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Abstract: Deep reinforcement learning (RL) agents are able to learn contact-rich
manipulation tasks by maximizing a reward signal, but require large amounts of
experience, especially in environments with many obstacles that complicate explo-
ration. In contrast, motion planners use explicit models of the agent and environ-
ment to plan collision-free paths to faraway goals, but suffer from inaccurate mod-
els in tasks that require contacts with the environment. To combine the benefits of
both approaches, we propose motion planner augmented RL (MoPA-RL) which
augments the action space of an RL agent with the long-horizon planning capa-
bilities of motion planners. Based on the magnitude of the action, our approach
smoothly transitions between directly executing the action and invoking a motion
planner. We evaluate our approach on various simulated manipulation tasks and
compare it to alternative action spaces in terms of learning efficiency and safety.
The experiments demonstrate that MoPA-RL increases learning efficiency, leads
to a faster exploration, and results in safer policies that avoid collisions with the
environment. Videos and code are available at https://clvrai.com/mopa-rl.
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1 Introduction
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Figure 1: Our framework extends an
RL policy with a motion planner. If
the predicted action by the policy is
above a threshold ∆qstep, the motion
planner is called; otherwise, it is di-
rectly executed.

In recent years, deep reinforcement learning (RL) has shown
promising results in continuous control problems [1, 2, 3, 4,
5]. Driven by rewards, robotic agents can learn tasks such as
grasping [6, 7] and peg insertion [8]. However, prior works
mostly operated in controlled and uncluttered environments,
whereas in real-world environments, it is common to have
many objects unrelated to the task, which makes explo-
ration challenging. This problem is exacerbated in situa-
tions where feedback is scarce and considerable exploration
is required before a learning signal is received.

Motion planning (MP) is an alternative for performing robot
tasks in complex environments, and has been widely studied
in the robotics literature [9, 10, 11, 12]. MP methods, such
as RRT [10] and PRM [9], can find a collision-free path be-
tween two robot states in an obstructed environment using
explicit models of the robot and the environment. However,
MP struggles on tasks that involve rich interactions with ob-
jects or other agents since it is challenging to obtain accurate
contact models. Furthermore, MP methods cannot generate
plans for complex manipulation tasks (e.g., object pushing)
that cannot be simply specified by a single goal state.
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Figure 2: Learning manipulation skills in an obstructed environment is challenging due to frequent
collisions and narrow passages amongst obstacles. For example, when a robot moves the table
leg to assemble, it is likely to collide with other legs and get stuck between legs. Moreover, once
the table leg is moved, the robot is tasked to insert the leg into the hole, which requires contact-
rich interactions. To learn both collision-avoidance and contact-rich skills, our method (MoPA-RL)
combines motion planning and model-free RL. In the images, the green robot visualizes the target
state provided by the policy. Initially, motion planning can be used to navigate to target states a1,
a2, and a3 while avoiding collision. Once the arm passes over other legs, a sequence of primitive
actions a4 − a10 are directly executed to assemble the leg and tabletop.

In this work, we propose motion planner augmented RL (MoPA-RL) which combines the strengths
of both MP and RL by augmenting the action space of an RL agent with the capabilities of a motion
planner. Concretely, our approach trains a model-free RL agent that controls a robot by predicting
state changes in joint space, where an action with a large joint displacement is realized using a
motion planner while a small action is directly executed. By predicting a small action, the agent can
perform sophisticated and contact-rich manipulation. On the other hand, a large action allows the
agent to efficiently explore an obstructed environment with collision-free paths computed by MP.

Our approach has three benefits: (1) MoPA-RL can add motion planning capabilities to any RL
agent with joint space control as it does not require changes to the agent’s architecture or training
algorithm; (2) MoPA-RL allows an agent to freely switch between MP and direct action execution
by controlling the scale of action; and (3) the agent naturally learns trajectories that avoid collisions
by leveraging motion planning, allowing for safe execution even in obstructed environments.

The main contribution of this paper is a framework augmenting an RL agent with a motion planner,
which enables effective and safe exploration in obstructed environments. In addition, we propose
three challenging robotic manipulation tasks with the additional challenges of collision-avoidance
and exploration in obstructed environments. We show that the proposed MoPA-RL learns to solve
manipulation tasks in these obstructed environments while model-free RL agents suffer from local
optima and difficult exploration.

2 Related Work

Controlling robots to solve complex manipulation tasks using deep RL [13, 14, 15, 3] has been
an active research area. Specifically, model-free RL [13, 14, 3] has been well studied for robotic
manipulation tasks, such as picking and placing objects [16], in-hand dexterous manipulation [17,
18], and peg insertion [19]. To tackle long-horizon tasks, hierarchical RL (HRL) approaches have
extended RL algorithms with temporal abstractions, such as options [20, 21], modular networks [22,
4, 5], and goal-conditioned low-level policies [23]. However, these approaches are typically tested
on controlled, uncluttered environments and often require a large number of samples.

