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ABSTRACT
Annual increases in global energy consumption are an unavoidable consequence of a
growing global economy and population. Among different sectors, the construction
industry consumes an average of 20.1% of the world’s total energy. Therefore,
exploring methods for estimating the amount of energy used is critical. There are
several approaches that have been developed to address this issue. The proposed
methods are expected to contribute to energy savings as well as reduce the risks of
global warming. There are diverse types of computational approaches to predicting
energy use. These existing approaches belong to the statistics-based, engineering-
based, and machine learning-based categories. Machine learning-based frameworks
showed better performance compared to these other approaches. In our study, we
proposed using Extreme Gradient Boosting (XGB), a tree-based ensemble learning
algorithm, to tackle the issue. We used a dataset containing energy consumption
hourly recorded in an office building in Shanghai, China, from January 1, 2015, to
December 31, 2016. The experimental results demonstrated that the XGB model
developed using both historical and date features worked better than those developed
using only one type of feature. The best-performing model achieved RMSE and
MAPE values of 109.00 and 0.24, respectively.

Subjects Artificial Intelligence, DataMining andMachine Learning, Data Science, Visual Analytics
Keywords Artificial intelligence, Data mining and machine learning, Data science, Prediction,
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INTRODUCTION
The annual rise in global energy use is one of the direct consequences of economic and
population expansion. Energy use in the construction sector, which accounts for an
average of 20.1% of the world’s total energy use, is a vital aspect of the global energy
consumption picture (Conti et al., 2016). In many nations, this proportion is substantially
greater; for example, in China and the United States, it contributes up to 21.7% and 38.9%
of total energy use, respectively (China Association of Building Energy Efficiency, 2021;
Becerik-Gerber et al., 2014). This rising energy use worsens global warming and causes
natural resource depletion. Therefore, increasing the efficient use of energy in the
construction sector is essential because it lessens the risk of global warming and enhances
sustainable growth. To effectively manage diverse technical activities, e.g., demand
response during construction (Dawood, 2019), organization of urban power systems
(Moghadam et al., 2017), and defect detection (Kim et al., 2019), prediction of energy
demand is crucial in preventing ineffective energy use in many sectors (Min et al., 2023; Li
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et al., 2022), especially construction (Liu et al., 2023; Zhang, Li & Yang, 2021). Besides, a
good estimation of energy demand helps to create energy-saving plans for heating,
ventilation, and air conditioning (HVAC) systems (Du et al., 2021; Min, Chen & Yang,
2019). To address this issue, several computation frameworks were proposed to predict
energy use. Zhao & Magoulès (2012) performed a comprehensive review of numerous
computational frameworks developed to estimate construction energy use. According to
their investigation, all approaches for predicting energy use may be generally categorized
into three groups: statistics-based, engineering-based, and machine learning-based
techniques.

Statistics-based approaches were employed to model the correlation between energy use
and involved attributes with a parametrically defined mathematical formula. Ma et al.
(2010) developed models using multiple linear regression and self-regression techniques
and essential energy consumption features characterized by particular population activities
and weather conditions. The least squares method was used to estimate parameters as well
as approximate monthly energy consumption for broad-scale public housing facilities (Ma
et al., 2010). Conducting the principal component analysis, Lam et al. (2010) discovered
three significant climatic variables, comprising dry-bulb temperature, wet-bulb
temperature, and global solar radiation, to create a novel climatic index. After that,
regression models were built to establish an association focusing on the daily period
between the climatic index and the simulated cooling demand. Despite fast and simple
calculations, these approaches often lack flexibility and have poor prediction ability due to
limitations in handling stochastic occupant behaviors and complicated factor interactions
between factors (Ahmad et al., 2014).

