral hexagons would report the existence of an unidentified intruder in 

the environment. In response to this information, the eye could be moved for foveal 

viewing of the object. Thus, the combination of movement and non-uniform sampling 

forms a powerful partnership for an active vision system. 

This hypothetical example also suggests that the successful employment of a non­

uniform sampling scheme is dependent upon the applications involved. This motivates 

the first important feature of the Pixel Processor. That is, the size and density of 

the SHM's fovea and the rate of sampling decrease across the SHM to the periphery 

must be adaptable. This is achieved in one of two methods. In the case of a priori 
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information about the environment, these attributes could be determined at the out­

set. Alternatively, if intelligent vision is required, the attributes could be dynamically 

controlled with feedback from the Image Analysis Unit, as the process evolves. 

Transformations to Multiple resolutions 

The second important feature of the Pixel Processor is its ability to transform the 

input image into various resolutions. As was stated in Chapter 2, a general purpose 

machine vision system must be able to perform with minimal a priori information 

about the environment. One of SHLA's important properties that was stated in 

Chapter 2 and demonstrated in Chapter 3 is its ability to transform the SHM into all 

possible resolutions with equal computational complexity. The Pixel Processor will 

achieve this by employing the transformations M 10 , M 100 , .... 

Parallel Delivery of Image 

The third important feature of the Pixel Processor pertains to the manner in which 

the input image is delivered to the Image Analysis Unit. Once again, as it is not 

known a priori which resolution will contain the best first pass information about the 

environment, the strategy is to process all resolutions concurrently. Consequently, 

there are high speed serial links sending each resolution in parallel from the Pixel 

Processor to the Image Analysis Unit. It is also foreseen that there is a need to have 

dynamic re-configureability of these links to handle the following situation. In the 

event that the Image Analysis Unit detects information overload, it would send a 

message to the Pixel Processor to restrict the number of resolutions being sent and 

redistribute the load. 

This facility may also have application in the multimedia environment. When a 

sequence of images is being transmitted either in parallel or sequentially, the receiving 
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component at times may not be able to cope with the rate of frame transfer. One 

strategy is to diminish the rate of transfer but possibly a more acceptable strategy 

would be to maintain the rate of image transfer and sacrifice resolution. The image 

would be transformed into an appropriate resolution and then that fraction of the 

original image would be transmitted. The effect would be to see the animation at the 

same speed but with less detail. 

6.1.3 Image Analysis Unit 

The Image Analysis Unit is the collection of processes that extract visual information 

from an image. These various processes will now be discussed. 

Low level processing 

A characteristics feature common to the low level processes is that their inputs are raw 

image (light intensity data), and their outputs are a collection of organised equivalence 

classe;. An example of the low level process, from this thesis, is the segmentation 

algorithm, 2DSA. In a sense, this algorithm is a quantification of the Gestalt law of 

visual perception known as similarity. It is anticipated that additional algorithms will 

need to be described for many of the other Gestalt laws governing visual perception. 

For example, common fait , which is the ability to segment a group of birds in flight 

as a single flock. 

Intermediate Processes 

The intermediate processes provide a further refinement of the low level outputs. An 

example of this level of processing is 3DSA, (described in Chapter 5) which creates a 

2 This concept of organised equivalence classes is probably closest to the idea of the intrinsic 
image as introduced by David Marr [67]. 
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three-dimensional representation. One aspect of 3DSA, which is a general feature of 

the intermediate level, is that it receives inputs from both low and high level processes. 

High Level Processes 

A number of higher level processes still require development in order to create a real­

istic perceptual system. What follows is a description of one such higher level process. 

The common characteristic of the high level processes are that they involve some sort 

of recognition process. A simple example of this is provided by the Gestalt law of 

good closure. Specifically, it would be a process that selects equivalence classes that 

are closed. To illustrate, consider the equivalence classes represented in Figure 6.4. 

The collection of hexagons is partitioned into two equivalence classes. The unshaded 

Figure 6.4: A collection of hexagons is partitioned into two equivalence classes. The 
unshaded hexagons constitute an open class and the collection of shaded hexagons is 
an example of a closed equivalence class. 

class is open as it contains hexagons that are not completely surrounded by hexagons 

of another class. The class labelled by the shaded hexagons is closed so the meaning 
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of closed in this context is that the class is bounded by other classes within the col­

lection. Observe that both classes in a) have sides exposed to the boundary of the 

cluster. Consequently, it is not known what other possible classes may be connected 

to either of them. In contrast, the class labelled with zero in b) can be recognised, 

with a first order guess, as having the shape of a circle. The good closure law, in this 

context, would be a simple matter to express as an algorithm and code. 