On the other hand, motion planning [9, 24, 25, 26, 27, 28], a cornerstone of robot motion gen-
eration, can generate a collision-free path in cluttered environments using explicit models of the
robot and environment. Probabilistic roadmaps (PRMs) [9, 24, 25] and rapidly-exploring random
trees (RRTs) [26, 27, 28] are two common sampling-based motion planning techniques. These
planning approaches can effectively compute a collision-free path in static environments; however,
these methods have difficulties handling dynamic environments and contact-rich interactions, which
frequently occur in object manipulation tasks.
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(a) 2D Push (b) Sawyer Push (c) Sawyer Lift (d) Sawyer Assembly

Figure 3: Manipulation tasks in obstructed environments. (a) 2D Push: The 2D reacher agent has
to push the green box to the goal (black circle). (b) Sawyer Push: Sawyer arm should push the red
box toward the goal (green circle). (c) Sawyer Lift: Sawyer arm takes out the can from the long box.
(d) Sawyer Assembly: Sawyer arm moves and inserts the table leg into the hole in the table top.

There are several works that combine motion planning and reinforcement learning to get the ad-
vantages of both approaches. A typical approach is to decompose the problem into the parts that
can and cannot be solved with MP. Then, RL is used to learn the part that the planner cannot han-
dle [29, 30, 31, 32, 33]. However, this separation often relies on task-specific heuristics that are only
valid for a limited task range. MP can be incorporated with RL in the form of a modular framework
with a task-specific module switching rule [34] and HRL with pre-specified goals for the motion
planner [35]. Xia et al. [33] uses a motion planner as a low-level controller and learn an RL policy
in a high-level action (subgoal) space, which limits the capability of learning contact-rich skills. In-
stead, we propose to learn how to balance the use of the motion planner and primitive action (direct
action execution) using model-free RL with minimal task-specific knowledge.

3 Motion Planner Augmented Reinforcement Learning

In this paper, we address the problem of solving manipulation tasks in the presence of obstacles.
Exploration by deep reinforcement learning (RL) approaches for robotic control mostly relies on
small perturbations in the action space. However, RL agents struggle to find a path to the goal in
obstructed environments due to collisions and narrow passages. Therefore, we propose to harness
motion planning (MP) techniques for RL agents by augmenting the action space with a motion
planner. In Section 3.2, we describe our framework, MoPA-RL, in detail. Afterwards, we elaborate
on the motion planner implementation and RL agent training.

3.1 Preliminaries

We formulate the problem as a Markov decision process (MDP) defined by a tuple
(S,A, P,R, ρ0, γ) consisting of states s ∈ S , actions a ∈ A, transition function P (s′ ∈ S|s, a),
reward R(s, a), initial state distribution ρ0, and discount factor γ ∈ [0, 1]. The agent’s action distri-
bution at time step t is represented by a policy πφ(at|st) with state st ∈ S and action at ∈ A, where
φ denotes the parameters of the policy. Once the agent executes the action at, it receives a reward
rt = R(st, at). The performance of the agent is evaluated using the discounted sum of rewards∑T−1
t=0 γtR(st, at), where T denotes the episode horizon.

In continuous control, the action space can be defined as the joint displacement at = ∆qt, where
qt represents robot joint angles. To prevent collision and reduce control errors, the action space
is constrained to be small, A = [−∆qstep,∆qstep]d, where ∆qstep represents the maximum joint
displacement for a direct action execution [13] and d denotes the dimensionality of the action space.

On the other hand, a kinematic motion planner MP(qt, gt) computes a collision-free path τ0:H =
(qt, qt+1, . . . , qt+H = gt) from a start joint state qt to a goal joint state gt, where H is the number
of states in the path. The sequence of actions at:t+H−1 that realize the path τ0:H can be obtained by
computing the displacement between consecutive joint states, ∆τ0:H = (∆qt, . . . ,∆qt+H−1).

