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Abstract
Non-causal associations between exposures and outcomes are a threat to validity of causal
inference in observational studies. Many techniques have been developed for study design and
analysis to identify and eliminate such errors. Such problems are not expected to compromise
experimental studies, where careful standardization of conditions (for laboratory work) and
randomization (for population studies) should, if applied properly, eliminate most such non-causal
associations. We argue, however, that a routine precaution taken in the design of biological
laboratory experiments—the use of “negative controls”—is designed to detect both suspected and
unsuspected sources of spurious causal inference. In epidemiology, analogous negative controls
help to identify and resolve confounding as well as other sources of error, including recall bias or
analytic flaws. We distinguish two types of negative controls (exposure controls and outcome
controls), describe examples of each type from the epidemiologic literature, and identify the
conditions for the use of such negative controls to detect confounding. We conclude that negative
controls should be more commonly employed in observational studies, and that additional work is
needed to specify the conditions under which negative controls will be sensitive detectors of other
sources of error in observational studies.

Epidemiologists seek to distinguish the causal effect of exposure A on outcome Y from
associations due to other mechanisms (Figure 1). Non-causal associations may be classified
into three categories (in addition to chance)1: mismeasurement (eg, recall bias),
confounding, and biased selection of individuals into the analysis.

In experimental biology, the manipulation of experimental conditions prevents many of the
noncausal associations that arise in observational studies. Nonetheless, experimental
biologists routinely question whether they have correctly inferred causal relationships from
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the results of their experiments. Biologists employ “negative controls” as a means of ruling
out possible noncausal interpretations of their results. We describe the use of negative
controls in experiments, highlight some examples of their use in epidemiologic studies, and
define the conditions under which negative controls can detect confounding in
epidemiologic studies. Although the particular threats to causal inference are different in
experimental and observational sciences, the use of negative controls is a valuable means of
identifying noncausal associations and can complement other epidemiologic methods for
improving causal inference.

Experimental biology: threats to causal inference and the use of negative
controls

One might imagine that the experimental method would circumvent most threats to the
validity of causal inference that occur in observational studies. For example, consider the
hypothesis that a particular cytokine—a chemical involved in signaling in the immune
system—enhances the killing of a species of bacteria by neutrophils, a class of white blood
cells.2 An experiment is devised in which neutrophils, bacteria, and growth medium are
mixed together. In condition 1, the cytokine is added, and in condition 2, some inert
substance such as saline solution is added. After incubation, the bacteria are enumerated and
the number of live bacteria compared between conditions 1 and 2.

If the investigator finds fewer live bacteria in condition 1 than in condition 2, the finding is
consistent with the hypothesis that the cytokine enhanced neutrophil-mediated killing.
Nonetheless, concern remains that something other than cytokine-aided, neutrophil-
mediated killing may be responsible. For example, perhaps there is a contaminant in the
cytokine preparation that directly kills bacteria, or perhaps the cytokine itself kills bacteria,
or perhaps some other unintended difference between the treated and untreated conditions
(e.g., temperature or pH) caused the differential survival of the bacteria.

Each of these unintended differences is broadly similar to a confounder – a characteristic
associated with the exposure (presence or absence of the cytokine) and causes the outcome
(differences in bacterial counts), thereby causing a spurious association between the
presence of the cytokine and differences in bacterial counts.

Experimental biologists address such concerns in two ways. The first is to attempt to
eliminate unwanted differences between the compared groups (in the design) and to measure
and account for any unavoidable differences (in the analysis). For example, a researcher
would make all conditions (dilution protocols, incubators, etc.) identical between the two
conditions except for the variable of interest (i.e. the presence/absence of the cytokine).
Replication of the experiment reduces the likelihood that some chance factor was
systematically different between the two experimental arms. Sometimes experimental
variation nonetheless remains. When experimental variation cannot be eliminated by these
approaches, experimentalists may control for this variation by matching or statistical
adjustment for the day on which an assay was performed. In experimental studies of
population health outcomes (clinical trials), analogous precautions include randomization (to
assure an expectation of baseline exchangeability between groups)3, use of multiple
individuals in each treatment group (replication), and analytic adjustment for measured
confounders.

The second general approach is to perform negative controls: to repeat the experiment under
conditions in which it is expected to produce a null result and verify that it does indeed
produce a null result. Several strategies are employed to design negative controls,2 such as:
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• Leave out an essential ingredient. In the absence of neutrophils, there should be the
same number of bacteria with or without the cytokine; if a contaminant (or the
cytokine itself) is killing bacteria without involving neutrophils, this negative
control should produce fewer bacteria with the cytokine than without.

