

No Way, JOSE!

Designing Cryptography Features
for Mere Mortals

Scott Arciszewski

● Paragon Initiative Enterprises, LLC
– Software development (open source)

● The person to blame for getting libsodium into PHP 7.2
● Also wrote the sodium_compat polyfill for PHP 5.2 – 7.1
● Many PHP security libraries

– Security research
● Handfuls of CVEs
● Sometimes published on Full Disclosure

● Twitter handle: @CiPHPerCoder

https://paragonie.com/

Why are we here today?

Why are we here today?

Why are we here today?

Why are we here today?

● Everyone knows “Don’t roll your own crypto”

Why are we here today?

● Everyone knows “Don’t roll your own crypto”
– Amateurs produce amateur cryptography

Why are we here today?

● Everyone knows “Don’t roll your own crypto”
– Amateurs produce amateur cryptography
– It’s extremely difficult to get right

Why are we here today?

● Everyone knows “Don’t roll your own crypto”
– Amateurs produce amateur cryptography
– It’s extremely difficult to get right
– Even experts make mistakes

Why are we here today?

● Everyone knows “Don’t roll your own crypto”
– Amateurs produce amateur cryptography
– It’s extremely difficult to get right
– Even experts make mistakes
– Cryptography should be a collaborative practice in

which many experts vet each others’ designs

Why are we here today?

● Everyone knows “Don’t roll your own crypto”
– Amateurs produce amateur cryptography
– It’s extremely difficult to get right
– Even experts make mistakes
– Cryptography should be a collaborative practice in

which many experts vet each others’ designs

● The problem: the buck usually stops there.

Why are we here today?

● “What should I do instead of rolling my own?”

Why are we here today?

● “What should I do instead of rolling my own?”
– Bad outcome: “Use RSAES-OAEP with SHA256

and MGF1+SHA256 bzzrt pop ffssssssst exponent
65537” (h/t Latacora)

Why are we here today?

● “What should I do instead of rolling my own?”
– Bad outcome: “Use RSAES-OAEP with SHA256

and MGF1+SHA256 bzzrt pop ffssssssst exponent
65537” (h/t Latacora)

● Developers need cryptography features to
solve problems.

Why are we here today?

● “What should I do instead of rolling my own?”
– Bad outcome: “Use RSAES-OAEP with SHA256

and MGF1+SHA256 bzzrt pop ffssssssst exponent
65537” (h/t Latacora)

● Developers need cryptography features to
solve problems.

● If we don’t want them rolling their own, they
need easy-to-use tools that don’t open the door
to a ton of attacks.

Case Study: JOSE

● Javascript Object Signing and Encryption

Case Study: JOSE

● Javascript Object Signing and Encryption
● A family of standards (with IETF RFCs) that

define JSON Web Tokens (JWT), JSON Web
Signatures (JWS), JSON Web Encryption
(JWE), etc.

Case Study: JOSE

● Javascript Object Signing and Encryption
● A family of standards (with IETF RFCs) that

define JSON Web Tokens (JWT), JSON Web
Signatures (JWS), JSON Web Encryption
(JWE), etc.

● Most developers that use JOSE focus on JWT.

Case Study: JOSE

● Javascript Object Signing and Encryption
● A family of standards (with IETF RFCs) that

define JSON Web Tokens (JWT), JSON Web
Signatures (JWS), JSON Web Encryption
(JWE), etc.

● Most developers that use JOSE focus on JWT.
● Uses:

Case Study: JOSE

● Javascript Object Signing and Encryption
● A family of standards (with IETF RFCs) that

define JSON Web Tokens (JWT), JSON Web
Signatures (JWS), JSON Web Encryption
(JWE), etc.

● Most developers that use JOSE focus on JWT.
● Uses:

– Short-lived claims (usually signed by a third party)

Case Study: JOSE

● Javascript Object Signing and Encryption
● A family of standards (with IETF RFCs) that

define JSON Web Tokens (JWT), JSON Web
Signatures (JWS), JSON Web Encryption
(JWE), etc.