Applying physics’ concepts and thermodynamic calculations, engineering-based
approaches determine the energy use of each building component (Zhao & Magoulès,
2012). Although the defined relationships between input and output variables improve the
model’s explainability, these approaches need curated sources of building and
environmental data whose accessibility is very limited (Zhao & Magoulès, 2012). Some
researchers have attempted to reduce the complexity of engineering models in order to
improve their ability to accurately predict energy use. Yao & Steemers (2005) developed a
straightforward approach for generating a load profile (SMLP) to predict the breakdown of
everyday energy consumed by electrical household appliances. This technique estimated
seasonal energy demand since the average daily energy (consumed by these appliances)
seasonally fluctuated. Based on frequency response characteristic analysis, Wang & Xu
(2006) obtained simple physical properties to determine the model parameters. In
addition, they used monitored operating data to identify parameters for a thermal network
of lumped thermal mass to describe a building’s interior mass (Wang & Xu, 2006). The
prediction accuracy, however, is one of the most concerning issues because the simplified
model may be somewhat underfitting (Wei et al., 2018).

Machine learning-based approaches utilize either traditional machine learning (e.g.,
random forest, support vector machines) or deep learning (e.g., artificial neural networks
(ANN), convolutional neural networks (CNN), recurrent neural networks (RNN)) for
modeling by learning from historical data (Nora & El-Gohary, 2018; Tian et al., 2019).
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These machine learning-based approaches usually exhibit better performance compared to
other methods, especially in event detection (Wang et al., 2023; Sun et al., 2023c; Ren et al.,
2022) and other applications using time-series data (Sun et al., 2023a, 2023b; Long et al.,
2023). To predict perennial energy use, Azadeh, Ghaderi & Sohrabkhani (2008) suggested
using ANN in combination with an analysis of variance. The approach was demonstrated
to outperform the standard regression model. Hou & Lian (2009) developed a
computational framework using support vector machines to estimate the cooling demand
of an HVAC system, and their findings showed that it was dominant over autoregressive
integrated moving average (ARIMA) models. Tso & Yau (2007) used decision tree (DT),
stepwise regression, and ANN to estimate Hong Kong’s power consumption. The results
suggested that the DT and ANN techniques performed somewhat better during the
summer and winter seasons, respectively. However, many traditional machine learning
approaches use shallow frameworks for modeling, reducing prediction efficiency. As black
box models, deep neural networks do not well explain physical behaviors, but they can
effectively learn abstract features from raw inputs to build superior models (Ozcan et al.,
2021). Cai, Pipattanasomporn & Rahman (2019) constructed prediction frameworks using
RNN and CNN to measure time-series building-level load in recursive and direct multi-
step approaches, respectively. Compared to the seasonal ARIMA model with exogenous
inputs, the gated 24-h CNN model had its prediction accuracy improved by 22.6% in the
experiments. To calculate electric load consumption, Ozcan, Catal & Kasif (2021)
suggested dual-stage attention-based recurrent neural networks consisting of encoders and
decoders. Experimental results revealed that their proposed method vanquished other
methods (Ozcan, Catal & Kasif, 2021). A hybrid sub-category of deep learning called deep
reinforcement learning (DRL) blends reinforcement learning decision-making with neural
networks (Mnih et al., 2015; Levine et al., 2016; Sallab et al., 2017). DRL approaches are
often used in the construction industry to investigate the ideal HVAC control (Wei, Wang
& Zhu, 2017; Huang et al., 2020). DRL approaches obtained promising outcomes for
energy use prediction (Wei, Wang & Zhu, 2017; Huang et al., 2020). Liu et al. (2020)
examined the efficacy of DRL approaches for estimating energy consumption, and their
results suggested that the deep deterministic policy gradient (DDPG) method had the most
predictive power for single-step-ahead prediction. Although the deployment of DRL
approaches yields initial success, further research is required to determine its ability to
solve this issue.

In this study, we proposed a more effective method to predict energy use in the
construction sector using four tree-based machine learning algorithms, including random
forest (RF), extremely randomized trees (ERT), extreme gradient boosting (XGB), and
gradient boosting (GB). Four feature sets are created to combine with four learning
algorithms to form 16 models. The four feature sets correspond to four development and
testing scenarios: (1) using 1–3 historical hours, (2) using 1–5 historical hours, (3) using
1–7 historical hours, and (4) using 1–9 historical hours before prediction time as input
features. The best-performing models are then selected as the final models for evaluation.
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MATERIALS AND METHODS
Dataset
In this study, we used an energy consumption dataset recorded in an office building in
Shanghai (Fu et al., 2022). The energy consumption data were recorded hourly from
January 1, 2015, to December 31, 2016. Since data from February 29, 2016 was not
recorded, the dataset has a total of 17,520 recorded samples. The original dataset was split
into three parts: ‘From 1 January 2015 to 30 April 2016’, ‘From 1 May 2016 to 31 August
2016’, and ‘From 1 September 2016 to 31 December 2016’ which were used as a training
set, validation set, and test set. In the case of time series data, random samples might lead
to a failed training session since the model could not learn the data that were included in
the validation or test set. The information about the data sets is summarized in Table 1.