3



Algorithm 1 Motion Planner Augmented RL (MoPA-RL)

Require: Motion planner MP, augmented MDP M̃(S, Ã, P̃ , R̃, ρ0, γ), action limits ∆qstep,∆qMP
number of reused trajectories M

1: Initialize policy πφ and replay buffer D
2: for i = 1, 2, . . . do
3: Initialize episode s0 ∼ ρ0, t̃← 0, t← 0
4: while episode not terminated do
5: ãt̃ ∼ πφ(ãt̃|st)
6: if ||ãt̃||∞ > ∆qstep then
7: Ht̃, τ0:Ht̃ ← MP(qt, qt + ãt̃) . Motion planner execution

8: st+Ht̃ , r̃t̃ ← P̃ (st,∆τ0:Ht̃), R̃(st,∆τ0:Ht̃)
9: for j = 1, . . . ,M do

10: Sample intermediate transitions τn:m from τ0:Ht̃

11: ã, r̃ ← ∆τn:m, R̃(st+n,∆τn:m)
12: D ← D ∪ {(st+n, ã, r̃, st+m,m− n)} . Reuse motion plan trajectories
13: end for
14: else
15: Ht̃ ← 1

16: st+Ht̃ , r̃t̃ ← P̃ (st, ãt̃), R̃(st, ãt̃) . Direct action execution
17: end if
18: D ← D ∪ {(st, ãt̃, r̃t̃, st+Ht̃ , Ht̃)}
19: t← t+Ht̃, t̃← t̃+ 1
20: Update πφ using model-free RL
21: end while
22: end for

3.2 Motion Planner Augmented Reinforcement Learning

To efficiently learn a manipulation task in an obstructed environment, we propose motion planner
augmented RL (MoPA-RL). Our method harnesses a motion planner for controlling a robot toward
a faraway goal without colliding with obstacles, while directly executing small actions for sophis-
ticated manipulation. By utilizing MP, the robot can effectively explore the environment avoiding
obstacles and passing through narrow passages. For contact-rich tasks where MP often fails due to
an inaccurate contact model, actions can be directly executed instead of calling a planner.

As illustrated in Figure 1, our framework consists of two components: an RL policy πφ(a|s) and a
motion planner MP(q, g). In our framework, the motion planner is integrated into the RL policy by
enlarging its action space. The agent directly executes an action if it is in the original action space.
If an action is sampled from outside of the original action space, which requires a large movement
of the agent, the motion planner is called and computes a path to realize the large joint displacement.

To integrate the motion planner with an MDP M, we first define an augmented MDP
M̃(S, Ã, P̃ , R̃, ρ0, γ), where Ã = [−∆qMP,∆qMP]d is an enlarged action space with ∆qMP >

∆qstep, P̃ (s′|s, ã) denotes the augmented transition function, and R̃(s, ã) is the augmented reward
function. Since one motion planner call can execute a sequence of actions in the original MDPM,
the augmented MDP M̃ can be considered as a semi-MDP [20], where an option ã executes an action
sequence ∆τ0:H computed by the motion planner. For simplicity of notation, we use ã and ∆τ0:H

interchangeably. The augmented transition function P̃ (s′|s, ã) = P̃ (s′|s,∆τ0:H) is the state distri-
bution after taking a sequence of actions and the augmented reward function R̃(s, ã) = R̃(s,∆τ0:H)
is the discounted sum of rewards along the path.

On the augmented MDP M̃, the policy πφ(ã|s) chooses an action ã, which represents a change in
the joint state ∆q. The decision whether to call the motion planner or directly execute the predicted
action is based on its maximum magnitude ||ã||∞, i.e., the maximum size of the predicted displace-
ment, as illustrated in Figure 1. If the joint displacement is larger than an action threshold ∆qstep for
any joint (i.e., ||ã||∞ > ∆qstep), which is likely to lead to collisions, the motion planner is used to
compute a collision-free path τ0:H towards the goal g = q+ã. To follow the path, the agent executes
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the action sequence ∆τ0:H over H time steps. Otherwise, i.e., ||ã||∞ ≤ ∆qstep, the action is directly
executed using a feedback controller for a single time step, as is common practice in model-free
RL. This procedure is repeated until the episode is terminated. Then, the policy πφ is trained to

maximize the expected returns Eπφ
[∑T̃

t̃=0 γ
tR̃(st̃, ãt̃)

]
, where T̃ is the episode horizon on M̃ and

t =
∑t̃−1
i=0 Hi is the number of primitive actions executed before time step t̃. The complete RL

training with the motion-planner augmented agent is described in Algorithm 1.

The proposed method has three advantages. First, our method gives the policy the freedom to choose
whether to call the motion planner or directly execute actions by predicting large or small actions,
respectively. Second, the agent naturally produces trajectories that avoid collisions by leveraging
MP, allowing for safe policy execution even in obstructed environments. The third advantage is that
MoPA-RL can add motion planning capabilities to any RL algorithm with joint space control as it
does not require changes to the agent’s architecture or training procedure.

3.3 Action Space Rescaling

Motion PlannerDirect
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Figure 4: To balance the chance of
choosing direct action execution and
motion planning during exploration, we
increase the action space for direct ac-
tion execution A.

