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Abstract

While Bayesian neural networks (BNNs) provide
a sound and principled alternative to standard
neural networks, an artificial sharpening of the
posterior usually needs to be applied to reach
comparable performance. This is in stark con-
trast to theory, dictating that given an adequate
prior and a well-specified model, the untempered
Bayesian posterior should achieve optimal perfor-
mance. Despite the community’s extensive efforts,
the observed gains in performance still remain dis-
puted with several plausible causes pointing at its
origin. While data augmentation has been empir-
ically recognized as one of the main drivers of
this effect, a theoretical account of its role, on
the other hand, is largely missing. In this work
we identify two interlaced factors concurrently
influencing the strength of the cold posterior ef-
fect, namely the correlated nature of augmenta-
tions and the degree of invariance of the employed
model to such transformations. By theoretically
analyzing simplified settings, we prove that tem-
pering implicitly reduces the misspecification aris-
ing from modeling augmentations as i.i.d. data.
The temperature mimics the role of the effective
sample size, reflecting the gain in information
provided by the augmentations. We corroborate
our theoretical findings with extensive empirical
evaluations, scaling to realistic BNNs. By rely-
ing on the framework of group convolutions, we
experiment with models of varying inherent de-
gree of invariance, confirming its hypothesized
relationship with the optimal temperature.
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1. Introduction
Deep learning has lead to tremendous advances in a variety
of tasks such as computer vision (He et al., 2016), natural
language processing (Devlin et al., 2019) and reinforcement
learning (Silver et al., 2016) to name but a few. While
such deep models exhibit astonishing predictive power, their
black-box nature renders uncertainty estimation very diffi-
cult and often leads to over-confident decisions (Nguyen
et al., 2015; Szegedy et al., 2013). To overcome this diffi-
culty, Bayesian neural networks (BNNs) have been intro-
duced, combining the functional form of deep models with
the framework of Bayesian inference (Graves, 2011b; Blun-
dell et al., 2015; Hernández-Lobato & Adams, 2015). By
forming a posterior distribution over the model parameters
instead of a point estimate, uncertainty estimations become
significantly better calibrated, leading to more informed de-
cisions in safety-critical applications. Moreover, due to the
multi-modal nature of neural loss landscapes (Garipov et al.,
2018; Draxler et al., 2018), Bayesian models are particularly
well-suited as they naturally form an ensemble of models
(Wilson, 2020).

Recently however, Wenzel et al. (2020) observed that BNNs
evaluated on standard benchmarks yield suboptimal per-
formance, even being outperformed significantly by a sim-
ple SGD baseline. They noticed on the other hand that
an artificial sharpening of the posterior distribution (so-
called cold posteriors) leads to very strong performance.
The sub-optimality of Bayesian models is worrisome as the
Bayesian framework is equipped with theoretical guarantees
regarding its optimality (Kolmogorov, 1960; Savage, 1954;
Jaynes, 2003). As a consequence, a multitude of works
have been put forth, exploring different potential causes
of this so-called cold posterior effect (CPE), including the
curated nature of standard datasets (Aitchison, 2021), the
non-Bayesian nature of data augmentation (Izmailov et al.,
2021) as well as possibly poorly chosen priors (Noci et al.,
2021; Fortuin et al., 2021). Data augmentation has been
observed to play a particularly pronounced role, being in-
strumental in causing the cold posterior effect in a variety of
settings (Izmailov et al., 2021; Noci et al., 2021). Nabarro
et al. (2021) develop a formalism to incorporate data aug-
mentation into the model but unfortunately the CPE still
persists. In this work we aim to bridge this gap by mathe-
matically analyzing the effect of data augmentation on the
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resulting posterior. Inspired by the seminal works on “lon-
gitudinal” data (Liang & Zeger, 1986; Laird & Ware, 1982;
Ware, 1985), we approach the process of data augmentation
in a similar spirit, taking into account the strong statistical
dependence between augmented examples which breaks
the i.i.d. assumption implicit in most Bayesian inference
pipelines. By incorporating the correlation structure into the
model, we prove that tempering approximates the correct
Bayesian posterior and even matches it in simplified settings.
Intuitively, the temperature plays the role of the effective
sample size, adjusting for the fact that data augmentation
leads to a sample size that lies between the original and the
augmented one.