Overview of method
Figure 1 provides a flowchart of the modeling strategies of our work with two stages:
validation and testing. The validation stage aims to select the best model, while the testing
stage focuses on evaluating the performance of the selected one. The modeling steps of
both stages are similarly designed. As the samples are time-series, training, validation, and
test data are partitioned in time-sequential order. The validation and test sets contain 1,440
and 2,160 samples, which correspond to 60 and 90 days, respectively. Initially, the model is
developed with the training data and then evaluated on a timely ordered list of seven sub-
validation sets before being retrained. Each sub-validation set contains 336 validation
samples, which are equivalent to 14 days. After 7 days, the model is retrained with an
updated training set, which is a combination of previous training samples and 7-day
validation samples. This process is repeated until no validation samples are left. After
completing the validation stage, we compare the performance of these models to select the
best one. The best model is then retrained with the new training set, which contains all
training and validation samples. The obtained model is finally evaluated on the test data in
the same manner as in the validation stages.

Data processing and featurization
Figure 2 describes the main steps in data sampling, processing, and featurization. After
obtaining the training, validation, and test sets, we processed the data to generate their
feature sets. The original data frame has only two columns: ‘recorded time’ and ‘energy
used’. We created two types of features, including ‘historical feature’ (Fig. 2B) and ‘date

Table 1 Data for model development and evaluation.

Dataset No. of samples Time period

Training 13,872 From 3 January 2015 to 3 August 2016

Validation 1,440 From 4 August 2016 to 2 October 2016

Test 2,160 From 3 October 2016 to 31 December 2016

Total 17,472 From 3 January 2015 to 31 December 2016
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feature’ (Fig. 2C). The historical features are energy values that were recorded 1; 2;…; n h
before the prediction time with n ¼ 48 (2 days). The labeli (value of energy used) of
samplei is filled to the column ordered 48th of sampleiþ1. The columns ordered

48th; 47th; 46th;…; 1st present the recorded values of energy used before 1; 2; 3;…; 48 h,
respectively. The first sample was recorded on ‘January 1, 2015 at 00 h’ with undetermined
historical features. The next 47 samples have their historical features determined with
1; 2; 3;…; 47 recorded values. Since the first 48 samples have historical features containing
undetermined values, we removed them from the dataset. The samples recorded after
‘January 3, 2015 at 00 h’ have the historical features of all determined values. The date
features of a sample give information on ‘day of year’, ‘whether it is a holiday’, and ‘when it
is recorded’. Gaining information on whether a day is a holiday because the energy use in
holiday time will be significantly different from daily energy use. Besides international
holidays, Eastern countries like China celebrate some holidays based on the lunar calendar
(e.g., Chinese New Year). The historical and date features are expressed as 48-dimensional
and three-dimensional numeric vectors, respectively. To select the best feature set, we
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Figure 1 Overview of method. Full-size DOI: 10.7717/peerj-cs.1500/fig-1
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examined three scenarios, including using only historical features, using only date features,
and using combinatory features (Table 2).

Machine learning algorithms
Random forest
Random forest (RF) (Breiman, 2001) is a supervised machine learning method that utilizes
an ensemble of decision trees. It was developed based on the “bagging” concept (Breiman,
1996) and the use of random feature selection (Ho, 1995), which allows for the creation of
multiple decision trees that are distinct from one another. In RF, the output is determined
by either the mode of the classes or the average of the predicted values of the multiple trees,
depending on the task at hand (i.e., classification or regression). One of the key benefits of
RF is its ability to overcome the issue of overfitting, which is a common problem in
decision tree algorithms. Overfitting occurs when a model becomes too closely fitted to the
training data, leading to poor generalization to unseen data. RF is able to mitigate this issue
due to its use of multiple decision trees and the random feature selection process.