The proposed motion planner augmented action space
Ã = [−∆qMP,∆qMP]d extends the typical action space
for model-free RL, A = [−∆qstep,∆qstep]d. An action ã
from the original action spaceA is directly executed with
a feedback controller. On the other hand, an action from
outside of A is handled by the motion planner. However,
in practice, ∆qMP is much larger than ∆qstep, which re-
sults in a drastic difference between the proportions of the
action spaces for direct action execution and motion plan-
ning. Especially with high-dimensional action spaces,
this leads to very low probability (∆qstep/∆qMP)

d of se-
lecting direct action execution during exploration. Hence,
this naive action space partitioning biases using motion
planning over direct action execution and leads to failures
of learning contact-rich manipulation tasks.

To circumvent this issue, we balance the ratio of sampling
actions for direct action execution ã ∈ A and motion plan
actions ã ∈ Ã \A by rescaling the action space. Figure 4
illustrates the distribution of direct action and motion plan
action in Ã (y-axis) and the desired distribution (x-axis). To increase the portion of direct action
execution, we apply a piecewise linear function f to the policy output u ∈ [−1, 1]d and get joint
displacements ∆q, as shown by the red line in Figure 4. From the policy output u, the action (joint
displacement) of the i-th joint can be computed by

ãi = f(ui) =

{∆qstep

ω ui |ui| ≤ ω
sign(ui)

[
∆qstep + (∆qMP −∆qstep)

(
|ui|−ω
1−ω

)]
otherwise

, (1)

where ω ∈ [0, 1] determines the desired ratio between the sizes of the two action spaces and sign(·)
is the sign function.

3.4 Training Details

We model the policy πφ as a neural network. The policy and critic networks consist of 3 fully
connected layers of 256 hidden units with ReLU nonlinearities. The policy outputs the mean and
standard deviation of a Gaussian distribution over an action space. To bound the policy output
u in [−1, 1], we apply tanh activation to the policy output. Before executing the action in the
environment, we transform the policy output with the action rescaling function f(u) described in
Equation 1. The policy is trained using a model-free RL method, Soft Actor-Critic [3].

To improve sample efficiency, we randomly sample M intermediate transitions of a path from the
motion planner, and store the sampled transitions in the replay buffer. By making use of these
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additional transitions, the agent experience can cover a wider region in the state space during training
(see Section A.1). For hyperparameters and more details about training, please refer to Section C.

3.5 Motion Planner Implementation

Our method seamlessly integrates model-free RL and MP through the augmented action space. Our
method is agnostic to the choice of MP algorithm. Specifically, we use RRT-Connect [36] from
the open motion planning library (OMPL) [37] due to its fast computation time. After the motion
planning, the resulting path is smoothed using a shortcutting algorithm [38]. For collision checking,
we use the collision checking function provided by the MuJoCo physics engine [39].

The expensive computation performed by the motion planner can be a major bottleneck for training.
Thus, we design an efficient MP procedure with several features. First, we reduce the number of
costly MP executions by using a simpler motion planner that attempts to linearly interpolate between
the initial and goal states instead of the sampling-based motion planner. If the interpolated path is
collision-free, our method uses this path for execution and skips calling the expensive MP algorithm.
If the path has collision, then RRT-Connect is used to find a collision-free path amongst obstacles.

Moreover, the RL policy can predict a goal joint state that is in collision or not reachable. A simple
way to resolve it is to ignore the current action and sample a new action. However, it slows down
training because the policy can repeatedly output invalid actions, especially in an environment with
many obstacles. Thus, our method finds an alternative collision-free goal joint state by iteratively
reducing the action magnitude and checking collision, similar to Zhang and Manocha [40]. This
strategy prevents the policy from being stuck or wasting samples, which results in improved train-
ing efficiency. Finally, we allow the motion planner to derive plans while grasping an object by
considering the object as a part of the robot once it holds the object.

4 Experiments

We design our experimental evaluation to answer the following questions: (1) Can MoPA-RL solve
complex manipulation tasks in obstructed environments more efficiently than conventional RL algo-
rithms? (2) Is MoPA-RL better able to explore the environment? (3) Does MoPA-RL learn policies
that are safer to execute?

4.1 Environments

To answer these questions, we conduct experiments on the following hard-exploration tasks in ob-
structed settings, simulated using the MuJoCo physics engine [39] (see Figure 3 for visualizations):

• 2D Push: A 4-joint 2D reacher needs to push an object into a goal location in the presence
of multiple obstacles.

• Sawyer Push: A Rethink Sawyer robot arm with 7 DoF needs to push an object into a goal
position, both of which are inside a box.

• Sawyer Lift: The Sawyer robot arm needs to grasp and lift a block out of a deep box.