We perform exhaustive experiments to validate our theoreti-
cal insights. In particular, by relying on the framework of
group convolutions (Cohen & Welling, 2016), we design
architectures for which the invariance with respect to cer-
tain augmentations is approximately built into the model.
In turn, we observe a clear correlation between the degree
of model invariance and optimal temperature. Under the
view of tempering as adjusting the effective sample size of
the augmented dataset, using approximately invariant mod-
els decreases the need for cold posteriors, as the effective
sample size is close to that of the original dataset.

In summary, our contributions are the following:

• We identify the source of misspecification introduced
by data augmentation in a Bayesian context. We show
how augmenting samples, in conjunction with the
model’s invariance, induces highly correlated errors,
rendering the implicit i.i.d. assumption underlying
standard BNN pipelines incorrect.

• We show in simplified settings that tempering the
(wrong) posterior can alleviate the misspecification,
resulting in a potential explanation of the CPE.

• We test our theory using group convolutions, confirm-
ing our hypothesis and theoretical results on the role
of invariance. Furthermore, we show that BNNs with
group convolutions outperform the standard convolu-
tion counterpart in the considered settings.

2. Background
In this section we introduce the relevant mathematical nota-
tion and provide background on Bayesian neural networks
as well as the cold posterior effect.

Notation. We study the standard supervised learning set-
ting, where we have a dataset consisting of n ∈ N i.i.d.
input-target pairs {(xi, yi)}ni=1 distributed according to
some (unknown) data distribution, (xi, yi) ∼ D. We

assume that the inputs come from some possibly high-
dimensional space x ∈ X ⊂ Rd and that the targets are
univariate, y ∈ R. In a classification context, y will for
instance denote a binary encoding. All our results however
extend to the multivariate target case. Occasionally we will
find it useful to summarize inputs and targets into matrices,
we will then denote X ∈ Rn×d and y ∈ Rn. We consider a
family of functions fθ : Rd −→ R parameterized by θ ∈ Rp,
serving as models for the data distribution D.

BNNs. Finding optimal values for θ is a very challenging
task due to the high-dimensional nature of the parameter
space and its inherent degeneracy. A Bayesian approach
to this problem specifies a prior distribution p(θ) over the
parameters (possibly incorporating domain knowledge) and
leverages the data by means of Bayes’ rule, resulting in the
posterior distribution

p(θ|y,X) ∝ p(y|θ,X)p(θ) (1)

Prediction on a test sample x is then performed by marginal-
izing out the parameters θ over the posterior distribution:

p(y|x,X,y) =

∫
p(y|x,θ)p(θ|y,X)dθ. (2)

Eq. 2, also called Bayesian model average (BMA), naturally
exploits the multi-modal landscape by averaging over all
models that are compatible with the data, leading to richer
explanations. Moreover, having access to the predictive
distribution p(y|x,X,y) directly allows for uncertainty es-
timation.

Inference. In practice however, the integral in Eq. 2 is
intractable and as a consequence, approximate inference
methods have been designed to estimate it. In particular,
in this work we will make use of gradient-based Monte
Carlo methods (MCMC), where a finite number of K sam-
ples from the posterior are obtained and the BMA is ap-
proximated as p(y|x,X,y) ≈ 1

K

∑K
k=1 p(y|x,θk), where

θk ∼ p(θ|y,X). To that end, we introduce the posterior
energy function

U(θ) := − log (p(θ|y,X)) ,

along with the discretized Langevin dynamics which govern
the parameters’ evolution,

θt+1 ← θt −
αt

2
∇θU(θ) +

√
αtN (0,1). (3)

In deep learning, we often deal with very big data corpora,
rendering the gradient operation ∇θU(θ) intractable. In-
spired by the mini-batching operation in SGD, Welling &
Teh (2011) introduced the same idea, crucially relying on
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the fact that for i.i.d. data {(xi, yi)}ni=1, we can write

U(θ)
i.i.d.
= −

n∑
i=1

log (p(yi|θ,xi))− log(p(θ)). (4)

A noisy estimate of the full gradient is then formed on a
mini-batch St ⊂ {1, . . . , n} of the data,

∇θU(θ) ≈ − n

|St|
∇θ

(∑
i∈St

log p(yi|θ,xi) + log p(θ)

)
.