● Most developers that use JOSE focus on JWT.
● Uses:

– Short-lived claims (usually signed by a third party)
– A laundry list of misuse

JSON Web Tokens

● Quoth the RFC:
– JSON Web Token (JWT) is a compact, URL-safe means of representing

claims to be transferred between two parties. The claims in a JWT
are encoded as a JSON object that is used as the payload of a JSON
Web Signature (JWS) structure or as the plaintext of a JSON Web
Encryption (JWE) structure, enabling the claims to be digitally
signed or integrity protected with a Message Authentication Code
(MAC) and/or encrypted.

JSON Web Tokens

● Quoth the RFC:
– JSON Web Token (JWT) is a compact, URL-safe means of representing

claims to be transferred between two parties. The claims in a JWT
are encoded as a JSON object that is used as the payload of a JSON
Web Signature (JWS) structure or as the plaintext of a JSON Web
Encryption (JWE) structure, enabling the claims to be digitally
signed or integrity protected with a Message Authentication Code
(MAC) and/or encrypted.

● Translation: a JWT uses JWE or JWS.

JSON Web Tokens

● Quoth the RFC:
– JSON Web Token (JWT) is a compact, URL-safe means of representing

claims to be transferred between two parties. The claims in a JWT
are encoded as a JSON object that is used as the payload of a JSON
Web Signature (JWS) structure or as the plaintext of a JSON Web
Encryption (JWE) structure, enabling the claims to be digitally
signed or integrity protected with a Message Authentication Code
(MAC) and/or encrypted.

● Translation: a JWT uses JWE or JWS.
– Consequently, JWS/JWE security flaws are

almost always relevant to JWT.

JSON Web Token (structure)

● Above: https://jwt.io (a tool from Auth0)

https://jwt.io/

JSON Web Signatures

● The “alg” header
– Defines what algorithm the token uses

JSON Web Signatures

● The “alg” header
– Defines what algorithm the token uses

● HS256 = HMAC-SHA256

JSON Web Signatures

● The “alg” header
– Defines what algorithm the token uses

● HS256 = HMAC-SHA256
● RS256 = RSA with PKCS1v1.5 and SHA256

JSON Web Signatures

● The “alg” header
– Defines what algorithm the token uses

● HS256 = HMAC-SHA256
● RS256 = RSA with PKCS1v1.5 and SHA256
● none = ¯_(ツ)_/¯

JSON Web Signatures

● The “alg” header
– Defines what algorithm the token uses

● HS256 = HMAC-SHA256
● RS256 = RSA with PKCS1v1.5 and SHA256
● none = ¯_(ツ)_/¯

– Mixes symmetric with asymmetric cryptography

JSON Web Signatures

● The “alg” header
– Defines what algorithm the token uses

● HS256 = HMAC-SHA256
● RS256 = RSA with PKCS1v1.5 and SHA256
● none = ¯_(ツ)_/¯

– Mixes symmetric with asymmetric cryptography
– Attackers can alter tokens and choose this header

JSON Web Signatures

● It gets worse.

JSON Web Signatures

● It gets worse.
● RFC 7515 section 4.1.1:

– “This Header Parameter MUST be present and
MUST be understood and processed by
implementations.”

JSON Web Signatures

● It gets worse.
● RFC 7515 section 4.1.1:

– “This Header Parameter MUST be present and
MUST be understood and processed by
implementations.”

– To a developer, “understood and processed” means
“obeyed”.

JSON Web Signatures

● It gets worse.
● RFC 7515 section 4.1.1:

– “This Header Parameter MUST be present and
MUST be understood and processed by
implementations.”

– To a developer, “understood and processed” means
“obeyed”.

● This has led to critical vulnerabilities in JWT
libraries. (CVE-2015-2964, etc.)

JSON Web Encryption

● Key encryption options:
– RSA with PKCS #1 v1.5 padding
– RSA with OAEP padding
– ECDH-ES
– AES-GCM

JSON Web Encryption

● Key encryption options:
– RSA with PKCS #1 v1.5 padding (asym)
– RSA with OAEP padding (asym)
– ECDH-ES (asym)
– AES-GCM (sym)

JSON Web Encryption

● Key encryption options:
– RSA with PKCS #1 v1.5 padding (asym)
– RSA with OAEP padding (asym)
– ECDH-ES (asym)
– AES-GCM (sym)

● One of these things is not like the other.