0001012015
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Figure 2 Major steps in data sampling, processing, and featurization. (A) Data sampling, (B) creating historical variables, (C) extracting binary
timing vectors. Full-size DOI: 10.7717/peerj-cs.1500/fig-2
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Extremely randomized trees
Extremely randomized trees (ERT) (Geurts, Ernst & Wehenkel, 2006) is a supervised
machine learning method that is designed to address both classification and regression
tasks. It is based on the principles of tree-based ensembles, and the central aspect of this
method is the significant randomization of both the attributes and the cut points used to
divide a tree node. In some cases, ERT may construct trees whose structures are entirely
random and unrelated to the output values of the training sample. The degree of
randomization can be controlled through the use of a parameter, allowing the user to
adjust the intensity of randomization as needed. ERT is known for its accuracy as well as its
improved computational speed compared to other tree-based methods such as random
forest.

Extreme gradient boosting

eXtreme Gradient Boosting (XGB) (Chen & Guestrin, 2016) is a powerful supervised
machine learning algorithm that combines the principles of gradient tree boosting
(Friedman, 2001; Mason et al., 2000) with classification and regression trees (CART)
(Steinberg & Colla, 2009). It is equipped with additional regularization options, including
L1 and L2 penalization. XGB is trained to minimize a regularized objective function that
includes a convex loss function and a penalty scoring function based on the difference
between the predicted outcomes and the true labels. Its boosting strategy involves the
successive use of random subsets of data and features, with the weight of mispredicted
classes increasing in each iteration. This method has been shown to be effective for a range
of tasks.

Gradient boosting
Gradient boosting (GB) (Friedman, 2001, 2002) is a supervised machine learning
technique that is based on the concept of improving the performance of a weak learner
through the use of an ensemble approach. It involves sequentially training weak learners
on filtered subsets of the data, with each successive learner focusing on the observations
that were not well predicted by the previous learners. GB can be applied to a variety of
tasks, including regression, multi-class classification, and other problems, by utilizing
arbitrary differentiable loss functions. It is a flexible method that can be generalized to a
wide range of situations.

Table 2 Scenarios for model development and evaluation.

Scenario No. of features Annotation

1 48 Using 1, 2,…, 48 h before prediction time as historical features

2 3 Using day of year, holiday information, and recorded hour as date features

3 51 Using both historical features and date features as combinatory features
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Model selection
To select the best-performing model for testing, we validated 12 models (created by four
learning algorithms in combination with three feature sets). Since all models were
developed using tree-based algorithms, data normalization can be bypassed. The
parameter max_depth was used for model tuning, while the other parameters were set to
default once the best model was selected. The model was selected based on mean absolute
percentage error (MAPE) and root mean squared error (RMSE).

RESULTS AND DISCUSSION
The model’s performance was evaluated using two metrics: root mean squared error
(RMSE) and mean absolute percentage error (MAPE).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ðŷi � yiÞ2
n

vuut ; (1)

MAPE ¼ 1
n

XN
i¼1

jAi � Fi
Ai

j; (2)

where n is the number of samples, ŷ is the predicted value, and y is the true value.

Model validation
Table 3 provides a comparative analysis of the performance of the 12 developed models on
the validation set. Generally, models developed using combinatory features obtain better
performances, followed by those developed with historical features and those developed
with date features only. The GB model shows better performance than other models in
scenario 2, with the smallest RMSE andMAPE values. While in scenarios 1 and 3, the XGB
models work more effectively compared to the others, the ERT models have limited

Table 3 Performance of the 12 models on the validation set.

Scenario Model Metric

RMSE MAPE

1 RF 227.76 0.50

ERT 364.06 0.96

XGB 238.02 0.47

GB 264.72 0.57

2 RF 311.39 0.78

ERT 322.48 0.70

XGB 309.35 0.72

GB 277.25 0.53

3 RF 245.76 0.28

ERT 186.54 0.37

XGB 133.56 0.21

GB 150.41 0.25
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Table 4 Performance of the tuned XGB models on the validation set.

