
Quantum-effective exact multiple patterns
matching algorithms for biological
sequences
Kapil Kumar Soni and Akhtar Rasool

Department of Computer Science and Engineering, Maulana Azad National Institute of
Technology, Bhopal, Madhya Pradesh, India

ABSTRACT
This article presents efficient quantum solutions for exact multiple pattern matching
to process the biological sequences. The classical solution takes Ο(mN) time for
matching m patterns over N sized text database. The quantum search mechanism
is a core for pattern matching, as this reduces time complexity and achieves
computational speedup. Few quantum methods are available for multiple pattern
matching, which executes search oracle for each pattern in successive iterations. Such
solutions are likely acceptable because of classical equivalent quantum designs.
However, these methods are constrained with the inclusion of multiplicative factor m
in their complexities. An optimal quantum design is to execute multiple search oracle
in parallel on the quantum processing unit with a single-core that completely
removes the multiplicative factor m, however, this method is impractical to design.
We have no effective quantum solutions to process multiple patterns at present.
Therefore, we propose quantum algorithms using quantum processing unit with C
quantum cores working on shared quantum memory. This quantum parallel design
would be effective for searching all t exact occurrences of each pattern. To our
knowledge, no attempts have been made to design multiple pattern matching
algorithms on quantum multicore processor. Thus, some quantum remarkable
exact single pattern matching algorithms are enhanced here with their equivalent
versions, namely enhanced quantum memory processing based exact algorithm and
enhanced quantum-based combined exact algorithm for multiple pattern matching.
Our quantum solutions find all t exact occurrences of each pattern inside the
biological sequence in Oððm=CÞ ffiffiffiffi

N
p Þ and Oððm=CÞ ffiffi

t
p Þ time complexities. This

article shows the hybrid simulation of quantum algorithms to validate quantum
solutions. Our theoretical–experimental results justify the significant improvements
that these algorithms outperform over the existing classical solutions and are proven
effective in quantum counterparts.

Subjects Bioinformatics, Computational Biology, Algorithms and Analysis of Algorithms,
Quantum Computing
Keywords Quantum algorithms, Biological sequences, Grover’s quantum search, Quantum
memory, Quantum exact multiple pattern matching

INTRODUCTION
The exact multiple pattern matching problem is to find a bijective mapping for m patterns
within the text sequence database. Searching for the multiple string patterns would be
more practical while processing large biological sequence databases (Basel, 2006;

How to cite this article Soni KK, Rasool A. 2022. Quantum-effective exact multiple patterns matching algorithms for biological sequences.
PeerJ Comput. Sci. 8:e957 DOI 10.7717/peerj-cs.957

Submitted 29 July 2021
Accepted 1 April 2022
Published 12 May 2022

Corresponding author
Kapil Kumar Soni,
prof.kapilsoni@gmail.com

Academic editor
Siddhartha Bhattacharyya

Additional Information and
Declarations can be found on
page 51

DOI 10.7717/peerj-cs.957

Copyright
2022 Soni and Rasool

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.957
mailto:prof.�kapilsoni@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.957
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Neamatollahi, 2020). The search of multiple nucleotides or amino acid patterns is
necessary within the genome, protein and other biological sequences for a significant
purpose (Charalampos, Panagiotis & Konstantinos, 2011). For example, we know that
proteogenomics mapping uses proteomics data for DNA or genome annotation. This
mapping matches peptide or protein patterns within the proteomics data through the
mass spectrometry analysis against the target genome for identifying all locations of
genes with coding regions (Choo, 2006; Fredriksson, 2009). Therefore, this processing
demands a compatible and efficient solution to search for multiple patterns belonging to
P ¼ P1; :; Pk; :; Pmf g with Pj j ¼ m. Each pattern Pk 1 � k � mð Þ of independent length
Mk ¼ 0 to Mk � 1½ � is searched within the large-sized text sequence T of length
N ¼ 0 to N � 1½ �. Both M and N belongs to the alphabet set � such that N � M, and t
number of pattern occurrences is possible to search between index positions 0 and N −M.
Now, specific to biological sequence processing, we usually prefer thesem patterns with the
same length. Certainly, the set P contains multiple patterns, although, the restricted
singleton set Pj j ¼ 1 allows us to search P as a single pattern (Charalampos, Panagiotis &
Konstantinos, 2011; Faro & Lecroq, 2013; Zhang et al., 2015; Hendrian et al., 2019; Hakak
& Kamsin, 2019).

The biological sequence database contains N sized text with exponential factors of
gigabytes, terabytes or more. For single pattern matching, the classical solution scans these
databases in directional sequence on the main memory (Sheik, Aggarwal & Anindya
Poddar, 2004; Kalsi, Peltola & Tarhio, 2008; Rivals, Salmela & Tarhio, 2011). The search
time is still bound to O(N) or the complete scan of text to find all the t occurrences
of P Pj j ¼ 1ð Þ; however, for the exponentially large value of N, the problem is
computationally hard. Thus, we clarify that the time of pattern search increases in
proportion to the size of text database, so fast searching techniques are expected. A classical
method for the multiple pattern matching takes O(mN) time complexity due to repeated
scanning of N sized text database for m patterns (Fredriksson, 2009; Charalampos,
Panagiotis & Konstantinos, 2011). In contrast, the quantum search takes O

ffiffiffiffi
N
p� �

time
(Nielsen & Chuang, 2010); therefore, a quadratic speedup is possible, and such acceleration
is expected in quantum pattern matching (Soni & Rasool, 2020). Since the existence of
problem, solutions have been suggesting through modified algorithms.

The objective is to suggest effective pattern matching algorithm with better performance
than others and to set itself as a benchmark solution. We seek technology-based solutions;
therefore, effective quantum-based algorithms are expected for multiple pattern matching.
Some quantum-based exact single pattern matching algorithms are enhanced here for
their equivalent multiple pattern matching versions (Soni & Rasool, 2021). Our methods
remove existing multiple pattern matching constraints (Soni & Malviya, 2021) and realize
the effective quantum-based solutions by scanning the text database in the uniform
superposition of quantum memory (QMEM) (Giovannetti, Lloyd & Maccone, 2008;
Nielsen & Chuang, 2010). Therefore, based on the advantage of quantum processing unit
(QPU) having C quantum cores 1 � c � Cð Þ (Metodi, 2011; Lin et al., 2013; Fu et al., 2016;
Britt, 2017; Brandl, 2017), we propose our algorithms to match m patterns using the
quantum-exact match (QEM) circuit (Sena Oliveira, Benicio Melo de Sousa & Viana

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 2/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

Ramos, 2007; Soni & Rasool, 2021) and quantum Grover’s search operator (GSO)
mechanism (Nielsen & Chuang, 2010; Chakrabarty, Khan & Singh, 2017).

Significance of processing biological sequences
For processing the biological sequence databases, exact matches are always preferred
with accurate matching outcomes. The nucleotide and amino acid patterns are used to
locate within genome, protein and other biological sequences for different purposes (Jiang,
Zhang & Zhang, 2013; Singh, 2015). The size of DNA or RNA alphabet set is �j j ¼ 4,
and coded adjacent triplet of nucleotide characters which forms amino acid with the set
size �j j ¼ 20. The biological sequence databases are excessively large, so multiple string
patterns should be effectively processed. Multiple pattern matching aims to identify all
locations of m patterns within the sequence databases in a single scan. The searching of
DNA pattern within nucleotide sequence helps us to identify, compare and align the
sequences as well as to analyze mutations (Faro & Lecroq, 2009; Tahir, Sardaraz & Ikram,
2017; Raja & Srinivasulu Reddy, 2019). However, different nucleotides can code to similar
proteins, so protein databases are searched for similarity checks.

An exact multiple pattern matching has more practical applications in computational
biology, such as sequence alignments, motif finding, read mapping in gene and genome,
substring matching, proteogenomics mapping, overlap detection, codon matching, etc.
Thus, the problem is intentionally assumed here to search for the exact occurrences of the
patterns (Kalsi, Peltola & Tarhio, 2008; Charalampos, Panagiotis & Konstantinos, 2011;
Rivals, Salmela & Tarhio, 2011). There exists an impact of processing large sequences
through the efficient algorithm, hence quantum algorithms are made suitable to
process biological sequence applications. We search for multiple patterns set
P ¼ P1; :; Pk; :; Pmf g with implicit consideration of processing singleton pattern set to find
all t exact occurrence of single nucleotide patterns in gene and genome databases, or
multiple nucleotide patterns to confirm the presence of amino acid within the peptide and
protein sequences (Singh, 2015; Hakak & Kamsin, 2019). Later, in “proposed algorithmic
applications to process biological sequences”, we define several applications of our
quantum algorithms which are related to searching multiple patterns within the biological
sequence databases. For a more comprehensive understanding to process the biological
sequences, review these referenced articles (Sheik, Aggarwal & Anindya Poddar, 2004;
Basel, 2006; Choo, 2006; Kalsi, Peltola & Tarhio, 2008; Fredriksson, 2009; Charalampos,
Panagiotis & Konstantinos, 2011; Rivals, Salmela & Tarhio, 2011; Faro & Lecroq, 2013;
Jiang, Zhang & Zhang, 2013; Singh, 2015; Zhang et al., 2015; Tahir, Sardaraz & Ikram,
2017; Hakak & Kamsin, 2019; Neamatollahi, 2020; Soni & Rasool, 2021; Soni & Malviya,
2021; Raja & Srinivasulu Reddy, 2019).

Motivation and contribution of work
The quantum machine can achieve computational speedups because of implicit
parallelism. It needs O(1), i.e. constant execution step to realize an exponential number of
operations (Nielsen & Chuang, 2010). We assume a problem of pattern matching as hard
when the size of text database N ¼ 2n is excessively large as gigabytes (230), terabytes (240)

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 3/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

or more (Kalsi, Peltola & Tarhio, 2008; Neamatollahi, 2020). So, instead of classical, the
quantum pattern search takes reduced O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ¼ 2n
p� �

time (Menon & Chattopadhyay,
2021). An existing quantum pattern matching solution achieved speedups over classical
complexities (Ramesh & Vinay, 2003; De Jesus, Aborot & Adorna, 2013; Aborot, 2017; Soni
& Rasool, 2021); however, the benchmark methods are constrained to find a single pattern,
and the quantum multiple pattern matching is found ineffective because of executing
multiple search oracles in successive iterations and it includes multiplicative factorm (Soni
& Malviya, 2021).

The optimal quantum design may execute multiple search oracle in parallel on QPU
with single-core to remove completely such factorm, however, this is impractical to design.
We seek exact solutions of pattern matching with more applicability in computational
biology. Thus, the available quantum benchmark algorithms QPBE and QBCE are
enhanced here, with the names, enhanced QMEM processing-based exact algorithm
(EnQPBEA-MPM) and enhanced quantum-based combined exact algorithm (EnQBCEA-
MPM) for multiple pattern matching. The design of algorithms is based on processing
effectiveness of QPU having C quantum cores and each core shares the text T on QMEM.
So, to find all the t exact occurrences of each pattern, the search time complexities of the
proposed algorithms are O m=Cð Þ ffiffiffiffi

N
p� �

and O m=Cð Þ ffiffi
t
p� �

.
Our motivation is to search for all exact occurrences ofm patterns either by direct use of

effective quantum processing framework over original text sequence database T in O
ffiffiffiffi
N
p� �

queries or by transforming approximate filtering outcome into exactness over reduced
search space in O

ffiffi
t
p� �

queries. The algorithms are based inherently on Grover’s search
operator (GSO). We use QMEM to explore the text of size N ¼ 2n such that, the entire text
search space is accessed in parallel in Ο(1) time, but memory word access needs O log2N

� �
steps (Park & Petruccione, 2019;Matteo, 2020; Soni et al., 2020). A new quantum circuit of
Ο(1) time is proposed for exact match between pattern P and substring of T of size M,
whereas classical comparison takes Ο(M) time (Sena Oliveira, Benicio Melo de Sousa &
Viana Ramos, 2007; De Jesus, Aborot & Adorna, 2013; Soni & Rasool, 2021). Thus, we
initiate quantum-effective algorithms with a context of exponential increase in biological
text size. The proposed work of this article is organized as per Fig. 1, and we derive our
results by giving the proofs of Theorem 1 and Theorem 2 in the proposed methods section.

Figure 1 Organization of quantum-based effective multiple pattern matching algorithms.
Full-size DOI: 10.7717/peerj-cs.957/fig-1

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 4/55

http://dx.doi.org/10.7717/peerj-cs.957/fig-1
http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

This article presents our main contribution as the effective quantum design of multiple
patterns matching algorithms which are proved mathematically along with their
simulations. We outline our work below to achieve objectives in a streamlined manner
throughout this article:

� We realize the effective quantum processing framework by using QPU with C quantum
cores which access quantum processing circuit of equivalent QMEM procedure. It
achieves the quantum-based computational and processing speedups. We also
proposed, a new constant time, quantum exact match (QEM) circuit which is utilized
implicitly under GSO iterations.

� We justify our proposed quantum algorithms using complexities analysis, and specific
quantum proving techniques such as probabilistic, truthness and correctness proofs.

� The future works of Soni & Rasool (2021) are presented here as enhanced solutions. Our
proposed algorithms EnQPBEA-MPM and EnQBCEA-MPM are proved to search for
all t exact occurrence of m patterns with effective time O m=Cð Þ ffiffiffiffi

N
p� �

and

O m=Cð Þ ffiffi
t
p� �

.

� For a single pattern search, the proposed algorithms EnQPBEA-MPM and EnQBCEA-
MPM can simulate the QMEM processing based enhanced designs of QPBE & QBCE
algorithms (Soni & Rasool, 2021).

� A factor m=Cð Þ is proved negligible for a small arbitrary constant value of m and
constant value of C as the QPU with C quantum cores utilizing their own set of quantum
registers for searching m m=Cð Þ is included explicitly in the time complexities for
considering m� Cð Þ as the worst case.
� The quantum operations of proposed algorithms are proved equivalent to their
quantum circuits. These circuits are the actual realization of quantum solutions.
Quantum query, time and storage complexities of proposed algorithms justify their
effectiveness.

� Based on several complexity analysis factors, we prove our proposed solutions as
efficient to find exact patterns, and these remove the existing multiple pattern matching
constraint (Soni & Malviya, 2021) as designs of QEMP and QAMP cannot exclude
multiplicative factor m.

� Our proposed quantum algorithms are simulated for validation through the quantum
exact simulation toolkit (QuEST). Also, we proposed a quantum circuit implementation
of QMEM through algebraic normal form (ANF). The intentions are not to analyze
the efficiency of the simulation due to classical machine restrictions; therefore, we do the
hybrid implementation.

� We validate our results using QuEST simulation by assuming that t number of search
solutions, either unique or multiple solution, are already known. To realize the case
in which the value of t is unknown, we use quantum counting (QC) additionally to
validate the search results of our proposed EnQPBEA-MPM and EnQBCEA-MPM
algorithms.

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 5/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

� We suggest several applications of EnQPBEA-MPM and EnQBCEA-MPM for
processing biological sequences. Such applicability of these algorithms is specified with
respect to significant characteristics and performance restrictions.

The abbreviated names used throughout the text are available in Table A1
(Appendix A). The nomenclature used in this article is a prerequisite for further reading
purpose, therefore refer to Table B1 (Appendix B). The individual correctness proofs
of algorithms EnQPBEA-MPM and EnQBCEA-MPM are separately included in
Appendix C and Appendix D. A correctness proof shows algorithmic trace steps which
expands the applied quantum operations.

RELATED WORK
Prior work and the important findings
In classical findings, earlier exact multiple patterns matching solutions were proposed as
the enhanced version of Knuth–Morris–Pratt (KMP) and Boyer–Moore (BM) algorithms.
Both these multiple patterns matching solutions are available in Ο(mM) time for
pattern pre-processing, and searching takes Ο(mN) (Zhang et al., 2015; Soni & Malviya,
2021). Based on these proposals, other existing algorithms are categorized for multiple
pattern matching. There exist several multiple patterns matching methods, few are
highlighted with their complexities. Aho–Corasick (AC) is the automata based prefix
algorithm that works on KMP logic in O mþ Nð Þ time complexity. Commentz–Walter
(CW) as a suffix algorithm, extending BM with possible variants, takes Ο(m(NM))
time in worst case. Multiple Pattern Backward DAWG (BDM) and Backward Set Oracle
Matching (BSOM) are the factor or substring search-based algorithms which run in

O N log �j j mMð Þ=M
� �� �

time (Charalampos, Panagiotis & Konstantinos, 2011; Faro &

Lecroq, 2013). Instead, BSOM is a faster method; however, this needs extra space
complexity of O mM �j jð Þ and verification through the AC algorithm. Wu–Manber (WM)
is hashing based algorithm works for a large number of patterns search in O N M=wd eð Þð Þ
time, where w is number of bits in word size. Shift-OR (SO), Shift-AND (SA), and
Backward Non-Deterministic DAWG (BNDM)Matching methods perform bits operation
through intrinsic parallelism to realize solutions for multiple patterns matching in

O m Nlog �j j wð Þ=w
� �� �

average time complexity (Fredriksson, 2009; Hendrian et al.,

2019). The performance of these algorithms is dependent on �j j, size of text database
Tj j ¼ N , number of patterns |P| = m and each pattern Pk with varying length
Mk ¼ 0 to Mk � 1½ �. We noted that the multiplicative factor m is somehow included in
time complexities of the classical algorithms. Among all the algorithms, AC has significant
applications in biological sequence processing. However, AC requires large memory to
store the automata, and hence it is constrained to process large patterns set. This algorithm
induces competitive results on the small-sized �j j and Pj j ¼ m with each pattern Pk of
short length Mk (Fredriksson, 2009; Charalampos, Panagiotis & Konstantinos, 2011;
Faro & Lecroq, 2013; Zhang et al., 2015; Hendrian et al., 2019; Soni & Malviya, 2021).

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 6/55

http://dx.doi.org/10.7717/peerj-cs.957/supp-1
http://dx.doi.org/10.7717/peerj-cs.957/supp-2
http://dx.doi.org/10.7717/peerj-cs.957/supp-3
http://dx.doi.org/10.7717/peerj-cs.957/supp-4
http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

There exist few solutions for quantum pattern matching with the advantage of using
amplitude amplification of Grover’s search (GSO). This method finds search results
over N-sized text in O

ffiffiffiffi
N
p� �

steps with high probability, and it is better than the classical
linear search time Ο(N) (Lanzogorta & Uhlmann, 2008; Zhou et al., 2013; Coles, 2020).
Few single and multiple patterns matching schemes are available in the quantum.
Single pattern matching was initiated by Ramesh–Vinay (RV) through the quantum
deterministic sampling method; however, the suggested solution needs O

ffiffiffiffiffi
M
p þ ffiffiffiffi

N
p� �

time by including the pre-processing and searching (Ramesh & Vinay, 2003; Montanaro,
2017; Menon & Chattopadhyay, 2021). The method quantum approximate pattern
matching (QAPM) filters the text for searching a pattern over reduced indices, and it
needs O t þ ffiffi

t
p� �

(Aborot, 2017). A basic solution of quantum exact pattern matching
(QEPM) finds exact leftmost occurrence of the pattern inO

ffiffiffiffi
N
p� �

time (De Jesus, Aborot &
Adorna, 2013). The

ffiffi
t
p

time search is relatively better than
ffiffiffiffi
N
p

solution; however, QAPM
finds approximate pattern match, and QEPM is constrained to search single pattern
occurrence (De Jesus, Aborot & Adorna, 2013; Aborot, 2017).

Recent advancements of these algorithms are presented by extending the logic of QEPM
or combining the methods of QEPM and QAPM for effective exact matching design.
A suggested QMEM processing based exact (QPBE) algorithm is efficient to process large
text sequences and this also overcomes the constraint of QEPM method by finding all t
exact occurrences of search pattern in O

ffiffiffiffiffi
Nt
p� �

time (Soni & Rasool, 2021). However,
the quantum-based combined exact (QBCE) algorithm replaces approximations of the
QAPM method with exact matches. This also reduces implicit quantum circuit depth to
explore the text during pattern search with logarithmic factors. The desired search time of
all t exact occurrence of search pattern is O

ffiffi
t
p� �

(Soni & Rasool, 2021). Both these
extended solutions are remarkable; however, no attempt has been made yet to design
QPBE and QBCE algorithms to process multiple patterns, which are highly expected in
biological sequence processing. As well as, the design of QBCE is not available under the
specific processing of QMEM (Soni & Rasool, 2021). For quantum multiple pattern
matching, initial solutions were suggested as an extension to QEPM and QAPM methods.
Soni & Malviya (2021) suggested multiple pattern algorithms, renamed here as quantum
exact multiple pattern (QEMP) algorithm to search for either the single occurrence or
all t occurrence of m patterns within time complexities range O m

ffiffiffiffi
N
p� �

and O m
ffiffiffiffiffi
Nt
p� �

.
Rather, renamed quantum approximate multiple pattern (QAMP) search for solution with
suggested O m t þ ffiffi

t
p� �� �

time. Such algorithms search for the equal and unequal sized
patterns in successive iterations, and this includes multiplicative factor m in time
complexities. Thus, search solution for multiple pattern algorithms is not effective (Soni &
Malviya, 2021).

We are providing the brief description of algorithms QEPM & QAPM, QPBE & QBCE,
and QEMP & QAMP from the next subsection onward. As per the reviewed analysis
of algorithms, the qubits estimations and algorithmic complexities analysis are also
included separately.