JSON Web Encryption

● The way ECDH-ES is specified opens the door
to invalid curve attacks, which allows attackers
to recover your private key remotely.

https://auth0.com/blog/critical-vulnerability-in-json-web-encryption/

JSON Web Encryption

● The way ECDH-ES is specified opens the door
to invalid curve attacks, which allows attackers
to recover your private key remotely.

● What JOSE does:
– Expects x and y coordinates in the token (which is

provided by attackers)

https://auth0.com/blog/critical-vulnerability-in-json-web-encryption/

JSON Web Encryption

● The way ECDH-ES is specified opens the door
to invalid curve attacks, which allows attackers
to recover your private key remotely.

● What JOSE does:
– Expects x and y coordinates in the token (which is

provided by attackers)

● What JOSE should have done:

https://auth0.com/blog/critical-vulnerability-in-json-web-encryption/

JSON Web Encryption

● The way ECDH-ES is specified opens the door
to invalid curve attacks, which allows attackers
to recover your private key remotely.

● What JOSE does:
– Expects x and y coordinates in the token (which is

provided by attackers)

● What JOSE should have done:
– Expect an x coordinate and a single bit for the sign

of y.

https://auth0.com/blog/critical-vulnerability-in-json-web-encryption/

JSON Web Encryption

● The way ECDH-ES is specified opens the door
to invalid curve attacks, which allows attackers
to recover your private key remotely.

● What JOSE does:
– Expects x and y coordinates in the token (which is

provided by attackers)

● What JOSE should have done:
– Expect an x coordinate and a single bit for the sign

of y.
– Failing that, making point validation explicit.

https://auth0.com/blog/critical-vulnerability-in-json-web-encryption/

The Generalized Problem

● “Let’s give developers options!”

The Generalized Problem

● “Let’s give developers options!”
– This leads to a condition called Reasoning By Lego.

The Generalized Problem

● “Let’s give developers options!”
– This leads to a condition called Reasoning By Lego.

● Anybody remember “MAC and Encrypt” cipher
constructions?

The Generalized Problem

● “Let’s give developers options!”
– This leads to a condition called Reasoning By Lego.

● Anybody remember “MAC and Encrypt” cipher
constructions?

● Imagine you’re tasked with a a brick wall.

The Generalized Problem

● “Let’s give developers options!”
– This leads to a condition called Reasoning By Lego.

● Anybody remember “MAC and Encrypt” cipher
constructions?

● Imagine you’re tasked with a a brick wall.
– Twist: There’s a mesh of mortar laid out for you, and

you have to slide bricks into place.

The Generalized Problem

● “Let’s give developers options!”
– This leads to a condition called Reasoning By Lego.

● Anybody remember “MAC and Encrypt” cipher
constructions?

● Imagine you’re tasked with a a brick wall.
– Twist: There’s a mesh of mortar laid out for you, and

you have to slide bricks into place.
– The architects insist this lets you freely swap out

clay bricks with concrete bricks if termites adapt to
eat clay, or vice versa.

The Generalized Problem

● “Let’s give developers options!”
– This leads to a condition called Reasoning By Lego.

● Anybody remember “MAC and Encrypt” cipher
constructions?

● Imagine you’re tasked with a a brick wall.
– Twist: There’s a mesh of mortar laid out for you, and

you have to slide bricks into place.
– The architects insist this lets you freely swap out

clay bricks with concrete bricks if termites adapt to
eat clay, or vice versa.

– Would you trust that wall to hold up the roof?

“To pwn, or JWT to pwn?”

● There are a lot of ways for JWTs to go wrong
baked into the JOSE standards

“To pwn, or JWT to pwn?”

● There are a lot of ways for JWTs to go wrong
baked into the JOSE standards
– I’m not even getting into implementation-specific

security risks or user error.

“To pwn, or JWT to pwn?”

● There are a lot of ways for JWTs to go wrong
baked into the JOSE standards
– I’m not even getting into implementation-specific

security risks or user error.

● The JOSE advocate response to this criticism is
“use [a specific library]”

“To pwn, or JWT to pwn?”

● There are a lot of ways for JWTs to go wrong
baked into the JOSE standards
– I’m not even getting into implementation-specific

security risks or user error.

● The JOSE advocate response to this criticism is
“use [a specific library]”
– This shifts the blame onto the library developers

and the library’s users (i.e. developers)

“To pwn, or JWT to pwn?”