These so-called SG-MCMC methods, in combination with
pre-conditioners (Li et al., 2016) and cyclical learning rates
(Zhang et al., 2020), offer a powerful and scalable approach
to Bayesian inference, as shown in (Wenzel et al., 2020).

Cold Posteriors. Despite their benefits, the adoption of
BNNs is not widespread: inference procedures are usually
slower and reported to even be outperformed by SGD in
certain settings (Wenzel et al., 2020). At the same time
however, Wenzel et al. (2020) show that the performance
issue can be resolved by re-scaling the posterior with a
temperature parameter T > 0:

p(θ|y,X)
1
T ∝ p(y|θ,X)

1
T p(θ)

1
T . (5)

The optimal temperature is found to be consistently smaller
than one, i.e. T << 1, across several models and datasets.
Thus, the term ”cold posterior effect” was coined. As dis-
cussed in Sec. 1, exactly pin-pointing the origin of this effect
is complicated and a number of hypotheses have been put
forth in the literature. In this work, we focus on the role of
data augmentation since empirically it is observed to be the
main driver of the CPE (Noci et al., 2021; Izmailov et al.,
2021). Finally, we also consider the variant where only the
likelihood is tempered, and not the prior:

pT (θ|y,X) ∝ p(y|θ,X)
1
T p(θ). (6)

We will show both theoretically and experimentally that
tempering the likelihood is sufficient to account for the
misspecification introduced by data augmentation.

Data Augmentation. A common technique in deep learn-
ing to foster invariance of a model is given by data aug-
mentation. Given an example (x, y) ∼ D, one produces
several (random) augmentations of the input x, that by de-
sign, should preserve the label information, i.e. ỹ = y. More
formally, depending on the domain, the practitioner designs
a (parametrized) augmentation function Rη : Rd −→ Rd that
takes an input x and a parameter η ∼ p(η) and produces
an augmented example x̃ := Rη(x). Usually, Rη is cho-
sen in a way that the resulting augmentation x̃ preserves
the label, i.e. an annotator would assign the same label to

x̃ as x. In a computer vision context, Rη would for in-
stance correspond to the composition of randomly rotating,
flipping and translating the input image, intuitively leaving
the associated label invariant. The same input x is usually
augmented several times, leading to a set of augmentations
x̃1, . . . , x̃B . For instance, in stochastic gradient descent a
fresh augmentation of x is produced at every epoch of the
optimization. Data augmentation is a standard component
of most deep learning pipelines and an almost necessary
ingredient for state-of-the-art results. For instance, the top 5
leaders in ImageNet accuracy1 (Dai et al., 2021; Zhai et al.,
2021; Pham et al., 2021; Liu et al., 2021; Yuan et al., 2021),
all use some form of data augmentation.

Group Convolutions. In order to experimentally verify
the predicted relationship between optimal temperature and
model invariance, we make use of group-equivariant convo-
lutions (Cohen & Welling, 2016), which extend the transla-
tion equivariance property of standard convolutions to richer
classes of transformations G that form finite symmetry
groups. Given a feature map ϕ(x) ∈ Rd and a transforma-
tion g : Rd −→ Rd for g ∈ G, we say that ϕ(x) is equivari-
ant with respect to G if ∃ g′ ∈ G s.t. ϕ(g(x)) = g′(ϕ(x)).
Note that invariance is the special case in which g′ is the
identity function. The mathematical machinery of symmetry
groups and equivariance can be combined to design group-
equivariant convolutional layers. More concretely, given a
feature map ϕ and K filters fk, where both the filters and
feature map are functions on G for all but the first layer, a
G-convolutional layer can be defined for h ∈ G, as:

[f ∗ ϕ](h) =
∑
g∈G

K∑
k=1

fk(g)ϕ(h
−1(g)). (7)

For the first layer, K is the number of channels of the input
image, fk is the k-th channel of the input image, and the
first sum is over its pixel values.