Parameter (max_depth) Metric

RMSE MAPE

2 146.87 0.32

3 112.38 0.20

4 124.3 0.21

5 135.29 0.21

A B

C D

Figure 3 Variation in prediction error over multiple time points of test data. (A) MAPE, (B) RMSE, (C) best predicted time point, (D) worst
predicted time point. Full-size DOI: 10.7717/peerj-cs.1500/fig-3
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performance in all scenarios in terms of RMSE and MAPE. The GB models are ranked as
the second-best models in scenarios 2 and 3. The performance of RF models is not
competitive in all scenarios. The results are not surprising because the RF and ERT
algorithms share more common characteristics, while the XGB algorithm is developed
based on the concept of the GB algorithm. Based on the results, we selected the XGBmodel
developed using combinatory features as our final model for evaluation (Table 4).

Model evaluation
Figure 3 gives information on the variation of prediction error over multiple time points of
test data. The results indicate that the prediction errors show downward trends over the
testing period. The errors tend to increase when the time point’s distance to the retraining
point is large and then immediately drop once we retrain the model with updated training
data. Figures 3A and 3B visualize the changes in RMSE and MAPE over 76 time points,
where each time point represents the 14-day period with between-point distances of 1 day.
Besides, Figures 3C and 3D illustrate the performance of the best and worst predicted time
points over 336 consecutive hours. To quantify the variation of prediction error, we
computed the mean, standard deviation, and 95% confidence interval (95% CI). The RMSE
achieves a mean of 109.00 and a standard deviation of 37.07, while the MAPE obtains a
mean of 0.24 and a standard deviation of 0.08. The 95% CI values of RMSE and MAPE are
[100.47–117.52] and [0.22–0.26], respectively (Table 5).

CONCLUSIONS
The experimental results confirm the robustness and effectiveness of machine learning,
especially Extreme Gradient Boosting (XGB), in developing computational models
predicting energy use. The achieved results indicate that the XGB models work more
effectively than other tree-based models to address this issue. Also, the selection of a
suitable historical period is essential to improving model performance.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Table 5 The statistical values of metrics on the test set.

Metric Statistics

Mean Standard deviation 95% Confidence Interval

RMSE 109.00 37.07 [100.47–117.52]

MAPE 0.24 0.08 [0.22–0.26]

Han et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1500 10/14

http://dx.doi.org/10.7717/peerj-cs.1500
https://peerj.com/computer-science/


Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Jiaming Han conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Kunxin Shu performed the experiments, analyzed the data, performed the computation
work, prepared figures and/or tables, authored or reviewed drafts of the article, and
approved the final draft.

� Zhenyu Wang analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code and data are available in the Supplemental File.
The data used in this study is from Fu et al. (2022) and is available at GitHub: https://

github.com/gltzlike/DF-DQN-for-energy-consumption-prediction/tree/master/data
(accessed on 10 March 2023).

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1500#supplemental-information.

REFERENCES
Ahmad AS, Hassan MY, Abdullah MP, Rahman HA, Hussin F, Abdullah H, Saidur R. 2014. A

review on applications of ANN and SVM for building electrical energy consumption forecasting.
Renewable and Sustainable Energy Reviews 33(10):102–109 DOI 10.1016/j.rser.2014.01.069.

Azadeh A, Ghaderi SF, Sohrabkhani S. 2008. Annual electricity consumption forecasting by
neural network in high energy consuming industrial sectors. Energy Conversion and
Management 49(8):2272–2278 DOI 10.1016/j.enconman.2008.01.035.

Becerik-Gerber B, Siddiqui MK, Brilakis I, El-Anwar O, El-Gohary N, Mahfouz T, Jog GM, Li S,
Kandil AA. 2014. Civil engineering grand challenges: opportunities for data sensing,
information analysis, and knowledge discovery. Journal of Computing in Civil Engineering
28(4):04014013 DOI 10.1061/(ASCE)CP.1943-5487.0000290.

Breiman L. 1996. Bagging predictors.Machine Learning 24(2):123–140 DOI 10.1007/BF00058655.

Breiman L. 2001. Random forests. Machine Learning 45(1):5–32 DOI 10.1023/A:1010933404324.