● There are a lot of ways for JWTs to go wrong
baked into the JOSE standards
– I’m not even getting into implementation-specific

security risks or user error.

● The JOSE advocate response to this criticism is
“use [a specific library]”
– This shifts the blame onto the library developers

and the library’s users (i.e. developers)

● If we want secure systems, this is an
antipattern!

Industry Antipatterns

● Standard designers:
– Let’s give users a lot of choices.

Industry Antipatterns

● Standard designers:
– Let’s give users a lot of choices.

● Advocates:
– Blame the implementation, rather than the

standard!

Industry Antipatterns

● Standard designers:
– Let’s give users a lot of choices.

● Advocates:
– Blame the implementation, rather than the

standard!

● Security experts:
– Declare a standard harmful, provide no alternative

Industry Antipatterns

● Standard designers:
– Let’s give users a lot of choices.

● Advocates:
– Blame the implementation, rather than the

standard!

● Security experts:
– Declare a standard harmful, provide no alternative

● Developers:
– Roll their own crypto

Industry Antipatterns

● Standard designers:
– Let’s give users a lot of choices.

● Advocates:
– Blame the implementation, rather than the

standard!

● Security experts:
– Declare a standard harmful, provide no alternative

● Developers:
– Roll their own crypto
– ...can you really blame them?

Goal: Stop developers from rolling their own
cryptography

Goal: Stop developers from rolling their own
cryptography

My proposal: Design a better standard that is a lot
easier to use securely than to use insecurely

PASETO

● Platform-Agnostic SEcurtiy TOkens

PASETO

● Platform-Agnostic SEcurtiy TOkens
– Pronounce: Paw Set Oh
– � { x } O(n)∈ℝ

PASETO

● Platform-Agnostic SEcurtiy TOkens
– Pronounce: Paw Set Oh
– � { x } O(n)∈ℝ

● Design goals

PASETO

● Platform-Agnostic SEcurtiy TOkens
– Pronounce: Paw Set Oh
– � { x } O(n)∈ℝ

● Design goals
– Minimize runtime negotiation

PASETO

● Platform-Agnostic SEcurtiy TOkens
– Pronounce: Paw Set Oh
– � { x } O(n)∈ℝ

● Design goals
– Minimize runtime negotiation
– Versioned tokens (forward-compatible)

PASETO

● Platform-Agnostic SEcurtiy TOkens
– Pronounce: Paw Set Oh
– � { x } O(n)∈ℝ

● Design goals
– Minimize runtime negotiation
– Versioned tokens (forward-compatible)
– “One True Ciphersuite” for each version

PASETO

● Platform-Agnostic SEcurtiy TOkens
– Pronounce: Paw Set Oh
– � { x } O(n)∈ℝ

● Design goals
– Minimize runtime negotiation
– Versioned tokens (forward-compatible)
– “One True Ciphersuite” for each version
– Less knobs and levers for end users

PASETO Overview

● Token Structure

PASETO Overview

● Token Structure
– Version (v1, v2)

PASETO Overview

● Token Structure
– Version (v1, v2)
– Purpose (local, public)

PASETO Overview

● Token Structure
– Version (v1, v2)
– Purpose (local, public)
– Payload

PASETO Overview

● Token Structure
– Version (v1, v2)
– Purpose (local, public)
– Payload
– Footer (optional)

PASETO Overview

● Token Structure
– Version (v1, v2)
– Purpose (local, public)
– Payload
– Footer (optional)

● Payload and optional footer are Base64url
encoded (as specified in RFC 4648)

PASETO Overview

● Version
– Defines the ciphersuite for each distinct purpose

PASETO Overview

● Version
– Defines the ciphersuite for each distinct purpose

● Purpose

PASETO Overview

● Version
– Defines the ciphersuite for each distinct purpose

● Purpose
– Local: Symmetric-key authenticated encryption

PASETO Overview

● Version
– Defines the ciphersuite for each distinct purpose

● Purpose
– Local: Symmetric-key authenticated encryption
– Public: Asymmetric-key digital signatures

PASETO Overview

● Version
– Defines the ciphersuite for each distinct purpose

● Purpose
– Local: Symmetric-key authenticated encryption
– Public: Asymmetric-key digital signatures

● Footer (optional)

PASETO Overview

● Version
– Defines the ciphersuite for each distinct purpose

● Purpose
– Local: Symmetric-key authenticated encryption
– Public: Asymmetric-key digital signatures

● Footer (optional)
– Authenticated. Useful for key rotation schemes.