• Sawyer Assembly: The Sawyer arm needs to move a leg attached to its gripper towards a
mounting location while avoiding other legs, and assemble the table by inserting the leg into
the hole. The environment is built upon the IKEA furniture assembly environment [41].

We train 2D Push, Sawyer Push and Sawyer Assembly using sparse rewards: when close to the
object or goal the agent receives a reward proportional to the distance between end-effector and
object or object and goal; otherwise there is no reward signal. For Sawyer Lift, we use a shaped
reward function, similar to Fan et al. [8]. In all tasks, the agent receives a sparse completion reward
upon solving the tasks. Further details about the environments can be found in Section B.

4.2 Baselines

We compare the performance of our method with the following approaches:

• SAC: A policy trained to predict displacements in the robot’s joint angles using Soft Actor-
Critic (SAC, [3]), a state-of-the-art model-free RL algorithm.
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Figure 5: Success rates of our MoPA-SAC (green) and baselines averaged over 4 seeds. All methods
are trained for the same number of environment steps. MoPA-SAC can solve all four tasks by
leveraging the motion planner and learn faster than the baselines.

• SAC Large: A variant of SAC predicts joint displacements in the extended action space Ã.
To realize a large joint displacement, a large action ã is linearly interpolated into a sequence
of small actions {a1, . . . am} such that ã =

∑m
i=1 ai and ||ai||∞ ≤ ∆qstep. This baseline

tests the importance of collision-free MP for a large action space.

• SAC IK: A policy trained with SAC which outputs displacement in Cartesian space instead
of the joint space. For 3D manipulation tasks, the policy also outputs the displacement in end-
effector orientation as a quaternion. Given the policy output, a target joint state is computed
using inverse kinematics and the joint displacement is applied to the robot.

• MoPA-SAC (Ours): Our method predicts a joint displacement in the extended action space.

• MoPA-SAC Discrete: Our method with an additional discrete output that explicitly chooses
between MP and RL, which replaces the need for a threshold ω.

• MoPA-SAC IK: Our method with end-effector space control instead of joint space displace-
ments. Again, inverse kinematics is used to obtain a target joint state, which is either directly
executed or planned towards with the motion planner.

4.3 Efficient RL with Motion Planner Augmented Action Spaces

We compare the learning performance of all approaches on four tasks in Figure 5. Only our MoPA-
SAC is able to learn all four tasks, while other methods converge more slowly or struggle to obtain
any rewards. The difference is especially large in the Sawyer Lift and Sawyer Assembly tasks. This
is because precise movements are required to maneuver the robot arm to reach inside the box that
surrounds the objects or avoid the other table legs while moving the leg in the gripper to the hole.
While conventional model-free RL agents struggle to learn such complex motions from scratch,
our approach can leverage the capabilities of the motion planner to successfully learn to produce
collision-free movements.

Figure 6: End-effector positions of SAC
(left) and MoPA-SAC (right) after the first
100k training environment steps in 2D Push
are plotted in blue dots. The use of motion
planning allows the agent to explore the en-
vironment more widely early on in training.

To further analyze why augmenting RL agents with
MP capability improves learning performance, we
compare the exploration behavior in the first 100k
training steps of our MoPA-SAC agent and the con-
ventional SAC agent on the 2D Push task in Fig-
ure 6. The SAC agent initially explores only in close
proximity to its starting position as it struggles to
find valid trajectories between the obstacles. In con-
trast, the motion planner augmented agent explores
a wider range of states by using MP to find collision-
free trajectories to faraway goal states. This allows
the agent to quickly learn the task, especially in the
presence of many obstacles. Efficient exploration
is even more challenging in the obstructed 3D en-
vironments. Therefore, only the MoPA-SAC agent
that leverages the motion planner for efficient explo-
ration is able to learn the manipulation tasks.

The comparison between different action spaces for our method in Figure 5 shows that directly
predicting joint angles and using the motion planner based on action magnitude leads to the best

7



MoPA-SAC (Ours)

MoPA-SAC IK

MoPA-SAC Discrete

SAC

SAC IK

(a) Contact force

0.0 0.3 0.6 0.9 1.2 1.5
Environment Steps (1M)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

qMP = 0.1
qMP = 0.3
qMP = 0.5
qMP = 1.0

(b) Action range ∆qMP

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (1M)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s r

at
e

MoPA-SAC (Ours)
MoPA-SAC w/o rescaling
MoPA-SAC w/o direct

(c) Action space rescaling

Figure 7: (a) Averaged contact force in an episode over 7 executions in 2D Push. Leveraging a
motion planner, all variants of our method naturally learn collision-safe trajectories. (b) Comparison
of our model with different action range values ∆qMP on Sawyer Lift. (c) Comparison of our model
w/ and w/o action rescaling or w/o direct action execution on Sawyer Lift.

learning performance (MoPA-SAC (Ours)). In contrast, computing the target joint angles for the
motion planner using inverse kinematics (MoPA-SAC IK) often produces configurations that are
in collision with the environment, especially when manipulations need to be performed in narrow
spaces. MoPA-SAC Discrete needs to jointly learn how and when to use MP by predicting a discrete
switching variable. We find that this approach rarely uses MP, leading to worse performance.