Cai M, Pipattanasomporn M, Rahman S. 2019. Day-ahead building-level load forecasts using
deep learning vs. traditional time-series techniques. Applied Energy 236(3):1078–1088
DOI 10.1016/j.apenergy.2018.12.042.

Chen T, Guestrin C. 2016. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd
International Conference on Knowledge Discovery and Data Mining. 785–794.

China Association of Building Energy Efficiency. 2021. China building energy consumption
annual report 2020. Building Energy Efficiency 49(2):1–6.

Han et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1500 11/14

http://dx.doi.org/10.7717/peerj-cs.1500#supplemental-information
https://github.com/gltzlike/DF-DQN-for-energy-consumption-prediction/tree/master/data
https://github.com/gltzlike/DF-DQN-for-energy-consumption-prediction/tree/master/data
http://dx.doi.org/10.7717/peerj-cs.1500#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1500#supplemental-information
http://dx.doi.org/10.1016/j.rser.2014.01.069
http://dx.doi.org/10.1016/j.enconman.2008.01.035
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000290
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.apenergy.2018.12.042
http://dx.doi.org/10.7717/peerj-cs.1500
https://peerj.com/computer-science/


Conti J, Holtberg P, Diefenderfer J, LaRose A, Turnure JT, Westfall L. 2016. International
energy outlook 2016 with projections to 2040. Technical report, Office of Scientific and
Technical Information (OSTI).

Dawood N. 2019. Short-term prediction of energy consumption in demand response for blocks of
buildings: DR-BoB approach. Buildings 9(10):221 DOI 10.3390/buildings9100221.

Du Y, Zandi H, Kotevska O, Kurte K, Munk J, Amasyali K, Mckee E, Li F. 2021. Intelligent
multi-zone residential HVAC control strategy based on deep reinforcement learning. Applied
Energy 281:116117 DOI 10.1016/j.apenergy.2020.116117.

Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Annals of
Statistics 29(5):1189–1232 DOI 10.1214/aos/1013203451.

Friedman JH. 2002. Stochastic gradient boosting. Computational Statistics & Data Analysis
38(4):367–378 DOI 10.1016/S0167-9473(01)00065-2.

Fu Q, Li K, Chen J, Wang J, Lu Y, Wang Y. 2022. Building energy consumption prediction using a
deep-forest-based DQN method. Buildings 12(2):131 DOI 10.3390/buildings12020131.

Geurts P, Ernst D, Wehenkel L. 2006. Extremely randomized trees.Machine Learning 63(1):3–42
DOI 10.1007/s10994-006-6226-1.

Ho TK. 1995. Random decision forests. In: Proceedings of the 3rd International Conference on
Document Analysis and Recognition. 278–282.

Hou Z, Lian Z. 2009. An application of support vector machines in cooling load prediction. In:
International Workshop on Intelligent Systems and Applications. Piscataway: IEEE, 1–4.

Huang Z, Chen J, Fu Q, Wu H, Lu Y, Gao Z. 2020. HVAC optimal control with the multistep-
actor critic algorithm in large action spaces. Mathematical Problems in Engineering
2020(12):1–12 DOI 10.1155/2020/1386418.

Kim J, Frank S, Braun JE, Goldwasser D. 2019. Representing small commercial building faults in
energyplus, part I: model development. Buildings 9(11):233 DOI 10.3390/buildings9110233.

Lam JC, Wan KKW, Wong SL, Lam TNT. 2010. Principal component analysis and long-term
building energy simulation correlation. Energy Conversion and Management 51(1):135–139
DOI 10.1016/j.enconman.2009.09.004.

Levine S, Finn C, Darrell T, Abbeel P. 2016. End-to-end training of deep visuomotor policies. The
Journal of Machine Learning Research 17(1):1334–1373.

Li B, Li Q, Zeng Y, Rong Y, Zhang R. 2022. 3D trajectory optimization for energy-efficient UAV
communication: a control design perspective. IEEE Transactions on Wireless Communications
21(6):4579–4593 DOI 10.1109/TWC.2021.3131384.

Liu T, Tan Z, Xu C, Chen H, Li Z. 2020. Study on deep reinforcement learning techniques for
building energy consumption forecasting. Energy and Buildings 208(4):109675
DOI 10.1016/j.enbuild.2019.109675.