• Inactivate the (hypothesized) active ingredient. Specific antibodies that neutralize
the cytokine (but would have no effect on a contaminant) can be added to the
preparation; killing should not occur if the cytokine is responsible for the effect.

• Check for an effect that would be impossible by the hypothesized mechanism.
Suppose there were a species of bacteria that was completely impervious to the
actions of neutrophils. The experiment could be repeated with this species, rather
than the species of interest, to confirm there is no difference between condition 1
and condition 2. This would help to rule out the possibility of some non-neutrophil-
mediated effect of the cytokine preparation on bacteria.

As with the list of non-causal explanations for an experimental result, the list of possible
negative controls is almost endless, and judgment is required to assess how many such non-
causal explanations are plausible and which negative controls are of greatest value in ruling
out key threats to valid inference. Peer reviewers of biological experiments usually require
some negative controls to validate experimental results.

Examples of the use of negative controls in epidemiology
In an epidemiologic study to assess whether an association between a risk factor A and an
outcome Y is likely to be causal, it is common to address the possibility of confounding by
measured variables L by adjusting for them, using such techniques as restriction,
stratification, multivariate modeling, matching, inverse-probability weighting, or g-
estimation.4

Epidemiologists also sometimes use negative controls to detect confounding and other
sources of incorrect causal inference. This approach has been elegantly applied to the debate
over vaccination of the elderly and effects on “pneumonia or influenza
hospitalizationpneumonia/influenza on all-cause mortality. Observational studies in elderly
persons have shown that vaccination against influenza is associated with a remarkably large
reduction in one’s risk of pneumonia/influenza hospitalization and also in one’s risk of all-
cause mortality in the following season, after adjustment for measured covariates that
indicate health status.5 However, older age is associated with a less robust immune response
to influenza vaccination, and ecological data suggest that the benefits measured in
observational studies far exceed the corresponding benefits expected at the population level
when influenza vaccination rates have increased among the elderly.6 Importantly, both
outcomes are nonspecific, in the sense that they have unknown and time-varying
contributions from influenza. This is obviously true for all-cause mortality, and it is also true
for pneumonia/influenza hospitalization, since the cause of respiratory infection is often not
ascertained, and many pneumonia cases are caused by agents other than influenza. The large
degree of protection against these outcomes observed in individual level studies, combined
with the lack of measurable vaccine effect in ecological studies, have led to a suspicion that
uncontrolled confounding has exaggerated the impact of influenza vaccination on mortality
and on pneumonia/influenza hospitalization in the elderly.6–8

To test this hypothesis, Jackson et al 7 reproduced earlier estimates of the protective effect of
influenza vaccination, but then repeated the analysis for two sets of negative control
outcomes, and showed that the protective effect was observed even in circumstances where
the vaccine could not have caused the protection. For the first negative control outcome, the
authors7 used the fact that vaccination often begins in autumn, while influenza transmission
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is often minimal until winter. Thus they could assess the risk of pneumonia/influenza
hospitalization and all-cause mortality among vaccinated vs. unvaccinated persons both
before, during and after influenza season. The only biologically plausible mechanism by
which influenza vaccine could protect against mortality or pneumonia/influenza
hospitalization is by preventing influenza or its consequences; therefore, Jackson and
colleagues7 reasoned that if the effect measured in prior studies were causal, it should be
most prominent during influenza season. If instead it were due to confounding, then the
protective effect should be observable immediately after vaccination but before influenza
season. In a cohort study analyzed with a Cox proportional hazards model, despite efforts to
control for confounding, they observed that the protective effect was actually greatest
before, intermediate during, and least after influenza season. They concluded that this is
evidence that confounding, rather than protection against influenza, accounts for a
substantial part of the observed “protection.” The use of this negative-control outcome
approach is formally similar to the “leave-out-an-essential-ingredient” control described
above, as influenza is essential in the proposed causal pathway.

Second, Jackson et al. 7 postulated that the protective effects of influenza vaccination, if
real, should be limited to outcomes plausibly linked to influenza. In contrast, if the
relationship were due to an uncontrolled confounder, then the same “protection” might be
observed for irrelevant outcomes. They repeated their analysis, but substituted
hospitalization for injury or trauma as the endpoint. They found that influenza vaccination
was also “protective” against injury or trauma hospitalization. This, too, was interpreted as
evidence that some of the protection observed for pneumonia/influenza hospitalization or
mortality was due to inadequately controlled confounding. This second negative control
outcome is formally similar to the “check-for-an-effect-impossible-by-the-hypothesized-
mechanism” approach described above.