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 7/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

Quantum exact pattern matching (QEPM) and quantum approximate
pattern matching (QAPM) algorithms
The QEPM method is based on the design of an oracle that performs parallel matching
under the quantum superposition by aligning comparison window between pattern and
text substring to search for a leftmost exact occurrence of pattern. In O

ffiffiffiffi
N
p� �

queries,
oracle inverts the leftmost index to report pattern match solution with high probability.
The algorithm uses GSO and assures O

ffiffiffiffi
N
p

log2N
� �

search time complexity. Table 1
shows that the method is constrained to find a single t ¼ 1ð Þ occurrence of pattern, and
qubits estimation is the same as quantum search algorithm (De Jesus, Aborot & Adorna,
2013). The algorithm QAPM applies hamming distance (HD) method for approximate
text filtering and matching. It cannot find accurate results as HD is an error model and
allow replacement at unit cost. A pattern is reported when HD � Threshold (pre-
computed). A QAPM needs more storage as it uses a large number of quantum registers
with excessive qubits requirement (Aborot, 2017); see Table 1. However, this searches all
occurrences with O

ffiffi
t
p� �

queries. Additional indices may filter using HD, and this
increases the size of filtered text, and even HD based verification generates search results
with approximation. A filtering needs O tlog2N

� �
time to find all t filtered indices, then

verification matches the t0 approximate occurrences of pattern through registers
comparison, and

ffiffi
t
p

calls of GSO, in the O
ffiffiffiffiffi
tt0
p

log2N
� �

and O tlog2N
� �

time (Aborot,
2017).

QMEM processing based exact (QPBE) and quantum-based combined
exact (QBCE) pattern matching algorithms
The recently proposed algorithms, QPBE and QBCE, are efficient to process the large text
sequences. These also overcome the constraints of QEPM and QAPM methods (Soni &
Rasool, 2021). The QPBE design is realized efficiently under the superposition of text
indices on a quantum memory, and it finds all t exact occurrences of search
pattern in O

ffiffiffiffiffi
Nt
p� �

time. However, the QBCE algorithm replaces pattern matching
approximations with exact matches. It also reduces implicit quantum circuit depth to
explore the text during pattern search with the logarithmic factor. A search time for all t0

exact occurrences over the reduced text of size t is O
ffiffiffiffiffi
tt0
p� �

. Both these methods were
proposed with significant aspects to process the specific biological sequences. A query
remains the same as existing methods, rather the best & worst time complexity of QPBE
is O

ffiffiffiffiffi
Nt
p

log2N
� �

& O Nlog2N
� �

, and QBCE time complexity is ranging between

O
ffiffiffiffiffi
tt0
p

log2t
� �

and O tlog2t
� �

time. The search oracle for an exact pattern match is found

Table 1 Analysis of algorithmic complexities QEPM and QAPM algorithms with qubits estimation.

Quantum
algorithm

Matching
occurrence

Pre-processing
complexity

Existing quantum pattern searching time complexity Storage complexity
(qubits estimation)

Query Best time Worst time Generalized

QEPM Single No Filtering O
ffiffiffiffi
N
p� �

O
ffiffiffiffi
N
p

log2N
� �

O
ffiffiffiffi
N
p

log2N
� �

O
ffiffiffiffi
N
p� �

O nþMlog2 �j j
� �

QAPM All O tlog2N
� �

O
ffiffiffiffiffi
tt0
p� �

O
ffiffiffiffiffi
tt0
p

log2N
� �

O tlog2N
� �

O
ffiffi
t
p� �

O nþMlog2 �j j þ log �j jM þM
� �

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 8/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

efficient. As we reviewed, the storage complexity of QPBE is same as the existing QEPM
algorithm. The QBCE remarkably reduces the storage while comparing with the excessive
qubits requirement of pattern verification used in the existing QAPM method. All the
required complexity analysis detail of these algorithms are included in Table 2 for quick
reference (Soni & Rasool, 2021).

Quantum exact multiple pattern (QEMP) and quantum approximate
multiple pattern (QAMP) matching algorithms
There are varieties of solutions proposed for the first time on quantum multiple pattern
matching. However, the design of such algorithms is based on the execution of search
oracle in successive iterations. So for different pattern sizes, it is iteratively called for
finding all t occurrence of each pattern Pk. Due to this direct possible design, Table 3 shows
that a multiplicative factor (m) is included in the complexities of algorithms (Soni &
Malviya, 2021). The authors categorized multiple patterns matching methods as exact and
approximate with quantum memory processing based design. Search complexity of
suggested QEMP algorithm to find t occurrence of each Pk ranges between

O mð Þ ffiffiffiffiffi
Nt
p

log2N
� �� �

and O mð Þ Nlog2N
� �� �

. In contrast, the QAMP method uses

approximate filtering in O m tlog2N
� �� �

time to find t filtered indices for each Pk. Further,
the iterative search time for each Pk to search all t0 occurrences of reduced text of size t,
ranges between O m

ffiffiffiffiffi
tt0
p

log2N
� �� �

and O m tlog2N
� �� �

. Both these methods are not
increasing storage complexity because of iterative executions; and reasonably, the
multiplicative factor m is included. Still, there exist high qubits requirement in the QAMP
algorithm (see Table 3). The time of quantummemory O Nlog2N

� �
is considered explicitly

due to no such physical availability. These algorithms were suggested to process biological
sequences. For the detailed design and analysis of these methods, refer to Soni & Malviya
(2021).

Table 2 Analysis of algorithmic complexities QPBE and QBCE algorithms with qubits estimation.

Quantum
algorithm

Matching
occurrence

Pre-processing
complexity

Existing quantum pattern searching time complexity Storage complexity (qubits estimation)

Query Best time Worst time Generalized

QPBE All NoFiltering O
ffiffiffiffi
N
p� �

O
ffiffiffiffiffi
Nt
p

log2N
� �

O Nlog2N
� �

O
ffiffiffiffi
N
p� �

O nþMlog2 �j j
� �

QBCE All O tlog2N
� �

O
ffiffiffiffiffi
tt0
p� �

O
ffiffiffiffiffi
tt0
p

log2t
� �

O tlog2t
� �

O
ffiffi
t
p� �

O nþMlog2 �j j þ log2t
� �

Table 3 Analysis of algorithmic complexities QEMP and QAMP algorithms with qubits estimation.

Quantum
algorithm

Matching
occurrence

Pre-processing
complexity

Existing quantum pattern searching time complexity Storage complexity
(qubits estimation)

Query Best time Worst time Generalized

QEMP Single No Filtering O m
ffiffiffiffi
N
p� �

O m
ffiffiffiffi
N
p

log2N
� �� �

O m
ffiffiffiffi
N
p

log2N
� �� �

O m
ffiffiffiffi
N
p� �� �

O nþMlog2 �j j
� �

All No Filtering O m
ffiffiffiffiffi
Nt
p� �

O m
ffiffiffiffiffi
Nt
p

log2N
� �� �

O m Nlog2N
� �� �

O m
ffiffiffiffi
N
p� �� �

O nþMlog2 �j j
� �

QAMP All O m tlog2N
� �� �

O m
ffiffiffiffiffi
tt0
p� �

O m
ffiffiffiffiffi
tt0
p

log2N
� �� �

O m tlog2N
� �� �

O m
ffiffi
t
p� �� �

O nþMlog2 �j j þ log �j jM þM
� �

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 9/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

QUANTUM ALGORITHMIC FRAMEWORK
Quantum operational framework used in the algorithmic design
Quantum algorithms based on superposition can perform exponential operations in
parallel. The quantum behavior realizes qubit presence as j0i and j1i at same time. A jwi is
a column vector, represents superposition, and hwj is a row vector; usually, Bra-Ket
notation wjwh i is inner product. An n qubits quantum register jqii qi 2 0; 1f gnð Þ spans
the tensor product of 2n dimension as Hilbert space. So, the computational basis is formed
as wnj i ¼ a0 0j iþ . . .þai ij iþ . . .þa2n�1 2n�1j i to realize superposition under n
dimensional vector space with complex probability amplitudes. Quantum registers can
entangle with each other. A measurement collapses superposition into classical states jii
between j0i to j2n � 1i with probability aij j2 such that

P
i2 0;1f g2 aij j2 ¼ 1. To visualize

such n qubits superposition with the required dimensions, refer to these article for the
Bloch sphere model (Choo, 2006; Lanzogorta & Uhlmann, 2008; Nielsen & Chuang, 2010;
Coles, 2020; Soni & Rasool, 2020).

Qubits remain in a pure state (vectors), but a quantum gate operator transforms n
qubits into 2n � 2n sized mixed state (density matrix). The outer product of vectors is
obtained as jwihwj because quantum unitary gate U applies certain operations within
superposition to transform the quantum state. A Uy is a conjugate transpose of U that
performs the reverse quantum operation, such that UUy ¼ I holds. Quantum logic
operations such as [H] creates superposition, Paulimatrices X;Y;Z½ � obtains any rotation
on Bloch sphere, Rx hð Þ;Ry hð Þ;Rz hð Þ� �

applies rotation with angle h as unitary operation.
Some required controlled operations are CnNOT or CnX½ � which flips the target qubit
and CnZ½ � flips the phase of target, when n control qubits are set to 1. The unitary operators
encode to perform specific operations under quantum superposition. Refer to Table B1
(Appendix B) for symbols and used unitary operators throughout this article, and for more
comprehensive understanding of quantum operations, refer to the following articles
(Lanzogorta & Uhlmann, 2008; Nielsen & Chuang, 2010; Coles, 2020; Soni & Rasool, 2021;
Soni & Malviya, 2021).

Methodology and framework used for quantum algorithm analysis
Our analysis framework for the quantum algorithm is oriented toward quantum-based
proof methods. So, we categorized the proofs with their specialized point of interest with
their additive use in the quantum algorithmic analysis. We provide the precise description
of them as:

� Quantum Complexity Proof: The proposed algorithms are justified by using the
following complexities analysis. Query complexity shows the number of superposition
based oracle calls. Time complexity states the processing time of quantum gates involved
in quantum circuits with logarithmic factors. Circuit complexity defines the
composition of the quantum circuit with depth. Storage complexity estimates required
qubits with ancilla.

� Quantum Probabilistic Proof: The proposed algorithms are also proved based on
computational theory to identify the quantum complexity class as either the exact

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 10/55

http://dx.doi.org/10.7717/peerj-cs.957/supp-2
http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

quantum polynomial (EQP) with Pr ¼ 1 or bounded error quantum polynomial (BQP)
complexity with Pr = ∈. The probabilistic proof is used to identify results based on
probabilities to be used later in lemmas and theorems.

� Quantum Truthness Proof: We prove the algorithms mathematically using Lemma
proofs to derive primarily partial results, and then used Theorem proofs to justify the
computational complexities result based on rigorous logic and reasoning.

� Quantum Correctness Proof: We proved the proposed algorithms for their correctness
on the basis of quantum algorithmic trace steps which expands quantum operations
applied under superposition to show quantum state transformations.

(The above-mentioned proofs are categorized on the basis of the following references
Lanzogorta & Uhlmann, 2008; Nielsen & Chuang, 2010; Faro & Lecroq, 2013; Zhou et al.,
2015; Broda, 2016; Giri & Korepin, 2017; Grassi, Plasencia & Schrottenloher, 2018; Coles,
2020; Soni & Rasool, 2021; Soni & Malviya, 2021).

Quantum effective processing framework for algorithm design
We generalized a framework for the ordered design of algorithms with (1) processing
advantage of quantum memory; (2) proposed efficient quantum exact match (QEM)
circuit; and (3) Grover’s search to generate high probable results. The remarks of
framework are specified in Table 4.

Processing advantage of quantum memory (QMEM)
First, for the compatibility of QPU based computation, both text and pattern are required
to encode as quantum data. This facilitates the processing of large biological sequences
under quantum superposition. So, QMEM of size jT2n�wiQMEM is used to realize
superposition with N ¼ 2n memory words each with size w qubits. The QMEM needs
address register jTiiQA of size log2N ¼ n qubits to refer all text indices jTiiQA in
superposition, and data corresponding to entangled addresses is accessed by data register
jT i½ �iQD of size log2 �j j ¼ w qubits (Giovannetti, Lloyd & Maccone, 2008; Nielsen &

Chuang, 2010; Metodi, 2011; Lin et al., 2013; Fu et al., 2016; Britt, 2017).
The design of QMEM is realized using bucket brigade architecture that enables data

access in O log2N
� �

steps, as among O N ¼ 2nð Þ qutrit, O log22
n

� �
quantum switch remains

active. This design is effective, as classical memory (CRAM) needs all O N ¼ 2nð Þ switches
active for word access. So, QMEM gains exponential speedup as 2n=log22

n
� �

over

Table 4 Analysis of quantum memory processing, quantum exact match, and quantum search operation.

Quantum
design

Quantum algorithmic requirement Quantum unitary Quantum time complexity

Circuit (gates required) Storage (qubits required) Query Best time Worst time

QMEM Cnþ1NOT : 1, CNOT : Mlog2 �j j O nþ wð Þ UQMEM , USwap, ULoad O 1ð Þ O log2N
� �

O log2N
� �

QEM C2NOT : 3Mlog2 �j j
Clog2 �j jþ1NOT : M, CMþ1NOT : 1

O M � log2 �j j
� �

UComp O 1ð Þ O 1ð Þ O 1ð Þ

GSO H : nþ 2nþ 1, X : 1þ nþ n
Cnþ1NOT : 1, CnZ : 2

O nþM � log2 �j j
� �

UMark, UDiff O
ffiffiffiffi
N
p� �

O
ffiffiffiffi
N
p

log2N
� �

O Nlog2N
� �

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 11/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

CRAM. A text is shared on memory, and each cth core QCorec can access it in owned
superposition. A QPU with C cores uses their registers set, and such parallelism minimizes
processing time as negligible. Figure 2 shows the architecture of QPU with C cores working
on shared QMEM with the design of the quantum memory circuit. A QMEM is
realized using UQMEM of Eq. (1) in support of Eqs. (2)–(4) (Giovannetti, Lloyd & Maccone,
2008; Nielsen & Chuang, 2010; Metodi, 2011; Lin et al., 2013; Fu et al., 2016; Britt, 2017;
Brandl, 2017; Park & Petruccione, 2019; Matteo, 2020; Soni et al., 2020).

QMEM Transformation UQMEM UySwap ULoad USwap
� �� �� �� �

(1)

USwap j0ijwaitið Þ ¼ fj i leftj i or USwap j1ijwaitið Þ ¼ jf ijrighti (2)

ULoad jTiiQA � jT w½ �iQD
� �

¼ ULoad jTiiQA � jT½w	i�iQD
� �

¼ jTiiQA � jT i½ �iQD (3)

UySwap jf ijleftið Þ ¼ 0j i waitj i or UySwap jf ijrightið Þ ¼ j1ijwaiti (4)

A unitary UQMEM makes the data available in parallel for each jTiiQA index. It prepares
the jqutritsN�1i switches in jwaitN�1i state and realizes the superposition of entire
memory. As per target index jTiiQA, the qutrit are transformed from jwaiti to jlefti or
jrighti state using USwap of Eq. (2) under fiduciary qubit jf i that fixes switch state. Among

jqutritsN�1i only the jqutritslog2Ni remains active during the memory call [14]. We

perform the data loading using ULoad of Eq. (3). It activates bus qubits to trace a path of
active qutrit switches, copies the cell data, and traces back over same qutrit to load
copied data into jT i½ �iQD, and meanwhile, qutrit are transformed to jwaiti state by reverse
unitary UySwap of Eq. (4) (Giovannetti, Lloyd & Maccone, 2008; Nielsen & Chuang, 2010).

Figure 2 Quantum circuit equivalent to the quantum memory (QMEM) processing.
Full-size DOI: 10.7717/peerj-cs.957/fig-2

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 12/55

http://dx.doi.org/10.7717/peerj-cs.957/fig-2
http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

A QMEM needs O log2N
� �

steps; and a memory call enables the bus qubits equal to
the word size to access data in parallel, so for w ¼ M � log2 �j j qubits, the log2N switch
remains active until the word transfer is not completed. Therefore, with word transfer,
the QMEM needs O M � log2N

� �
steps with the negligible factor M (Nielsen & Chuang,

2010; Soni et al., 2020; Soni & Rasool, 2021; Soni & Malviya, 2021).

Proposed efficient quantum exact match (QEM) circuit
Second, we propose quantum-exact match (QEM) circuit through unitary UComp to
perform parallel match between pattern jP 0 to M�1½ �iDR and retrieved substring in register
jT w½ �iQD of size w ¼ M � log2 �j j qubits. We seek an exact match on behalf of each index

jTiiQA in superposition on QMEM. This circuit compares the qubits of size log2 �j j for
each symbol contained in jPiDR. So, for M length pattern, all log2 �j j sized qubits are
analyzed in O 1ð Þ time. We specified the QEM operation in Eq. (5), and relevant circuit is
shown in Fig. 3 with depth 2 i.e. O 1ð Þ (Sena Oliveira, Benicio Melo de Sousa & Viana
Ramos, 2007; De Jesus, Aborot & Adorna, 2013; Soni & Rasool, 2021; Soni & Malviya,
2021).

QEM Operation UComp : f jTiiQA
� �

¼ 0; if jT½i to iþM�1�iQD 6¼ jP 0 to M�1½ �iDR
1; if jT½i to iþM�1�iQD ¼ jP 0 to M�1½ �iDR

	
 �
(5)

The comparison between jP 0 to M�1½ �iDR and jT½i to iþM�1�iQD is performed by unitary
UComp in an explored superposition of QMEM with text indices jTiiQA. So, entire
w ¼ M � log2 �j j qubits sized substring is compared in parallel with constant time. This

circuit is designed with 3�M � log2 �j j ¼ C2NOT gates which are arranged at level zero
(for M sized text substring and pattern, and M additional ancilla). At level one, we
used M ¼ Clog2 �j jþ1NOT gates to check for equality as either 0j i ¼¼ 0j i or 1j i ¼¼ 1j i
between aligned qubits of size log2 �j j for each character of P. Last level is designed
with single CMþ1NOT gate that flips a target qubit jqCompi to indicate the quantum-based

Figure 3 Quantum circuit for exact pattern match as (QEM) working with QMEM processing.
Full-size DOI: 10.7717/peerj-cs.957/fig-3

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 13/55

http://dx.doi.org/10.7717/peerj-cs.957/fig-3
http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

exact match. So, the depth of quantum circuit is O 1ð Þ. The qubits requirement of the
proposed circuit is 3�M � log2 �j j

� �
+ M + 1 and we estimate asymptotic complexity

with O M � log2 �j j
� �

. Thus, this quantum-exact match (QEM) circuit is efficient.

Grover’s search operator (GSO) to generate high probable results
Third, Grover’s method is optimal to search for pattern in O

ffiffiffiffi
N
p� �

steps over N size text. It
uses amplitude amplification that repeats for p=4

ffiffiffiffi
N
p

times, each iteration applies
reflection operations for transforming target index to high amplified amplitude under
superposition state, and thus to obtain high probable search results (Nielsen & Chuang,
2010; Chakrabarty, Khan & Singh, 2017). So, O

ffiffiffiffi
N
p� �

steps assure to eventually result
in the desired state with significantly large amplitude. A method is shown in Fig. 4 and it’s
next to next figure. No more iterations than

ffiffiffiffi
N
p

is recommended, as this succeeds with a
solution on the sine function principle. It gradually increases as per the increase in
function argument, but later this starts decreasing. However, this search mechanism is the
only way to achieve a quadratic speedup (Lanzogorta & Uhlmann, 2008; Zhou et al., 2013;
Coles, 2020).

The GSO operation is defined as Eq. (6) with sub-unitary specified in Eqs. (7) and (8).
A search oracle O UMark UComp

� �� �
marks the target index location of the pattern

when UComp of Eq. (5) is succeeded for the exact match through Boolean oracle. Further,
phase inversion is applied by phase oracle using UMark jTiiQA � jqi

� �
of Eq. (7) to reflect

the target index amplitude as jTiiQAj�i ! �1ð Þf jTiiQAð Þ jTiiQA j�i. Another reflection
operator diffusion D UDiff Oð Þð Þ, defined in Eq. (8), inverts all amplitudes around the

mean, such that the amplitude of solution increases and the others decrease. In actual,

this method amplifies the search index amplitude in each iteration (Lanzogorta &

Uhlmann, 2008; Zhou et al., 2013; Broda, 2016; Giri & Korepin, 2017; Figgatt et al., 2017;

Coles, 2020). The GSO operational description is provided in correctness proof of proposed

algorithms.

Figure 4 Quantum-based illustration of the EnQPBEA-MPM algorithm.
Full-size DOI: 10.7717/peerj-cs.957/fig-4

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 14/55

http://dx.doi.org/10.7717/peerj-cs.957/fig-4
http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

GSO Opeartion D UDiff O UMark UComp
� �� �� �� �

(6)

O UMark jTiiQA � jqi
� �

¼ I � 2jTiiQAhTijQA
� �

� jTiiQA � jqi
� �

¼
jTiiQA; f jTiiQA

� �
¼ 0

� jTiiQA; f jTiiQA
� �

¼ 1

8><
>:

(7)

D UDiff Oð Þ ¼ D 2jwnihwnj � Ið Þ Oð Þð Þ ¼ D H�n 2j0ih0j � Ið ÞH�n Oð Þð Þ (8)

A GSO works under superposition state jwni by making an angle p=2� hð Þ and
transforms the solution state by applying each time 2h rotations. So, for r rotations,
r � 2h ¼ p=2� hð Þ then r ¼ p=4h� 1=2ð Þ. In superposition of N elements, the
amplitude for each of t solutions are

ffiffiffiffiffiffiffiffi
t=N

p
, so h ¼ ffiffiffiffiffiffiffiffi

t=N
p

. On UComp success

Pr GSO outputsjTiiQAif f jTiiQA
� �

¼¼ 1
h i

¼ t=N . So, put this phase h in r we

get r ¼ p=4
ffiffiffiffiffiffiffiffi
N=t

p � 1=2
� �

 p=4
ffiffiffiffiffiffiffiffi
N=t

p ffi O
ffiffiffiffiffiffiffiffi
N=t

p� �
step. For geometric proof, refer

(Nielsen & Chuang, 2010; Broda, 2016; Chakrabarty, Khan & Singh, 2017; Coles, 2020;
Soni & Rasool, 2021; Soni & Malviya, 2021). The 1 � t � N solutions are searched inffiffiffiffiffiffiffiffi

N=t
p

query and O
ffiffiffiffiffiffiffiffi
N=t

p
log2N

� �
time with Pr GSO outputsjTiiQAif f jTiiQA

� �h
¼¼ 1� � t=N .

