
  



  

No Way, JOSE!

Designing Cryptography Features 
for Mere Mortals



  

Scott Arciszewski

● Paragon Initiative Enterprises, LLC
– Software development (open source)

● The person to blame for getting libsodium into PHP 7.2
● Also wrote the sodium_compat polyfill for PHP 5.2 – 7.1
● Many PHP security libraries

– Security research
● Handfuls of CVEs
● Sometimes published on Full Disclosure

● Twitter handle: @CiPHPerCoder

https://paragonie.com/
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Why are we here today?

● Everyone knows “Don’t roll your own crypto”
– Amateurs produce amateur cryptography
– It’s extremely difficult to get right
– Even experts make mistakes
– Cryptography should be a collaborative practice in 

which many experts vet each others’ designs

● The problem: the buck usually stops there.
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Why are we here today?

● “What should I do instead of rolling my own?”
– Bad outcome: “Use RSAES-OAEP with SHA256 

and MGF1+SHA256 bzzrt pop ffssssssst exponent 
65537” (h/t Latacora)

● Developers need cryptography features to 
solve problems.

● If we don’t want them rolling their own, they 
need easy-to-use tools that don’t open the door 
to a ton of attacks.
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Case Study: JOSE

● Javascript Object Signing and Encryption
● A family of standards (with IETF RFCs) that 

define JSON Web Tokens (JWT), JSON Web 
Signatures (JWS), JSON Web Encryption 
(JWE), etc.

● Most developers that use JOSE focus on JWT.
● Uses:

– Short-lived claims (usually signed by a third party)
– A laundry list of misuse
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JSON Web Tokens

● Quoth the RFC:
– JSON Web Token (JWT) is a compact, URL-safe means of representing

claims to be transferred between two parties.  The claims in a JWT
are encoded as a JSON object that is used as the payload of a JSON
Web Signature (JWS) structure or as the plaintext of a JSON Web
Encryption (JWE) structure, enabling the claims to be digitally
signed or integrity protected with a Message Authentication Code
(MAC) and/or encrypted.

● Translation: a JWT uses JWE or JWS.
– Consequently, JWS/JWE security flaws are 

almost always relevant to JWT.



  

JSON Web Token (structure)

● Above: https://jwt.io (a tool from Auth0)

https://jwt.io/
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JSON Web Signatures

● The “alg” header
– Defines what algorithm the token uses

● HS256 = HMAC-SHA256
● RS256 = RSA with PKCS1v1.5 and SHA256
● none = ¯\_(ツ )_/¯

– Mixes symmetric with asymmetric cryptography
– Attackers can alter tokens and choose this header
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JSON Web Signatures

● It gets worse.
● RFC 7515 section 4.1.1: 

– “This Header Parameter MUST be present and 
MUST be understood and processed by 
implementations.”

– To a developer, “understood and processed” means 
“obeyed”.

● This has led to critical vulnerabilities in JWT 
libraries. (CVE-2015-2964, etc.)
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JSON Web Encryption

● Key encryption options:
– RSA with PKCS #1 v1.5 padding (asym)
– RSA with OAEP padding (asym)
– ECDH-ES (asym)
– AES-GCM (sym)

● One of these things is not like the other.
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JSON Web Encryption

● The way ECDH-ES is specified opens the door 
to invalid curve attacks, which allows attackers 
to recover your private key remotely.

● What JOSE does:
– Expects x and y coordinates in the token (which is 

provided by attackers)

● What JOSE should have done:
– Expect an x coordinate and a single bit for the sign 

of y.
– Failing that, making point validation explicit.

https://auth0.com/blog/critical-vulnerability-in-json-web-encryption/
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The Generalized Problem

● “Let’s give developers options!”
– This leads to a condition called Reasoning By Lego.

● Anybody remember “MAC and Encrypt” cipher 
constructions?

● Imagine you’re tasked with a a brick wall.
– Twist: There’s a mesh of mortar laid out for you, and 

you have to slide bricks into place.
– The architects insist this lets you freely swap out 

clay bricks with concrete bricks if termites adapt to 
eat clay, or vice versa.

– Would you trust that wall to hold up the roof?
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“To pwn, or JWT to pwn?”

● There are a lot of ways for JWTs to go wrong 
baked into the JOSE standards
– I’m not even getting into implementation-specific 

security risks or user error.

● The JOSE advocate response to this criticism is 
“use [a specific library]”
– This shifts the blame onto the library developers 

and the library’s users (i.e. developers)

● If we want secure systems, this is an 
antipattern!
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Industry Antipatterns

● Standard designers:
– Let’s give users a lot of choices.

● Advocates:
– Blame the implementation, rather than the 

standard!