Epidemiologists also sometimes use negative control exposures to examine whether
observed associations are causal. An example is the inclusion in questionnaires of irrelevant
variables, sometimes called “probe variables,” to assess if recall bias may be responsible for
an observed association between a self-reported exposure and an outcome. A recent study 9
tested the association between multiple sclerosis (MS) and a variety of common childhood
infections assessed by self-report. The investigators found statistically significant positive
associations of MS with a recalled history of five different viral infections. Suspecting that
cases may recall prior medical events more often or with more certainty than controls, the
investigators’ questionnaire also included several childhood medical events not plausibly
associated with MS, such as broken limbs, tonsillectomy, and concussions. In the absence of
a causal association, any measured association with these probe variables would suggest
recall bias for the variables of interest. The authors found that the magnitude of association
with these irrelevant exposures was comparable to the magnitude observed for each of the
self-reported infections except one (infectious mononucleosis) that had a much stronger
association. They concluded that, after accounting for recall bias, only infectious
mononucleosis showed a specific association with MS.

Another application of negative controls has been to expose “immortal time bias,” a form of
selection bias that produces spurious associations between observed variables. Suissa and
Ernst 10 suspected that the reported benefits of nasal corticosteroids in preventing asthma
resulted from this form of bias, in which exposed persons are credited with time at risk
during which the event cannot occur, and thus exposed persons have an artificially low event
rate. Inclusion of the “immortal” time is dependent on both being exposed during that time
and on not having the outcome during that time10; hence a (negative) association is induced
between exposure and outcome. To demonstrate such bias, the authors repeated prior
analyses but restricted the exposed class to persons with a single annual dose of
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corticosteroids– a dose far too low to have plausible biological effect (i.e. a negative control
exposure). They found that even this very modest exposure was associated with substantial
protection against asthma, suggesting that the previous analytic approach was inappropriate.
In this case, the investigators already suspected what form of bias was operating, and used
the analysis to prove their point. In principle, the original investigators could have done such
an analysis to test for bias.

Choice of negative controls to detect confounding in epidemiology
Negative controls have been used to detect confounding (the influenza vaccine example7),
recall bias, (the MS example9), and selection bias (the nasal corticosteroid example10).
Furthermore, it may be possible to specify how negative controls should be designed to aid
in detecting biased causal inferences resulting from each of these mechanisms, and also
perhaps to detect other forms of analytical errors. In this section, we focus on the conditions
under which negative controls in epidemiology can detect confounding.1

The essential purpose of a negative control is to reproduce a condition that cannot involve
the hypothesized causal mechanism, but is very likely to involve the same sources of bias
that may have been present in the original association. If a contaminant (source of bias) were
responsible for the effect of the cytokine on bacteria, it should have its effect even when the
hypothesized mechanism of the effect (through neutrophils) is prevented through
neutralization of the cytokine or through omission of neutrophils from the experiment. If an
uncontrolled confounder (general good health or healthful practices) is responsible for the
protection observed from influenza vaccine against mortality or pneumonia/influenza
hospitalization, the same confounder might be associated with other outcomes that are not
plausibly prevented by influenza vaccination.

This description suggests a general principle for the selection of negative controls to detect
residual confounding. Ideally, a negative control outcome (N) should be an outcome such
that the set of common causes of exposure A and outcome Y should be as identical as
possible to the set of common causes of A and N (Figure 2). To the extent that the set of
unobserved common causes of A and Y overlaps with the set of unobserved common causes
(U) of A and N, we call the negative control outcome N “U-comparable” to Y. If N and Y
are U-comparable outcomes (i.e. with an identical set of common causes that are associated
with A), and assuming that N is not caused by A, an association A-N when analyzed
according to the same procedure used to analyze A-Y would indicate bias in the association
A-Y. If N and Y are perfectly U-comparable and N is not caused by A, then a null finding of
A-N implies that the A-Y association is not likely biased by the pathways examined through
this negative control.