Invariant architectures with respect to these groups can be
built by using G-convolutional layers followed by a global
average pooling layer (GAP) (Cohen & Welling, 2016; Veel-
ing et al., 2018). However, one has to to be careful when
designing such architectures, as some commonly used fea-
tures break such invariances. In particular, it was shown that
strided convolutions (Mouton et al., 2021), pooling layers
(subsampling) (Bulusu et al., 2021) and padding (Kayhan &
Gemert, 2020) break translational equivariance in standard
convolutions.

3. Data Augmentation in Bayesian Models
Correlations. Data augmentation in the context of
Bayesian inference is a delicate matter. Consider the three

1https://paperswithcode.com/sota/

https://paperswithcode.com/sota/
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Figure 1: Illustration of augmentations, the original image
x (left), and two random augmentation Rη1(x) (middle)
and Rη2

(x) (right). We apply a composition of random
rotations, crops and flips.

images in Fig. 1, where the left image corresponds to the
original sample x and the other two images Rη1(x), Rη2(x)
are two random augmentations. The resulting label for the
augmented samples is still “otter”, i.e. ỹ1 = ỹ2 = y as
the augmentations are chosen in a way to preserve that in-
formation. Very intuitively however, the two augmented
examples share significant correlation. More concretely,
considering B ∈ N augmentations of x, forming the set
S̃ := {(x̃1, y), . . . , (x̃B , y)}, it is evident that the set ex-
hibits significant correlation, leading to an effective sample
size that lies between 1 and B. However, the inference
methods employed in the BNN literature implicitly assume
i.i.d. data (Welling & Teh, 2011; Graves, 2011a; Blundell
et al., 2015; Wenzel et al., 2020), (essentially, boiling down
to Eq. 4), leading to a misspecified model when used in
conjunction with data augmentation.

A Simple Example. We illustrate the arising correlations
and the benefits of tempering through a very simple example.
We study the classic textbook problem, where we aim to
estimate the mean of a given set of samples {x1, . . . , xn} ⊂
R. We will show in the next section how the intuition
translates to a regression setting. We make the modeling
assumption

x|µ ∼ N (µ, σ2),

where σ > 0 is known but µ ∈ R is unknown. Moreover, we
set the prior µ ∼ N (µ0, σ

2
0) for σ0 > 0 and µ0 ∈ R. Given

a sample x, we can augment it as x̃ = Rη(x) = x + η
where η ∼ N (0, σ2

η) is independent from x, leaving the
distribution invariant as evidently, x̃ ∼ N (µ, σ2 + σ2

η). On
the other hand, a correlation structure among augmented
samples emerges, as for two augmentations x̃i = x+ηi and
x̃j = x+ ηj with independent ηi, ηj , it holds

cov(x̃i, x̃j) = σ2.

If we consider B ∈ N augmentations per sample xi and
collect them into a vector x̃ ∈ RBn, it holds

x̃ ∼ N (µ1Bn, Σ̃),

where Σ̃ ∈ RBn×Bn is block-diagonal with blocks Σ =
σ2
η1 + σ21B1

T
B ∈ RB×B and 1m ∈ Rm denotes the all-

ones vector. On the other hand, we can choose to ignore
the correlation structure, treating all the samples as i.i.d.
realizations, leading to the diagonal covariance (σ2 + σ2

η)1.
Denote by p(µ|x̃; Σ̃) the posterior incorporating correlation
and by pT (µ|x̃;1) the tempered posterior under the i.i.d.
assumption. We can prove the following:

Theorem 3.1. pT (µ|x̃;1) and p(µ|x̃; Σ̃) exactly match for
the choice of temperature

T ∗(ση;B) =
σ2
η +Bσ2

σ2
η + σ2

.