Figure 6.5: Viewing this figure induces the perception of a rectangle due to the 
presence of a corner etched in each of the four blobs. 

Another more complex example of a high level process is provided by the process of 

creating virtual equivalence classes. This is an instance of the Gestalt law of prognonce 

(46]. Consider Figure 6.5. The low level segmentation 2DSA simply produces a 

partitioning consisting of five classes, four of which are closed and the fifth class ( the 

background) is open. As soon as the human eye recognised the shape of the corner in 

each of the four closed classes and that they lined up in a certain manner, the visual 

perception of the sixth class is produced. This sixth class is closed and possesses the 

shape of a rectangle. It is a subset of the open class and is a virtual class because 

the light intensities within it and the light intensities in the open class are identical. 
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The key to the creation of this virtual class is the recognition of four corners which 

line up geometrically. 

A precise description of an algorithm that creates virtual equivalence classes pre­

supposes the existence of a higher order feature extractor that has as its inputs the 

outputs from 3DSA. With such feature information available, the creation of a heuris­

tic to assemble the features should not be an insurmountable task. 

Knowledge Generation Engine 

It is impossible to separate vision from the process of learning. These two seemingly 

distinct processes are integral facets of one another in any biological vision system. 

Everyday examples abound. Consider the situation of a person who is beginning to 

collect puka shells3
. These shells are, more or less, uniformly distributed over a beach. 

The would-be collector experiences a diminishing of the interval between successive 

finds. In other words, something happens that empowers the person to see the shells. 

This empowering involves the learning of the characteristic pattern and distinguishing 

between it and the surrounding similar patterns in the sand. The experience of this 

phenomenon by novice puka shells collectors is one which very few are able to explain. 

It is certainly not explained by simply memorising the pattern of the puka shell prior 

to the search and then commencing a brute force approach to the search. This process 

must be described in terms of the acquisition of a skill brought about by the interplay 

of vision and learning. 

Therein lies the problem: learning, like seeing, is easily observable. However, it is 

deceptively difficult to understand. The field of machine learning is a new and exciting 

discipline of artificial intelligence where a number of techniques are attracting wide 

attention. These include a variety of symbolic algorithms, a renewed interest in neural 
3 Puka is a Hawaiian word meaning hole. Puka shells are thumb nail sized circular shells with a 

small hole in the centre which is used by the collector for threading into a necklace. 
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networks [52, 63] and genetic algorithms. All of these techniques will be investigated 

from the perspective of their compatibility with the computational features of SHLA. 

Genetic algorithms could be of value in relation to the transformations produced 

by multiplication. Recall that one of the effects of the application of M 10 to the input 

SHM was the production of multiple near copies of the image at a lower resolution. 

The segmentation algorithm, 2DSA, then worked on all the copies as independent 

images. The result of this processing is the production of a population of possible 

solutions to the recognition problem. A genetic algorithm could then work on this 

population of possible solutions to select the best one. Broadly speaking, it is an­

ticipated that the learning module for Akamai will include a combination of these 

techniques. As the work on this aspect has recently begun, it is only possible to 

outline a few aspects of the cognitive unit. 

The simplest level of this unit is called the a priori module. It is the mechanism 

by which the operator enters information about the environment applicable to a 

particular vision task. Examples of this includes any number of industrial applications 

where a priori information is available. 

Another module of the cognitive unit is the rejuvenator; which is Akamai's data 

compression facility. After a vision task has been learned, the results of this experience 

must be stored in some accessible form. One of the data compression methods possible 

with SHLA is to store a sequence of related images (such as in a movie) as sequences 

of transformations that describe it. For example, if the movements of an intricate 

dance were to be remembered, it might be described in terms of the transformations 

on the dancer. The transformations in this case are the results of the Lie operators 

of SHLA. 
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6.1.4 Locomotion Unit 

The discussion of Akamai's development has placed considerable emphasis on the 

wholeness of a vision system. The fact that movement is an integral part of that 

system means that it is essential to offer at least a brief treatment of this matter. 

Akamai is not a disembodied eye. It requires locomotion of two types, broadly clas­

sified as local and global movements. These two types of movements are analogous 

to the locomotion of the human vision system. The local movement is that of the 

cameras relative to the pixel processor. This motion must have the characteristics of 

being fine and quick. The global movement is that of the entire system relative to 

its environment. The requirements of this type of movement is highly dependent on 

the environment, just as is the case for biological systems. For example, the flight of 

birds and the pedestrian motion of primates are related to the requirements of their 

vision system. 