PASETO Overview

● Version
– Defines the ciphersuite for each distinct purpose

● Purpose
– Local: Symmetric-key authenticated encryption
– Public: Asymmetric-key digital signatures

● Footer (optional)
– Authenticated. Useful for key rotation schemes.

● Envisioned use cases:

PASETO Overview

● Version
– Defines the ciphersuite for each distinct purpose

● Purpose
– Local: Symmetric-key authenticated encryption
– Public: Asymmetric-key digital signatures

● Footer (optional)
– Authenticated. Useful for key rotation schemes.

● Envisioned use cases:
– Short-lived, one-time third-party access tokens

PASETO Overview

● Version
– Defines the ciphersuite for each distinct purpose

● Purpose
– Local: Symmetric-key authenticated encryption
– Public: Asymmetric-key digital signatures

● Footer (optional)
– Authenticated. Useful for key rotation schemes.

● Envisioned use cases:
– Short-lived, one-time third-party access tokens
– OpenID Connect

PASETO Versions

● Version 1: Compatibility mode
– Meant to work when only OpenSSL is available

PASETO Versions

● Version 1: Compatibility mode
– Meant to work when only OpenSSL is available

● Local: AES-256-CTR + HMAC-SHA384 (EtM)
 Keys split with HKDF-HMAC-SHA384

PASETO Versions

● Version 1: Compatibility mode
– Meant to work when only OpenSSL is available

● Local: AES-256-CTR + HMAC-SHA384 (EtM)
 Keys split with HKDF-HMAC-SHA384

● Public: RSASSA-PSS, e=65537, SHA384 and
MGF1+SHA384, with 2048-bit keys

PASETO Versions

● Version 1: Compatibility mode
– Meant to work when only OpenSSL is available

● Local: AES-256-CTR + HMAC-SHA384 (EtM)
 Keys split with HKDF-HMAC-SHA384

● Public: RSASSA-PSS, e=65537, SHA384 and
MGF1+SHA384, with 2048-bit keys

● Version 2: Recommended

PASETO Versions

● Version 1: Compatibility mode
– Meant to work when only OpenSSL is available

● Local: AES-256-CTR + HMAC-SHA384 (EtM)
 Keys split with HKDF-HMAC-SHA384

● Public: RSASSA-PSS, e=65537, SHA384 and
MGF1+SHA384, with 2048-bit keys

● Version 2: Recommended
– Uses libsodium (or a compatible implementation)

● Local: XChaCha20-Poly1305
● Public: Ed25519

PASETO Overview

● Example:
– Payload: “foo”

Footer: “bar”

PASETO Overview

● Example:
– Payload: “foo”

Footer: “bar”
– v2.local.xRweHw55LcYDJ_pFGo2zWIhX-

gGpTTlAowCuSHQ88N2MvUpqoNZJNYex7A.YmFy

PASETO Overview

● Example:
– Payload: “foo”

Footer: “bar”
– v2.local.xRweHw55LcYDJ_pFGo2zWIhX-

gGpTTlAowCuSHQ88N2MvUpqoNZJNYex7A.YmFy
● k = 0xa71913ea1750aa39142e00089dcc47990da5173521b6201c4badd460b1f50ab0

PASETO Overview

● Example:
– Payload: “foo”

Footer: “bar”
– v2.local.xRweHw55LcYDJ_pFGo2zWIhX-

gGpTTlAowCuSHQ88N2MvUpqoNZJNYex7A.YmFy
● k = 0xa71913ea1750aa39142e00089dcc47990da5173521b6201c4badd460b1f50ab0

– v2.public.Zm9vknDoCUzU05m6yyiYFFQcsO9WnBJPjatGpfL2Oky
b9Q_abkUcSa-Pwzmn8fCuc6kYpmAkOz3e9WzMg-
yqhMb1CA.YmFy

PASETO Overview

● Example:
– Payload: “foo”