As reviewed, analysis of quantum effective processing framework is specified in Table 4.
The QMEM makes searching outcomes available in parallel with O 1ð Þ step. The unitary
UComp of O 1ð Þ time is used in GSO as implicit operation and it is simulated on QMEM

design. The GSO can find number of pattern occurrences t ¼ tfew (multiple solution),
where tfew denotes few pattern occurrences (tfew
 N), using O

ffiffiffiffiffiffiffiffi
N=t

p� �
queries and

O
ffiffiffiffiffiffiffiffi
N=t

p
log2N

� �
time. As H�n operations run in parallel, each with O 1ð Þ time, so

asymptotic complexity is considered asO
ffiffiffiffiffiffiffiffi
N=t

p� �
with respect to negligible multiplicative

factor log2N
� �

(Brassard et al., 2002; Lomont, 2003; Ablayev et al., 2020). If it is known
that the t ¼ 0 (no solution), then GSO returns a random element uniformly in O

ffiffiffiffi
N
p� �

time. In case, t ¼ 1 (unique solution), search result can be obtained in O
ffiffiffiffi
N
p� �

time with
high probability.

To report t search solution, GSO needs t � ffiffiffiffiffiffiffiffi
N=t

p ¼ ffiffi
t
p � ffiffi

t
p � ffiffiffiffiffiffiffiffi

N=t
p ¼ ffiffiffiffiffi

Nt
p

queries
and O

ffiffiffiffiffi
Nt
p

log2N
� �

time. However, all solutions t ¼ 1 or tfew are possible in O
ffiffiffiffi
N
p� �

and when t ¼ N (all are search solution), the search time is O Nð Þ i.e. same as the classical.
For t ¼ 1 case, GSO can obtain the result with high probability after

ffiffiffiffi
N
p

iterations,
however, more

ffiffiffiffi
N
p

iterations can again generate uniform probability. This may happen
repeatedly in each successive

ffiffiffiffi
N
p

iterations. Therefore, only O
ffiffiffiffi
N
p� �

iterations are needed
to obtain high probable search solution. We prefer the quantum search to find the few
pattern occurrences. The consideration of t ¼ N is found rare for a biological text, and
hence this can be ignored (Nielsen & Chuang, 2010; Broda, 2016; Chakrabarty, Khan &
Singh, 2017; Soni & Rasool, 2021; Soni & Malviya, 2021).

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 15/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

To our knowledge, the quantum search assumes that the number of search solutions t
(either unique or multiple solution) are already known. Therefore, number of GSO
iterations can be determined in advance and after p=4

ffiffiffiffiffiffiffiffi
N=t

p� �
iterations the search

results are found with certainty and high probability. However, the GSO can overshoot if
the t number of search solutions are unknown/not known in advance. In that case, with the
unknown number of GSO iterations, the probability of success would be vanishingly
small (Boyer et al., 1998; Brassard et al., 2002; Lomont, 2003; Younes, 2008; Song, 2017;
Ablayev et al., 2020).

To deal with the unknown number of search solutions, one of the methods was
proposed by Boyer et al. (1998) and restated in Younes (2008); Song (2017) and Ablayev
et al. (2020) as the modified Grover’s search that runs GSO several times in successive
iterations. The modified algorithm of Boyer et al. (1998) repeats GSO by taking the value of
t in an exponential increase. On jth repetition, p=4

ffiffiffiffiffiffiffiffiffiffi
N=2j

p� �
iterations are performed. The

repetitions are here summing to O
ffiffiffiffi
N
p� �

times. Either of these iterations may find the
search results with a sufficient high probability. In each of these repetition, the GSO
operations are still bounded by p=4

ffiffiffiffi
N
p� �

iterations. It is equivalent to O Nð Þ time classical
complexity, so not used in practical implementation (Boyer et al., 1998).

Quantum counting (QC) is an alternative approach that can satisfactorily handle the
problem of unknown number of search solutions (Brassard et al., 2002; Lomont, 2003;
Song, 2017). A QC is quantum amplitude estimation (QAE) method that can estimate t
number of search solutions either based on approximation or based on exactness. It helps
to decide the required number of GSO iterations. The QAE technique is defined in
Brassard et al. (2002) and Fang Song (2017), and it is used for estimating

t ¼ jTiiQA 2 Njf jTiiQA
� �

¼¼ 1
n o��� ��� as the possible count to find the number of search

solutions. These authors (Boyer et al., 1998; Brassard et al., 2002; Lomont, 2003) suggested
to run quantum counting algorithm initially, and then to proceed with actual number of
GSO iterations. Quantum counting results can be obtained with quadratic speedup in

O
ffiffiffiffi
N
p� �

time. Therefore, we observed it as an efficient method when the number of search

solutions are unknown, and hence it prevents overshooting of Grover’s. Later, in
theoretical results and complexity analysis section, we analyze the exact and approximate
quantum counting methods, and these are implemented to simulate our algorithms.

A circuit of QMEM needs Cnþ1NOT to mark jTiiQA address, and to store
w ¼ M � log2 �j j in jT w½ �iQD we useM � log2 �j j ¼ CNOT . This memory is exponentially

faster than the CRAM circuit. However, its access depends on the depth of the bifurcation
tree i.e. O log2N

� �
time. Quantum search works with QMEM by applying H�n jTiiQA

� �
and XH jqið Þ and then UComp checks for exact match followed by amplification. On a
successful match, qubit jqi is flipped by Cnþ1NOT gate, then UMark flips the phase of index
jTiiQA by CnZ gate. Diffusion performs the amplification through the set of quantum

operators H�nX�nf gCnZ H�nX�nf gf g. At the last, perform measurement at index jTiiQA.
In addition, we included qubits requirement for QMEM and GSO. Quantum gates and the
circuit requirement of the framework is shown in Table 4. However, our remark states that
quantum search over text T of size N takes nþ 2Mlog2 �j j þ 1 qubits (Lanzogorta &

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 16/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

Uhlmann, 2008; Nielsen & Chuang, 2010; Zhou et al., 2013; Broda, 2016; Chakrabarty,
Khan & Singh, 2017; Giri & Korepin, 2017; Figgatt et al., 2017; Coles, 2020; Soni & Rasool,
2021; Soni & Malviya, 2021). Further, n is replaced by tq qubits for the search which is
performed over the reduced size filtered text. A QMEM is efficiently simulated using
algebraic normal form (ANF) for the hybrid realization of quantum operations
(Bogdanova et al., 2018;Malviya & Tiwari, 2020;Hao et al., 2020;Malviya & Tiwari, 2021).

THE PROPOSED METHODS
This section includes proposed EnQPBEA & EnQBCEA algorithms. Both these designs use
the effective quantum processing framework. Algorithms can process multiple patterns
string of set P ¼ P1; :;Pk; :;Pmf g with each pattern Pk of lengthMk 1 � k � mð Þ, using the
shared text T of size N explored on QMEM to search all exact match occurrence of
individual pattern Pk 2 P through cth core QCorec of QPU having C quantum cores.
Our algorithms are enhancement of improved QPBE & QBCE methods for processing
multiple patterns with an aim to remove the multiplicative factor m in complexities. The
proposed solutions are remarkable and efficient on comparing with existing QEMP &
QAMP multiple pattern methods. We modify the design of algorithms by running
multiple search oracles in parallel. A QPU runs C cores to search for m=C pattern in
parallel, and each quantum core uses its own set of registers. So a multiplicative constant
m=Cð Þ with a small arbitrary constant value of m and constant value of C is found
negligible. However, for comparatively large value of m� C, a factor m=C cannot be
ignored in the complexities analysis. Hence, we initially clarify that for few pattern
occurrences, the storage and time both are implicitly saved in enhanced designs of
algorithms. We justify our proposed methods by giving the proof of the resulting
Theorems 1 and 2. Later, we show the efficient and effective hybrid simulation of these
quantum algorithms.

Proposed method 1: enhanced QMEM processing based exact
algorithm for multiple pattern matching (EnQPBEA-MPM)
This method searches for each pattern Pk 2 P in parallel using QPU with C cores accessing
text T on shared QMEM, such that search time of all tk occurrence of Pk overlaps.
QEM circuit is applied under superposition of text on QMEM by each QCorec. Search
results are instantly possible and would be effective for the biological sequencing because
of no other processing overhead except the search time. Existing QPBE is enhanced
efficiently by executing search oracles in parallel with the negligible time factor, and the
existing iterative pattern search overhead of QEMP is also removed.

A pattern Pk 2 P is individually processed on cth core QCorec where 1 � c � Cð Þ, so
m=C patterns are searching in parallel within the text T of size N shared on QMEM. Each
pattern Pk is assumed with individual size w ¼ Mk � log2 �j j qubits, and it is stored in
jP 0 to Mk�1½ �iDRk as in separate data register. The text T realized on jT2n�wiQMEM is accessed

in a superposition of addresses by QCorec through address register jTiiQAk i 2 0; 1f gnð Þ.
All the text substrings, each of length Mk � log2 �j j are loaded in entangled register
jT w½ �iQDk by applying QMEM transformation. A unitary ULoad makes sure such data load

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 17/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

in a coherent superposition of text addresses. Once these substrings are available in
parallel, EnQPBEA applies the GSO operator, separately on QCorec to ensure an exact
match of each Pk with QEM circuit realized using UkComp. The Boolean oracle circuit
succeeds by flipping target qubit of Fig. 3 to report exactness. When cth core QCorec
identifies exact match in superposition, the amplification operator UDiff UMarkð Þ is then
applied to increase the probability amplitude of identified indices jTiiQAk. The GSO
operator repeats for O

ffiffiffiffi
N
p� �

time and then QCorec applies the measurement to obtain
search index jTiiQAk with high probability.

The quantum state gets collapsed after each measurement, so its repetition ensures to
report all tk index locations of Pk 2 P which are identified by cth quantum core QCorec.
Each pattern occurrence is verified by same core as jT½i to iþMk�1�iQDk ¼¼ jP 0 to Mk�1½ �iDRk.
The pattern matching method of EnQPBEA-MPM is illustrated in Fig. 4. However, the
steps are listed in the proposed algorithm, and the equivalent quantum circuit
executing search oracles in parallel is shown in Fig. 5. In reference to Table 4 discussion, we
state, that each core realizes O

ffiffiffiffiffiffiffiffiffiffi
N=tk

p� �
iterations of GSO in parallel, and therefore,

results in all desired pattern occurrence tk on behalf of pattern Pk. However, we require

Proposed Algorithm 1: EnQPBEA-MPM.

Data : Text T stored on jT2n�wiQMEM which is accessed by quantum registers jTniQA1; . . . ; jTniQAm
n o

and jT w½ �iQD1; . . . ; jT w½ �iQDm
n o

, the
implicit data registers jP 0 to M1�1½ �iDR1; . . . ; jP 0 to Mm�1½ �iDRm

 �
each of size w ¼ Mk � log2 �j j to store search pattern

Pk 2 P ¼ P1; :; Pk; :; Pmf g, and set of ancillary qubit designated to number of patterns jqiQ1; . . . ; jqiQm
n o

Result : Outputs all tk exact occurrence 1 � tk � Nð Þ of each pattern Pk 2 P in parallel using cth quantum core QCorec accessing T on shared
QMEM, as index jTiiQAk s. t. jT½i to iþMk�1�iQDk ¼¼ jP 0 to Mk�1½ �iDRk

1: Procedure EnQPBEA-MPM

2: Prepare registers as jzeroesni in jTniQAk,jzeroes w½ �i in jT w½ �iQDk, j1i in jqiQk and jP 0 to Mk�1½ �iDRk
3: For each pattern Pk 2 P to be processed separately on cth quantum core QCorec

4: Initialize quantum state in registers as jwnik in jTiiQAk, jsame w½ �i in jT w½ �iQDk & jqiQk as j�i
5: For all jTiiQAk in their separate uniform quantum superposition state jwnik
6: Load data at jT i½ �iQDk as per entangled jTiiQAk by applying QMEM Transformation as

7: ULoadðjTiiQAk � jT w½ �iQDkÞ ¼ ULoadðjTiiQAk � jT w	i½ �iQDkÞ ¼ jTiiQAk � jT i½ �iQDk
8: Repeat GSO for O

� ffiffiffiffiffiffiffiffiffiffi
N=tk

p �
times in uniform superposition jwnik, with QEM Operation which is implicitly applied through UkComp for

exact matching of Mk � log2 �j j qubits size as –
9: UkComp: f jTiiQAk

� �
¼ 0; if jT½i to iþMk�1�iQDk 6¼ jPk 0 to Mk�1½ �iDRk

1; if jT½i to iþMk�1�iQDk ¼ jPk 0 to Mk�1½ �iDRk

	

GSO Opeartion D UDiff O UMark UComp
� �� �� �� �

10: End of GSO Repeat

11: Measure the final state to get the desired index jTiiQAk as high probable solution

12: Verify pattern Pk at jTiiQAk on cth core QCorec as jT½i to iþMk�1�iQDk ¼¼ jP 0 to Mk�1½ �iDRk
13: End of Inner For

14: End of Outer For

15: End Procedure

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 18/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

O
ffiffiffiffiffiffiffi
Ntk
pð Þ queries to report all tk marked occurrences, and hence the pattern matching

time is bounded to O
ffiffiffiffiffiffiffi
Ntk
p

log2N
� �

with negligible logarithmic factor. We clarify that
EnQPBEA repeats GSO operation in parallel for tk times on each core QCorec to search all
tk indexes. So, we consider t ¼ tk ¼ max t1; :; tk; :; tmð Þ as based on longest core processing
to find maximum pattern occurrences. Therefore, the search complexity of parallel
executions of EnQPBEA using QPU with C cores is O m=Cð Þ ffiffiffiffiffi

Nt
p

log2N
� �� �

time. In
support of complexities, a correctness proof of EnQPBEA-MPM with quantum operations
is specified in Appendix C. For mathematical proof, we define certain Lemma 1 as partial
required proof, and based on that, we conclude the computational complexity and
achieved speedup through the resulting proof of Theorem 1.

Lemma 1: A QPU having C quantum cores 1 � c � Cð Þ can access the text T of size N
on shared QMEM. It loads all text substring equal to pattern length Pk as Mk � log2 �j j
qubits in superposition by using QCorec in parallel. Time needed for such parallel loading
operations ranges between O m=Cð Þ Mlog2N

� �� �
and O m=Cð Þ MNlog2N

� �� �
.

Proof (Lemma 1): About earlier discussions of effective processing framework and
Table 4, we use to prove this lemma. The jT2n�wiQMEM as shared among C cores of QPU,
makes sure that all jTiiQAk addresses are available in parallel on each QCorec & QMEM
transformation loads Mk � log2 �j j qubits in entangled register jT w½ �iQDk. The entire
memory access is available in constant time on each individual core, however, by
consideringM asM ¼ max M1; :;Mk; :;Mmð Þ the memory circuit needs O Mlog2N

� �
steps.

So, the parallel time of QMEM access using QPU with C quantum cores is

O m=Cð Þ Mlog2N
� �� �

. As we know, that the quantum state is collapsed after each

measurement, so to report all tk index of Pk identified by cth quantum coreQCorec, we need
this access several times. By assuming t ¼ tk ¼ max t1; :; tk; :; tmð Þ at any QCorec for

Figure 5 Quantum circuit equivalent to search mechanism of EnQPBEA-MPM algorithm.
Full-size DOI: 10.7717/peerj-cs.957/fig-5

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 19/55

http://dx.doi.org/10.7717/peerj-cs.957/supp-3
http://dx.doi.org/10.7717/peerj-cs.957/fig-5
http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

QMEM transformation, and at worst, if number of identified patterns are t ¼ N then each
time, all parallel substring load will takeO m=Cð Þ MNlog2N

� �� �
time. We discussed earlier,

that both these factors M and m=Cð Þ are negligible due to parallel load and parallel
processing by achieving exponential speedup.

Theorem 1: Given text database T of size N and the multiple patterns set
P ¼ P1; :; Pk; :; Pmf g with each pattern Pk of length Mk 1 � k � mð Þ. Algorithm
EnQPBEA-MPM uses QPU having C quantum cores 1 � c � Cð Þ to access the text T on
shared QMEM. A cth core is used to search for the all tk exact occurrence of a pattern Pk
indexed at jTiiQAk, that is jT½i to iþMk�1�iQDk ¼¼ jP 0 to Mk�1½ �iDRk. Based on longest core
processing to find pattern occurrences t ¼ max t1; :; tk; :; tmð Þ, the search time complexity
of EnQPBEA-MPM is O m=Cð Þ ffiffiffiffiffi

Nt
p

log2N
� �� �

in the best case and O m=Cð Þ Nlog2N
� �� �

for the worst case.

Proof (Theorem 1): This proof relies on Lemma 1 and other statements which are
justified earlier. Proof of Lemma 1 states that, for t ¼ 1 or tfew (tfew denotes few pattern
occurrences (tfew
 N)) and t ¼ N , all substring load transformation is possible in

O log2N
� �

and O Nlog2N
� �

time. Now EnQPBEA-MPM algorithm realizes such

parallelism using QPU with C quantum cores and each core access text T on shared
QMEM. For each pattern Pk 2 P of length Mk 1 � k � mð Þ, this algorithm identifies the
target indices based on the QEM circuit under superposition of N sized text. Further,
the simultaneous iterations of GSO finds all tk solutions of Pk using cth quantum core

QCorec in O m=Cð Þ ffiffiffiffiffiffiffiffiffiffi
N=tk

p� �� �
queries.

Indeed, quantum state is collapsed while measured, so, EnQPBEA repeats GSO followed
by measurement on QCorec to report all tk occurrence of Pk in O m=Cð Þ ffiffiffiffiffiffiffi

Ntk
pð Þð Þ queries.

Now, based on longest core processing, consider t ¼ tk ¼ max t1; :; tk; :; tmð Þ. So, using
QPU with C cores and for t ¼ 1 or tfew (tfew denotes few pattern occurrences (tfew
 N)),
the best case time complexity of EnQPBEA-MPM is O m=Cð Þ ffiffiffiffiffi

Nt
p

log2N
� �� �

and this
finds all patterns in parallel. However, when t ¼ N (all are search solutions), the worst-
case time complexity isO m=Cð Þ Nlog2N

� �� �
. A multiplicative factor log2N

� �
is considered

negligible with n qubits, surprisingly small, to expand the original search space.
However, this factor cannot be ignored when the number of qubits n is usually large to
expand the original text space (Lomont, 2003). And the multiplicative constant m=Cð Þ with
a small arbitrary constant value ofm and constant value of C is found negligible. However,
for the comparatively large value of m� C, a factor m=C cannot be ignored in time
complexities. Therefore, quantum search is preferred effectively for finding few
occurrences. Instead, for biological text, t ¼ N is rare and hence ignored while stating the
generalized complexity. We know that algorithm design is based on GSO, so, results are
obtained with at least probability as Pr EnQPBEA running at QCorec measures jTiiQAk

h
in each iteration� � tk=N .

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 20/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

Proposed method 2: enhanced quantum-based combined exact
algorithm for multiple pattern matching EnQBCEA-MPM
The algorithm EnQBCEA-MPM is an enhanced version of the existing benchmark method
QBCE. So, we formalize this multiple pattern algorithm with the possible speedup. The
pattern matching method is illustrated in Fig. 6. Each pattern Pk 2 P is individually
processed using QPU with C cores; however, the cth coreQCorec 1 � c � Cð Þ processes the
text T of size N over shared QMEM for m=Cð Þ patterns either for filtering or searching. In
this method, each core QCorec transforms the original N sized text into reduced search
space tk (corresponding to Pk), so-called filtered indices, and then performs exact searching
of all tk0 occurrence of each Pk in overlapping of time evolution. To transform the text
into reduced search space, we use an existing method of quantum-approximate filtering
(QAF). This method is based on the hamming distance (HD) to check for the possible
errors between pattern and text substring (to filter index) and ensures its correctness when
the hamming distance HDð Þ � threshold (pre-computed). Such filtering outcomes are
based on approximations, thus, we verify the filtered indices for a pattern match using the
exactness. An additional time of QAF filtering is included in the complexity of this
algorithm; however, this allows searching of patterns in an optimized way by achieving
speedup. Our EnQBCEA design executes exact search oracles in parallel with the negligible
time factor, and this also removes the existing iterative overhead (text filtering and
pattern searching) of the QAMP algorithm. We expect the pattern matching results as
effective for the biological sequencing because of overlapped quick search time to find the
exact matches over the filtered text indices.

Initially, we redefine QAF (Aborot, 2017) to execute for eachQCorec while accessing text
T on shared QMEM for text filtering. The procedure QAF is redesigned here by using
QMEM transformation. This prepares the pattern in register jPiDR and the start locations

Figure 6 Quantum-based illustration of the EnQBCEA-MPM algorithm.
Full-size DOI: 10.7717/peerj-cs.957/fig-6

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 21/55

http://dx.doi.org/10.7717/peerj-cs.957/fig-6
http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

of distinct symbols of the pattern are store in array SL M½ �. Now, initializes QMEM registers
jTniQA and jT w½ �iQD in the zero state along with auxiliary register jTnþ1iAX measured for

the filtered index as possible start locations of the pattern. The superposition of text
created in jTiiQA and jTnþ1iAX is made entangled with addresses. Under memory
superposition of jTiiQA, QAF marks the distinct symbols of the pattern at jTijiAX by
unitary USLoc. And then, the possible start location of the patterns are marked as
jTi � TijiAX by UPLoc. A Hamming distance (HD) is applied at jTi � TijiAX to check for

threshold, further, Hadamard is applied at jTiiQA to merge probability amplitudes of
entangled indices of jTi � TijiAX. Finally, measure auxiliary register jTi � TijiAX to identify
filtered indices jTii which are then stored in the referenced location array LA . . .½ �. As
measurement destroys quantum state, so in each call at cth quantum core QCorec on behalf
of Pk 2 P, the QAF needs its execution several times to filter all tk indices location and then
to store within the location array LAk tk½ �.

Algorithm EnQBCEA-MPM needs following preparation such as – each pattern Pk 2 P
is assumed with individual size w ¼ Mk � log2 �j j qubits, and it is stored in jP 0 to Mk�1½ �iDRk
as in separate data register. At first, procedure QAF jTniQAk; jPkiDRk; LAk

� �
is called for

each pattern Pk on each core to store the filtering results at individual location array
LAk tk½ �. Each LAk . . .½ � contained with tk � N filtered text indices; therefore, the algorithm
needs location register jTtqiQLk each of size log2tk ¼ tq qubits to access LAk tk½ � by using cth
core QCorec.