6 .1. 5 Hard ware for Akamai 

All of the functional units interact with each other in varying degrees. While there are 

certain advantages in assembling a heterogeneous collection of computer components 

each targeted at specific tasks, [79], a homogeneous system provides for flexibility 

that can be tightened later in the implementation stage. The chosen computer hard­

ware for the Image Analysis Unit and knowledge engine of Akamai is a network of 

transputers. Its architecture affords a number of desirable characteristics: 

• massive parallelism, 

• flexibility in the inclusion/deletion of nodes from the network, 

• reconfigurability of its nodes both dynamically and statically, 
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• high speed serial communication links between nodes, and 

• relatively low cost components. 

To date only the T800 and T400 series of the transputer have been employed in the 

development of Akamai. As the T9000 series is now available it will play an important 

role in further developments. Its communication facilities are greatly enhanced. 

6.1.6 Methodology 

The previous sections of this chapter have outlined design considerations for the de­

velopment of Akamai. In the process, the exciting prospect of producing a machine 

capable of the recognition of an arbitrary object in real-time has emerged. A clear di­

rection is evident. The future development of Akamai is dependant on the assembling 

of an interdisciplinary team of researchers. 

The methodology of concurrently working on design and implementation of various 

modules has demonstrated itself to be a fruitful approach. This approach is also 

consistent with the philosophical basis of the thesis; vision must be explored as a 

totality. The main theme of Akamai is that the SHM is related to all of its functional 

units. The principal tool for the manipulation of this space is the SHLA. SHLA's 

ability to work at numerous resolutions concurrently provides considerable scope for 

parallelism. It is conceivable, even likely, that recognition of an object at a high level 

process will be completed before the earliest 2DSA algorithm logically terminates. 

This would result from the coupled effects of the concurrency of the processes and 

the fact that the low resolution data from 2DSA should be available before the higher 

resolution data. This illustrates the need to consider the situation from, at the very 

least, the perspectives of computation and perception. Thus the combined skills 

of the computer scientist and the perceptual psychologist would be an advantage. 

This in turn cannot proceed without consideration of the engineering implications. 
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In addition, the insights provided by anatomical and physiological considerations of 

biological vision systems must be of value. The language that integrates and facilitates 

the interaction of all the aforementioned disciplines is mathematics. The importance 

of having a team that possesses all of these skills to bring Akamai to fruition can not 

be overstated. 

6. 2 Biological Considerations 

A question on the minds of all who work in the field of machine vision systems is, 

How is it that biological vision systems see? This question promises to be with us for 

some time to come. Although it is not the intent of the thesis to attempt an answer 

to any part of the question, a number of issues have arisen from SHLA that pertain 

to it. This section will discuss some of those issues and in the process, nibble around 

the edges of the big question. 

6.2.1 Understanding Biological Vision 

The Gestalt psychologists at the beginning of this century made a pertinent observa­

tion with regards to the understanding of human visual perception. They suggested 

that this process could not be fully comprehended without, on the one hand, viewing 

it as a whole at its highest level, and on the other, coming to terms with the com­

ponents that constrain it. In other words, there is a global nature to the process, a 

local nature and a link which connects these two natures. Since the early days of that 

observation, there have been worthy developments in each component of this trio. 

The most notable developments at the global level are those of Gibson [33, 34]; the 

concept of visual constancy and the Figure Ground Theory. At the local level, the 

pioneering work of the neurophysiologists, Hubel and Wiesel [50], on the function of 
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neurons in the visual striate secured credence to the hitherto speculations that the 

neurons possessed properties of a vector field (in the mathematical sense). A few 

years later in 1962, after the above mentioned contributions were established, the 

mathematician, Hoffman [46], employed the theory of Lie Algebra to establish the 

link connecting the global contributions of Gibson and their local counterparts from 

the work of Hubel and Wiesel. Hoffman's Lie Algebra approach forged the link by 

reconciling the following: 

• the concerns of Gestalt psychologists with brain function as an organiser of 

perception 

• modern knowledge of the neurophysiology of the visual system 

• the need to proceed in a principled way from the local coding operations already 

mentioned above, to the global functional properties of visual perception 

• the Gibsonian requirement that transformations and the invariance of pattern 

recognition under transformations be accounted for and in account of the evo­

lution and consequent ecological validity of the system. 

Dodwell gives an excellent account of this Lie Algebra approach in [27]. 

According to Dodwell, the full impact of Hoffman's significant contribution has 

not been accessible for two reasons. Firstly, its mathematical content requires a 

commitment of time and energy that most perceptual psychologists, amongst others, 

are either unable or unwilling to make in order to comprehend it. Secondly, the 

considered view of the computational community is that it is non-computational. 