Liu H, Yue Y, Liu C, Spencer B, Cui J. 2023. Automatic recognition and localization of
underground pipelines in GPR B-scans using a deep learning model. Tunnelling and
Underground Space Technology 134:104861 DOI 10.1016/j.tust.2022.104861.

Long W, Xiao Z, Wang D, Jiang H, Chen J, Li Y, Alazab M. 2023. Unified spatial-temporal
neighbor attention network for dynamic traffic prediction. IEEE Transactions on Vehicular
Technology 72(2):1515–1529 DOI 10.1109/TVT.2022.3209242.

Ma Y, qi Yu J, ye Yang C, Wang L. 2010. Study on power energy consumption model for large-
scale public building. In: The 2nd International Workshop on Intelligent Systems and
Applications. Piscataway: IEEE, 1–4.

Han et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1500 12/14

http://dx.doi.org/10.3390/buildings9100221
http://dx.doi.org/10.1016/j.apenergy.2020.116117
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.3390/buildings12020131
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1155/2020/1386418
http://dx.doi.org/10.3390/buildings9110233
http://dx.doi.org/10.1016/j.enconman.2009.09.004
http://dx.doi.org/10.1109/TWC.2021.3131384
http://dx.doi.org/10.1016/j.enbuild.2019.109675
http://dx.doi.org/10.1016/j.tust.2022.104861
http://dx.doi.org/10.1109/TVT.2022.3209242
http://dx.doi.org/10.7717/peerj-cs.1500
https://peerj.com/computer-science/


Mason L, Baxter J, Bartlett PL, Frean MR. 2000. Boosting algorithms as gradient descent. In:
Advances in Neural Information Processing Systems. 512–518.

Min Y, Chen Y, Yang H. 2019. A statistical modeling approach on the performance prediction of
indirect evaporative cooling energy recovery systems. Applied Energy 255:113832
DOI 10.1016/j.apenergy.2019.113832.

Min C, Pan Y, Dai W, Kawsar I, Li Z,Wang G. 2023. Trajectory optimization of an electric vehicle
with minimum energy consumption using inverse dynamics model and servo constraints.
Mechanism and Machine Theory 181(9):105185 DOI 10.1016/j.mechmachtheory.2022.105185.

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M,
Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D. 2015. Human-level control through deep reinforcement
learning. Nature 518(7540):529–533 DOI 10.1038/nature14236.

Moghadam ST, Delmastro C, Corgnati SP, Lombardi P. 2017. Urban energy planning procedure
for sustainable development in the built environment: a review of available spatial approaches.
Journal of Cleaner Production 165(S):811–827 DOI 10.1016/j.jclepro.2017.07.142.

Nora KA, El-Gohary M. 2018. A review of data-driven building energy consumption prediction
studies. Renewable and Sustainable Energy Reviews 81:1192–1205
DOI 10.1016/j.rser.2017.04.095.

Ozcan A, Catal C, Donmez E, Senturk B. 2021. A hybrid DNN–LSTM model for detecting
phishing URLs. Neural Computing and Applications 35(5):1–17
DOI 10.1007/s00521-021-06401-z.

Ozcan A, Catal C, Kasif A. 2021. Energy load forecasting using a dual-stage attention-based
recurrent neural network. Sensors 21(21):7115 DOI 10.3390/s21217115.

Ren Y, Jiang H, Ji N, Yu H. 2022. TBSM: a traffic burst-sensitive model for short-term prediction
under special events. Knowledge-Based Systems 240:108120 DOI 10.1016/j.knosys.2022.108120.

Sallab AEL, Abdou M, Perot E, Yogamani S. 2017. Deep reinforcement learning framework for
autonomous driving. Electronic Imaging 2017(19):70–76
DOI 10.2352/ISSN.2470-1173.2017.19.AVM-023.

Steinberg D, Colla P. 2009. CART: classification and regression trees. Vol. 9. New York, NY: CRC
Press.

Sun R, Fu L, Cheng Q, Chiang KW, Chen W. 2023c. Resilient pseudorange error prediction and
correction for GNSS positioning in urban areas. IEEE Internet of Things Journal 10(11):9979–
9988 DOI 10.1109/JIOT.2023.3235483.