We postpone the proof of Thm. 3.1 to Appendix A.1.
Thm. 3.1 shows that tempering completely fixes the misspec-
ification implied by treating augmentations as i.i.d. samples!
Let us comment on a few characteristics of the ideal temper-
ature T ∗(ση;B). First, it holds that T ∗ ≥ 1, i.e. we always
require a hot posterior. Moreover, T ∗ is an increasing func-
tion in B, i.e. the more you augment, the hotter the posterior
needs to become. This is intuitive, as we should rely less
on the data since the sample size is artificially inflated. If a
single augmentation is used, i.e. B = 1 we recover T ∗ = 1
as expected, since data points indeed become independent.
Finally T ∗ is a decreasing function in σ2

η, when augmen-
tations become less diverse, i.e. ση −→ 0, we converge to
T ∗ = B. Data augmentation is usually associated with cold
posteriors in the literature, which is in stark contrast to our
result. We explain this discrepancy in detail in Sec. 4.

Regression Setting. Let us illustrate how a regression
setting changes the implied model. Consider the data gener-
ating process

y = fθ∗(x) + ϵ,

where fθ defines a family of functions, parametrized by θ
with true but unknown configuration θ∗ ∈ Rp. Moreover,
x ∈ Rd denotes the covariate and ϵ ∼ N (0, σ2

ϵ ) is the
error, inherent to the process. We place a prior θ ∼ p(θ)
on the parameters and assume that we have n independent
realizations of the process, {(x1, y1), . . . , (xn, yn)}. We
consider general augmentations Rη(x) where η ∼ p(η)
governs the randomness. Similarly as in practice, since
we cannot access θ∗, we postulate that the augmentation
x̃ := Rη(x) shares the same response value, i.e. we form
the sample (x̃, y). Imposing a response induces an error ϵ̃
which we can calculate, due to the relation

y = fθ∗(x) + ϵ
!
= fθ∗(Rη(x)) + ϵ̃,

which after re-arranging, leads to the following:

ϵ̃ = ϵ+ δη,

where we define δη := fθ∗(x)− fθ∗(Rη(x)). Intuitively,
δη measures the degree of invariance of the true model
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(a) Augmented Residuals (b) Unaugmented Residuals

Figure 2: Residual vs. Order Plot: Residuals of an untrained ResNet18 on Dogs vs Cats dataset. (a) 20 independent
samples (red dots) of label “cat” with 100 augmentations each. (b) 2000 independent samples of label “cat”. Augmented
residuals display a strong dependence (forming clusters) while unaugmented residuals show no trend.

θ∗. We make the natural assumption that E[δη] = 0, im-
plying that ϵ̃ remains a centered random variable as the
augmentation is not inducing any bias. In practice, the same
data point x is augmented multiple times, i.e. we produce
Rηi

(x) where ηi
i.i.d.∼ p(η) for i = 1, . . . , B, which we

associate with the same response y. This induces a series of
errors ϵ̃i, which give rise to a correlation structure

cor(ϵ̃i, ϵ̃j) =
σ2
ϵ

σ2
ϵ + var(δη)

. (8)

We detail the calculation in Appendix A.2. This structure de-
pends on the original error variance σ2

ϵ and var(δη), which
in turn depends on the augmentation scheme R and the true
model fθ∗ . As a consequence, the likelihood cannot be
factorized, i.e.

p(ỹ1, . . . , ỹB |x,θ) ̸=
B∏
i=1

p(ỹi|x,θ).

We empirically demonstrate the correlated nature of the er-
rors in Fig. 2 by resorting to the classic tool of the Residual
vs. Order plot, often employed in least squares. We ap-
proximate the true (but unobservable) errors by the resulting
residuals of a random ResNet18 for both augmented and
non-augmented data. In the augmentation case, we observe
a strong correlation when the residuals are plotted against
the sample index, while without augmentations, they exhibit
no structure. Notice that already a random (i.e. untrained)
model displays this pattern, hinting at the fact that such
invariances (and hence correlations) are built into the archi-
tecture.

Finally our results also extend to the classification setting,
we refer the reader to Appendix A.3.