These criticisms aside, another weakness of Hoffman's theory is that it reflects few 

concerns imposed by anatomical constraints. In particular, the structure of the retina 

has not been accounted for. There is the tacit assumption of Hoffman's model that 
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the visual field, as represented by the retina, is a continuous space. The distribution of 

photo receivers on the retina is discrete. However, SHLA has exciting possibilities for 

reconciling the continuous structure of the visual world with the discrete structure of 

the visual field. The SHLA can be extended to a real-valued structure that possesses 

some similarities to Hoffman's model. In the next section this extension of SHLA will 

be described. 

Apart from Hoffman's model of the human vision system, there have been many 

other attempts at producing a complete model. Although none of these have proven 

to be complete, many are worthy of note. A few examples are: [14, 85, 89]. 

6.2.2 The Analytic Component of SHM 

The visual world, by virtue of the wave nature of light, is continuous and smooth. 

In mathematical terms, this is a manifold. On the other hand, the visual field as 

represented by the photo receiving device (retina or a camera) is discrete. If the 

photo receiving device is to provide a reasonable representation of the visual world, 

then it must follow that there exists a tight coupling of the visual field to the visual 

world. The SHLA extends in a natural way to a real-valued space to provide the 

desired coupling. The extension then forges an analytic tool that may be of use in 

both machine vision and the investigation of biological vision systems. 

The first part of the problem is to obtain a continuous version of SHM. The 

construction principle employed to obtain the discrete space provides the mechanism. 

In Chapter 2, it was shown that the SHM was in one-to-one correspondence with 

the integers base seven. The process begins with an SHM of arbitrary size. Consider 

the addresses of the hexagons in SHM as real numbers by simply placing a . 0 to the 

left of the one's digit. Declare an integer n = 1. Repeatedly perform the following 

steps: 



CHAPTER 6. FUTURE DIRECTIONS 167 

i) Dilate SHM and enclose each address with six new hexagons giving each its 

appropriate note, ray to te. 

ii) The address of each new note then is the address of doh+ ( i x 10-n fori = 1 · · · 6) 

corresponding to ray to te. 

iii) Increment n by one. 

At this point, the infinite collection of hexagons has real-valued addresses. In 

order to establish that this collection is actually a manifold, it must be shown that 

the areas of the hexagons converge to zero. To this end, consider two observations 

which result from the construction of SHM: 

i) The metre of the primary octave in SHM is one 

ii) The ratio of the metre of any octave to the metre of the next higher octave is 

}10- (6 cos(1r /3). Call this ratio p. 

It then follows that the metre of any lower octave, as determined by n, is ( 1/ p) n. 

Thus, the metre converges to zero, follows from the observation: Given an f. > 0, :J an 

octave determined by n such that (1/ p)n < f.. In the limiting case for n, the hexagons 

collapse to points. 

In order to establish the required operations on this set of points, an adjustment 

to Spiral Counting is needed. This is established most naturally by extending the 

concept of counting in a key that includes the addresses of the lower octaves. 

Let this collection of points, with their associated addresses be called Spiral Hon­

eycomb Environment (SHE). SHE has a number of interesting properties: 

i) For any two addresses in SHE there is an address possessing the property of 

being 
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(a) strictly greater than one of the addresses and 

(b) strictly less than the other 

ii) properties (a) and (b) induce a covermg of the visual field, a bounded (2-

dimensional plane). 

iii) property ii) provides the tool by which real analysis can be performed on the 

image space. 

The following theorem summarises the algebraic properties of the SHE. 

Theorem 4 

i} There is a bijective mapping from SHE to the positive reals base seven. 

ii} SHE is a separable Hausdorf space. 

iii} The extension of operations of SHLA to SHE is a Lie Algebra. 

Two implications arise from Theorem 4. Both pertain to Hoffman's Liner Trans-

formation Groups for Neurophysiology (LTG/NP) [46]. The similarities between the 

Lie operators of LTG/NP and SHLA are striking. How close is the relationship? In 

particular, the discovery of a homomorphism between the two structures would serve 

to motivate the investigation of SHLA as part of a model for the human vision system. 

The second implication from Theorem 4, relates to its possible usefulness in finding 

the invariant transformations for particular images. More specifically, the discrete 

SHLA requires considerable computation work to be able to find and apply certain 

transformations in the contexts of invariance; whereas in mathematics it is often 

easier to work with analytic tools achieving results which would be either impossible 

or more difficult if one were working with purely computaional tools4
. 

4 Paul Halmos provides some interesting examples of cases when analytic techniques produce 
superior computational results to that obtained with computational techniques in [40). 
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6.2.3 The Retinal Cone Mosaic 

The distribution of cones is densest in the fovea and decreases exponentially towards 

the periphery. This geometry has been exploited by many biological vision systems. 