4.4 Safe Policy Execution

The ability to execute safe collision-free trajectories in obstructed environments is important for the
application of RL in the real world. We hypothesize that the MoPA-RL agents can leverage MP to
learn trajectories that avoid unnecessary collisions. To validate this, we report the average contact
force of all robot joints on successful rollouts from the trained policies in Figure 7a. The MoPA-RL
agents show low average contact forces that are mainly the result of the necessary contacts with the
objects that need to be pushed or lifted. Crucially, these agents are able to perform the manipulations
safely while avoiding collisions with obstacles. In contrast, conventional RL agents are unable to
effectively avoid collisions in the obstructed environments, leading to high average contact forces.

4.5 Ablation Studies

Action range: We analyze the influence of the action range ∆qMP on task performance in Fig-
ure 7b. We find that for too small action ranges the policy cannot efficiently explore the environment
and does not learn the task. Yet, for too large action ranges the number of possible actions the agent
needs to explore is large, leading to slow convergence. In between, our approach is robust to the
choice of action range and able to learn the task efficiently.

Action rescaling and direct action execution: In Figure 7c we ablate the action space rescaling
introduced in Section 3.3. We find that action space rescaling improves learning performance by en-
couraging balanced exploration of both single-step and motion planner action spaces. More crucial
is however our hybrid action space formulation with direct and MP action execution: MoPA-SAC
trained without direct action execution struggles on contact-rich tasks, since it is challenging to use
the motion planner for solving contact-rich object manipulations.

5 Conclusion

In this work, we propose a flexible framework that combines the benefits of both motion planning
and reinforcement learning for sample-efficient learning of continuous robot control in obstructed
environments. Specifically, we augment a model-free RL with a sampling-based motion planner
with minimal task-specific knowledge. The RL policy can learn when to use the motion planner and
when to take a single-step action directly through reward maximization. The experimental results
show that our approach improves the training efficiency over conventional RL methods, especially
on manipulation tasks in the presence of many obstacles. These results are promising and motivate
future work on using more advanced motion planning techniques in the action space of reinforce-
ment learning. Another interesting direction is the transfer of our framework to real robot systems.
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A Additional Ablation Studies

We provide further analysis: (1) the effect of reusing motion planning trajectories to augment train-
ing data (Section A.1); (2) the ablation on the action space rescaling (Section A.2); (3) the per-
formance of our approach in uncluttered environments compared to baselines (Section A.3); (4)
the ablation of invalid target joint state handling (Section A.4); (5) the ablation of motion planner
algorithms (Section A.5); and (6) the ablation of RL algorithms (Section A.6).

A.1 Reuse of Motion Plan Trajectories

As mentioned in Section 3.4, to improve sample efficiency of motion plan actions, we sample M
intermediate trajectories of the motion plan trajectory τ0:H = (qt, qt+1, . . . , qt+H) and augment the
replay buffer with sub-sampled motion plan transitions (st+ai ,∆τai:bi , st+bi , R̃(st+ai ,∆τai:bi)),
where ai < bi ∈ [0, H] and i ∈ [1,M ] (see Algorithm 1). Figure 8a shows the success rates of
our model with different M , the number of sub-sampled motion plan transitions per motion plan
action. Reusing trajectory of MP in this way improves the sample efficiency as the success rate
starts increasing earlier than the one without reusing motion plan trajectories (M = 0). However,
augmenting too many samples (M = 30, 45) degrades the performance since it biases the distri-
bution of the replay buffer to motion plan actions and reduces the sample efficiency of the direct
action executions, which results in slow learning of contact-rich skills. This biased distribution of
transitions leads to convergence towards sub-optimal solutions while the model without bias M = 0
eventually finds a better solution.

A.2 Further Study on Action Space Rescaling

In Section 3.3, we propose action space rescaling to balance the sampling ratio between direct action
execution and motion planning. As illustrated in Figure 8b, our method without action space rescal-
ing (ω = 0.1) fails to solve Sawyer Assembly while the policy with action space rescaling learns to
solve the task. This failure is mainly because direct action execution is crucial for inserting the table
leg and the policy without action space rescaling rarely explores the direct action execution space,
which makes the agent struggle to solve the contact-rich task. We also find that the ω value is not
sensitive in Sawyer Assembly, as different ω values achieve similar success rates.
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Figure 8: Learning curves of ablated models on Sawyer Assembly. (a) Comparison of our MoPA-
SAC with different number of samples reused from motion plan trajectories. (b) Comparison of our
MoPA-SAC with different action space rescaling parameter ω.