Negative control outcomes in practice will be only approximately U-comparable, at best.
Thus it is possible that the observed association between A and N is caused by some
uncontrolled confounder U2, which is not a confounder of the AY association; hence,
finding an unexpected association between A and N does not prove unequivocally that the
A-Y association is biased. In the example of using death or hospitalization from injury as a
negative control outcome for death or pneumonia/influenza hospitalization, one could argue
that there may be some common causes of vaccination and injury that are not causes of all-
cause death or pneumonia/influenza hospitalization. Such common causes (we cannot think
of a plausible one) would create an association in the negative control analysis of
vaccination and injury, even if the primary analyses of vaccination and death or pneumonia/
influenza hospitalization were unconfounded— thus making the negative control detect bias
even where none exists. On the other hand, if N is associated only with some, but not all, of
the uncontrolled confounders of the association between A and Y, it is possible that A and N
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will appear unassociated despite the presence of uncontrolled confounding between A and
Y. In the influenza vaccine example, one could argue that there are common causes of
vaccination and death or pneumonia/influenza hospitalization = that are not causes of injury-
related outcomes. Such a common cause (say, an aversion to vaccination that makes an
individual less likely to get the pneumococcal vaccine) would be undetectable by this
particular negative control. Despite these limitations, negative controls have value in alerting
the analyst to possible residual confounding.

In principle, the measured confounders L of the A-Y relationship need not be causes of N as
well, since a properly specified model that accounted for the confounding by L of A-Y
would not be misled if such confounding were absent for A-N. In practice, the ideal negative
control outcome should nonetheless be one with incoming arrows as similar as possible to
those of Y, including the incoming arrows from L. This is true, first, because it is difficult in
practice to imagine an outcome N that lacks association with known confounders L, but has
an association with uncontrolled (or even unknown) confounders similar to that of U-Y. In
addition, because negative controls may be useful in detecting residual confounding by
measured confounders L or analytic errors, it would be beneficial to have the L-N
relationship be as similar as possible, quantitatively, to the L-Y relationship. In eAppendix 1
(http://links.lww.com), we describe the analytic basis for use of a U-comparable negative
control outcome.

A negative control exposure B should be an exposure such that the common causes of A and
Y are as nearly identical as possible to the common causes of B and Y (Fig. 3). To the extent
that the set of unobserved common causes U of A and Y overlaps with the set of unobserved
common causes of B and Y, we call the negative control exposure B “U-comparable” to A.
If A and B are perfectly U-comparable and B does not cause Y, then an association B-Y
when analyzed according to the same model used to analyze A-Y would indicate bias in the
association A-Y. If A and B are perfectly U-comparable and B does not cause Y, then a null
finding of A-N means that the A-Y association is unbiased. We are not aware of an example
of the use of a negative control exposure to detect confounding in this sense. In the influenza
vaccination example, one might hypothesize that whatever residual confounders U (e.g.,
poor health status) made one less likely to get influenza vaccine (A) and more likely to die
of influenza or pneumonia (Y), might also make one less likely to get other vaccines, such
as booster tetanus vaccine (B). Because tetanus does not cause pneumonia, tetanus vaccine
receipt might be an appropriate negative control exposure for such a study. In the previous
section, we mentioned the use of “probe variables” as negative controls to detect recall bias
that might lead MS patients to over-report a history of childhood infections. Recall bias, a
form of reverse causation, has a different causal structure from confounding,1 and we do not
outline here the causal requirements for negative controls to detect reverse causation.

In observational settings, the comparability between exposure A and negative control
exposure B will be only approximate. As in the case of negative control outcomes, this
approximate comparability means that B and Y may be associated even when A-Y is
unbiased; this would occur if there is some other confounder U2 linking B and Y that does
not confound A-Y. Similarly, if A and B are only approximately comparable, it is possible
for B and Y to show no association yet for A-Y to be biased, if the confounder biasing A-Y
does not connect B to Y. An analytic basis for the use of negative control exposures is given
in eAppendix 2 (http://links.lww.com).