There have also been attempts to model this geometry for machine vision [70, 4, 91]. 

Each of these models has been demonstrated to possess attributes possessed by the 

biological counterparts. However, one of the mysteries associated with this architec­

ture is the prediction of a certain type of error, known as aliasing. In particular, 

a theorem from Information Theory, states that a non-uniform sampling of a signal 

will incur more aliasing error than that of a uniform sampling scheme given the same 

number of sample points [106]. 

T T T T T T T T T 

Figure 6.6: Two sinusoidal curves with the same amplitude and different frequencies 
appear as aliases when sampled by the array of photo receptors of the figure. 

The aliasing problem is illustrated in Figure 6.6 with a one-dimensional array of 

sample points attempting to detect a sinusoidal curve. The aliasing effect is that 

the two curves will be classified as one and the same. The theory predicts that 

this situation is exacerbated when the spacing between the sample points is not 

regular. The non-uniform sampling of the retina of primates provides such a scenario. 

The question that emerges is, why would such a retina be allowed to evolve when 
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the predicted error has such great consequences? In other words, one might have 

speculated that the effect of not being able to precisely know the location of a potential 

threat might very well lead to its extinction. However, the reverse is the reality. The 

predators, for whom the effects of aliasing would constitute a disaster, have adopted 

this non-uniform distribution. 

A possible explanation for this anomaly might be suggested by the sampling strat­

egy adopted by Akamai, as described in section 6.1.3. More specifically, this strategy, 

which models the geometry of the primates to some degree, has in effect, equal spacing 

between sample points of a given resolution. This effect is produced by the resolution 

changing transformation Mx, where in each resolution of the image the spacing be­

tween the adjacent hexagons is of equal distance. This line of reasoning leads to the 

conjecture that the neurological pathways from the retina to the visual cortex may 

be employing a similar strategy. It might be of interest to examine the human vision 

system from this anatomical and physiological perspective. 

6.2.4 Binocular Vision 

The relationship between the architecture of a vision system and the optical illusion 

produced by the system has been the focus of attention of some interesting research 

[88]. The illusion of seeing a straight line as a curve under certain circumstances, 

produced by binocular vision systems, is well known if not well understood [46]. 

In Section 5.6, two examples of this phenomenon were discussed. The first related 

to the ancient Greek's practice of placing deliberate curves in columns in order to 

compensate for this error in perception experienced by binocular viewers. The second 

was the effect of perceiving elliptical motion in a swinging pendulum when the actual 

swinging motion was in a plane. The interesting point with regards 3DSA is that this 

same type of error is inherent to the internal representation of the three-dimensional 
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reconstruction of the scene. That is, the error was produced by the construction of 

the internal representation not in the recognition process at a higher level. 

A few questions arise in consideration of the above mentioned observation. One 

such question is: How close is the predicted error in Akamai's 3DSA to the actual 

error experienced by humans? It would be of interest to make precise measurements 

of the human error and compare it to the 3DSA predicted error. If it turned out that 

3DSA is a good predictor of the human error, it may then suggest a line of inquiry 

into further physiological understanding of binocular vision in humans. 

Another question lies in considering the previous question in reverse. Can the 

study of optical illusion in humans provide results that could be used in the con­

struction of algorithms for machine vision systems? In one sense, the measurable 

error of a system's performance indicates something about how that system works. 

For example, an object in motion appears to be smaller than when it is stationary. 

Does the study of this illusion have any potential for the development of algorithms 

governing the perception of motion? 

6.2.5 Irregularities in the Cone Mosaic 

Research into anatomical considerations of the cone mosaic on the retina of monkeys 

and humans has uncovered two perplexing irregularities. One is the variation in cone 

size and the other is the variation is cone placement on the retina. 

Variations in cone size The diameter of cones increase with eccentricity from the 

fovea. This variation has implications to the vision process and is discussed 

in [106, 13). However, explanations for this phenomenon are the foci of an 

interesting debate. One possible line of investigation which results from the 

SHM is a simple geometrical consideration as follows: The increase in cone size 

may result from a need for greater surface area in order to capture a critical 
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quantum of light. In the fovea, the surface of the cones are at right angles to the 

incident light rays. Towards the periphery, the rays of light strike the cones at 

decreasing angles from the perpendicular. This non-perpendicular angle results 

from the angle of defraction from the curvature at the side of the lens. It could 

be of interest to investigate the correlation of the angles of defraction to the 

surface area of the cones. 

Variations in Cone Placement The non-uniform distribution of cones on the retina, 

as previously discussed, is irregular in the sense that apparently no existing 

model accurately predicts their locations. Once again this does not sit very well 

with the reconciliation of the process of Natural Selection and Modern Informa­

tion Theory. There have been arguments put forward to bridge this apparent 

discrepancy [106]. However, there is no general agreement on this matter. 