Sun L, Liang J, Zhang C, Wu D, Zhang Y. 2023a. Meta-transfer metric learning for time series
classification in 6G-supported intelligent transportation systems. IEEE Transactions on
Intelligent Transportation Systems 1–11 DOI 10.1109/TITS.2023.3250962.

Sun L, Zhang M, Wang B, Tiwari P. 2023b. Few-shot class-incremental learning for medical time
series classification. IEEE Journal of Biomedical and Health Informatics 1–11
DOI 10.1109/JBHI.2023.3247861.

Tian C, Li C, Zhang G, Lv Y. 2019.Data driven parallel prediction of building energy consumption
using generative adversarial nets. Energy and Buildings 186(6):230–243
DOI 10.1016/j.enbuild.2019.01.034.

Tso GKF, Yau KKW. 2007. Predicting electricity energy consumption: a comparison of regression
analysis, decision tree and neural networks. Energy 32(9):1761–1768
DOI 10.1016/j.energy.2006.11.010.

Han et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1500 13/14

http://dx.doi.org/10.1016/j.apenergy.2019.113832
http://dx.doi.org/10.1016/j.mechmachtheory.2022.105185
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1016/j.jclepro.2017.07.142
http://dx.doi.org/10.1016/j.rser.2017.04.095
http://dx.doi.org/10.1007/s00521-021-06401-z
http://dx.doi.org/10.3390/s21217115
http://dx.doi.org/10.1016/j.knosys.2022.108120
http://dx.doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
http://dx.doi.org/10.1109/JIOT.2023.3235483
http://dx.doi.org/10.1109/TITS.2023.3250962
http://dx.doi.org/10.1109/JBHI.2023.3247861
http://dx.doi.org/10.1016/j.enbuild.2019.01.034
http://dx.doi.org/10.1016/j.energy.2006.11.010
http://dx.doi.org/10.7717/peerj-cs.1500
https://peerj.com/computer-science/


Wang S, Hu X, Sun J, Liu J. 2023. Hyperspectral anomaly detection using ensemble and robust
collaborative representation. Information Sciences 624(3):748–760
DOI 10.1016/j.ins.2022.12.096.

Wang S, Xu X. 2006. Simplified building model for transient thermal performance estimation
using GA-based parameter identification. International Journal of Thermal Sciences
45(4):419–432 DOI 10.1016/j.ijthermalsci.2005.06.009.

Wei T, Wang Y, Zhu Q. 2017. Deep reinforcement learning for building HVAC control. In:
Proceedings of the 54th Annual Design Automation Conference. 1–6.

Wei Y, Zhang X, Shi Y, Xia L, Pan S, Wu J, Han M, Zhao X. 2018. A review of data-driven
approaches for prediction and classification of building energy consumption. Renewable and
Sustainable Energy Reviews 82(3):1027–1047 DOI 10.1016/j.rser.2017.09.108.

Yao R, Steemers K. 2005. A method of formulating energy load profile for domestic buildings in
the UK. Energy and Buildings 37(6):663–671 DOI 10.1016/j.enbuild.2004.09.007.

Zhang Z, Li W, Yang J. 2021. Analysis of stochastic process to model safety risk in construction
industry. Journal of Civil Engineering and Management 27(2):87–99
DOI 10.3846/jcem.2021.14108.

Zhao H, Magoulès F. 2012. A review on the prediction of building energy consumption. Renewable
and Sustainable Energy Reviews 16(6):3586–3592 DOI 10.1016/j.rser.2012.02.049.

Han et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1500 14/14

http://dx.doi.org/10.1016/j.ins.2022.12.096
http://dx.doi.org/10.1016/j.ijthermalsci.2005.06.009
http://dx.doi.org/10.1016/j.rser.2017.09.108
http://dx.doi.org/10.1016/j.enbuild.2004.09.007
http://dx.doi.org/10.3846/jcem.2021.14108
http://dx.doi.org/10.1016/j.rser.2012.02.049
http://dx.doi.org/10.7717/peerj-cs.1500
https://peerj.com/computer-science/

	Predicting energy use in construction using Extreme Gradient Boosting
	Introduction
	Materials and Methods
	Results and discussion
	Conclusions
	flink5
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