Tempering as Effective Sample Size. On the contrary,
if errors become perfectly correlated, the likelihood even

degenerates,

p(ỹ1, . . . , ỹB |x,θ) = p(ỹ|x,θ)

We see that wrongly factorizing the likelihood in this case
can be fixed through tempering with T > 0,

p(ỹ1, . . . , ỹB |x,θ)
1
T

wrong
=

B∏
i=1

p(ỹi|x,θ)
1
T

= p(ỹ|x,θ)B
T

i.e. setting T = B recovers the correct likelihood. Interpret-
ing Eq. 8 as a measure of “factorizability” of the likelihood,
we conjecture that T ∗ ∈ [1, B], depending on the degree of
invariance of the model θ∗. In this sense, B

T measures the
“effective sample size” of augmentations. As a consequence,
there should ideally be a separate temperature Ti for every
datapoint xi. However, we conjecture that in realistic set-
tings, augmentations of different datapoints should exhibit
similar correlations, hence a single global temperature T
provides a good approximation. For intermediate values of
correlations, tempering can reduce but not perfectly fix the
misspecification. We refer to Appendix A.5 for details.

Linear Regression. We can illustrate the general frame-
work with the simpler case of linear regression, i.e. fθ(x) =
θTx under additive augmentations Rη(x) = x + η with
η ∼ N (0,Ση). We can write

δη = θT
∗ x− θT

∗ Rη(x) = −ηTθ∗

Here, we can directly see that E[δη] = 0. Moreover, the
correlation of the errors can be computed in closed form as
well (detailed in Appendix A.4),

cor(ϵ̃i, ϵ̃j) =
σ2
ϵ

σ2
ϵ + θT

∗ Σηθ∗
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Figure 3: Illustration of additive augmentations η (orange)
constrained to a line with an invariant model θ∗ (pink).

We notice the following: If the true model θ∗ is contained in
the null space of Ση , the errors exhibit perfect correlation,
i.e. cor(ϵ̃i, ϵ̃j) = 1. This is very intuitive and illustrated in
Fig. 3 for d = 2. If η is degenerate and only operates in a

subspace, here along the 45◦-axis e.g. Ση =

(
σ2
η σ2

η

σ2
η σ2

η

)
,

any orthogonal model θ∗ will be invariant to the augmen-
tation, leading to perfectly correlated errors. On the other
hand, once the augmentation noise σ2

η overwhelms the sig-
nal (i.e. σ2

η −→ ∞) we recover independent (but useless)
samples.

Conditioning or Not Conditioning. In the previous sec-
tion we have assumed, by conditioning on x, that the model
actually has access to x. However, this is not what is done in
practice, as the model makes inference relying only on the
augmentations and not on the underlying datapoint. Now we
derive a general generative model for data augmentation that
does not rely on conditioning on the original datapoints x,
but only on the augmentations, and discuss its implications.

Let p(x̃i|x) be the likelihood of the augmentation x̃i being
generated from x through Rη(x). If we do not condition on
x, the likelihood for the augmentations S̃ has the following
form:

p(S̃|θ) =
∫

p({(x̃i, ỹi)}Bi=1,x, |θ)dx

=

∫
p({ỹi}Bi=1|x, {x̃i}Bi=1,θ)

B∏
i=1

p(x̃i|x)p(x)dx.

Note that this intractable setting is what is commonly done
in practice, as the model does not rely on x, but only on the
augmentations to estimate the posterior. This means that we
have to marginalize x out in order to account for all possible
original datapoints that might have generated x̃. However,
more realistically, it is safe to assume that an augmentation
x̃ is “sufficiently close” to x that no other x′ might have
generated it. Therefore conditioning on x does not affect the
parameter estimation. Clearly, this final reasoning assumes

that the augmentations are not “too wild”. In particular,
standard augmentations adopted in computer vision, such as
rotations, horizontal/vertical flips and crops certainly satisfy
this condition.

4. Experiments
To perform approximate inference for BNNs, we use the SG-
MCMC sampler described in (Wenzel et al., 2020), which
includes cyclical step size (Zhang et al., 2020) and layer-
wise preconditioning (we refer the reader to Appendix B for
the implementation details).