● Security experts:
– Declare a standard harmful, provide no alternative

● Developers:
– Roll their own crypto
– ...can you really blame them?
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Goal: Stop developers from rolling their own 
cryptography

My proposal: Design a better standard that is a lot 
easier to use securely than to use insecurely
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PASETO

● Platform-Agnostic SEcurtiy TOkens
– Pronounce: Paw Set Oh
–               � { x   }        O(n)∈ℝ

● Design goals
– Minimize runtime negotiation
– Versioned tokens (forward-compatible)
– “One True Ciphersuite” for each version
– Less knobs and levers for end users
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PASETO Overview

● Token Structure
– Version (v1, v2)
– Purpose (local, public)
– Payload
– Footer (optional)

● Payload and optional footer are Base64url 
encoded (as specified in RFC 4648)
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PASETO Overview

● Version
– Defines the ciphersuite for each distinct purpose

● Purpose
– Local: Symmetric-key authenticated encryption
– Public: Asymmetric-key digital signatures

● Footer (optional)
– Authenticated. Useful for key rotation schemes.

● Envisioned use cases:
– Short-lived, one-time third-party access tokens
– OpenID Connect
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PASETO Versions

● Version 1: Compatibility mode
– Meant to work when only OpenSSL is available

● Local: AES-256-CTR + HMAC-SHA384 (EtM)
          Keys split with HKDF-HMAC-SHA384

● Public: RSASSA-PSS, e=65537, SHA384 and 
MGF1+SHA384, with 2048-bit keys

● Version 2: Recommended
– Uses libsodium (or a compatible implementation)

● Local: XChaCha20-Poly1305
● Public: Ed25519
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– Payload: “foo”

Footer: “bar”
– v2.local.xRweHw55LcYDJ_pFGo2zWIhX-

gGpTTlAowCuSHQ88N2MvUpqoNZJNYex7A.YmFy
● k = 0xa71913ea1750aa39142e00089dcc47990da5173521b6201c4badd460b1f50ab0

– v2.public.Zm9vknDoCUzU05m6yyiYFFQcsO9WnBJPjatGpfL2Oky
b9Q_abkUcSa-Pwzmn8fCuc6kYpmAkOz3e9WzMg-
yqhMb1CA.YmFy

● pk = 0x72bbbb1c8b77b1e5d71e7ec11f3b53cc69097757053b530a035237c2e278a33d
sk = 0x65383a773dd0191c00a83c4f113acc8b1b2c114a10bc230bae9fc935164ab344
      72bbbb1c8b77b1e5d71e7ec11f3b53cc69097757053b530a035237c2e278a33d



  

PASETO Overview

● Example without a footer:
– Payload: “foo”

Footer: NULL
– v2.local.0mdhlsOmc4H5kWCBX5Tdty1jX-

tzyvJclRptsvvhqtQD9P9gb1OPsSXb8Q
● k = 0xa71913ea1750aa39142e00089dcc47990da5173521b6201c4badd460b1f50ab0

– v2.public.Zm9vybtfJiXsVkxfXsW8JW_Fb-
mpAspqVZ9cpTtmvHdYrDaWnIZp1cf0jFB9NXe-
SujwmwXpvVl0pJM0GSCTzOguAA

● pk = 0x72bbbb1c8b77b1e5d71e7ec11f3b53cc69097757053b530a035237c2e278a33d
sk = 0x65383a773dd0191c00a83c4f113acc8b1b2c114a10bc230bae9fc935164ab344
      72bbbb1c8b77b1e5d71e7ec11f3b53cc69097757053b530a035237c2e278a33d



  

PASETO Internals

End-users don’t need to know this stuff



  

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:



  

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:
– Just use urandom. Userspace PRNGs are 

forbidden. No more Mersenne Twister or LCGs.

https://www.2uo.de/myths-about-urandom


  

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:
– Just use urandom. Userspace PRNGs are 

forbidden. No more Mersenne Twister or LCGs.

● No IND-CCA2 insecure public key cryptography

https://www.2uo.de/myths-about-urandom


  

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:
– Just use urandom. Userspace PRNGs are 

forbidden. No more Mersenne Twister or LCGs.

● No IND-CCA2 insecure public key cryptography
– PKCS #1 v1.5 is explicitly forbidden, forever

https://www.2uo.de/myths-about-urandom


  

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:
– Just use urandom. Userspace PRNGs are 

forbidden. No more Mersenne Twister or LCGs.

● No IND-CCA2 insecure public key cryptography
– PKCS #1 v1.5 is explicitly forbidden, forever

● Bleichenbacher’s 1998 padding oracle attack is almost 
old enough to drink

● ROBOT just won a Pwnie at Black Hat this week

https://www.2uo.de/myths-about-urandom


  

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:
– Just use urandom. Userspace PRNGs are 

forbidden. No more Mersenne Twister or LCGs.

● No IND-CCA2 insecure public key cryptography
– PKCS #1 v1.5 is explicitly forbidden, forever

● Bleichenbacher’s 1998 padding oracle attack is almost 
old enough to drink

● ROBOT just won a Pwnie at Black Hat this week

● When possible, do everything in constant-time

https://www.2uo.de/myths-about-urandom


  

PASETO – Rules for All Versions

● Formal specification regarding key/nonce-gen:
– Just use urandom. Userspace PRNGs are 

forbidden. No more Mersenne Twister or LCGs.