Considerations of SHLA might add to this debate. In particular, the trans­

formations that produce multiple resolutions of the input image also produced 

multiple near copies within any given resolution. It was also suggested that this 

feature could also be of value to the knowledge generation engine of Akamai. 

The implication here is that the distribution of the hexagons within any par­

ticular near copy is highly regular. However, consideration of hexagons from 

distinct near copies would appear irregular. This suggests that it could be of 

interest to look at the distribution of cones on the retina in this context. It 

may be that the theorems from Information Theory apply to the human vision 

system to a higher degree than have previously been credited. 
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6.3 Summary 

This chapter has explored the paradigm of considering a vision system as a totality 

from two perspectives. The first perspective described the development of a machine 

vision system named Akamai. The second perspective discussed some possible im­

plications of SHLA to the understanding of biological vision systems. While some of 

the ideas presented in the section on Biological Considerations are controversial, they 

nevertheless have the potential to contribute to the investigation of understanding 

biological vision systems. The ideas are presented in the spirit of attempting to link 

the efforts of what otherwise may appear as divergent disciplines. It is certainly not 

the intention to suggest that the significance of SHLA is dependant on the validity of 

these implied links. Rather it is emphasised that SHLA was developed for a machine 

vision system implemented on a parallel computer architecture. Any light that may 

be cast into the domain of biological vision systems as a result of such speculations 

would be purely serendipidous. 

The final word in this chapter must serve to relate the disciplines of machine vision 

and biological vision. The underlying assumption in both disciplines is that vision is 

somehow computational. Therefore, any computational principles that are discovered 

in either the realm of machine or biological vision systems must be considered by the 

other. Indeed, if vision is a totality, then surely the efforts of each discipline must 

serve the other. 



Chapter 7 

The Next Higher Octave 

On a morning preceeding the judgement of the Challenge Pekanini approached Kimo 

with a lowered head and in a sombre mood. 

Kimo: "Why so sad Pekanini?" 

Pekanini: "We have not yet met the Challenge of The Third Servant." 

Kimo: "Very few people ever meet such challenges. However, ultimately one is 

judged, not on the degree to which the Challenge is met, but rather how it is that the 

game was played. " 

With that pronouncement, Kimo turned his gaze to the horizon where a wave, like 

an idea approaching that moment of its expression, was forming out of the depths, 

growing and preparing for its expression. As it peaked, a lone surfer anticipating the 

moment, lifted high onto its crest, leaned into its face and accompanied by Kimo 's 

conciousness, started the acceleration deep into the eye of the spiralling water. 

Pekanini, realizing that the day's session was over, turned and with the warmth 

from the sand rising through her feet, her spirits lifted and she began her spiral dance. 

174 
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This final chapter summarizes the results of the previous six chapters and provides 

a concluding statement to the work. 

7.1 Summary 

The material in this thesis has unfolded in six stages. The first stage involved artic­

ulating some of the perplexities of machine vision. The goal of demonstrating how 

a machine vision system could be endowed with the capability of emulating certain 

aspects of primate vision emerged from the observation that the arrangement of cones 

on the retina of primates possesses computational properties. 

These computational properties were then formulated in mathematical terms 

which resulted in the theory of the Spiral Honeycomb Lie Algebra (SHLA). The 

significance of SHLA is that it describes a mechanism by which the continuous na­

ture of light can be captured by a discrete machine so that effective processing can be 

performed on the associated image. It was also shown that additional investigation 

into the mathematical structure of SHLA has the potential to further enrich its theory 

and enhance its application. 

It was shown how the computational potential of SHLA could be realised on the 

parallel architecture of a network of transputers. In particular, it was demonstrated 

that real-time performance of the primitive image transformations could be achieved 

on a network containing a modest number of transputers. 

The practical applications of the transformations of SHLA were described. One 

application was in the form of a parallel autonomous segmentation algorithm, 2DSA. 

Although the target of real-time performance of the implementation of 2DSA was 

not achieved on the available network of transputers, the results did suggest that the 

algorithm has the potential to reach the target. Another application showed how 
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SHLA and 2DSA could be extended in a manner compatible with SHLA's implemen­

tation to handle higher dimensional vision data. In particular, a description of how 

the dimensions of time and depth could be naturally incorporated into the theory of 

SHLA was provided. 

Two further avenues of exploration that result from SHLA's approach to machine 

vision were discussed. One was the partial description of the design of a general 

purpose machine vision system named Akamai. The essence of Akamai's design is that 

it embodies the principles of SHLA. Some other psycho-physical lines of exploration 

regarding biological vision systems were postulated. 