Hot or Cold Posteriors? To make the approximate infer-
ence method match the considered theoretical setting, we
adjust the sample size from n to Bn where B is the number
of augmentations used for inference, which coincides with
the number of training epochs. In order to only temper the
likelihood, we apply a simple re-parameterization to the
learning rate γt = Tαt and remove the temperature term
from the prior, resulting in the overall update:

θt+1 ← θt−
γt
2

(
Bn

T |St|
∑
i∈St

log p(yi|xi) + log p(θt)

)
+
√
γtN (0,1), (9)

From Eq. 9, the role of T in data augmentation is manifest:
it rescales the augmented dataset size Bn to adjust for the
non i.i.d data. Inspired by our theoretical results, we conjec-
ture that T ∗ ∈ [1, B], resulting thus in a hot posterior. On
the contrary, if one does not explicitly account for the aug-
mentations and considers only n datapoints, then T ′ = T∗

B
is optimal, and cold posteriors are obtained instead. In other
words, hot and cold posteriors are two sides of the same
coin in our setting, they are simply a consequence of the
normalization used in SG-MCMC. In our experiment, we
will adopt the parametrization of Eq. 9 to remain consistent
with our theoretical results. Therefore hot posteriors are to
be expected, and T = B is optimal when either the model
is invariant with respect to the augmentations, or data aug-
mentation is switched off. In all the following plots, T = B
will be highlighted by a vertical dashed line.

As a first experiment, we test whether tempering only the
likelihood qualitatively changes the temperature landscape,
compared to tempering the posterior. We display the results
in Fig. 4 for a ResNet20 when data augmentation is used
(random flips and crops). We observe that the same opti-
mal temperature is achieved by both approaches, strongly
suggesting that the likelihood is at the core of the CPE for
data augmentation, and not the prior over the parameters,
which was shown to play a significant role for small sample
sizes (Noci et al., 2021). Moreover, we indeed observe hot
posteriors (i.e. T >> 1) when employing the update in
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Eq. 9, as predicted by our results.

Figure 4: Test cross-entropy as a function of the temperature
T for posterior tempering (blue) and likelihood tempering
(orange).

G-Convolutions Alleviate the CPE. As detailed in Sec-
tion 2, the adoption of G-convolutions is not sufficient to
obtain an invariant architecture, as standard operations like
striding or padding break the invariance. This is concern-
ing, as strided convolutions are heavily used in state-of-the
arts architectures like ResNets to enhance performance and
reduce the parameter count. In our experiments, we use
a ResNet20 with 2-strided G-convolutions, thus losing its
exact invariance but remaining largely insensitive to the
group transformations. We will refer to it in the following
as G-ResNet. In particular, we will use p4m equivariant
convolutions, enforcing equivariance with respect to compo-
sitions of translations, horizontal and vertical flip as well as
rotations by multiples of 90◦. Finally, note that p4m convo-
lutions effectively make the size of the feature maps 8 times
larger. Therefore, to have a fair comparison between stan-
dard and group convolutions, we follow Cohen & Welling
(2016) and reduce the number of filters of G-convolutional
layers by

√
8 to roughly have the same number of training

parameters.

The results of this comparison are shown in Fig. 5. First, we
use only random crops and horizontal flips to augment the
dataset (solid lines). Then we repeat the experiment with
the additions of multiples of 90◦ rotations (dashed lines).
G-ResNet outperforms ResNet20 at the optimal temperature
in all cases, while 90◦ rotations seems to degrade perfor-
mance across both architectures. Note when using only flips
and crops (solid lines), the optimal temperature is similar.
However, when rotations are added, the optimal temperature
of ResNet20 decreases significantly, while for G-ResNet -
which is more insensitive to such rotations - there is almost
no shift in the optimal temperature. In particular, we report
a significant temperature shift in ResNet20 while almost no
shift for G-ResNet, confirming our hypothesis on the role of
invariance. We stress that the G-ResNet is not invariant, but
only more invariant (insensitive), due to the usage of strides
and random crops. Therefore we should not expect T = B

to be optimal in this case.

Figure 5: Test cross-entropy as a function of the temperature
T for a ResNet with standard convolutions (blue) and G-
convolutions (orange), with or without extra 90◦rotations
(dashed lines).