Procedure: QAF jTniQA; jPiDR; LA . . .½ �
� �

.

Input : Text address register jTniQA, auxiliary register of same size with additional qubit jTnþ1iAX , the implicit data register jP 0 to M�1½ �iDR,
SL M½ � classical array that keeps distinct symbol location within pattern as jiji, access to location array LA . . .½ � to classically store filtered
text indices.

Output : Stores all filtered text indices as possible start of pattern in location array LA . . .½ �
1: Begin Procedure

2: Prepare P in jP 0 to M�1½ �iDR, and store jiji in SL M½ � as preprocessed start locations of distinct symbol of jPiDR
3: Prepare registers as jzeroesni in jTniQA,jzeroes w½ �i in jT w½ �iQD, jzeroesnþ1i in jTnþ1iAX
4: Initialize State as jwni in jTiiQA, jsame w½ �i in jT w½ �iQD & entangle the register jTnþ1iAX
5: Load data at jT i½ �iQD as per entangled jTiiQA by applying QMEM Transformation as

6: ULoadðjTiiQA � jT w½ �iQDÞ ¼ ULoadðjTiiQA � jT w	i½ �iQDÞ ¼ jTiiQA� jT i½ �iQD
7: For each jTiiQA remains in uniform quantum superposition state jwni do
8: Mark distinct symbol of pattern by unitary USLoc as jTijiAX corresponding to jTiiQA
9: Mark possible start location of pattern by UPLoc as jTi � TijiAX on behalf of jTiiQA
10: Apply HD at jTi � TijiAX to check for distance between text and pattern, such that, HD � threshold

11: Apply Hadamard at jTiiQA to merge amplitudes of entangled indices of jTi � TijiAX
12: Measure the auxiliary register jTi � TijiAX and store the identified index as jTii in LA . . .½ �
13: End of For

14: End Procedure

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 22/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

The algorithm EnQBCEA proceeds to search for each pattern by running all cores in
parallel. An equivalent quantum circuit executing search oracles in parallel is shown in
Fig. 7. So, each core QCorec explores filtered indices of LAk tk½ � in superposition over
QMEM. We expect that the reduced search space of size tk
 N is small than that of
original text T of size N. Algorithm prepares registers in jzeroi states, and initializes
superposition of filtered indices for each LAk tk½ � as jwtqik by using jTiiQLk i 2 0; 1f gtq� �

of
QCorec. Now, for each jTiiQLk under the quantum superposition jwtqik we apply UkGetL to

obtain n� qubits original filtered index as jT i½ �iQLk ¼ iLk i.e. i½ �th memory content of

Proposed Algorithm 2: EnQBCEA-MPM.

Data : Text T stored on jT2n�wiQMEM which is accessed by quantum registers jTniQA1; . . . ; jTniQAm
n o

and jT w½ �iQD1; . . . ; jT w½ �iQDm
n o

, the
implicit data registers jP 0 to M1�1½ �iDR1; . . . ; jP 0 to Mm�1½ �iDRm

 �
each of size w ¼ Mk � log2 �j j to store search pattern

Pk 2 P ¼ P1; :; Pk; :; Pmf g, separate location arrays LA1 . . .½ �; . . . ; LAm . . .½ �f g to classically store t1; ::; tmf g filtered text indices
corresponding to each Pk, location registers to access filtered indices for each pattern as jTtqiQL1; . . . ; jTtqiQLm

n o
each with size

log2tk ¼ tq qubits, & set of ancillary qubits designated to no. of pattern jqiQ1; . . . ; jqiQm
n o

Result : Outputs all tk0 exact occurrence 1 � tk0 � tkð Þ of each pattern Pk 2 P in parallel, using cth quantum core QCorec accessing filtered
location array LAk tk½ � which is explored on QMEM, as searched index jTiLkiQAk s.t. jT½iLk to iLk þ Mk�1�iQDk ¼¼ jP 0 to Mk�1½ �iDRk

1: Procedure EnQBCEA-MPM

2: For each pattern Pk 2 P to be processed separately on cth quantum core QCorec

3: Call QAF jTniQAk; jPkiDRk; LAk

� �
;

4: End of For

5: Prepare registers as jzeroestqi in jTtqiQLk, jzeroesni in jTniQAk, jzeroes w½ �i in jT w½ �iQDk, j1i in jqiQk and jP 0 to Mk�1½ �iDRk
6: For each pattern Pk 2 P to be processed separately on cth quantum core QCorec

7: Initialize quantum state for accessing LAk tk½ � in register as jwtqik in jTiiQLk, jT i½ �iQLk in jTiiQAk, jsame w½ �i in jT w½ �iQDk, & jqiQk as j�i
8: For all jTiiQLk in their separate uniform quantum superposition state jwtqik
9: Apply the unitary UkGetL to get n-qubits actual index as jT i½ �iQLk ¼ iLk i.e. the memory content of LAk tk½ � through jTiiQLk, and then

store kth address in corresponding register jTiLkiQAk
10: UkGetL: f jTiiQLk

� �
¼ jTiiQLkjTjT i½ � iQLkiQAk ! jTiiQLkjTiLkiQAk

11: Load data at jT½iLk�iQDk as per addresses jTiLkiQAk by applying QMEM Transformation as

12: ULoadðjTiLkiQA � jT w½ �iQDÞ ¼ ULoadðjTiLkiQAk � jT w	i½ �iQDkÞ ¼ jTiLkiQAk � jT iLk½ �iQDk
13: Repeat GSO for O

ffiffiffiffiffiffiffiffiffiffi
tk=tk0

p� �
times in uniform superposition jwtqik, with QEM Operation which is implicitly applied through

UkComp for exact matching of Mk � log2 �j j qubits size as –
14: UComp: f jTiLkiQAk

� �
¼ 0; if jT½iLk to iLkþMk�1�iQDk 6¼ jP 0 to Mk�1½ �iDRk

1; if jT½iLk to iLkþMk�1�iQDk ¼ jP 0 to Mk�1½ �iDRk

	

15: GSO Opeartion D UDiff O UMark UComp
� �� �� �� �

16: End of GSO Repeat

17: Measure the final state to get the desired index jTiLkiQAk as high probable solution

18: Verify pattern Pk at jTiLkiQAk on cth core QCorec as jT½iLk to iLkþMk�1�iQDk ¼¼ jP 0 to Mk�1½ �iDRk
19: End of Inner For

20: End of Outer For

21: End Procedure

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 23/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

LAk tk½ � through jTiiQLk. This transformation helps address register jTiLkiQAk to access

actual indices, so the search can perform over original text.
Now, the original text is available in QMEM superposition and shared among all

quantum cores. Therefore, text T realized on jT2n�wiQMEM is accessed in a superposition of
addresses by QCorec by address register jTiLkiQAk iLk 2 0; 1f gnð Þ. All the text substrings,
each of length Mk � log2 �j j are loaded in entangled register jT½iLk�iQDk by applying
QMEM transformation. A unitary ULoad makes sure such loading is in a coherent
superposition of text addresses. Once substrings are available in parallel, EnQBCEA
applies GSO, by QCorec to find an exact match of each Pk with QEM circuit realized using
the unitary operator UkComp.The processing of GSO is the same as per earlier discussion of
EnQPBEA and Table 4. Instead, each core realizes O

ffiffiffiffiffiffiffiffiffiffi
tk=tk0

p� �
iterations of GSO in

parallel, however, after O
ffiffiffiffi
tk
pð Þ repetition QCorec applies measurement to obtain index

jTiLkiQAk with high probability. As measurement collapses quantum state, so, each QCorec
requires O

ffiffiffiffiffiffiffiffi
tktk0
pð Þ queries to report all tk0 � tk marked occurrences of Pk in T. In addition,

EnQBCEA-MPM allows cth core QCorec to verify pattern match at jTiLkiQAk as
jT½iLk to iLkþMk�1�iQDk ¼¼ jP 0 to Mk�1½ �iDRk. A correctness proof of EnQBCEA-MPM is

included in Appendix D and complexity is proved in Theorem 2.
Lemma 2: A QPU having C quantum cores 1 � c � Cð Þ can access the text T of size N

on shared QMEM. A cth core filters tk indices jTiiQAk in parallel to identify the possible
start locations of pattern P and to store such original filtered indices in LAk tk½ �. Time
needed for executing quantum approximate filtering (QAF) in parallel is

O m=Cð Þ tlog2N
� �� �

.

Figure 7 Quantum circuit equivalent to searching logic of the EnQBCEA-MPM algorithm.
Full-size DOI: 10.7717/peerj-cs.957/fig-7

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 24/55

http://dx.doi.org/10.7717/peerj-cs.957/fig-7
http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

Proof (Lemma 2): In support of the earlier discussions and using the reference to Aborot
(2017) and Soni & Rasool (2021), we used to prove this lemma. Procedure QAF is executed
in parallel for each pattern Pk 2 P on cth quantum core QCorec sharing the QMEM.
Quantum circuit included in Aborot (2017) and Soni & Rasool (2021) will runs separately
on QCorec and performs equivalent quantum operations as USLoc, UPLoc, HD followed by
the Hadamard on jTiiQAk to merge probability amplitudes of entangled indices of
jTi � TijiAX. Now auxiliary register measures filtered indices jTii to store in LA . . .½ �. All
such operations are bounded by O log2N

� �
time. However, measurement destroys

quantum state, so in each call at cth quantum core QCorec on behalf of Pk 2 P, the QAF
needs its repeated executions to filter all tk indices and to store them in location array
LAk tk½ �. Therefore, based on longest core processing to filter maximum pattern locations,
we assume t ¼ tk ¼ max t1; :; tk; :; tmð Þ at any QCorec. The time required for such filtering
in parallel is O m=Cð Þ tlog2N

� �� �
. The multiplicative factors can be ignored due to

parallel processing – quantum circuit operations.

Theorem 2: Given text database T of size N and the multiple pattern set
P ¼ P1; :; Pk; :; Pmf g with each pattern Pk of length Mk 1 � k � mð Þ. Algorithm
EnQBCEA-MPM uses QPU having C quantum cores 1 � c � Cð Þ to access the text T on
shared QMEM. The cth core runs QAF to store all tk filtered indices of a pattern Pk in

LAk tk½ �. The indices of LAk tk½ � are used by cth core to search for all tk0 exact occurrence of
patterns indexed at jTiLkiQAk, that is jT½iLk to iLkþMk�1�iQDk ¼¼ jP 0 to Mk�1½ �iDRk. Based on
maximum filtered indices t ¼ max t1; :; tk; :; tmð Þ in LAk t½ � and longest core processing
to find pattern occurrences t0 ¼ max t10 ; :; tk0 ; :; tm0ð Þ, the search time complexity of
EnQBCEA-MPM algorithm is O m=Cð Þ ffiffiffiffiffi

tt0
p

log2t
� �� �

in the best case and

O m=Cð Þ tlog2t
� �� �

for the worst case.

Proof (Theorem 2): The proof of this theorem is based on Lemma 2 and other
statements which are justified earlier. Our algorithm EnQBCEA-MPM performs a
search on filtering outcomes that are stored in parallel by executing the QAF on separate
quantum cores. It is assured that EnQBCEA performs the search on reduced size text
database T, each of size tk. Thus, this increases the success probability for identifying the
search results. Lemma 2 states, that to store all tk filtered indices in LAk tk½ � we need
O m=Cð Þ tlog2N

� �� �
time. Each core QCorec 2 QPU utilizes the processing advantage of

QMEM in both filtering and searching. Algorithm EnQBCEA-MPM accesses LAk tk½ � on
each QCorec to obtain the original filtered text indices by applying unitary UkGetL. It takes
O 1ð Þ time for realizing such transformation under the superposition.

The original text is available in QMEM superposition and shared among all quantum
cores. Thus, each QCorec applies QMEM transformation to load all substrings in parallel,
such that, each pattern Pk 2 P of length Mk 1 � k � mð Þ verifies for exactness over
filtered index approximations. Now, based on the QEM circuit applied under the
superposition of tk sized text T, the indices are identified for an exact match. Further,
parallel iterations of GSO finds all tk0 tk0 � tkð Þ solutions of Pk using cth core QCorec in

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 25/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

O m=Cð Þ ffiffiffiffiffiffiffiffiffiffi
tk=tk0

p� �� �
queries. Indeed, the quantum state collapsed while measured;

therefore, EnQBCEA repeats GSO operation followed by measurement, on each quantum
core QCorec to report all tk0 exact occurrences of the pattern Pk in resulting

O m=Cð Þ ffiffiffiffiffiffiffiffi
tktk0
pð Þð Þ queries and thus O m=Cð Þ ffiffiffiffiffiffiffiffi

tktk0
p

log2tk
� �� �

time.

To conclude the complexity, we are considering the maximum reduced size of any
filtered location array LAk tk½ � as t ¼ tk ¼ max t1; :; tk; :; tmð Þ, and the longest core
processing to find maximum pattern occurrences t0 ¼ tk0 ¼ max t10 ; :; tk0 ; :; tm0ð Þ. So, using
QPU with C cores and for t0 ¼ 1 or tfew (tfew denotes few pattern occurrences (tfew
 t)),
the best case time complexity of EnQBCEA-MPM is O m=Cð Þ ffiffiffiffiffi

tt0
p

log2t
� �� �

and this
finds all patterns in parallel. However, when t0 ¼ t the worst-case complexity is still
bounded to O m=Cð Þ tlog2t

� �� �
. A multiplicative factor log2t

� �
is considered negligible as

due to less qubits tq
 nð Þ needed to expand the reduced search space. However, this
factor cannot be ignored when the number of qubits tq is sufficiently large to expand the
filtered space (Lomont, 2003; Soni & Rasool, 2021). And the multiplicative constant m=Cð Þ
with a small arbitrary constant value of m and constant value of C is found negligible.
However, for the comparatively large value of m� C, a factor m=C cannot be ignored in
time complexities. Therefore, quantum search is preferred effectively for few occurrences.
Instead, for biological text, t0 ¼ t is rare and hence ignored while stating a generalized
complexity. We also suggest that algorithm design based on the functionality of GSO,
enhances the results with probability

Pr EnQBCEA running at QCorec measuresjTiLkiQAk in each iteration
h i

� tk0=tk.

THEORETICAL RESULTS AND COMPLEXITIES ANALYSIS
The presented algorithms EnQPBEA-MPM and EnQBCEA-MPM are hereby observed
with summarized facts of several complexities analysis. This section incorporates the
design methods by mainly focusing on actual qubits requirement. For dealing with number
of unknown search solutions, the analysis of quantum counting algorithms is included. An
idea to simulate QMEM is also discussed here with the realization of quantum effective
processing framework.

Summarized complexities analysis and mathematical proved results
We summarize our proven results to compare with the related work. The significant
findings were noted herein dedicated tables to emphasize our analytical interpretation. In
this section, we present the concluded complexities of our algorithms using Tables 5 and 6
is referred for discussing the design methods with qubits requirement and success
probability.

Analysis of proposed algorithms based on several quantum complexities:

� The resulting complexities of algorithms have been proved earlier and summarized in
Table 5. In reference to Tables 1–3, we discuss comparative factors of our work.

� Our algorithms obtain speedup with effective quantum processing while comparing
with the classical searching time of O mNð Þ (discussed in the introduction). The classical

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 26/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

worst-case time with characters comparison is O m NMð Þð Þ instead, each core of QPU
sharing QMEM does parallel match by UkComp, and hence this makes our solutions

O m=Cð Þ ffiffiffiffi
N
p� �

and O m=Cð Þ ffiffi
t
p� �

as efficient.

� We enhanced the QPBE and QBCE for multiple patterns under quantum architectural
and implicit operational parallelism. Based on complexity analysis, our solutions are
proved efficient to find an exact match while comparing with existing multiple pattern
methods QEMP and QAMP as the factorm cannot be excluded from their complexities.

� Our algorithm designs execute exact search oracles in parallel using individual quantum
core. The processing time for few pattern occurrences (tfew
 N) is negligible, and
we need less qubits to expand the filtered search space. A QPU runs C cores to search for
m=C pattern in parallel, and each quantum core uses its own set of register. So
multiplicative constant m=Cð Þ with a small arbitrary constant value of m and constant
value of C is found negligible. But, for comparatively large value of m� C, factor m=C
cannot be ignored in time complexities.

� We included the storage complexity of our algorithms to estimate the qubits
requirement. This complexity is based on the asymptotic estimation of qubits by
excluding constants. Later, in Table 6, we specify actual qubits requirement with
coefficients to check simulation feasibility of algorithms, as classical machine
configuration is restricted to simulate large qubits.

� Quantum algorithms and their quantum circuits are proved equivalent for
implementations. Therefore, the quantum query, time and storage complexities of

Table 5 Summarized quantum complexities of the proposed algorithms.

Quantum
algorithm

Pre-processing
complexity

Proposed quantum pattern searching time complexity Storage complexity (qubits
estimation)

Query Best time Worst time Generalized

EnQPBEA-MPM No Text Filtering
O

m=Cð Þffiffiffiffiffi
Nt
p

 �
O

m=Cð Þ�ffiffiffiffiffi
Nt
p

log2N
� �
 �

O
m=Cð Þ�
Nlog2N
� �
 �

O m=Cð Þ ffiffiffiffi
N
p� �

O
m=Cð Þ�

nþMlog2 �j j
� �
 �

EnQBCEA-MPM
O

m=Cð Þ�
tlog2N
� �
 �

O
m=Cð Þffiffiffiffiffi
tt0
p

 �
O

m=Cð Þ�ffiffiffiffiffi
tt0
p

log2t
� �
 �

O
m=Cð Þ�
tlog2t
� �
 �

O m=Cð Þ ffiffi
t
p� �

O
m=Cð Þ�

nþMlog2 �j j þ log2t
� �
 �

Table 6 Framework and design of proposed algorithms with qubits requirement and success probability.

Quantum
algorithm

Algorithm
framework

Algorithm design Quantum registers
requirement

Actual qubits requirement Success
probability

EnQPBEA-
MPM

QMEM,
QEM,
GSO

QPBE Algorithm, Multiple
Search Oracle, QPU (C-
Quantum Cores)

jTniQA : m=C,
jT w½ �iQD : m=C, jPMiDR :

m=C, qj i : m=C

m=Cð Þ � nþð 2 Mlog2 �j j
� �þ 1

� �
Pr QCorekð Þ �
tk=N

EnQBCEA-
MPM

QMEM,
QEM,
GSO

QBCE Algorithm, Multiple
Search Oracle, QPU (C-
Quantum Cores)

jTniQA : m=C,
jTnþ1iAX : m=C,
jT w½ �iQD : m=C,
jTtqiQL : m=C
jPMiDR : m=C, jqi : m=C

m=Cð Þ � 2nþð 2 Mlog2 �j j
� �þ tqþ 1

�
Pr QCorekð Þ �
tk0=tk

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 27/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

proposed algorithms justify their effectiveness. All the requisite and relevant discussions
on behalf of Table 5 have been discussed earlier as per the contextual need.

Design methods used for quantum multiple pattern matching algorithms:

� Table 6 shows framework and design of algorithms. Used quantum registers are
mentioned to check for proportional simulation feasibility of actual qubits requirement.
Search success probability on any QCorec, proved in theorems, is based on original and
filtered text sizes.

� The quantum results may contain error while measured; therefore, GSO operation is
used to amplify the probability amplitudes. Thus, we obtain the search results with a
high probability. Therefore, we categorize our algorithms in BQP complexity class.

� The qubits are implicitly analyzed based on the quantum register requirement. For QPU
with C cores based parallel processing, this m=Cð Þ factor is there; however, these
cores use their own set of quantum registers, so the factor is negligible, and time is
reduced in parallelism.

� Classical machine configuration is restricted to simulate large qubits and affects
simulation. Therefore, algorithms are implemented using hybrid simulation, such that
each core can use the sufficient qubits with no excessive increase in qubits requirement
of a quantum system.

� To save qubits requirement, EnQPBEA and EnQBCEA are simulated by using ANF
based quantum operations, dedicated use of ancillary qubits, and utilizing QuEST
specific unitary for efficient realization. The hybrid simulation results are noted later in
the tables included in “Simulation Results and Discussion” section.

Exact and approximate quantum counting complexity analysis
Quantum counting (QC) is a quantum amplitude estimation method to handle the case of
GSO overshooting as t number of search solutions are unknown in advance, so it leads to
the unknown number of GSO iterations (Brassard et al., 2002; Nielsen & Chuang,
2010; Song, 2017). These authors (Boyer et al., 1998; Brassard et al., 2002; Lomont, 2003;
Younes, 2008) suggested running the quantum counting algorithm initially and then
proceeding with the actual number of GSO iterations. We obtained an accurate t value by
implementing Exact-QC and the estimated t value through Approx.-QC methods. We
provide the complexities analysis of both these cases in the subsection, and the resulting
complexities are specified in Table 7.

Analysis of approximate and exact quantum counting (QC) algorithms:

� For EnQPBEA algorithm, QC is available with the O
ffiffiffiffi
N
p� �

query and O
ffiffiffiffi
N
p

log2N
� �

time. Approx.-QC algorithm can estimate the value of t with some relative error. In
contrast, Exact-QC algorithm with O

ffiffiffiffiffi
Nt
p� �

query and O
ffiffiffiffiffi
Nt
p

log2N
� �

time can find the
accurate value of t with the high probability (Boyer et al., 1998; Brassard et al., 2002;
Lomont, 2003; Younes, 2008). Similarly the EnQBCEA algorithm, working on t filtered
indices to find t0 pattern occurrences, needs O

ffiffi
t
p� �

query and O
ffiffi
t
p

log2t
� �

time in

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 28/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

Approx.-Q algorithm, and O
ffiffiffiffiffi
tt0
p� �

query and O
ffiffiffiffiffi
tt0
p

log2t
� �

time in Exact-QC
algorithm (Brassard et al., 2002; Soni & Rasool, 2021). In Table 7, we have shown the
complexities by including m=Cð Þ factor because the quantum counting is needed to run
on individual quantum core for each pattern separately.