● No IND-CCA2 insecure public key cryptography
– PKCS #1 v1.5 is explicitly forbidden, forever

● Bleichenbacher’s 1998 padding oracle attack is almost 
old enough to drink

● ROBOT just won a Pwnie at Black Hat this week

● When possible, do everything in constant-time
– Including base64url encoding

https://www.2uo.de/myths-about-urandom
file:///home/scott/Desktop/talk/Prevents%20canonicalization%20attacks%20by%20ensuring%20unique%20inputs
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Pre-Authentication Encoding

● Prevents canonicalization attacks by ensuring 
unique inputs

● Packs an array of strings into a string
● Prefix with the count of the number of pieces
● Each piece is prefixed with the length of the 

piece
● All integers are treated as unsigned 64-bit, little 

endian
– PAE([“test”]) => 

\x01\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00test
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PAE in Practice

● Version 2
– Local

● The additional data parameter for libsodium’s 
crypto_aead_xchacha20poly1305_encrypt() is 
PAE([“v2.local.”, nonce, footer])

● Libsodium already includes the ciphertext in the 
Poly1305 authentication tag

– Public
● The message input for the Ed25519 signature is 

PAE([“v2.public.”, message, footer]).



  

JWT vs PASETO

● JWT ● PASETO
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JWT vs PASETO

● JWT
– Plethora of knobs and 

levers
– Unauthenticated 

modes available
– Promotes Reasoning 

by Lego
– Often abused for 

stateless sessions

● PASETO
– Only two options:

● Version
● Purpose

– Everything is 
authenticated

● Local-only tokens are 
also encrypted

– Does its job, gets out 
of the way



  

To learn more about PASETO, visit:
https://paseto.io

https://github.com/paragonie/paseto 

https://paseto.io/
https://github.com/paragonie/paseto
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Designing Cryptography for Humans

● Opinionated interfaces with few options:
– encrypt(message, key[, ad = null])
– decrypt(ciphertext, key[, ad = null])

● Your users shouldn’t ever need to even know 
what a nonce is to encrypt safely

● Versioned protocols with hard-coded cipher-
suites, vetted by cryptographers
– If a vulnerability is found in the current version, 

publish a new version with a better hard-coded 
ciphersuite
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Cryptography for Mere Mortals, cont’d.

● Don’t just use simple binary strings for 
cryptography keys. Encapsulate them in a Key 
object.
– This discourages the use of human-sourced 

passwords as a cryptography key, without the 
added steps of a secure KDF function (Argon2)

– In many languages, this also prevents keys from 
leaking into stack traces and ending up in JIRA/Trac 
tickets
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Cryptography for Mere Mortals, cont’d.

● Logically separate symmetric cryptography 
from asymmetric cryptography
– javax.crypto.Cipher considered harmful

● Enforce failure modes through exceptions 
rather than returning null or false.
– If the developer doesn’t catch the exception, your 

code fails closed. If they do, they can handle failure 
gracefully in a way that doesn’t seem like crashing.

– The alternatives (unavoidable crash, fail open) are 
bad. One scares developers, the other creates 
security holes in production systems.



  

Recap

● The blame game doesn’t solve insecurity



  

Recap

● The blame game doesn’t solve insecurity
● Prevent developers from rolling their own crypto 

by giving them tools that are hard to misuse



  

Recap

● The blame game doesn’t solve insecurity
● Prevent developers from rolling their own crypto 

by giving them tools that are hard to misuse
● Your API should be simple to understand



  

Recap

● The blame game doesn’t solve insecurity
● Prevent developers from rolling their own crypto 

by giving them tools that are hard to misuse
● Your API should be simple to understand

– Every asterisk is a disaster risk



  

Recap

● The blame game doesn’t solve insecurity
● Prevent developers from rolling their own crypto 

by giving them tools that are hard to misuse
● Your API should be simple to understand

– Every asterisk is a disaster risk

● Prefer versioned protocols over cipher agility



  

Recap

● The blame game doesn’t solve insecurity
● Prevent developers from rolling their own crypto 

by giving them tools that are hard to misuse
● Your API should be simple to understand

– Every asterisk is a disaster risk

● Prefer versioned protocols over cipher agility
● Error-prone standards (JOSE) should be 

avoided in favor of safer designs (PASETO)



  

Questions?



  

Scott Arciszewski

● Paragon Initiative Enterprises, LLC
– Software development (open source)

● The person to blame for getting libsodium into PHP 7.2
● Also wrote the sodium_compat polyfill for PHP 5.2 – 7.1
● Many PHP security libraries

– Security research
● Handfuls of CVEs
● Sometimes published on Full Disclosure

● Twitter handle: @CiPHPerCoder

https://paragonie.com/
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