A.3 Performance in Uncluttered Environments

We further verify whether our method does not degrade the performance of model-free RL in un-
cluttered environments. Therefore, we remove obstacles, such as a box on a table in Sawyer Lift
and three other table legs in Sawyer Assembly. Figure 9a and Figure 9b show that our method is as
sample efficient as the baseline SAC and it is even better in Sawyer Lift w/o box because our method
does not need to learn how to control an arm for the reaching skill.
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Figure 9: Success rate on (a) Sawyer Lift w/o box and (b) Sawyer Assembly w/o legs.

A.4 Handling of Invalid Target Joint States for Motion Planning

When a predicted target joint state g = q + ã for motion planning is in collision with obstacles,
instead of penalizing or using the invalid action ã, we search for a valid action by iteratively moving
the target joint state towards the current joint state and executing the new valid action, as described
in Section 3.5.

We investigate the importance of handling the invalid actions for motion planning by comparing to a
naive approach for handling invalid actions that the robot does not execute any action and a transition
(st, at, rt, st+1) is added into a replay buffer, where st = st+1 and rt is the reward of being at the
current state. Figure 10a and Figure 10b show that MoPA-SAC with naive handling of invalid states
cannot learn to solve the tasks, which implies that our proposed handling of invalid target state is
very crucial to train MoPA-SAC agents. A reason behind this behavior is that the agent can explore
the state space even though the invalid target joint state is given.
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Figure 10: Ablation of invalid target handling on (a) Sawyer Lift and (b) Sawyer Assembly.

A.5 Ablation of Motion Planning Algorithms

We test whether our framework is compatible with different motion planning algorithms. Figure 11a
shows the comparison of our method using RRT-Connect and RRT* [11]. MoPA-SAC with RRT*
learns to solve tasks less efficiently than MoPA-SAC with RRT-Connect since, in our experiments,
RRT-Connect finds better paths than RRT* within the limited time given to both planners.

A.6 Ablation of Model-free RL Algorithms

To verify the compatibility of our method with different RL algorithms, we replaced SAC with
TD3 [42] and compare the learning performance. As illustrated in Figure 11b, MoPA-TD3 shows
unstable training, though the best performing seed can achieve around 1.0 success rate.
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Figure 11: Learning curves of ablated models on Sawyer Assembly. (a) Comparison of our model
with different motion planner algorithms. (b) Comparison of our model with different RL algo-
rithms.

B Environment Details

All of our environments are simulated in the MuJoCo physics engine [39]. The positions of the
end-effector, object, and goal are defined as peef, pobj, and pgoal, respectively. T is the maximum
episode horizon.

Table 1: Environment specific parameters for MoPA-SAC

Environment Action dimension Reward scale ∆qstep ∆qMP ω M T

2D Push 4 0.2 0.1 1.0 0.7 30 400
Sawyer Push 7 1.0 0.05 0.5 0.7 15 250
Sawyer Lift 8 0.5 0.05 0.5 0.5 15 250

Sawyer Assembly 7 1.0 0.05 0.5 0.7 15 250

B.1 2D Push

A 2D-reacher agent with 4 joints needs to first reach an object while avoiding obstacles and then
push the object to the goal region.

Success criteria: ||pgoal − pobj||2 ≤ 0.05.

Initialization: The x and y position of goal and box are randomly sampled from U(−0.35,−0.24)
and U(0.13, 0.2) respectively. Moreover, the random noise sampled from U(−0.02, 0.02) is added
to the agent’s initial pose.

Observation: The observation consists of (sin θ, cos θ) for each joint angle θ, angular joint velocity,
the box position pobj = (xobj, yobj), the box velocity, the goal position pgoal, and end-effector position
peef = (xeef, yeef).

Rewards: Instead of defining a dense reward over all states which can cause sub-optimal solutions,
we define the reward function such that the agent receives a signal only when the end-effector is
close to the object (i.e., ||peef − pobj||2 ≤ 0.1). The reward function consists of rewards for reaching
the box and pushing the box to the goal region.

Rpush = 0.1 · 1||peef−pobj||2≤0.1(1− tanh(5 · ||peef − pobj||2))

+ 0.3 · 1||pobj−pgoal||2≤0.1(1− tanh(5 · ||pobj − pgoal||2)) + 150 · 1success
(2)

B.2 Sawyer Push

The Sawyer Push task requires the agent to reach an object in a box and push the object toward a
goal region.
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Success criteria: ||pgoal − pobj||2 ≤ 0.05.