� To measure the accurate value of t through Exact-QC we used to take the
register with the precision qubits }r}
 log2N ¼ n

� �
qubits for EnQPBEA and

}r}
 log2t ¼ tq
� �

qubits for EnQBCEA algorithm. Similarly, to measure the

approximation of the value of t through Approx.-QC we need a register with precision
qubits }r}, log2N qubits for EnQPBEA and }r}, log2t qubits for EnQBCEA
algorithm (Brassard et al., 2002; Song, 2017; Soni & Rasool, 2021). The storage
complexity showing qubits estimation for Approx.-QC and Exact-QC is also shown
additionally in the presented Table 7.

� There are two cases to obtain the resulting complexities of combining the QC and
GSO as it is further used in our simulation of EnQPBE algorithm – (1) Run
Approx.-QC followed by the GSO to find all t occurrences of the pattern, so

max
ffiffiffiffi
N
p þ ffiffiffiffiffi

Nt
p� � ¼ O

ffiffiffiffiffi
Nt
p� �

time; and (2) Run Exact-QC followed by GSO to find all t

occurrences of the pattern, therefore
ffiffiffiffiffi
Nt
p þ ffiffiffiffiffi

Nt
p ¼ 2� ffiffiffiffiffi

Nt
p ¼ O

ffiffiffiffiffi
Nt
p� �

time.
Therefore, the complexity is still bounded by O

ffiffiffiffiffi
Nt
p� �

time (Brassard et al., 2002;
Lomont, 2003; Song, 2017). Similarly for these cases, the complexity of EnQBCEA
algorithm remains O

ffiffiffiffiffi
tt0
p� �

time as it works on t filtered indices to find t0 pattern
occurrences (Brassard et al., 2002; Soni & Rasool, 2021).

� We may expect accurate number of GSO iterations when the exact value of t is obtained
through Exact-QC but the deviations in t values are possible through Approx.-QC
algorithm, and hence the quantum search results need to be compromised with more
errors.

Design and analysis of algebraic normal form to realize QMEM
To simulate our algorithms with the effective quantum processing framework, we propose
the design of an algebraic normal form (ANF) circuit for realizing QMEM. Thus, this
supports the hybrid simulation (Bogdanova et al., 2018; Hao et al., 2020). We can
implement and perform most of the quantum operations directly by utilizing the

Table 7 Analysis of QC algorithm used to find approximate or exact value of t as number of search solutions.

Quantum
counting

Algorithm
framework

Analyzed complexities for EnQPBEA-MPM Analyzed Complexities for EnQBCEA-MPM

Query Time Storage Query Time Storage

Approx. –
QC

QAE
O

m=Cð Þffiffiffiffi
N
p

 �
O

m=Cð Þ�ffiffiffiffi
N
p

log2N
� �
 �

O
m=Cð Þ�
nþ rð Þ

 �
, and

r, nð Þ
O

m=Cð Þffiffi
t
p

 �
O

m=Cð Þ�ffiffi
t
p

log2t
� �
 �

O
m=Cð Þ�
tqþ rð Þ

 �
, and

r, tqð Þ
Exact-QC QAE

O
m=Cð Þffiffiffiffiffi
Nt
p

 �
O

m=Cð Þ�ffiffiffiffiffi
Nt
p

log2N
� �
 �

O
m=Cð Þ�
nþ rð Þ

 �
, and

r ¼ nð Þ
O

m=Cð Þffiffiffiffiffi
tt0
p

 �
O

m=Cð Þ�ffiffiffiffiffi
tt0
p

log2t
� �
 �

O
m=Cð Þ�
tqþ rð Þ

 �
, and

r ¼ tqð Þ

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 29/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

advantage of ANF that are equivalent to unitary circuits, such as ULoad (QMEM
transformation), UComp (QEM operation), and needful quantum adder operation (QAF
filtering); hence, this saves the qubits requirement (Malviya & Tiwari, 2020; Malviya &
Tiwari, 2021). The other requisite circuits and GSO operations needed for our proposed
algorithms will be implemented using combination of ANF and the specific quantum
unitary operations available in the QuEST library (defined in next section, used for
simulation purpose). For comprehensive understanding of the ANF based QMEM
realization refer toMalviya & Tiwari (2020); Soni & Rasool (2021); Soni & Malviya (2021)
and Malviya & Tiwari (2021). We proposed a quantum circuit in Fig. 8 showing implicit
operational method about the memory processing mentioned in Fig. 2.

A design of QMEM transformation is proposed here for a main unitary ULoad by using
ANF. This will be later used in the next section to simulate QMEM. So, for considered
jT2n�wiQMEM, the quantum circuit of Fig. 8 creates a superposition of N ¼ 2n text

addresses by applying H�n gates on n qubits address register jTiiQA. These n qubits are
used in ANF as n variables to form 2n possible binary strings, usually called Boolean
terms. In Fig. 8, the n ¼ 4 variables are taken as jT0T1T2T3i, where T0j i ¼ 23j i and
T3j i ¼ 20j i are the most significant and least significant qubit positions. Therefore, the
total 24 ¼ 16 possible terms 0j i . . . ; 7j i; . . . Fj if g forms uniform superposition of binary
strings 0000j i . . . ; 0111j i; . . . 1111j if g.

Further, ANF creates the data superposition, by realizing all the substring data load
operation in parallel, each of size M � log2 �j j in entangled data register jT i½ �iQD for
each jTiiQA. So, for such realization, M � log2 �j j Boolean functions are computed in
parallel, each can have at most O 2nð Þ Boolean terms. These terms are computed with the
logical “AND” followed by “XOR” operations. The computation of all possible terms,
results output of associated Boolean function. A circuit is shown in Fig. 8 (about Fig. 2)
considers pattern of length M ¼ 4. Therefore, total 4� 2 Boolean functions

Figure 8 Quantum algebraic normal form (ANF) circuit used to realize QMEM processing.
Full-size DOI: 10.7717/peerj-cs.957/fig-8

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 30/55

http://dx.doi.org/10.7717/peerj-cs.957/fig-8
http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

f00j i; f01j i; f10j i; f11j i; f20j i; f21j i; f30j i; f31j if g are computed in parallel as shown in Eqs. (9)–
(16) (Bogdanova et al., 2018; Malviya & Tiwari, 2020).

f00j i ¼ T2 	 T0T1T2 (9)

f01j i ¼T3 	 T2 	 T2T3 	 T1T2 	 T1T2T3 	 T0T2 	 T0T2T3 	 T0T1T3	
T0T1T2 	 T0T1T2T3

(10)

f10j i ¼ T3 	 T2 	 T0T1T3 	 T0T1T2 (11)

f11j i ¼ 1	 T2T3 	 T1T3 	 T1T2T3 	 T0T3 	 T0T2T3 	 T0T1 	 T0T1T2T3 (12)

f20j i ¼ 1	 T2 	 T0T1 	 T0T1T2 (13)

f21j i ¼1	 T2 	 T2T3 	 T1 	 T1T3 	 T1T2 	 T1T2T3 	 T0 	 T0T3	
T0T2 	 T0T1T3 	 T0T1T2T3

(14)

f30j i ¼ 1	 T3 	 T2 	 T0T2T3 (15)

f31j i ¼ 1	 T3 	 T0T2 	 T0T1 	 T0T1T3 	 T0T1T2 (16)

Each function fxy
�� �

with x = [0 to M − 1] = {0, 1, 2, 3} and y = [0 to log2|Σ|] = {0, 1} is
computed using variables associated with each term. To load all substring of size
M � log2 �j j in jT i½ �iQD for each text address jTiiQA in superposition, the binary string

equivalent to index position jTii is taken as input, and by applying their instances,
these Boolean functions are then computed to generate the desired substring within
superposition. For example, the loading of text substring indexed at jT4iQA, uses binary
string j0100iQA to load the desired output string in data register j00011011iQD (see Fig. 2).
This realization facilitates the qubits consuming operation in parallel, and thus, it
simulates the quantum algorithms with the minimum qubits requirement (Malviya &
Tiwari, 2020; Soni & Rasool, 2021; Soni & Malviya, 2021; Malviya & Tiwari, 2021). The
design specifications used for quantum effective processing of algorithms are specified in
Table 8 along with interpretation. Later, we will use these designs to simulate our proposed
quantum algorithms using the QuEST simulation.

Design specifications used for quantum effective processing framework:

� Table 8 specifies the proposed designs of quantum effective processing framework. It is
used in reference with Table 4 to know the quantum gates required for circuit,
processing time and qubits needed to realize a circuits.

� The ANF circuit is realized as equivalent unitary ULoad (Eq. 3) for QMEM
transformation. A circuit implementation needs quantum gates set

Table 8 Simulation detail to realize the design of quantum effective processing framework.

Simulation of QMEM Simulation of QEM Simulation of GSO

Concept used Circuit
realized

Qubits
used

Circuit
depth

Concept used Circuit
realized

Qubits
used

Circuit
depth

Concept
used

Circuit
realized

Qubits
used

Circuit
depth

ANF based
circuit (Fig. 8)

UQMEM,
ULoad

nþ w or
tqþ w

O 2tqð Þ
tq � n

Boolean
Oracle
circuit

UComp 2 × w O(1) Phase
Oracle
circuit

UMark,
UDiff

nþ 1 or
tqþ 1

O
ffiffiffiffiffiffi
2tq
p� �
tq � n

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 31/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

H�tq;CtqNOT;X�tqf g with tq � nð Þ. Such circuit can be simulated later with varying
length, as per needed size of QMEM to realize.

� The time complexity of ANF based QMEM depends on the circuit depth constructed
over tq input variables tq � n. It realizes M � log2 �j j Boolean function in parallel,
each consist of at most 2tq terms. So, with maximum circuit depth, this circuit will
take the exponential complexity O 2tqð Þ as tq � n under the simulation. We conclude
that the physical QMEM processing is remarkable with O 1ð Þ time; however, it is
exponentially slow in classical.

� The O 1ð Þ time QEM
 UComp (Eq. 5) design can be simulated efficiently with
M � log2 �j j qubits as all substrings, each of M � log2 �j j length, can realize in

superposition using ANF.

� The GSO can be realized as per Table 4. A unitary UMark (Eq. 7) marks index with the
phase inversion through Ctq�1NOTð Þ gate, this flips a target index by inverting ancilla.
Further, amplification circuit is used with the set of gates

H�tq;X�tqf gCtq�1Z; X�tq;H�tqf gf g (Broda, 2016; Figgatt et al., 2017; Coles, 2020). A
circuit depth of GSO is O

ffiffiffiffiffiffi
2tq
p� �

, so this depends on text size, as for t sized filtered or N
sized original text with t � N .

SIMULATION AND EXPERIMENTAL DETAIL
Our proposed algorithms are validated using hybrid (classical and quantum) simulation
for the effective realization of equivalent quantum circuits. Therefore, we implemented the
algorithms by utilizing the advantage of a C–Library based, flexible simulator with a
multi-platform support, called the Quantum Exact Simulation Toolkit (QuEST) (Jones &
Benjamin, 2018). We do not intend to analyze the simulation efficiency because of
quantum operational restrictions on the classical machine. For a detailed study of QuEST
simulation, refer to the published articles (Jones & Benjamin, 2018; Malviya & Tiwari,
2020; Malviya & Tiwari, 2021; Soni & Rasool, 2021; Soni & Malviya, 2021).

QuEST specific simulation features and environment setting
Quantum computations are highly complex, and their efficient simulation on the
classical machine is not expected rather than the quantum machine. We performed the
simulation to analyze the feasibility of quantum algorithm computations. A quantum
machine with a significant amount of qubits still does not exist to realize quantum
algorithms. Therefore, we used the QuEST library for the efficient and high-performance
simulation of quantum circuits as a substitute for the quantum computer. This simulator is
ideal, open-source and available with competent hybrid features such as multithreaded,
distributed, and GPU accelerated to use classical hardware for the efficient simulation of
quantum circuits. The QuEST simulator proved for the excellent scaling on multicore
architectures. Hybrid features of this simulator realized in parallel execution support of
OpenMP and MPI. We expect no compromise on simulating the quantum computations
even realization is more accurate on a single node, shared memory and distributed
systems. A QuES simulation prepares basic and multi-controlled quantum gates as either

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 32/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

pure state (vectors) or mixed state (density matrix) under the presence of decoherence
(Jones & Benjamin, 2018). This simulation is effective as it performs the quantum
operations in the absence of quantum noise.

In their article, Jones & Benjamin (2018), presented the performance comparison of
QuEST with the other simulators, and they justified that QuEST is effective because it
speeds up simultaneous quantum operations by data parallelism with SIMD execution
support. The GPU acceleration is possible through NVIDIA’s CUDA to attain operational
speedup and to facilitate parallelism in quantum specific scientific codes. This maintains
exponential operations 2nð Þ as the pure quantum state over n–qubits quantum register
represented as complex floating-point numbers with default double precision. The
quantum multicore realization is the implicit phenomenon that is implemented through
the QuEST simulator in the separate quantum execution environment. However, such
realization is based on parallel execution of the task in the multithreaded environment over
the multiple cores of the CPU (Jones & Benjamin, 2018). Conclusively, we used the QuEST
for high-performance simulation of quantum circuits and effective implementation
equivalent to quantum algorithms.

We perform the experiments by implementing our quantum algorithms locally on one
node with the machine configuration as “Intel i7-7700HQ” processor (having four cores
and eight threads) running at 2.80 GHz (having 2400 MHz clock frequency) and 8GB
classical RAM (CRAM). We set the QuEST execution environment for either a single or
multiple (three) quantum system, each of them contains a separate register with a set of
qubits in a pure state to show simulation of our quantum algorithms on single and
multicore architecture. The simulation features such as OpenMP is enabled, GPU
acceleration is disabled and default double-precision size of 8 bytes is used for reading
probability amplitudes; however, the hybrid simulation would be effective.

Description and encoding of biological dataset and patterns
For the simulation purpose, we used the gene sequence database of “Severe Acute
Respiratory Syndrome Corona-Virus 2 SARS–CoV–2” for humans. A detailed dataset
description and QuEST specific simulation codes are specified within subsection of
Additional Information and Declarations entitled “Data and Simulation Codes
Availability”.

An idea of implementation is to assign each symbol of the alphabet set�with the binary
string of length log2 �j j qubits, and then to transform text database and pattern into
binary encoded form. The nucleotide/gene/genome sequence database is preferred for
validating our algorithms, so each DNA character of � ¼ A;T;C;Gf g is assigned with the
log24 ¼ 2 length binary string as � ¼ 00; 01; 10; 11f g (Faro & Lecroq, 2009; Soni &

Rasool, 2021; Soni & Malviya, 2021). In contrast, the peptide sequences/protein databases
with amino acid symbols set �j j ¼ 20 are ignored here to avoid simulation specific
restricted processing of long length binary strings log2 �j j ¼ 5 qubits, as this increases
qubits requirement.

The subsets of gene sequence ðSARS� CoV� 2Þ is intentionally prepared, as per
feasibility of simulation with the text file sizes of 128; 256; 512f g characters. A QPU with

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 33/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

C ¼ 3 cores is used to realize a case m � Cð Þ for single pattern Pj j ¼ 1 and multiple
patterns set Pj j ¼ 3. In case of single pattern, other cores will remain idle. A possible case
of m.Cð Þ is shown by taking multiple patterns set Pj j ¼ 6. For m ¼ Cð Þ case, we take
each pattern as of equal size by considering “open reading frame search – patterns” used
in the codon process, thus, the pattern of length 3; 3; 3f g characters is taken as
TAA;TAG;TGAf g to identify stop codon. And for m.Cð Þ case, the 3 length patterns
TAA; TTT; TAG;TAC; TGA; TGCf g are searched using a multicore environment.

Next, we take unequal sized patterns TA; TAG;TGACf g to realize m ¼ Cð Þ case by
considering the DNA regular expression based “motif patterns” of length 2; 3; 4f g
characters. For m.Cð Þ case, we take the pattern of length 2; 2; 3; 3; 4; 4f g characters as
TA;TC;TAG;TTC;TGAC;TTCAf g. The restricted singleton set Pj j ¼ 1 is used to search

single pattern ATGf g (start codon of frame) for existing algorithms. Text and pattern
are encoded in binaries, but we specify our results with character file sizes. For each
QCorec, we take the pattern of Mk � log2 �j j qubits, and sequence text of size N ¼ 2n

indices with word length log2 �j j qubits. Exact pattern match is performed by exploring
text on QMEM (realized by ANF), and by applying QEM circuit for comparing
M � log2 �j j qubits in parallel.

SIMULATION RESULTS AND DISCUSSION
Our proposed algorithms EnQPBEA-MPM and EnQBCEA-MPM were simulated using
the QuEST simulator. The experimental results observed during QuEST specific
simulation are discussed here in the initial section. In the next section, we suggest some
applications related to biological sequence processing for our proposed algorithms.

Simulation detail and analysis with algorithms evaluation criteria
The qubits estimation of a quantum algorithm (or equivalent quantum circuit) shows
simulation possibility; however, actual qubits requirement with multiplicative constants
decides, whether it is feasible or not. Thus, the performance of QuEST simulation depends
on the scaling of multiplicative factors with respect to the data (qubits) processing
requirement of quantum circuits. An excessive qubits requirement also limit an underlying
configuration of a classical machine. This increases the CRAM workspace and classical
CPU processing time with exponential increase. In general, a complete human genome
sequence can be excessively large as of 230ð Þ nucleotide characters with approximately

3� 109ð Þ base pairs which are contained in 23 chromosomes, each contains gene sequence
of at least 215ð Þ DNA=RNA characters (Faro & Lecroq, 2013; Neamatollahi, 2020; Zou
et al., 2015). So, for a simulation of n qubits system, QuEST realizes 2n variables (each need
8 bytes of double precision) in O 2nð Þ classical processing time. Therefore, CRAM and a
classical CPU processing time proportionally increase as with qubits requirement. For this
reason, we prepared the subsets of gene sequence (SARS-CoV-2) with text file sizes of
128; 256; 512f g characters by analyzing the feasible QuEST based hybrid simulation of

QPU with C quantum cores accessing text T of size N on shared QMEM.
ANF is actually implemented to simulate the QMEM behaviour and for the other

requisite operations. Therefore, in reference to the interpretation of Table 8, we simulate

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 34/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

the ANF circuit with varying length and as per needed size of QMEM to realize. However,
based on ANF the QuEST simulation of QMEM is observed exponentially slow. The most
important point to remember is justified here, that the ANF-based QMEM circuit allows
several quantum operations with no increase in qubits requirement. In experimental
results, we may observe some deviations and exceptions (if identified) due to implicit
random increase in depth of Boolean functions as they are used to simulate QMEM.
Further, we use this to perform other requisite quantum operations on the same ANF
circuit.

We used two implementations of Boolean oracle circuit for QEM
 UComp (Eq. 5). First,
using log2 �j j sized ancilla qubits to store matching results of each index. Next, we use
QuEST specific complex-matrix unitary to find a match and to negate the index for
marking. Similarly, the simulation of GSO is realized as per Tables 4 and 8, however,
QuEST specific multi-controlled qubit unitary is used to implement the phase inversion.

The QuEST simulator realizes exponential operations effectively by optimizing
simulation performance on the classical machine. This simulator provides the log file of
quantum assembly instructions (QASM) which help us to record the operations executed
on quantum registers by quantum gates and to report execution time of specific quantum
circuit during simulation (Jones & Benjamin, 2018; Malviya & Tiwari, 2020; Malviya &
Tiwari, 2021; Soni & Malviya, 2021). A CRAM is allocated on demand, so its workspace
area may contain several blocks of memory and may be available in compressed form. So,
in addition, we used process explorer to measure the maximum workspace requirement of
CRAM during the execution of a simulated algorithm.

QuEST specific algorithmic simulation results with observation
This section includes QuEST simulation with observation to map our theoretical –
experimental results of algorithms. The results are categorized separately for equal and
unequal sized patterns. We noted the results in the tables as per the analysis cases m � Cð Þ
and m.Cð Þ for different text file sizes. A recorded execution log is mentioned in Tables 9
and 10. To prevent the overshooting problem of GSO we implemented exact and
approximate quantum counting (QC) algorithms that can find the required number of
GSO iterations. So, the observed results of QC and further error analysis are included from
Tables 11–13 (for equal sized pattern) and from Tables 14–16 (for unequal sized pattern).
The average search time with the memory requirement of the algorithm under QuEST
simulation is noted in Tables 17 and 18.

Analysis of the experimental log observed during QuEST simulation:

� For our algorithms EnQPBEA-MPM and EnQBCEA-MPM, Tables 9 and 10 are used to
categorize the results between separate text file sizes 128; 256; 512f g and analysis cases
m � Cð Þ and m.Cð Þ are formed for equal – unequal sized multiple pattern set
P ¼ P1; P2;P3; P4; P5;P6f g of lengths 3; 3; 3; 3; 3; 3f g and 2; 2; 3; 3; 4; 4f g. A QPU with
quantum cores C ¼ C1;C2;C3f g is considered for the separate execution of desired
pattern search.

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 35/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

� We assume Pj j ¼ 1 for m ¼ 1ð Þ, C ¼ 3ð Þð Þ to search for single pattern P of length 3f g
on Cj j ¼ 1 i.e. single core to show the simulation of existing QPBE and QBCE
algorithms. In this case, other cores are remaining idle. The case of
m ¼ 3ð Þ ¼ C ¼ 3ð Þð Þ is considered for searching the desired pattern on individual

quantum core. We noted the performance of our algorithms for the case
m ¼ 6ð Þ. C ¼ 3ð Þð Þ to realize their executions for large number of patterns (exactly

doubled) on constant number of quantum cores. For these cases, we utilized QuEST
specific log file that contains a record of standard QASM instructions.

� The log record for EnQPBEA and EnQBCEA algorithms are identified for searching, but
in case of the EnQBCEA algorithm, the filtering log is additionally recorded. It keeps
number of quantum gates needed during the simulation of the quantum algorithm or
its equal quantum circuit. A universal quantum gates set H;X;Rz;Ctq�1Z;CtqXf g is
noted in QASM log. We used to represent Ctq�1Z and CtqX as CZ and CX to save the
text space in tables. The number of coded qubits is observed additionally during a
simulation of algorithm within test log.