The final stage ties the end to the beginning. This is done not in the spirit of 

ending the exploration but rather to provide the means to step to the next level of 

research, one octave higher. 

7.2 Conclusion 

This thesis has formulated a novel approach to machine vision that reconciles the 

local nature of machine computations with the totality of the vision process. This 

has been achieved by capturing fundamental computational properties inherent in the 

geometrical arrangement of cones on a primate's retina. It has been shown that the 

fundamental unit of vision, which was introduced in Chapter 1, uniquely affords the 

following attributes to a spatial data structure which is based on a hexagonal grid: 

• All of the primitive image processing transformations (arbitrary translation, 

rotation, magnification and contraction of an image) can be achieved without 

incurring either rounding error or distortion of the image. The image will not 

degrade as a result of applying any sequence of transformations to it and that 

such a result could not be achieved if the image were represented and manipu­

lated on a rectangular grid. 



CHAPTER 7. THE NEXT HIGHER OCTAVE 177 

• Autonomous segmentation of a multi dimensional (space and time) image is 

achievable. In particular, the internal boundaries of an image can be deter­

mined without resorting to a priori information about the image. This type of 

segmentation could not be achieved on a rectangular grid without relying on a 

priori information or resorting to the vagaries of a heuristic. 

• The primitive transformations may be combined to obtain the complex transfor­

mations required to describe the movement of objects in space and time. These 

complex transformations are as computationally simple as the primitives. 

The fact that SHLA embodies all of the computational properties listed above 

and can be efficiently implemented on a computer possessing a parallel processing 

architecture confirms that SHLA stands as a powerful and new data structure on 

which the architecture for machine vision can now be based. 



Appendix A 

Kimo: "So, convince me that your counting is correct, Pekanini." 
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Appendix A Proofs of Theorems 

This appendix contains the outlines of the mathematical proofs to the theorems 

of Chapter 2. 

Theorem 1 Suppose that the SHM is defined with the operations of Spiral Addition 

and Spiral Multiplication, as defined in Equations 2.1 and 2. 2. Then, 

i) SHM is an abelian cyclic 7-group under the operation of Spiral Addition. 

ii) SHM is a Euclidean ring. 

Let the number of hexagons in SHM be 

K = 7n for n 2: 0 and let the arithmetical operations be modulo K as defined in 

Equations 2. 3, 2.4 and 2. 5. 

Then, 

iii) The subset of SHM given by { 0, 1, 2, 3, 4, 5, 6} is a finite field. 

iv) The collection of addresses of SHM which are not a multiple of 10 form an 

abelian group under the operation of Spiral Multiplication and has order 6 x 7n-l. 

Proof: The proof is by induction on the metre of the addresses in SHM. The metre, 

see definition 2.3 in Chapter 2, associated with a given address is the length of the line 

segment joining the centre of the hexagon at that address to the centre of the hexagon 

at address zero. The metre of each of the addresses in the set ( 1, 2, 3, 4, 5, 6) is one. 

It is an easy matter to demonstrate the initial case of the induction by performing 

a hand calculation of the five properties of associativity, distributivity, existence of 

identities, existence of inverses and commutetivity all hold for the addresses of the 

set set ( 0, 1, 2, 3, 4, 5, 6). 

Next, the general case of the induction will be treated. 
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Associative property : a+ (b +c)= (a+ b)+ cVa, b, c E SH M 

Assume that the property does not hold for all a, b, c in SHM. Then as it does 

hold for the addresses whose metre is less than or equal to one, there must be a 

minimal counter example. That is, there must be an element, c say, for which 

the property does not hold but that for all elements whose metre is less than 

the metre of c, the property holds. There exists elements x and k such that 

c 

a+ (b+c) 

x + k and metre of x < metre of c and k E (1, 2, 3, 4, 5, 6). 

a+(b+(x+k)) 

a + ( b + x) + k, by choice of minimal counter example 

(a+ b)+ x + k, bychoiceofminimalcounterexample 

(a+ b)+ c. 

This last step shows that no such minimal counter example exists and so the 

assumption must be false. Therefore, the associative law for the operation of 

Spiral Addition is established. A similar argument provides the proof for the 

associative law for the operation of Spiral Multiplication. 

Distributive and Commutative laws : The proofs follow near identical lines as 

was given for the associative law and are omitted. 

Existence of unique additive and muliplicative identities : 0 is the additive 

identity and 1 is the multiplicative identity. This follows directly from their 

respective definitions. 