Footer: “bar”
– v2.local.xRweHw55LcYDJ_pFGo2zWIhX-

gGpTTlAowCuSHQ88N2MvUpqoNZJNYex7A.YmFy
● k = 0xa71913ea1750aa39142e00089dcc47990da5173521b6201c4badd460b1f50ab0

– v2.public.Zm9vknDoCUzU05m6yyiYFFQcsO9WnBJPjatGpfL2Oky
b9Q_abkUcSa-Pwzmn8fCuc6kYpmAkOz3e9WzMg-
yqhMb1CA.YmFy

● pk = 0x72bbbb1c8b77b1e5d71e7ec11f3b53cc69097757053b530a035237c2e278a33d

PASETO Overview

● Example:
– Payload: “foo”

Footer: “bar”
– v2.local.xRweHw55LcYDJ_pFGo2zWIhX-

gGpTTlAowCuSHQ88N2MvUpqoNZJNYex7A.YmFy
● k = 0xa71913ea1750aa39142e00089dcc47990da5173521b6201c4badd460b1f50ab0

– v2.public.Zm9vknDoCUzU05m6yyiYFFQcsO9WnBJPjatGpfL2Oky
b9Q_abkUcSa-Pwzmn8fCuc6kYpmAkOz3e9WzMg-
yqhMb1CA.YmFy

● pk = 0x72bbbb1c8b77b1e5d71e7ec11f3b53cc69097757053b530a035237c2e278a33d
sk = 0x65383a773dd0191c00a83c4f113acc8b1b2c114a10bc230bae9fc935164ab344
 72bbbb1c8b77b1e5d71e7ec11f3b53cc69097757053b530a035237c2e278a33d

PASETO Overview

● Example without a footer:
– Payload: “foo”

Footer: NULL
– v2.local.0mdhlsOmc4H5kWCBX5Tdty1jX-

tzyvJclRptsvvhqtQD9P9gb1OPsSXb8Q
● k = 0xa71913ea1750aa39142e00089dcc47990da5173521b6201c4badd460b1f50ab0

– v2.public.Zm9vybtfJiXsVkxfXsW8JW_Fb-
mpAspqVZ9cpTtmvHdYrDaWnIZp1cf0jFB9NXe-
SujwmwXpvVl0pJM0GSCTzOguAA

● pk = 0x72bbbb1c8b77b1e5d71e7ec11f3b53cc69097757053b530a035237c2e278a33d
sk = 0x65383a773dd0191c00a83c4f113acc8b1b2c114a10bc230bae9fc935164ab344
 72bbbb1c8b77b1e5d71e7ec11f3b53cc69097757053b530a035237c2e278a33d

PASETO Internals

End-users don’t need to know this stuff

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:
– Just use urandom. Userspace PRNGs are

forbidden. No more Mersenne Twister or LCGs.

https://www.2uo.de/myths-about-urandom

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:
– Just use urandom. Userspace PRNGs are

forbidden. No more Mersenne Twister or LCGs.

● No IND-CCA2 insecure public key cryptography

https://www.2uo.de/myths-about-urandom

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:
– Just use urandom. Userspace PRNGs are

forbidden. No more Mersenne Twister or LCGs.

● No IND-CCA2 insecure public key cryptography
– PKCS #1 v1.5 is explicitly forbidden, forever

https://www.2uo.de/myths-about-urandom

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:
– Just use urandom. Userspace PRNGs are

forbidden. No more Mersenne Twister or LCGs.

● No IND-CCA2 insecure public key cryptography
– PKCS #1 v1.5 is explicitly forbidden, forever

● Bleichenbacher’s 1998 padding oracle attack is almost
old enough to drink

● ROBOT just won a Pwnie at Black Hat this week

https://www.2uo.de/myths-about-urandom

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:
– Just use urandom. Userspace PRNGs are

forbidden. No more Mersenne Twister or LCGs.

● No IND-CCA2 insecure public key cryptography
– PKCS #1 v1.5 is explicitly forbidden, forever

● Bleichenbacher’s 1998 padding oracle attack is almost
old enough to drink

● ROBOT just won a Pwnie at Black Hat this week

● When possible, do everything in constant-time

https://www.2uo.de/myths-about-urandom

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:
– Just use urandom. Userspace PRNGs are

forbidden. No more Mersenne Twister or LCGs.