Table 9 Observed outcomes of experimental log during QuEST simulation for equal sized patterns.

Quantum
algorithm

Analysis
case

Search
pattern

Text file size: 128 Text file size: 256 Text file size: 512

Qubits
noted

Quantum gates
needed

Qubits
noted

Quantum gates needed Qubits
noted

Quantum gates needed

H X R z CZ CX H X R z CZ CX H X R z CZ CX

EnQPBEA-
MPM

ðm � CÞ C P:ATG 17 91 95 141 6 141 18 88 91 265 5 265 19 63 65 545 3 545

C1 P1:TAA 17 63 65 141 4 142 18 104 105 265 6 266 19 63 63 545 3 546

C2 P2:TAG 17 63 67 141 4 142 18 136 139 265 8 266 19 117 119 545 6 546

C3 P3:TGA 17 91 95 141 6 142 18 136 139 265 8 266 19 81 83 545 4 546

ðm.CÞ C1 P1:TAA 17 63 65 141 4 142 18 104 105 265 6 266 19 63 63 545 3 546

C2 P2:TTT 17 21 25 141 1 142 18 56 59 256 3 266 19 45 47 545 2 546

C3 P3:TAG 17 63 67 141 4 142 18 136 139 265 8 266 19 117 119 545 6 546

C1 P4:TAC 17 49 52 141 3 142 18 56 58 265 3 266 19 63 64 545 3 546

C2 P5:TGA 17 91 95 141 6 142 18 136 139 265 8 266 19 81 83 545 4 546

C3 P6:TGC 17 63 68 141 2 142 18 120 124 265 7 266 19 99 102 545 5 546

EnQBCEA-
MPM

ðm � CÞ C P:ATG 14+5 54 39 308 4 308 16+6 50 36 441 3 442 18+7 53 28 2,366 2 2,366

C1 P1:TAA 14+5 49 37 598 3 600 16+6 70 56 1,446 4 1,448 18+7 53 37 3,084 2 3,086

C2 P2:TAG 14+2 24 15 598 2 600 16+3 31 20 1,450 2 1,452 18+4 38 25 3,142 2 3,144

C3 P3:TGA 14+0 14 6 577 0 578 16+1 19 9 1,169 0 1,171 18+4 38 24 2,785 2 2,787

ðm.CÞ C1 P1:TAA 14+5 49 37 598 3 600 16+6 70 56 1,446 4 1,448 18+7 53 37 3,084 2 3,086

C2 P2:TTT 14+7 49 28 7 2 9 16+8 88 64 8 4 10 18+9 81 54 9 3 11

C3 P3:TAG 14+2 24 15 598 2 600 16+3 31 20 1,450 2 1,452 18+4 38 25 3,142 2 3,144

C1 P4:TAC 14+3 39 27 488 2 490 16+4 46 32 1,152 2 1,154 18+5 53 37 3,082 2 3,084

C2 P5:TGA 14+0 14 6 577 0 578 16+1 19 9 1,169 0 1,171 18+4 38 24 2,785 2 2,787

C3 P6:TGC 14+1 49 30 483 3 485 16+2 79 56 1,010 4 1,012 18+3 67 42 2,065 3 2,067

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 36/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

� In reference to Table 6, we simulated the EnQPBEA algorithm using workspace qubits.
Instead of actual qubits nþ 2� Mlog2 �j j

� �þ 1
� �

, the nþMlog2 �j j þ 2þ 2
� �

qubits used in the implementation. Here, all text substrings of sizeMlog2 �j j are realized
using ANF, and log2 �j j ¼ 2 workspace qubits store the parallel matching result of
each index in superposition. Other two qubits are used as ancillary to support GSO
operation. Our findings on qubits, for both the equal and unequal sized patterns, are
observed the same as expectations.

� The simulation of EnQBCEA algorithm is efficiently coded with 2nþ tqð Þ qubits
instead of the actual 2nþ 2� Mlog2 �j j

� �þ tqþ 1
� �

qubits mentioned in Table 6.
We took 2n qubits for QAF filtering, and tq qubits to search on filtered indices. All
substring of size Mlog2 �j j are realized using ANF and the pattern is loaded classically.
For GSO operation, QuEST unitary complex-matrix is used to find a match and to
negate the index for marking. The qubits are observed as the same as expectations for
both equal and unequal sized patterns.

� We wished to show the implementation using QPU with C quantum cores; thus, the
QuEST execution environment was initialized as either a single or multiple (three)
quantum system containing a separate register set. We coded hybrid simulation to

Table 10 Observed outcomes of experimental log during QuEST simulation for unequal sized patterns.

Quantum
algorithm

Analysis
case

Search
pattern

Text file size: 128 Text file size: 256 Text file size: 512

Qubits
noted

Quantum gates
needed

Qubits
noted

Quantum gates needed Qubits
noted

Quantum gates needed

H X Rz CZ CX H X R z CZ CX H X R z CZ CX

EnQPBEA-
MPM

ðm � CÞ C P:ATG 17 91 95 141 6 141 18 88 91 265 5 265 19 63 65 545 3 545

C1 P1:TA 15 21 23 141 1 142 16 40 41 265 2 266 17 27 27 545 1 546

C2 P2:TAG 17 63 67 141 4 142 18 136 139 265 8 266 19 117 119 545 6 546

C3 P3:TGAC 19 91 96 141 6 142 20 200 204 265 12 266 21 225 228 545 12 546

ðm.CÞ C1 P1:TA 15 21 23 141 1 142 16 40 41 265 2 266 17 27 27 545 1 546

C2 P2:TC 15 35 38 141 2 142 16 40 42 265 2 266 17 45 46 545 2 546

C3 P3:TAG 17 63 67 141 4 142 18 136 139 265 8 266 19 117 119 545 6 546

C1 P4:TTC 17 49 53 141 3 142 18 72 75 265 4 266 19 63 65 545 3 546

C2 P5:TGAC 19 91 96 141 6 142 20 200 204 265 12 266 21 225 228 545 12 546

C3 P6:TTCA 19 91 95 141 6 142 20 120 123 265 7 266 21 99 101 545 5 546

EnQBCEA-
MPM

ðm � CÞ C P:ATG 14+5 54 39 308 4 308 16+6 50 36 441 3 442 18+7 53 28 2,366 2 2,366

C1 P1:TA 14+5 29 17 598 1 600 16+6 46 32 1,446 2 1,448 18+7 39 23 3,084 1 3,086

C2 P2:TAG 14+2 24 15 598 2 600 16+3 31 20 1,450 2 1,452 18+4 38 25 3,142 2 3,144

C3 P3:TGAC 14+0 14 6 523 0 524 16+0 16 7 1,193 0 1,194 18+0 9 3 861 0 863

ðm.CÞ C1 P1:TA 14+5 29 17 598 1 600 16+6 46 32 1,446 2 1,448 18+7 39 23 3,084 1 3,086

C2 P2:TC 14+5 63 42 435 3 437 16+6 72 48 974 3 976 18+7 81 54 1,955 3 1,957

C3 P3:TAG 14+2 24 15 598 2 600 16+3 31 20 1,450 2 1,452 18+4 38 25 3,142 2 3,144

C1 P4:TTC 14+5 77 56 423 4 425 16+6 104 80 896 5 898 18+7 99 72 1,791 4 1,793

C2 P5:TGAC 14+0 14 6 523 0 524 16+0 16 7 1,193 0 1,194 18+0 9 3 861 0 863

C2 P6:TTCA 14+3 54 45 443 4 445 16+4 70 55 1,109 4 1,111 18+5 67 50 2,667 3 2,669

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 37/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

intentionally save qubits, such that, qubits requirement on any core should not exceed
the limits of a classical machine.

� Especially for searching, the qubits needed by EnQPBEA is comparatively more than the
EnQBCEA because of search is performed with original indices rather than filtered. A
QAF takes 2n qubits to filter t indices, so, log2t ¼ tq search qubits may vary as per t
value. The expansion of different text search space with reduced indices enhances search
mechanism, but this would happen, when a value of t is found as too low as likely the
value of log2N ¼ n.

� The qubits needed for the searching increases in accordance with the size of the
biological text sequence and in direct proportion to the varying length patterns. This
phenomenon can be observed in the tables by analysing noted qubits for both equal –
unequal sized patterns and text size. A QuEST simulation of algorithms on quantum
multicore architecture shows that quantum registers are separately allocated with a set of
qubits in the pure state.

� We observed the quantum logic gates as implicitly realized under the QuEST simulation
of algorithms. For EnQPBEA with equal – unequal sized patterns running on any

Table 11 Observed results of QC with error analysis in QuEST simulation for N = 128 & equal sized patterns.

Quantum
algorithm

Analysis
case

Search
pattern

Text file size: 128

Actual
patterns

Filtered
indices

Error analysis (Exact-QC) Error Analysis (Approx. –QC)

Exact
QC

No. of
CIP

No. of
IIP

Error
%

Approx.
QC

No. of
CIP

No. of
IIP

Error
%

EnQPBEA-
MPM

ðm � CÞ C P:ATG 1 – 1 842 158 15.8 1 836 164 16.4

C1 P1:TAA 2 – 2 926 74 7.4 1 853 147 14.7

C2 P2:TAG 2 – 2 923 77 7.7 1 898 102 10.2

C3 P3:TGA 1 – 1 855 145 14.5 1 846 154 15.4

ðm.CÞ C1 P1:TAA 2 – 2 918 82 8.2 1 863 137 13.7

C2 P2:TTT 10 – 10 850 150 15 11 801 199 19.9

C3 P3:TAG 2 – 2 919 81 8.1 1 877 123 12.3

C1 P4:TAC 4 – 4 873 127 12.7 5 804 196 19.6

C2 P5:TGA 1 – 1 856 144 14.4 1 852 148 14.8

C3 P6:TGC 2 – 2 912 88 8.8 1 825 175 17.5

EnQBCEA-
MPM

ðm � CÞ C P:ATG 1 3 1 923 77 7.7 1 914 86 8.6

C1 P1:TAA 2 23 2 953 47 4.7 1 592 408 40.8

C2 P2:TAG 2 4 2 509 491 49.1 2 501 499 49.9

C3 P3:TGA 1 1 1 1,000 0 0 1 1,000 0 0

ðm.CÞ C1 P1:TAA 2 23 2 969 31 3.1 1 883 117 11.7

C2 P2:TTT 10 128 10 887 113 11.3 10 867 133 13.3

C3 P3:TAG 2 4 2 536 464 46.4 2 511 489 48.9

C1 P4:TAC 4 5 4 736 264 26.4 3 654 346 34.6

C2 P5:TGA 1 1 1 1,000 0 0 1 1,000 0 0

C3 P6:TGC 2 2 2 1,000 0 0 2 1,000 0 0

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 38/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

QCorec. The quantum gates are close proximate values to the gate observed during a
single pattern search on a single quantum core. In same context, the number of
quantum gates, noted on each QCorec for EnQBCEA, are approximately doubled than
single core.

� Due to small-sized equal or unequal pattern lengths, the observed number of gates for
both the algorithms are analysed in close proximity. However, there is a proportional
increase in the gates as with the increase in text file sizes and for the varying length
patterns. There exist, huge difference between the gates observation of EnQPBEA
and EnQBCEA because the gates observed for EnQBCEA are combined for both
filtering and searching. The size of filtered text eventually increases or decreases
multiplicity of quantum gates during simulation.

� In general, we observed that the simulation takes more quantum gates due to the
realization of ANF and other requisite quantum operations. We distributed uniform
workload on all cores under the multiple (three) quantum system containing a
separate register set. Table 9 shows a case of m.Cð Þ for that the overlapping pattern
P2 ¼ TTT executed on core C2 takes very less number of gates as due to the reduced

Table 12 Observed results of QC with error analysis in QuEST simulation for N = 256 and equal sized patterns.

Quantum
algorithm

Analysis
case

Search
pattern

Text file size: 256

Actual
patterns

Filtered
indices

Error analysis (Exact-QC) Error analysis (Approx. -QC)

Exact
QC

No. of
CIP

No. of
IIP

Error
%

Approx.
QC

No. of
CIP

No. of
IIP

Error
%

EnQPBEA-
MPM

ðm � CÞ C P:ATG 5 – 5 873 127 12.7 6 818 182 18.2

C1 P1:TAA 4 – 4 955 45 4.5 6 869 131 13.1

C2 P2:TAG 2 – 2 944 56 5.6 2 935 65 6.5

C3 P3:TGA 2 – 2 867 133 13.3 2 867 133 13.3

ðm.CÞ C1 P1:TAA 4 – 4 962 38 3.8 6 888 112 11.2

C2 P2:TTT 16 – 16 886 114 11.4 15 811 189 18.9

C3 P3:TAG 2 – 2 952 48 4.8 2 971 29 2.9

C1 P4:TAC 10 – 10 906 94 9.4 10 905 95 9.5

C2 P5:TGA 2 – 2 888 112 11.2 2 894 106 10.6

C3 P6:TGC 3 – 3 943 57 5.7 2 901 99 9.9

EnQBCEA-
MPM

ðm � CÞ C P:ATG 5 9 5 925 75 7.5 2 505 495 49.5

C1 P1:TAA 4 47 4 968 32 3.2 5 915 85 8.5

C2 P2:TAG 2 7 2 984 16 1.6 2 983 17 1.7

C3 P3:TGA 2 2 2 1,000 0 0 2 1,000 0 0

ðm.CÞ C1 P1:TAA 4 47 4 972 28 2.8 5 909 91 9.1

C2 P2:TTT 16 256 16 901 99 9.9 15 882 118 11.8

C3 P3:TAG 2 7 2 978 22 2.2 2 980 20 2

C1 P4:TAC 10 13 10 852 148 14.8 7 595 405 40.5

C2 P5:TGA 2 2 2 1,000 0 0 2 1,000 0 0

C3 P6:TGC 3 3 3 1,000 0 0 3 1,000 0 0

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 39/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

depth of ANF circuit. However, we noted proportional increase in the gate counts as
per the length and occurrences of search pattern. There is no increase in gate
requirements because most of the quantum operations are coded under ANF and this
actually saves the specific requirements of quantum gates.

� To considering all file sizes, we observed the same growth in the gate counts of Rz and

CtqX with a gradual increase. A controlled phase flip gate Ctq�1Z is used to perform
the phase inversion on the occurrence identification of pattern over the index. A subset
of H;Xf g gates are used as per necessity to realize QMEM or diffusion operator of
GSO. Any exception other than that are always expected because of the quantum
operations are applied over the random increase in depth of Boolean function which is
realized in ANF such that tq � n.

Quantum counting (QC) results and error analysis during QuEST simulation:

� For our algorithms EnQPBEA-MPM and EnQBCEA-MPM, we categorize the results in
tables between separate text file sizes 128; 256; 512f g and the analysis cases m � Cð Þ
and m.Cð Þ formed for equal – unequal sized multiple pattern set

Table 13 Observed results of QC with error analysis in QuEST simulation for N = 512 and equal sized patterns.

Quantum
algorithm

Analysis
case

Search
pattern

Text file size: 512

Actual
patterns

Filtered
indices

Error analysis (Exact-QC) Error analysis (Approx. -QC)

Exact
QC

No. of
CIP

No. of
IIP

Error
%

Approx.
QC

No. of
CIP

No. of
IIP

Error
%

EnQPBEA-
MPM

ðm � CÞ C P:ATG 11 – 11 888 112 11.2 11 881 119 11.9

C1 P1:TAA 14 – 14 967 33 3.3 15 876 124 12.4

C2 P2:TAG 4 – 4 978 22 2.2 5 914 86 8.6

C3 P3:TGA 8 – 8 907 93 9.3 8 900 100 10

ðm.CÞ C1 P1:TAA 14 – 14 960 40 4 15 843 157 15.7

C2 P2:TTT 34 – 34 943 57 5.7 36 907 93 9.3

C3 P3:TAG 4 – 4 978 22 2.2 5 902 98 9.8

C1 P4:TAC 15 – 15 934 66 6.6 15 935 65 6.5

C2 P5:TGA 8 – 8 918 82 8.2 8 900 100 10

C3 P6:TGC 6 – 6 971 29 2.9 5 917 83 8.3

EnQBCEA-
MPM

ðm � CÞ C P:ATG 11 18 11 974 26 2.6 9 923 77 7.7

C1 P1:TAA 14 97 14 980 20 2 14 969 31 3.1

C2 P2:TAG 4 11 4 989 11 1.1 2 545 455 45.5

C3 P3:TGA 8 10 8 814 186 18.6 7 799 201 20.1

ðm.CÞ C1 P1:TAA 14 97 14 987 13 1.3 14 963 37 3.7

C2 P2:TTT 34 512 34 974 26 2.6 33 928 72 7.2

C3 P3:TAG 4 11 4 990 10 1 2 506 494 49.4

C1 P4:TAC 15 19 15 593 407 40.7 15 581 419 41.9

C2 P5:TGA 8 10 8 805 195 19.5 7 800 200 20

C3 P6:TGC 6 6 6 988 12 1.2 3 929 71 7.1

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 40/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

P ¼ P1; P2;P3; P4; P5;P6f g of lengths 3; 3; 3; 3; 3; 3f g and 2; 2; 3; 3; 4; 4f g. A QPU with
quantum cores C ¼ C1;C2;C3f g is considered for the separate execution of desired
pattern search. We noted the results of equal sized pattern from Tables 11–13 and
unequal sized pattern from Tables 14–16.

� In reference to the earlier discussions on Grover’s quantum search, initially we
implemented our algorithms by assuming that the t number of search solutions (either
unique or multiple solution) are already known, and therefore, the GSO iterations were
also coded in advance. The case of GSO overshooting is considered as t number of
search solutions are unknown. However, it leads to the unknown number of GSO
iterations and hence the probability of success would be vanishingly small. So, we handle
this by implementing QC algorithm.

� To analyze our results, we implemented quantum counting (QC) (Brassard et al., 2002;
Nielsen & Chuang, 2010) to estimate the t number of search solutions in advance.
We obtained accurate value of t by Exact-QC and estimated value of t through Approx.-
QC methods. We know that QC is an amplitude estimation method, therefore,
additional quantum register is used with required precision qubits to store the exact or

Table 14 Observed results of QC with error analysis in QuEST simulation for N = 128 and unequal sized patterns.

Quantum
algorithm

Analysis
case

Search
pattern

Text file size: 128

Actual
patterns

Filtered
indices

Error analysis (Exact-QC) Error analysis (Approx. -QC)

Exact
QC

No. of
CIP

No. of
IIP

Error
%

Approx.
QC

No. of
CIP

No. of
IIP

Error
%

EnQPBEA-
MPM

ðm � CÞ C P:ATG 1 – 1 842 158 15.8 1 836 164 16.4

C1 P1:TA 10 – 10 579 421 42.1 11 549 451 45.1

C2 P2:TAG 2 – 2 912 88 8.8 1 892 108 10.8

C3 P3:TGAC 1 – 1 826 174 17.4 1 814 186 18.6

ðm.CÞ C1 P1:TA 10 – 10 596 404 40.4 11 579 421 42.1

C2 P2:TC 8 – 8 904 96 9.6 11 582 418 41.8

C3 P3:TAG 2 – 2 924 76 7.6 1 890 110 11

C1 P4:TTC 3 – 3 891 109 10.9 5 572 428 42.8

C2 P5:TGAC 1 – 1 833 167 16.7 1 826 174 17.4

C3 P6:TTCA 1 – 1 855 145 14.5 1 834 166 16.6

EnQBCEA-
MPM

ðm � CÞ C P:ATG 1 3 1 923 77 7.7 1 914 86 8.6

C1 P1:TA 10 23 10 961 39 3.9 9 957 43 4.3

C2 P2:TAG 2 4 2 511 489 48.9 2 505 495 49.5

C3 P3:TGAC 1 1 1 1,000 0 0 1 1,000 0 0

ðm.CÞ C1 P1:TA 10 23 10 966 34 3.4 9 957 43 4.3

C2 P2:TC 8 21 8 943 57 5.7 9 903 97 9.7

C3 P3:TAG 2 4 2 509 491 49.1 2 503 497 49.7

C1 P4:TTC 3 19 3 980 20 2 4 961 39 3.9

C2 P5:TGAC 1 1 1 1,000 0 0 1 1,000 0 0

C3 P6:TTCA 1 7 1 939 61 6.1 3 854 146 14.6

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 41/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

approximate value of t as count. In Exact-QC, we measure the accurate value of t using
the register with a precision size
 log2N qubits, and we need the register with precision
size , log2N qubits to measure the approximate value of t through Approx.-QC
(Brassard et al., 2002; Nielsen & Chuang, 2010). So, we coded required qubits in
additional register, respectively. After executing Exact-QC and Approx.-QC algorithms,
values of t are obtained. And then the algorithm EnQPBEA executes p=4

ffiffiffiffiffiffiffiffi
N=t

p� �
and EnQBCEA executes p=4

ffiffiffiffiffiffiffi
t=t0

p� �
no. of GSO iterations to obtain relative search

results. We include the error analysis with the exact value of t Exact-QC and with the
approximate value of t (Approx.-QC) in Tables 11–16.

� For evaluating the accuracy of search results, we include error analysis with Exact-QC
and Approx.-QC cases. So for each pattern, after obtaining the value of t from Exact-QC
and Approx.-QC, we repeat EnQPBEA and EnQBCEA algorithms 10 times
separately on the individual quantum core. Each repetition completes 100 iterations
of algorithms, and after each iteration, we perform the measurement on each core to
obtain the search result. Instead of taking the average of 10 times, we have noted the
results from Tables 11–16 by taking a summation of 10 repeated executions (each

Table 15 Observed results of QC with error analysis in QuEST simulation for N = 256 and unequal sized patterns.