Existence of unique additive and multiplicative inverse : The proofs of this 

property for both operations are constructive. Given an element a E SHM which 

is of the nth octave then a is expressible as: 

a= an, an-l, ... al Vai E (0, 1, 2, 3, 4, 5, 6) and 1 ::; i ::; n. 
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The additive inverses of the elements in the set (0, 1, 2, 3, 4, 5, 6) are (0, 

4, 5, 6, 1, 2, 3). Then, the additive inverse of a denoted -a is given by, 

It then follows that a+ (-a) = 0. 

The multiplicative inverse of the element, a, is constructed by considering the 

situation in two cases as follows: 

Case 1: The element is not a multiple of 10. 

Let the inverse of a be denoted by a- 1 and let a- 1 b 

bi E (0, 1, 2, 3, 4, 5, 6). 

First observe that the multiplicative inverses of the elements in the set (1, 2, 

3, 4, 5, 6) are (1, 6, 5, 4, 3, 2), respectively. The construction now proceeds 

inductively on the subscript of b. 

-(anb1 + an-1b2 + ... + a2bn-1) X b1 
n-2 ( -c~= an-i X bi+l)) X b1. 
i=O 

Case 2: The element is a multiple of 10. 

First find the value m > 0 minimal to the constraint that the product of the 

element a and 10m is greater than 10n and the least significant digit of the 

modular value of the product is not zero. Then, let k denote the modular 

value of this product. Next, find k-1 by employing the algorithm from Case 1. 
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Lastly, a- 1 is then equal to the product of k- 1 and 10m. 

The above algorithm for generating a- 1 can be use in an inductive proof to 

show that a x a- 1 = 1. 

The establishment of the five properties for each of the operations of Spiral Ad­

dition and Spiral Multiplication is intact. We can now conclude that SHM is an 

abelian group under the operation of Spiral Addition and the non-zero elements of 

SHM have the properties of an abelian group bar the Existence of the inverse for each 

element. The Euclidean property follows immediately from the definition when d(a) 

is defined as the absolute value of a. These properties together with the distributive 

law describes SHM as a Euclidean ring. 

The fact that the set (1, 2, 3, 4, 5, 6) forms a finite field follows from the obser­

vation that each of its elements has a multiplicative inverse within the set. 

The modular form of the multiplicative operation provides the existence of the 

multiplicative inverse for all non-zero elements. 

Theorem 2 With regards the transformations on SHM: 

i) Each of the sets A and M forms an algebra under the operations of addition, 

multiplication and scalar multiplication (equations 2. 8 through 2.10). 

ii) The external direct sum of AEBM forms an algebra under the pairwise operations 

of addition, multiplication and scalar multiplication. Let this algebra be denoted 

by T. 

Proof: These results follow from the establishment that SHM is a field. The 

details of the proof of the properties of an algebra proceed along standard lines that 

may be found in most good books on introductory abstract algebra [42], page 217. 

Theorem 3 . 
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i) SHLA is a Lie Algebra. 

ii) SHLA is a subspace of the dual of SHM 

Proof: As SHLA has been established as an algebra, Theorem 2, the result that 

it is a Lie Algebra follows directly from the definition of the Lie operator [38) page 

209. 

The result that SHLA is a subspace of the dual of SHM largely follows as a 

consequence of the definition of the dual of a vector space ([42) page 146). 
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Glossary 

Pekanini: "Can you please remind me of a few things, Kimo?" 
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Glossary 

Computational: The term computational has different meanings to different people 

and is used in a variety of contexts. Reference to the term computational model 

in the context of this thesis will generally relate to the speed and accuracy with 

which that model can execute on a machine. In terms of speed, it will mean 

real-time execution. In terms of accuracy, it will generally mean that the model 

is discrete, in the mathematical sense, or can be treated as a discrete model 

without loss of effect. 

Foveal sensing: The fovea is the centre part of the retina. It has the highest density 

of cones and takes up only 2 or 3 degrees of arc on the retina's surface. The 

term foveal sensing refers to the process of employing the fovea to achieve acute 

VlSlOn. 

Invariance: This term shall generally be used in the context of transformations 

on images, such as rotations or translations. It will refer to the geometrical 

property of some aspect of the image being unchanged under the action of the 

transformation. For example, the moving of one's head with the eyes open 

generates a transformation of the scene being viewed. However, the objects 

that make up the scene are largely unchanged with regard to their shape and 

relative position. 

Real-time: This term refers to the performance of a computing system. If the desired 

outputs of the system can be delivered at a rate commencerate with handling 

subsequent inputs, the system is said to be operating in real-time. By necessity, 

a biological vision system must be a real-time system. 
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Visual field: is the projection of the visual world onto the retina of the eye. This is 

a two dimensional space. 

Visual world: The time-space continuum that the eye or camera is pointing at. 
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