● No IND-CCA2 insecure public key cryptography
– PKCS #1 v1.5 is explicitly forbidden, forever

● Bleichenbacher’s 1998 padding oracle attack is almost
old enough to drink

● ROBOT just won a Pwnie at Black Hat this week

● When possible, do everything in constant-time
– Including base64url encoding

https://www.2uo.de/myths-about-urandom
file:///home/scott/Desktop/talk/Prevents%20canonicalization%20attacks%20by%20ensuring%20unique%20inputs

Pre-Authentication Encoding

● Prevents canonicalization attacks by ensuring
unique inputs

Pre-Authentication Encoding

● Prevents canonicalization attacks by ensuring
unique inputs

● Packs an array of strings into a string

Pre-Authentication Encoding

● Prevents canonicalization attacks by ensuring
unique inputs

● Packs an array of strings into a string
● Prefix with the count of the number of pieces

Pre-Authentication Encoding

● Prevents canonicalization attacks by ensuring
unique inputs

● Packs an array of strings into a string
● Prefix with the count of the number of pieces
● Each piece is prefixed with the length of the

piece

Pre-Authentication Encoding

● Prevents canonicalization attacks by ensuring
unique inputs

● Packs an array of strings into a string
● Prefix with the count of the number of pieces
● Each piece is prefixed with the length of the

piece
● All integers are treated as unsigned 64-bit, little

endian

Pre-Authentication Encoding

● Prevents canonicalization attacks by ensuring
unique inputs

● Packs an array of strings into a string
● Prefix with the count of the number of pieces
● Each piece is prefixed with the length of the

piece
● All integers are treated as unsigned 64-bit, little

endian
– PAE([“test”]) =>

\x01\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00test

PAE in Practice

● Version 1
– Local

● The HMAC-SHA384 tag appended to the ciphertext
covers PAE([“v1.local.”, nonce, ciphertext, footer])

PAE in Practice

● Version 1
– Local

● The HMAC-SHA384 tag appended to the ciphertext
covers PAE([“v1.local.”, nonce, ciphertext, footer])

– Public
● The message input for the RSA signature is

PAE([“v1.public.”, message, footer])

PAE in Practice

● Version 2
– Local

● The additional data parameter for libsodium’s
crypto_aead_xchacha20poly1305_encrypt() is
PAE([“v2.local.”, nonce, footer])

PAE in Practice

● Version 2
– Local

● The additional data parameter for libsodium’s
crypto_aead_xchacha20poly1305_encrypt() is
PAE([“v2.local.”, nonce, footer])

● Libsodium already includes the ciphertext in the
Poly1305 authentication tag

PAE in Practice

● Version 2
– Local

● The additional data parameter for libsodium’s
crypto_aead_xchacha20poly1305_encrypt() is
PAE([“v2.local.”, nonce, footer])

● Libsodium already includes the ciphertext in the
Poly1305 authentication tag

– Public
● The message input for the Ed25519 signature is

PAE([“v2.public.”, message, footer]).

JWT vs PASETO

● JWT ● PASETO

JWT vs PASETO

● JWT
– Plethora of knobs and

levers
– Unauthenticated

modes available
– Promotes Reasoning

by Lego
– Often abused for

stateless sessions

● PASETO

JWT vs PASETO

● JWT
– Plethora of knobs and

levers
– Unauthenticated

modes available
– Promotes Reasoning

by Lego
– Often abused for

stateless sessions

● PASETO
– Only two options:

● Version
● Purpose

– Everything is
authenticated

● Local-only tokens are
also encrypted

– Does its job, gets out
of the way

To learn more about PASETO, visit:
https://paseto.io

https://github.com/paragonie/paseto

https://paseto.io/
https://github.com/paragonie/paseto

Designing Cryptography for Humans

● Opinionated interfaces with few options:

Designing Cryptography for Humans

● Opinionated interfaces with few options:
– encrypt(message, key[, ad = null])
– decrypt(ciphertext, key[, ad = null])

Designing Cryptography for Humans

● Opinionated interfaces with few options:
– encrypt(message, key[, ad = null])
– decrypt(ciphertext, key[, ad = null])

● Your users shouldn’t ever need to even know
what a nonce is to encrypt safely

Designing Cryptography for Humans

● Opinionated interfaces with few options:
– encrypt(message, key[, ad = null])
– decrypt(ciphertext, key[, ad = null])