Quantum
algorithm

Analysis
case

Search
pattern

Text file size: 256

Actual
patterns

Filtered
indices

Error analysis (Exact-QC) Error Analysis (Approx. -QC)

Exact
QC

No. of
CIP

No. of
IIP

Error
%

Approx.
QC

No. of
CIP

No. of
IIP

Error
%

EnQPBEA-
MPM

ðm � CÞ C P:ATG 5 – 5 873 127 12.7 6 818 182 18.2

C1 P1:TA 19 – 19 665 335 33.5 18 602 398 39.8

C2 P2:TAG 2 – 2 955 45 4.5 2 952 48 4.8

C3 P3:TGAC 1 – 1 868 132 13.2 1 861 139 13.9

ðm.CÞ C1 P1:TA 19 – 19 617 383 38.3 18 596 404 40.4

C2 P2:TC 20 – 20 946 54 5.4 22 901 99 9.9

C3 P3:TAG 2 – 2 961 39 3.9 2 952 48 4.8

C1 P4:TTC 9 – 9 922 78 7.8 10 907 93 9.3

C2 P5:TGAC 1 – 1 880 120 12 1 872 128 12.8

C3 P6:TTCA 3 – 3 910 90 9 2 895 105 10.5

EnQBCEA-
MPM

ðm � CÞ C P:ATG 5 9 5 925 75 7.5 2 505 495 49.5

C1 P1:TA 19 47 19 975 25 2.5 19 964 36 3.6

C2 P2:TAG 2 7 2 989 11 1.1 2 973 27 2.7

C3 P3:TGAC 1 1 1 1,000 0 0 1 1,000 0 0

ðm.CÞ C1 P1:TA 19 47 19 975 25 2.5 19 964 36 3.6

C2 P2:TC 20 44 20 954 46 4.6 19 914 86 8.6

C3 P3:TAG 2 7 2 962 38 3.8 2 962 38 3.8

C1 P4:TTC 9 47 9 982 18 1.8 9 977 23 2.3

C2 P5:TGAC 1 1 1 1,000 0 0 1 1,000 0 0

C3 P6:TTCA 3 13 3 970 30 3 2 911 89 8.9

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 42/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

bifurcates the measurement result out of 100 iterations), and hence it is equivalently
considered as 1,000 iterations.

� We define some requisite parameters which are evaluated for the error analysis purpose, out
of 1,000 iterations, such as – (1) No. of Correctly Identified Patterns (CIP): No. of times
the pattern identified correctly at the measured index; (2) No. of Incorrectly Identified
Patterns (IIP): No. of times the pattern does not found at measured index; (3) No. of
Incorrectly Missed Patterns (IMP): No. of times any of the correct pattern index could not
be measured; and (4) Error % : No: of IIP= No: of CIPþ No: of IIPð Þð Þ � 100ð Þ.
� In each of the 10 repeated executions, we coded 100 iterations for sufficient be
valuations. If the number of iterations were selected too small
 25 iterations, then there
would have been the chance of getting the No: of IMP in our evaluations. However,
because of the sufficient iterations, we have not reported this case for any search pattern.
Therefore, we assure that the likely indices are at least identified during the search
phase of both EnQPBEA & EnQBCEA algorithms. We also justify the fact, that the
increase in number of iterations also increases the accuracy of measuring all the likely

Table 16 Observed results of QC with error analysis in QuEST simulation for N = 512 and unequal sized patterns.

Quantum
algorithm

Analysis
case

Search
pattern

Text file size: 512

Actual
patterns

Filtered
indices

Error analysis (Exact-QC) Error Analysis (Approx.-QC)

Exact
QC

No. of
CIP

No. of
IIP

Error
%

Approx.
QC

No. of
CIP

No. of
IIP

Error
%

EnQPBEA-
MPM

ðm � CÞ C P:ATG 11 – 11 888 112 11.2 11 881 119 11.9

C1 P1:TA 42 – 42 696 304 30.4 43 667 333 33.3

C2 P2:TAG 4 – 4 970 30 3 5 920 80 8

C3 P3:TGAC 1 – 1 902 98 9.8 1 904 96 9.6

ðm.CÞ C1 P1:TA 42 – 42 623 377 37.7 43 612 388 38.8

C2 P2:TC 29 – 29 963 37 3.7 30 952 48 4.8

C3 P3:TAG 4 – 4 975 25 2.5 5 917 83 8.3

C1 P4:TTC 14 – 14 967 33 3.3 15 935 65 6.5

C2 P5:TGAC 1 – 1 899 101 10.1 1 900 100 10

C3 P6:TTCA 5 – 5 945 55 5.5 5 945 55 5.5

EnQBCEA-
MPM

ðm � CÞ C P:ATG 11 18 11 974 26 2.6 9 923 77 7.7

C1 P1:TA 42 97 42 984 16 1.6 39 911 89 8.9

C2 P2:TAG 4 11 4 993 7 0.7 2 545 455 45.5

C3 P3:TGAC 1 1 1 1,000 0 0 1 1,000 0 0

ðm.CÞ C1 P1:TA 42 97 42 971 29 2.9 39 900 100 10

C2 P2:TC 29 71 29 979 21 2.1 28 947 53 5.3

C3 P3:TAG 4 11 4 975 25 2.5 2 566 434 43.4

C1 P4:TTC 14 75 14 987 13 1.3 14 989 11 1.1

C2 P5:TGAC 1 1 1 1,000 0 0 1 1,000 0 0

C3 P6:TTCA 5 18 5 982 18 1.8 4 966 34 3.4

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 43/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

indices. And it also reduces the possibility of pattern that may be incorrectly missed.
Similarly, on taking too large number of iterations
 1;000 iterations, a possibility of
getting No: of IMP will be removed completely, but the algorithm performance
becomes worse than the classical equivalent algorithm.

� The quantum counting Exact-QC and Approx.-QC are executed 10 times and majority
result is considered as correct count of t i.e. either accurate value of t or estimated
value of t. The obtained value of t of Exact-QC are found accurate as per actual number
of pattern occurrences. As expected, we analyzed the deviations in values of t obtained
after executing Approx.-QC algorithm. Therefore, to measure EnQPBEA and
EnQBCEA search results, Error % of Approx.-QC case would be comparatively more
than the Exact-QC case.

� For the case m ¼ 1ð Þ, C ¼ 3ð Þð Þ, we show the simulation of existing QPBE and QBCE
algorithms. So, a single pattern P of length 3f g is searched on a single core with the
values of t obtained from Exact-QC and Approx.-QC. In this case, other cores are
remaining idle. For the case of m ¼ 3ð Þ ¼ C ¼ 3ð Þð Þ and m ¼ 6ð Þ. C ¼ 3ð Þð Þ, we
executed Exact-QC and Approx.-QC algorithms on individual quantum cores. After
obtaining the separate values of t, the algorithms EnQPBEA and EnQBCEA execute for

Table 17 Experimental realization of algorithms through QuEST specific simulation for equal sized pattern.

Quantum
algorithm

Analysis
case

Search
pattern

Text file size: 128 Text file size: 256 Text file size: 512

Avg. ET
(Sec)

CRAM WS
(KiB)

No. of
IP

Avg. ET
(Sec)

CRAM WS
(KiB)

No. of
IP

Avg. ET
(Sec)

CRAM WS
(KiB)

No. of
IP

EnQPBEA-
MPM

ðm � CÞ C P:ATG 0.205 5,978 1 0.502 8,702 5 1.409 16,082 11

C1 P1:TAA 0.132 5,955 2 0.513 8,690 4 1.312 16,087 14

C2 P2:TAG 0.112 2 0.604 2 2.219 4

C3 P3:TGA 0.145 1 0.613 2 1.622 8

ðm.CÞ C1 P1:TAA 0.233 5,994 2 0.913 8,723 4 3.137 16,116 14

P4:TAC 4 10 15

C2 P2:TTT 0.212 10 1.042 16 3.115 34

P5:TGA 1 2 8

C3 P3:TAG 0.231 2 1.323 2 4.935 4

P6:TGC 2 3 6

EnQBCEA-
MPM

ðm � CÞ C P:ATG 0.024 3,661 1 0.099 4,422 5 0.907 7,478 11

C1 P1:TAA 0.037 4,130 2 0.145 6,447 4 0.901 15,719 14

C2 P2:TAG 0.027 2 0.126 2 0.888 4

C3 P3:TGA 0.025 1 0.111 2 0.774 8

ðm.CÞ C1 P1:TAA 0.066 4,336 2 0.295 6,592 4 2.051 16,198 14

P4:TAC 4 10 15

C2 P2:TTT 0.042 10 0.218 16 1.537 34

P5:TGA 1 2 8

C3 P3:TAG 0.052 2 0.244 2 1.675 4

P6:TGC 2 3 6

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 44/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

desired number of search iterations. Evaluating parameters No: of CIP & No: of IIP are
also evaluated separately on each core. Throughout our experimentation, including
exceptional cases, we measured our search results with high probability and with relative
Error % value.

� We performed the repeated execution of Exact-QC and Approx.-QC for some
patterns of equal size TAA; TAG; TGAf g and unequal size TA; TAG; TGACf g on
individual quantum core to analyze m � Cð Þ and m.Cð Þ cases. So our analysis
confirms to obtain the desired values of t on different cores, based on majority, and
thus the number of GSO iterations also remains same. However for these cases, based
on the evaluating parameters No: of CIP and No: of IIP, the resulting outcomes of
EnQPBEA and EnQBCEA algorithms were measured with either the similarity or with
slight variations.

� Practically, based on values of t for Exact-QC and Approx.-QC we coded p=4
ffiffiffiffiffiffiffiffi
N=t

p� �
number of GSO iterations in the searching phase of EnQPBEA and EnQBCEA
algorithms. There exist some deviations in the estimated value of t through Approx.-QC
algorithm. So based on this t value, if p=4

ffiffiffiffiffiffiffiffi
N=t

p� �
iterations (rounded off to the nearest

integer) remains same as by taking the t value through Exact-QC method, then we
identify the same GSO iterations experimentally in both cases. However, the evaluating

Table 18 Experimental realization of algorithms through QuEST specific simulation for unequal sized pattern.

Quantum
algorithm

Analysis
case

Search
pattern

Text file size: 128 Text file size: 256 Text file size: 512

Avg. ET
(in Sec)

CRAM WS
(KiB)

No. of
IP

Avg. ET
(in Sec)

CRAM WS
(KiB)

No. of
IP

Avg. ET
(in Sec)

CRAM WS
(KiB)

No. of
IP

EnQPBEA-
MPM

ðm � CÞ C P:ATG 0.205 5,978 1 0.502 8,702 5 1.409 16,082 11

C1 P1:TA 0.030 11,929 10 0.111 20,903 19 0.331 40,504 42

C2 P2:TAG 0.112 2 0.618 2 2.232 4

C3 P3:TGAC 0.468 1 2.404 1 10.436 1

ðm.CÞ C1 P1:TA 0.134 12,484 10 0.538 20,960 19 2.058 40,578 42

P4:TTC 3 9 14

C2 P2:TC 0.619 8 3.386 20 13.036 29

P5:TGAC 1 1 1

C3 P3:TAG 0.717 2 2.832 2 8.976 4

P6:TTCA 1 3 5

EnQBCEA-
MPM

ðm � CÞ C P:ATG 0.024 3,661 1 0.099 4,422 5 0.907 7,478 11

C1 P1:TA 0.037 4,130 10 0.147 6,447 19 0.895 15,719 42

C2 P2:TAG 0.026 2 0.127 2 0.886 4

C3 P3:TGAC 0.022 1 0.102 1 0.813 1

ðm.CÞ C1 P1:TA 0.061 4,242 10 0.264 6,606 19 1.641 16,184 42

P4:TTC 3 9 14

C2 P2:TC 0.047 8 0.215 20 1.585 29

P5:TGAC 1 1 1

C3 P3:TAG 0.051 2 0.259 2 1.883 4

P6:TTCA 1 3 5

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 45/55

http://dx.doi.org/10.7717/peerj-cs.957
https://peerj.com/computer-science/

parameters No: of CIP and No: of IIP were measured with either the similarity or with
slight variations.

� On comparing the results between EnQPBEA and EnQBCEA algorithms, we observed
the results of EnQPBEA as consistent and mapped with the theoretical analysis.
However, there are two possible factors which are affecting the pattern searching results
of EnQBCEA such as – (1) A superposition of the filtered indices (reduced search
space of size t
 N) are formed with log2t

� � ¼ tq qubits and this expands a search
space of O 2tqð Þ where tq � n. Thus, if the indices , 2tq then we have a possibility of
getting less accurate results as the number of unmarked items are comparatively more in
this case. (2) With the reduced search space of size t there exist a possibility of actual
pattern occurrences t0 ffi t=2 (approximately equal to half). In this case, GSO iterations
used in EnQBCEA algorithms will realize the problem of balanced function i.e. the
pattern occurrence may be checked on the random selection of index from filtered
indices. Therefore, the probability of measuring the search result would remain
approximately uniform, and it actually generates less accurate results. And in the same
exceptional cases, the Error % can also be observed as more.

� Based on evaluation parameters No: of CIP and No: of IIP the search results of
EnQBCEA are obtained well than the EnQPBEA algorithm because of the searching is
performed on the filtered indices (reduced search space) rather than the entire available
search space which is used by the EnQPBEA algorithm. However, on processing
overlapped pattern P2 ¼ TTTf g for m.Cð Þ case, we noted the worst outcome of
quantum approximate filtering (QAF). Tables 11–13 are showing the improvement in
the obtained results. Therefore, in the hypothetical assumption, we may expect the
search results of EnQBCEA algorithm with less Error % than the search results of
EnQPBEA algorithm.

Analysis of experimental results obtained during QuEST simulation:

� For our algorithms EnQPBEA-MPM and EnQBCEA-MPM, Tables 17 and 18 are used
to categorize the results between separate text file sizes 128; 256; 512f g and analysis
cases m � Cð Þ and m.Cð Þ formed for the equal – unequal sized multiple pattern set
P ¼ P1; P2;P3; P4; P5;P6f g of lengths 3; 3; 3; 3; 3; 3f g and 2; 2; 3; 3; 4; 4f g. A QPU with
quantum cores C ¼ C1;C2;C3f g is considered for the separate execution of desired
pattern search.

� Tables 17 and 18 includes observation on the Avg: ET (Average Execution Time of
Searching), CRAM-WS (Classical RAM Workspace), and No: of IP (Number of
Identified Patterns) which are mapped to the observed outcomes of Exact-QC (Exact
Quantum Counting) algorithm, see Tables 11–16. We evaluated these parameters for the
existing QPBE and QBCE algorithms. So, a single pattern P of length {3} is executed on
single core to simulate the case m ¼ 1ð Þ, C ¼ 3ð Þð Þ. In this case, other cores are
remaining idle.

� The case m ¼ 3ð Þ ¼ C ¼ 3ð Þð Þ is considered for searching a desired pattern on
individual quantum core. So, Avg: ET is separately noted, but the CRAM workspace is

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 46/55

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.957

noted for entire execution as the memory is shared among all cores. We used to realize
m ¼ 6ð Þ. C ¼ 3ð Þð Þ for the performance evaluation with large no. of patterns

(exactly doubled), and these patterns are executed on the constant number of quantum
cores.

� A Avg: ET was observed using C–Library based clockðÞ function call. It returns several
clock ticks since the initiation of QuEST program execution. However, the clock ticks
are dependent on processor architecture. So to note a time in seconds, we divide the
clock ticks by CLOCKS_PER_SEC. This observation is noted through the test log. A
CRAM workspace is observed explicitly by using process explorer to measure the
maximum peak of the classical memory throughout the execution of the QuEST
program.

� Our experiments for the pattern searching was repeated 20 times in a sequence to note
their Avg: ET in seconds. The measured time includes the time of quantum
superposition realized using ANF to simulate quantum operations in parallel.

� Both EnQPBEA and EnQBCEA are found exact for searching the pattern on target
indices original or filtered text. The results tested on the dataset within QuEST
simulations are here validated. Algorithms identify all pattern occurrences with high
probability and in less time of execution. However, the search results of EnQBCEA are
found optimal due to the search is performed on filtered space of size t rather than
the original space of size N. Even on a single core, these results are optimized because of
the same pattern is searched over the filtered text.

� The algorithms' performance observed in proportional increase with Avg: ET of
searching, concerning the increase in text file sizes. We have stated earlier that our
intentions are not to analyze the simulation efficiency due to performance restrictions
on the classical machine. However, we ensure that for our text file sizes and patterns the
time needed by a real quantum machine will be negligible. Average times noted for
algorithms are specified explicitly for each core; but, due to parallel realization on the
quantum multicore concept, we consider a maximum time taken by any core among
C-QCore.

� Due to small-sized equal or unequal pattern lengths, the Avg: ET observed for both
these algorithms are analyzed in close proximity. However, all the occurrences of each
pattern are reported either within the original or filtered text sequence (see tables). For a
case of m.Cð Þ we distributed uniform workload on all the quantum cores under
the multiple (three) quantum system containing a separate register set. Tables 17 and
18 shows proportional increase in the Avg: ET values as per the increase in file sizes.
And in the same case, Avg: ET of the EnQBCEA algorithm is found optimal than the
EnQPBEA algorithm.

� The search time is dependent on the size of the text sequence and the number of
occurrences to report for each pattern; therefore, we consider slight deviations. For
all file sizes, and the equal or unequal sized patterns, we noted the Avg: ET on individual
cores. Here, the time is deviating in accordance with the size and frequency of
pattern occurrences within the text sequence. Some exceptions are considered here

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 47/55

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.957

because of implicit random increase in depth of Boolean functions used in ANF based
hybrid simulation. Recall, such an implementation aspect gives us privilege to save the
number of qubits required for a simulation of algorithms.

� We restate that algorithmic performance on simulation may affect due to the scaling
factors associated with qubits; thus, this also increases the workspace requirement of
CRAM and processing time with an exponential increase. Memory requirement is also a
crucial cum critical factor that may limit the execution of QuEST specific simulated
program. So, we prepared a very small-sized data processing requirement of text and
pattern and observed the utilization of the CRAM workspace (in KiB) throughout the
execution of QuEST program.

� In reference to Avg: ET, we noted workspace utilization of CRAM. Therefore, the
specified workspace in Tables 17 and 18 shows the average of repetitive experiments
that were performed 20 times. A CRAM consumption is observed separately with
respect to single pattern on single core. We noted the combined workspace for the cases
m ¼ Cð Þ and m.Cð Þ to search for multiple string patterns, each one runs on separate
quantum core.

� This is observed throughout the execution of algorithms that, the CRAM consumption
of a single core is less on comparing with multiple quantum cores sharing. We expect
this under QuEST simulation because the execution environment was set to a single
quantum system with assigned registers to realize a single quantum core. For EnQPBEA
and EnQBCEA, and m ¼ Cð Þ case, the execution environment of QuEST was set to
multiple quantum systems with their separate registers of needed qubits to realize
multiple quantum cores as a simulation of physical quantum multicore machine. So,
cross-comparison assures that CRAM workspace is usually more. Similarly, for m.Cð Þ
case, we are observing the expected increase in CRAM workspace as each quantum
system can simulate the individual quantum core to execute EnQPBEA and EnQBCEA
algorithms twice to complete the execution.

� A CRAM workspace will gradually increase with respect to the text file sizes. Thus, this
proportional phenomenon may restrict the classical simulation of quantum behaviour
for processing the large sequence databases, usually of at least exponential in size. As
well as, to process a large number of multiple string pattern m on the small number of
available quantum cores C, there would be an eventual increase in the size of CRAM
utilization. For all the cases m,Cð Þ, m ¼ Cð Þ and m.Cð Þ our Tables 17 and 18
shows the proportional increase in the CRAM workspace values as per the increase in
file sizes. And for same cases, CRAM workspace of the EnQBCEA algorithm is found
optimal than the EnQPBEA algorithm.

� Since we observed that the CRAM utilization of EnQBCEA for their equal – unequal
sized patterns are found in the close proximate regions. However, there exists much
more difference in the CRAM consumptions of EnQPBEA due to the reported pattern
occurrences over the original text and implicit random increase in depth of Boolean
functions used in ANF.

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 48/55

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.957

Table 19 Applications specific detail of proposed algorithm to process biological sequences.

Quantum
algorithm

Significant characteristics Performance restrictions Biological sequence and databases Specific applications

EnQPBEA-
MPM

* Suitable for processing multiple
patterns in an effective manner
as its design utilizes multiple
cores to search for Pk on shared
QMEM.

* This performs exact search,
thus it is more practicable for
processing biological sequences
efficiently.

* All exact occurrence of each Pk
are found through QCorec of
QPU having C cores in
O m=Cð Þ ffiffiffiffi

N
p� �

.
* Suitable to search for long
length patterns either formed
over �j j ¼ 4 (DNA) or
�j j ¼ 20 (Amino Acid), as
match takes O 1ð Þ on QMEM.

* Exponential sized text sequence
is effectively search for each
pattern, irrespective of text size
& frequent pattern occurrence
with speedup.

* Sets benchmark to find multiple
pattern using multicore
parallelism on text
withPr QCorecð Þ � tk=N .

* High probable search results may
be affected on each QCorec while
processing exponentially large
size text with few Pk occurrences.

* For large alphabet set � such as
�j j ¼ 20 (Amino Acid), the
qubits requirement is excessively
high, as of now, it is restricted,
however, no limitation on
quantum machine.

* Search time is still dependent on
cth core QCorec, so, core running
for the unequal sized pattern with
expected more frequent
occurrence, degrades algorithm
performance.

* The average probability of search
result, with N sized text & t
marked index, are proportionally
increased with successive
measurements.

* A O 2nð Þ depth ANF circuit slows
down the simulation, and thus,
this affects individual QCorec
output.

* DNA/RNA text is searched with a
long length pattern. Equal and
unequal pattern length is
preferred on genome sequence. A
sequence database for such
examples are GenBank, DDBJ,
EMBL.

* Search for multiple amino acid
pattern in protein database with
prefer able moderate length
patterns. This reduces the
searching overhead. Example of
some database are the GenBank,
DDBJ, EMBL, GenPept,
PROSITE, Swiss-Prot.

* DNA/RNA/Genome/
Protein sequencing.

* Local and the global
sequence alignments
techniques, similarity
detection.

* Gene and genome
analysis, mapping and
comparison with other
similar genes of same/
different organisms.

* The DNA mutation,
compare investigated
DNA with the known
sequence.