In a cohort study, in which multiple exposures and outcomes are measured on each person, it
is relatively straightforward to analyze negative control exposures and outcomes, assuming
that suitable variables have been measured. In a case-control study, the use of negative
control exposures is similarly straightforward because negative control exposures can be
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added to the set of exposure variables collected for each subject. If a case-control study is
nested within a cohort, irrelevant outcomes can be selected and analyzed. A stand-alone
case-control study presents some logistical problems for implementing negative-control
outcomes. This might require a second case-control study in which “cases” include some
irrelevant but comparable outcome to the cases in the main study. This difficulty is reduced
if multiple control groups are used, as is occasionally done for other reasons.11,12

A useful contrast can be drawn between variables that can serve as negative controls and
those that can be used as instruments.13–15 An instrumental variable is any variable that is
connected causally to A but free of any of the confounding connections to Y from which A
suffers. In contrast, a negative control outcome is connected to A through all possible
confounding routes but not causally. Similarly, a negative control exposure is connected to
Y through all possible confounding routes but not causally. Figure 3 depicts an instrumental
variable Z that satisfies the necessary conditions of an instrument 16,17 while the variable B
is an ideal negative exposure candidate.

Discussion
We propose that negative controls should be applied more commonly in epidemiologic
studies, as in laboratory experiments, and with the same goals: to detect uncontrolled
confounding or other sources of bias that create a spurious causal inference.1 The routine use
of negative controls in experimental biology allows the detection of both suspected and
unsuspected sources of bias. The challenge of deriving valid causal inference is at least as
great in observational studies as in experiments. In other social sciences, negative control
outcomes are sometimes recommended for use with observational as well as experimental
studies,18 to compensate for limited sample size and possible imbalance between treatment
arms.

A.B. Hill proposed specificity of association as one guideline for assessing causal
inferences.19 Hill argued that causal inferences were more credible if the exposure (in his
example, nickel mining) was associated with only certain types of outcomes (death from
lung and nose cancer but not death from other cancers), and if the outcome was associated
with one kind of exposure (nickel mining) but not many others. Hill himself, as well as more
recent authors,16,20,21 have been ambivalent about this particular guideline. Weiss22 has
argued that specificity of outcome and exposure may, in certain cases, lend credibility to
causal inference, especially if there is a strong hypothesis of why the outcome (or exposure)
should be specific to the cause. Both Hill’s and Weiss’s arguments are related to the ideas of
negative controls; we suggest that informative tests of specificity of association are those
that meet the criteria we have outlined for negative control exposures or outcomes. Their
value will vary depending on the plausibility of the claim that the control considered is U-
comparable to the exposure or outcome of interest.

Subject matter knowledge is required for the choice of negative controls, just as it is for the
design of appropriate strategies to adjust for confounders. If an investigator identifies
negative controls based on incorrect causal assumptions, the analysis involving negative
controls may be misleading. If a causal association between two variables A-N is thought to
be implausible and is used as a negative control for a study of some other association A-Y,
then finding an association between A and N will erroneously suggest bias in the association
AY.

A properly selected negative control is a sensitive, but blunt, tool to probe the credibility of
a study. The “failure” of a negative control – the finding of an association that is judged not
to be plausibly causal -- does not identify what form of bias is operating. In particular, as we

Lipsitch et al. Page 7

Epidemiology. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



demonstrate in eAppendix 3 (http://links.lww.com), the magnitude of bias due to
uncontrolled confounding cannot generally be inferred from the magnitude of a detected A-
N (or B-Y) non-null association, without extra assumptions based on firm scientific
understanding. Furthermore, such additional subject matter knowledge (or suspicion about
the source of analytic errors) is necessary to determine where bias is likely to have arisen.

We have defined precisely the conditions under which negative controls are capable of
detecting the existence and direction of bias due to uncontrolled confounders. We have
argued by example that negative controls can also aid in detecting recall bias (reverse
causation) or selection bias. Epidemiologists must weigh these potential benefits of
employing negative controls against the increased cost associated with the measurement of
additional variables, and the possibility that the assumptions under which the negative
control variables were selected are faulty.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIG 1.
Causal diagram for the effect of an exposure of interest (A) on an outcome of interest (Y),
with confounders L (assumed measured) and U (assumed uncontrolled) that cause both A
and Y. The dashed line between L and U indicates that either may cause the other, and they
may share common causes.
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FIG 2.
Causal diagram showing an ideal negative control outcome N for use in evaluating studies
of the causal relationship between exposure A and outcome Y. N should ideally have the
same incoming arrows as Y, except that A does not cause N; to the extent this criterion is
met, N is called U-comparable to Y.
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FIG 3.
Causal diagram showing an ideal negative control exposure B for use in evaluating studies
of the causal relationship between exposure A and outcome Y. B should ideally have the
same incoming arrows as A; to the extent this criterion is met, B is called U-comparable to
A. Z is an instrumental variable of the A-Y relationship and is depicted to illustrate the
difference between an instrumental variable and a negative control variable.
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