Initialization: The random noise sampled from N (0, 0.02) is added to the goal position and the
initial pose of the Sawyer arm.

Observation: The observation consists of each joint state (sin θ, cos θ), angular joint velocity, the
goal position pgoal, the object position and quaternion, end-effector coordinates peef, the distance
between the end-effector and object, and the distance between the object and target.

Rewards:

Rpush = 0.1 · 1||peef−pobj||2≤0.1(1− tanh(5 · ||peef − pobj||2))

+ 0.3 · 1||pobj−pgoal||2≤0.1(1− tanh(5 · ||pobj − pgoal||2)) + 150 · 1success
(3)

B.3 Sawyer Lift

In Sawyer Lift, the agent has to pick up an object inside a box. To lift the object, the Sawyer arm
first needs to get into the box, grasp the object, and lift the object above the box.

Success criteria: The goal criteria is to lift the object above the box height.

Initialization: Random noise sampled from N (0, 0.02) is added to the initial position of a sawyer
arm. The target position is always above the height of the box.

Observation: The observation consists of each joint state (sin θ, cos θ), angular joint velocity, the
goal position, the object position and quaternion, end-effector coordinates, the distance between the
end-effector and object.

Rewards: This task can be decomposed into three stages; reach, grasp, and lift. For each of the
stages, we define the reward function, and the agent receives the maximum reward over three values.
The success of grasp is detected when both of the two fingers touch the object.

Rlift = max
(

0.1 · (1− tanh(10 · ||peef − pobj||2))︸ ︷︷ ︸
reach

, 0.35 · 1grasp︸ ︷︷ ︸
grasp

,

0.35 · 1grasp + 0.15 · (1− tanh(15 ·max(pzgoal − pzobj, 0)))︸ ︷︷ ︸
lift

)
+ 150 · 1success

(4)

B.4 Sawyer Assembly

The Sawyer Assembly task is to assemble the last table leg to the table top where other three legs are
already assembled. The Sawyer arm needs to avoid the other table legs while moving the leg in its
gripper to the hole since collision with other table legs can move the table. Note that the table leg
that the agent manipulates is attached to the gripper; therefore, it does not need to learn how to grasp
the leg.

Success criteria: The task is considered successful when the table leg is inserted into the hole.
The goal position is at the bottom of the hole, and its success criteria is represented by ||pgoal −
pleg-head||2 ≤ 0.05, where pleg-head is position of head of the table leg.

Initialization: Random noise sampled fromN (0, 0.02) is added to the initial position of the Sawyer
arm. The pose of the table top is fixed.

Observation: The observation consists of each joint state (sin θ, cos θ), angular joint velocity, the
hole position pgoal, positions of two ends of the leg in hand pleg-head, pleg-tail, and quaternion of the
leg.

Rewards:

Rassembly = 0.4 · 1||pleg-head−pgoal||2≤0.3(1− tanh(15 · ||pleg-head − pgoal||2)) + 150 · 1success (5)
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C Training Details

For reward scale in our baseline, we use 10 for all environments. In our method, each reward can
be much larger than the one in baseline because it uses a cumulative reward along a motion plan
trajectory when the motion planner is called. Therefore, larger reward scale in our method degrades
the performance, and using small reward scale 0.1 ∼ 0.5 enables the agent to solve tasks. Moreover,
α in SAC, which is a coefficient of entropy, is automatically tuned. To train a policy over discrete
actions with SAC, we use Gumbel-Softmax distribution [43] for categorical reparameterization with
temperature of 1.0.

Table 2: SAC hyperparameter

Parameter Value

Optimizer Adam
Learning rate 3e-4

Discount factor (γ) 0.99
Replay buffer size 106

Number of hidden layers for all networks 2
Number of hidden units for all networks 256

Minibatch size 256
Nonlinearity ReLU

Target smoothing coefficient (τ ) 0.005
Target update interval 1

Network update per environment step 1
Target entropy −dim(A)

C.1 Wall-clock Time

The wall-clock time of our method depends on various factors, such as the computation time of an
MP path and the number of policy updates. As Table 3 shows, MoPA-RL learns quicker in wall-
clock time compared to SAC for 1.5M environment steps. This is because SAC updates the policy
once for every taken action, and our method requires fewer policy actions for completing an episode.
As a result, our method performs fewer costly policy updates. Moreover, while a single call to the
motion planner can be computationally expensive ( 0.3 seconds in our case), we need to invoke it
less frequently since it produces a multi-step plan (40 steps on average in our experiments). We
further increased the efficiency of our method by introducing a simplified interpolation planner.

Table 3: Comparison of the wall-clock training time in hours

Sawyer Push Sawyer Lift Sawyer Assembly

MoPA-SAC 15 17 14
SAC 24 24 24
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