* Motif finding, open
reading frame search
and codons matching/
recognition.

* The proteogenomics
mapping read maps on
genomic sequence.

EnQBCEA-
MPM

* Performs multiple patterns
search on filtered text in
effectively as its design utilizes
the multiple cores to search for
Pk on shared QMEM.

* All exact occurrence of each Pk
are found through QCorec of
QPU having C cores in
O m=Cð Þ ffiffi

t
p� �

.
* Exact matching is preferred
over large text that may contain
frequent pattern occurrence,
thus, significant to process a
biological sequence.

* Search mechanism is effective
as because of finding patterns
over the reduced size text,
instead original.

* This algorithm is remarkable
over all classical and especially
existing quantum multi-pattern
methods.

* Each core assures to report
pattern match with
Pr QCorecð Þ � tk0=tk over
individual filtered text indices.

* The probability of search results at
kth core QCorec will depend on
relativeness of individual filtered
indices to the occurrences of
pattern present in filtered text for
each Pk.

* Bothe filtering and search time is
still dependent on cth coreQCorec,
so, core running for unequal sized
pattern with more filtering
outcome and frequent search
occurrence may degrades
algorithm performance.

* Due to algorithmic filtering, the
qubits requirement increases with
m=Cð Þ, thus, restricts simulation.

* Performance on each QCorec is
affected with unequal length
pattern and its formation over
large �j j.

* O 2tqð Þ tq � n ANF circuit depth
slows down simulation, and thus,
it affects individual QCorec
output.

* Multiple codon can code for same
amino acid with either single or
the multi locations within
sequence.

* DNA/RNA/Peptide & Protein
sequences are preferably search
with the small length pattern for
simulation and no restrictions on
quantum machine.

* The biological text sequence
database as can search for multi
pattern. In example GenBank,
Nucleotide database, PROSITE,
GenPept, Swiss-Prot, DDBJ,
EMBL.

* DNA/RNA/Genome/
Protein sequencing.

* Preferable approach for
method of multiple
sequence alignment.

* Motif finding, open
reading frame search
and codons matching
with using a similarity
detection/checking.

* Apply over specific
nucleotide or peptide
sequences to deal with
the local alignment.

* Apply to a sequence
alignment (global) on
genome or protein.

* Applicable on gene
mapping and the exact
substring matching.

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 49/55

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.957

Our observations on QuEST specific simulation mainly involves the critical factor of
qubits requirement for simulating quantum algorithm. It may cause exhaustive use of
CRAM, and the classical CPU computation time is also increased with the at least
exponential factor to process the circuit depth of quantum algorithms. However, we
implemented quantum algorithms with hybrid simulation by effectively utilizing QuEST
performance with several optimizations.

Proposed algorithmic applications to process biological sequences
This section defines several applications of our proposed quantum algorithms related to
search multiple patterns within the biological sequence databases. Table 19 specifies the
applicability of proposed algorithms with respect to significant characteristics and
performance restrictions.

� In Table 19, we summarize the significant characteristics and performance restrictions
of the presented algorithms. We highlighted main points with respect to the
contextual interpretation of biological text sequences and their standardized databases.
To have more understanding of the algorithms, we direct the reader to specific
applications (Sheik, Aggarwal & Anindya Poddar, 2004; Basel, 2006; Choo, 2006; Kalsi,
Peltola & Tarhio, 2008; Fredriksson, 2009; Charalampos, Panagiotis & Konstantinos,
2011; Rivals, Salmela & Tarhio, 2011; Faro & Lecroq, 2013; Jiang, Zhang & Zhang, 2013;
Singh, 2015; Zhang et al., 2015; Tahir, Sardaraz & Ikram, 2017; Hakak & Kamsin, 2019;
Neamatollahi, 2020; Soni & Rasool, 2021; Soni & Malviya, 2021; Raja & Srinivasulu
Reddy, 2019). These articles are related to process biological sequences and their
databases.

� In general, we say that the presented algorithms to process biological sequences, are
influenced by three parameters such as alphabet size, pattern length and the size of the
text. These parameters may affect the performance of the algorithmic simulation.
However, their realization of quantum machines would be effective in specific biological
applications.

� The probability of search results is based on the relativity between pattern occurrences
and the size of the text database (original or filtered). Therefore, the search results
are obtained in the best time with at least half probability, and for more frequent pattern
occurrences, the results are obtained in the worst time with very high probability.

� In multiple pattern processing, there exist some variations in the performance of
algorithm. It is because of processing equal or unequal size patterns. The simulation
over a very large-sized biological sequence database is not feasible for simulation because
of higher qubits requirement; therefore, a subset of the database is searched for a pattern
as per the feasibility. There is no such restriction on real quantum machines as they can
realize effective processing.

CONCLUSION AND FUTURE WORK
In this work, we enhanced the existing quantum pattern matching methods QPBE and
QBCE to search multiple patterns in parallel by using QPU with C cores accessing text on

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 50/55

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.957

shared QMEM. The search time to find all occurrences of the individual patterns
overlapped implicitly. Based on several complexity analysis factors, our proposed quantum
algorithms EnQPBEA-MPM and EnQBCEA-MPM are proved efficient to find exact
patterns while comparing with existing multiple pattern methods such as QEMP and
QAMP as their quantum design cannot exclude multiplicative factor m. A design of
presented algorithms uses architectural parallelism, but with a multiplicative constant
m=C. This factor can be negligible for small arbitrary constant value of m and constant
value of C. However, for comparatively large value of m� C, a factor m=C cannot be
ignored in the time complexities. Similarly, due to an implicit operational parallelism,
the logarithmic factor is found negligible when the original or filtered search space remains
too small to expand in superposition. However, this logarithmic factor cannot be
ignored with large number of qubits. Indeed, our proposed algorithms are preferred
effectively for finding the few pattern occurrences. Therefore, to process the exponentially
large size biological text sequences, our O m=Cð Þ ffiffiffiffi

N
p� �

and O m=Cð Þ ffiffi
t
p� �

time quantum
solutions are efficient, and they outperform over existing classical as well as quantum
solutions by achieving speedups. The algorithms are justified, based on mathematical
proves, as equivalent to quantum circuits. To obtain the accurate search results, quantum
counting is explicitly added to the functionality of proposed algorithms. We suggested
specific applications of these algorithms related to biological sequence processing.

The quantum algorithms are validated through restricted simulation performance. We
used Exact-QC to measure exact value of t and to validate the accurate search results.
However, we analyzed the deviations and less accurate search results by combining
Approx.-QC and GSO operator. The possible cases m � Cð Þ and m.Cð Þ were used in our
experimentation to observe the variations in search results. Indeed, our intentions were not
to analyze the simulation efficiency; therefore, as per the feasibility, we presented the
hybrid simulation to realize quantum operations of the algorithm on the classical machine.
However, we seek their efficient execution on the real quantum machine to observe the
high-performance computation aspects. Further, the proposed work can be extended
possibly either to replace filtering approximations of EnQBCEA with exactness or to
modify this using other error metric methods to increase accuracy. The open problems
would be the realizations of multiple oracles in parallel on a single quantum core, such that
the multiplicative factors can be completely removed, and the design of search method
through phase matching as replacement of amplitude amplification.

ACKNOWLEDGEMENTS
The authors are thankful to the domain researchers for sharing their ideas to extend over
upcoming quantum technology. We are also thankful to the reviewers as their valuable
suggestions improved the quality of the article.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 51/55

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.957

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Kapil Kumar Soni conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, quantum algorithm design & analysis, and
writing of complexity proofs, and approved the final draft.
� Akhtar Rasool analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The sequences are available at Genbank: MW687138.
The QuEST Simulation Codes are available at GitHub:
https://github.com/profkapilsoni/EnQPBEA-and-EnQBCEA-Algorithms.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.957#supplemental-information.

REFERENCES
Ablayev F, Ablayev M, Khadiev K, Salihova N, Vasiliev A. 2020. Quantum algorithms for string

processing. Available at https://arxiv.org/abs/2012.00372.

Aborot J. 2017. Quantum approximate string matching for large alphabets. Theory & Practice of
Computation 1:37–50 DOI 10.1142/10334.

Basel B. 2006. Biological sequences and the exact string matching problem. In: Introduction to
Computational Biology. 43–63.

Bogdanova YI, Bogdanova NA, Fastovets DV, Lukichev VF. 2018. Representation of Boolean
function in terms of quantum computations. Available at http://arxiv.org/abs/1906.06374.

Boyer M, Brassard G, Hoyer P, Tapp A. 1998. Tight bounds on quantum searching. Fortschritte
der Physik 46(4–5):493–505
DOI 10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P.

Brandl MF. 2017. A quantum von Neumann architecture for large scale quantum computing.
Available at http://arxiv.org/abs/1702.02583.

Brassard G, Hoyer P, Mosca M, Tapp A. 2002. Quantum amplitude amplification and estimation.
Contemporary Mathematics 305:53–74 DOI 10.1090/conm/305/05215.

Britt KA. 2017. High performance computing with quantum processing units. ACM Journal on
Emerging Technologies in Computing System 13(39):1–13 DOI 10.1145/3007651.

Broda B. 2016. Quantum search of a real unstructured database. European Physics Journal Plus
131(38):1–4 DOI 10.1140/epjp/i2016-16038-2.

Chakrabarty I, Khan S, Singh V. 2017. Dynamic Grover search: application in recommendation
system & optimization problems. Quantum Information Processing 16(6):152–172
DOI 10.1007/s11128-017-1600-4.

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 52/55

http://www.ncbi.nlm.nih.gov/nuccore/MW687138
https://github.com/profkapilsoni/EnQPBEA-and-EnQBCEA-Algorithms
http://dx.doi.org/10.7717/peerj-cs.957#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.957#supplemental-information
https://arxiv.org/abs/2012.00372
http://dx.doi.org/10.1142/10334
http://arxiv.org/abs/1906.06374
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P
http://arxiv.org/abs/1702.02583
http://dx.doi.org/10.1090/conm/305/05215
http://dx.doi.org/10.1145/3007651
http://dx.doi.org/10.1140/epjp/i2016-16038-2
http://dx.doi.org/10.1007/s11128-017-1600-4
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.957

Charalampos S, Panagiotis D, Konstantinos G. 2011. Parallel processing of multiple pattern
matching algorithms for biological sequences: methods and performance results. In:
Bioinformatics–Computational Biology and Modeling. Intech, 161–182 DOI 10.5772/18488.

Choo KW. 2006. Quantum computing: Grover’s search algorithm and its applications in
bioinformatics. COSMOS World Scientific 2(1):71–80 DOI 10.1142/S0219607706000171.

Coles PJ. 2020. Quantum algorithm implementations for beginners. Available at http://arxiv.org/
abs/1804.03719v2.

De Jesus BKA, Aborot JA, Adorna HN. 2013. Solving the exact pattern matching problem
constrained to single occurrence of pattern P in string S Using Grover’s quantum search
algorithm. In: Theory & Practice of Computation, Proceedings in Information &
Communications Technology Springer. Vol. 7. 124–142.

Faro S, Lecroq T. 2009. An efficient matching algorithm for encoded DNA sequences and binary
strings. LNCS Springer 5577:106–115 DOI 10.1007/978-3-642-02441-2.

Faro S, Lecroq T. 2013. The exact online string matching problem: a review of the most recent
results. ACM Computing Surveys 45(2):1–42 DOI 10.1145/2431211.2431212.

Figgatt C, Maslov D, Landsman KA, Linke NM, Debnath S, Monroe C. 2017. Complete 3-qubit
Grover search on a programmable quantum computer. Nature Communications 8(1):1918
DOI 10.1038/s41467-017-01904-7.

Fredriksson K. 2009. Succinct backward-DAWG-matching. ACM Journal of Experimental
Algorithmics 13(8):1.1–1.26 DOI 10.1145/1412228.1455263.

Fu X, Riesebos L, Lao L, Almudever CG, Sebastiano F, Versluis R, Charbon E, Bertels K. 2016.
A heterogeneous quantum computer architecture. In: Proceedings of the ACM CF – 16
International Conferences on Computing Frontiers. 323–330.

Giovannetti V, Lloyd S, Maccone L. 2008. Quantum random access memory. Physics Review
Letters 100(16):1–4 DOI 10.1103/PhysRevLett.100.160501.

Giri PR, Korepin VE. 2017. A review on quantum search algorithms. Quantum Information
Processing 16(12):315 DOI 10.1007/s11128-017-1768-7.

Grassi L, Plasencia MN, Schrottenloher A. 2018. Quantum algorithms for the k-xor problem. In:
Advances in Cryptology – ASIACRYPT. Berlin: Springer, 527–559.

Hakak SI, Kamsin A. 2019. Exact string matching algorithms—survey, issues, and future research
directions. IEEE Access 7:69614–69637 DOI 10.1109/ACCESS.2019.2914071.

Hao X, Zhang F, Xia S, Zhou Y. 2020.Quantum algorithms for learning the algebraic normal form
of quadratic Boolean functions. Quantum Information Processing 19(273):1–22
DOI 10.1007/s11128-020-02778-3.

Hendrian D, Ueki Y, Narisawa K, Yoshinaka R, Shinohara A. 2019. Permuted pattern matching
algorithms on multi-track strings. Algorithms MDPI Journal 12(4):1–20
DOI 10.3390/a12040073.

Jiang R, Zhang X, Zhang MQ. 2013. Basics of bioinformatics, lecture notes of the graduate summer
school on bioinformatics of China. Beijing: Springer and Tsinghua University Press.

Jones T, Benjamin C. 2018. QuEST and high performance simulation of quantum computers.
Science Reports 9(1):1–9 DOI 10.1038/s41598-019-47174-9.

Kalsi P, Peltola H, Tarhio J. 2008. Comparison of exact string matching algorithms for biological
sequences. CCIS Springer 13:417–426 DOI 10.1007/978-3-540-70600-7.

Lanzogorta M, Uhlmann J. 2008. Quantum computer science. Synthesis Lectures on Quantum
Computing 1(1):1–124 DOI 10.2200/S00159ED1V01Y200810QMC002.

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 53/55

http://dx.doi.org/10.5772/18488
http://dx.doi.org/10.1142/S0219607706000171
http://arxiv.org/abs/1804.03719v2
http://arxiv.org/abs/1804.03719v2
http://dx.doi.org/10.1007/978-3-642-02441-2
http://dx.doi.org/10.1145/2431211.2431212
http://dx.doi.org/10.1038/s41467-017-01904-7
http://dx.doi.org/10.1145/1412228.1455263
http://dx.doi.org/10.1103/PhysRevLett.100.160501
http://dx.doi.org/10.1007/s11128-017-1768-7
http://dx.doi.org/10.1109/ACCESS.2019.2914071
http://dx.doi.org/10.1007/s11128-020-02778-3
http://dx.doi.org/10.3390/a12040073
http://dx.doi.org/10.1038/s41598-019-47174-9
http://dx.doi.org/10.1007/978-3-540-70600-7
http://dx.doi.org/10.2200/S00159ED1V01Y200810QMC002
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.957

Lin C-H, Liu C-H, Chien L-S, Chang S-C. 2013. Accelerating pattern matching using a novel
parallel algorithm on GPUs. IEEE Transaction on Computers 62(10):1906–1916
DOI 10.1109/TC.2012.254.

Lomont C. 2003. Robust string matching in O(√N +M) quantum queries. Available at https://arxiv.
org/abs/quant-ph/0311043v2.

Malviya AK, Tiwari N. 2020. Linear approximation of a vectorial Boolean function using quantum
computing. Europhysics Letters 132(4):40001 DOI 10.1209/0295-5075/132/40001.

Malviya AK, Tiwari N. 2021. Quantum algorithm to identify division property of a multiset.
Arabian Journal of Science and Engineering 46(9):8711–8719
DOI 10.1007/s13369-021-05665-w.

Matteo OD. 2020. Fault tolerant resource estimation of quantum random access memories. IEEE
Transaction on Quantum Engineering 1:1–13 DOI 10.1109/TQE.2020.2965803.

Menon V, Chattopadhyay A. 2021. Quantum pattern matching oracle construction. Pramana –

Journal of Physics 95(1):22 DOI 10.1007/s12043-020-02062-0.

Metodi TS. 2011.Quantum computing for computer architects. Second Edition. San Rafael: Morgan
& Claypool Publishers.

Montanaro A. 2017. Quantum pattern matching fast on average. Springer Journal Algorithmica
77(1):16–39 DOI 10.1007/s00453-015-0060-4.

Neamatollahi P. 2020. Simple and efficient pattern matching algorithms for biological sequences.
IEEE Access 8:38–46 DOI 10.1109/ACCESS.2020.2969038.

Nielsen MA, Chuang IL. 2010. Quantum computation and quantum information. Tenth Edition.
Cambridge: Cambridge University Press.

Park DK, Petruccione F. 2019. Circuit-based quantum random access memory for classical data.
Quantum Physics, Scientific Reports 9(1):1–8 DOI 10.1038/s41598-019-40439-3.

Raja G, Srinivasulu Reddy U. 2019. Maximum exact matches for high throughput genome
subsequence assembly. IETE Journal of Research 3(1):1–8 DOI 10.1080/03772063.2019.1603085.

Ramesh H, Vinay V. 2003. String matching in O(√n+ √m) quantum time. Journal of Discrete
Algorithms 1(2):103–110 DOI 10.1016/S1570-8667(03)00010-8.

Rivals E, Salmela L, Tarhio J. 2011. Exact search algorithms for biological sequences. In:
Algorithms in Computational Molecular Biology - Techniques, & Applications. John Wiley &
Sons, 91–111.

Sena Oliveira D, Benicio Melo de Sousa P, Viana Ramos R. 2007.Quantum bit string comparator
—circuits and applications. IEEE International Telecommunications Symposium 7:17–26
DOI 10.1109/ITS.2006.4433341.

Sheik SS, Aggarwal SK, Anindya Poddar NB. 2004. A fast pattern matching algorithm. Journal of
Chemical Information and Computer Science 44(4):1251–1256 DOI 10.1021/ci030463z.

Singh GB. 2015. Fundamentals of bioinformatics and computational biology. Vol. 6. Cham:
Springer International Publishing Switzerland, 1–345.

Song F. 2017. Early days following Grover’s quantum search algorithm. Available at http://arxiv.
org/abs/1709.01236.

Soni B, Khare N, Soni KK, Rasool A. 2020. Classical equivalent quantum based efficient data
preprocessing algorithm. In: IEEE International Conference on Computing, Communication and
Networking Technologies (ICCCNT). Piscataway: IEEE.

Soni KK, Malviya AK. 2021. Design and analysis of pattern matching algorithms based on
QuRAM processing. Arabian Journal for Science and Engineering 46(4):3829–3851
DOI 10.1007/s13369-020-05310-y.

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 54/55

http://dx.doi.org/10.1109/TC.2012.254
https://arxiv.org/abs/quant-ph/0311043v2
https://arxiv.org/abs/quant-ph/0311043v2
http://dx.doi.org/10.1209/0295-5075/132/40001
http://dx.doi.org/10.1007/s13369-021-05665-w
http://dx.doi.org/10.1109/TQE.2020.2965803
http://dx.doi.org/10.1007/s12043-020-02062-0
http://dx.doi.org/10.1007/s00453-015-0060-4
http://dx.doi.org/10.1109/ACCESS.2020.2969038
http://dx.doi.org/10.1038/s41598-019-40439-3
http://dx.doi.org/10.1080/03772063.2019.1603085
http://dx.doi.org/10.1016/S1570-8667(03)00010-8
http://dx.doi.org/10.1109/ITS.2006.4433341
http://dx.doi.org/10.1021/ci030463z
http://arxiv.org/abs/1709.01236
http://arxiv.org/abs/1709.01236
http://dx.doi.org/10.1007/s13369-020-05310-y
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.957

Soni KK, Rasool A. 2020. Pattern matching: a quantum oriented approach. Procedia Computer
Science 167(1):1991–2002 DOI 10.1016/j.procs.2020.03.230.

Soni KK, Rasool A. 2021. Quantum-based exact pattern matching algorithms for biological
sequences. ETRI Journal 46(3):483–510 DOI 10.4218/etrij.2019-0589.

Tahir M, Sardaraz M, Ikram AA. 2017. EPMA: efficient pattern matching algorithm for DNA
sequences. Expert Systems with Applications 80:161–170 DOI 10.1016/j.eswa.2017.03.026.

Younes A. 2008. Strength and weakness in Grover’s quantum search algorithm. Available at
https://arxiv.org/abs/0811.4481.

Zhang H, Xu D, Tian Z, Fan Y. 2015. An efficient parallel algorithm for exact multi-pattern
matching. Security and Communication Networks 8(9):1688–1697 DOI 10.1002/sec.1115.

Zhou Q, Lu S, Zhang Z, Sun J. 2015. Quantum differential cryptanalysis. Quantum Information
Processing 14(6):2101–2109 DOI 10.1007/s11128-015-0983-3.

Zhou R-G, Shen C-Y, Xiao T-R, Li Y-C. 2013. Quantum pattern search with closed match.
International Journal of Theoretical Physics 52(11):3970–3980 DOI 10.1007/s10773-013-1710-4.

Zou D, Ma L, Yu J, Zhang Z. 2015. Biological databases for human research. Genomics Proteomics
Bioinformatics 13(1):55–63 DOI 10.1016/j.gpb.2015.01.006.

Soni and Rasool (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.957 55/55

http://dx.doi.org/10.1016/j.procs.2020.03.230
http://dx.doi.org/10.4218/etrij.2019-0589
http://dx.doi.org/10.1016/j.eswa.2017.03.026
https://arxiv.org/abs/0811.4481
http://dx.doi.org/10.1002/sec.1115
http://dx.doi.org/10.1007/s11128-015-0983-3
http://dx.doi.org/10.1007/s10773-013-1710-4
http://dx.doi.org/10.1016/j.gpb.2015.01.006
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.957

	Quantum-effective exact multiple patterns matching algorithms for biological sequences
	Introduction
	Related work
	Quantum algorithmic framework
	The proposed methods
	Theoretical results and complexities analysis
	Simulation and experimental detail
	Simulation results and discussion
	Conclusion and future work
	flink9
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