● Your users shouldn’t ever need to even know
what a nonce is to encrypt safely

● Versioned protocols with hard-coded cipher-
suites, vetted by cryptographers

Designing Cryptography for Humans

● Opinionated interfaces with few options:
– encrypt(message, key[, ad = null])
– decrypt(ciphertext, key[, ad = null])

● Your users shouldn’t ever need to even know
what a nonce is to encrypt safely

● Versioned protocols with hard-coded cipher-
suites, vetted by cryptographers
– If a vulnerability is found in the current version,

publish a new version with a better hard-coded
ciphersuite

Cryptography for Mere Mortals, cont’d.

● Don’t just use simple binary strings for
cryptography keys. Encapsulate them in a Key
object.

Cryptography for Mere Mortals, cont’d.

● Don’t just use simple binary strings for
cryptography keys. Encapsulate them in a Key
object.
– This discourages the use of human-sourced

passwords as a cryptography key, without the
added steps of a secure KDF function (Argon2)

Cryptography for Mere Mortals, cont’d.

● Don’t just use simple binary strings for
cryptography keys. Encapsulate them in a Key
object.
– This discourages the use of human-sourced

passwords as a cryptography key, without the
added steps of a secure KDF function (Argon2)

– In many languages, this also prevents keys from
leaking into stack traces and ending up in JIRA/Trac
tickets

Cryptography for Mere Mortals, cont’d.

● Logically separate symmetric cryptography
from asymmetric cryptography

Cryptography for Mere Mortals, cont’d.

● Logically separate symmetric cryptography
from asymmetric cryptography
– javax.crypto.Cipher considered harmful

Cryptography for Mere Mortals, cont’d.

● Logically separate symmetric cryptography
from asymmetric cryptography
– javax.crypto.Cipher considered harmful

● Enforce failure modes through exceptions
rather than returning null or false.

Cryptography for Mere Mortals, cont’d.

● Logically separate symmetric cryptography
from asymmetric cryptography
– javax.crypto.Cipher considered harmful

● Enforce failure modes through exceptions
rather than returning null or false.
– If the developer doesn’t catch the exception, your

code fails closed. If they do, they can handle failure
gracefully in a way that doesn’t seem like crashing.

Cryptography for Mere Mortals, cont’d.

● Logically separate symmetric cryptography
from asymmetric cryptography
– javax.crypto.Cipher considered harmful

● Enforce failure modes through exceptions
rather than returning null or false.
– If the developer doesn’t catch the exception, your

code fails closed. If they do, they can handle failure
gracefully in a way that doesn’t seem like crashing.

– The alternatives (unavoidable crash, fail open) are
bad. One scares developers, the other creates
security holes in production systems.

Recap

● The blame game doesn’t solve insecurity

Recap

● The blame game doesn’t solve insecurity
● Prevent developers from rolling their own crypto

by giving them tools that are hard to misuse

Recap

● The blame game doesn’t solve insecurity
● Prevent developers from rolling their own crypto

by giving them tools that are hard to misuse
● Your API should be simple to understand

Recap

● The blame game doesn’t solve insecurity
● Prevent developers from rolling their own crypto

by giving them tools that are hard to misuse
● Your API should be simple to understand

– Every asterisk is a disaster risk

Recap

● The blame game doesn’t solve insecurity
● Prevent developers from rolling their own crypto

by giving them tools that are hard to misuse
● Your API should be simple to understand

– Every asterisk is a disaster risk

● Prefer versioned protocols over cipher agility

Recap

● The blame game doesn’t solve insecurity
● Prevent developers from rolling their own crypto

by giving them tools that are hard to misuse
● Your API should be simple to understand

– Every asterisk is a disaster risk

● Prefer versioned protocols over cipher agility
● Error-prone standards (JOSE) should be

avoided in favor of safer designs (PASETO)

Questions?

Scott Arciszewski

● Paragon Initiative Enterprises, LLC
– Software development (open source)

● The person to blame for getting libsodium into PHP 7.2
● Also wrote the sodium_compat polyfill for PHP 5.2 – 7.1
● Many PHP security libraries

– Security research
● Handfuls of CVEs
● Sometimes published on Full Disclosure

● Twitter handle: @CiPHPerCoder

https://paragonie.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141