An Almost Invariant Model. Next, we test whether an
almost invariant model (insensitive) can achieve an optimal
temperature of T = B while employing data augmentation.
In our case, such a model can be built by not using strides
(i.e. stride=1), and use only flips and multiples of 90◦

rotations as augmentations. We fix the maximum number of
augmentations to B = 150, and use a burn-in period for SG-
MCMC of 150 epochs. In this way, we do not start sampling
before the model has visited all the datapoints. We display
the results in Fig. 6. As predicted, difference in performance
at the optimal temperature and at T = B = 150 is minimal.
Further evidence for our argument is given by the fact that
2-strided convolutions (i.e. a less invariant model) produce
a weaker hot posterior effect. The invariance can be easily
destroyed by adding an extra random 10◦ rotation to the set
of transformations, as shown in Fig. 7. In that case we move
away from T = 150, regardless of the stride.

Finally, to have a quantitative measure of the degree of in-
variance, we plot the absolute value of the difference of
the output probabilities of the model (i.e the total variation)
among the augmentations used for training. We use the
models with optimal temperatures determined in the pre-
vious experiments (Fig. 6-7). Results are shown in Fig. 8.
As expected, we find that the total variation monotonically
increases with the degree of invariance of model, i.e. the
most invariant model (1-strided, no 10◦ rotations) displays
the smallest variation.

5. Related Work
Correlations. Incorporating dependence between sam-
ples has a long tradition in machine learning. Correlations
emerge naturally in a range of statistical applications, in-
cluding longitudinal data (Liang & Zeger, 1986), time series
(Hamilton, 2020) and clustering (Wakefield, 2013), to name
but a few. The most relevant setting to our work is longitu-



How Tempering Fixes Data Augmentation in Bayesian Neural Networks

Figure 6: Test cross-entropy as a function of the temperature
for 2-strided (blue) and 1-strided (orange) G-convolutional
network. Note how the 1-strided model presents a very
flat curve toward T = 150, indicating its insensitivity with
respect to the augmentations.

Figure 7: Same setting as in Fig. 6, but this time we perform
an extra random rotation of 10◦. Note how the loss of
invariance shifts the optimal temperature significantly, in
both the 2-strided and 1-strided case.

dinal modeling, where multiple measurements are produced
from a single source point, a very common scenario in the
field of biostatistics. Quantifying the predictive relationship
between blood pressure and Diabetes (binary response) is a
standard example. A typical dataset consists of n patients,
where crucially, for each patient i, repeated blood pressure
measurements are performed due to the inherently noisy
measurement process. Naturally, these repeated measure-
ments are far from independent. Neglecting these corre-
lations can be detrimental and as a consequence, various
approaches have been developed, dating back to fLiang &
Zeger (1986); Ware (1985); Laird & Ware (1982). We refer
to Verbeke & Molenberghs (2005) for an overview. Many
of those approaches build upon the well-known generalized
least squares method or the linear mixed model (Robinson,
1991).

Data Augmentation and CPE. While some works have
explored data augmentation from a theoretical angle for
standard neural networks (Chen et al., 2020; Dao et al.,
2019; Wu et al., 2020), to the best of our knowledge only
Nabarro et al. (2021) have explored it in the context of the

cold posterior effect. They construct an invariant model by
marginalizing over the augmented data distribution through
averaging the predicted logits/probabilities of the model.
They are however not able to explain the cold posterior
effect. We argue that this is due to the fact that the aug-
mentations are considered as latent variables that generated
the observed (un-augmented) datapoints. Orthogonally to
their approach, in this work we argue for the more realistic
case in which the augmentations are generated from the
original datapoints, and cold/hot posteriors arise from not
taking into account the correlations between the errors that
this process inevitably generates. This way, infinitely many
augmentations can be considered without overwhelming the
prior, in contrast to the argument in Nabarro et al. (2021).

Figure 8: Total variation during learning for the experiments
with G-convolutional networks. A lower value of the total
variation indicates a greater degree of invariance.

Model Misspecification and Tempering. Our work is
inspired by a remarkable series of works on the role of
tempering under model misspecification (Grünwald, 2011;
2012; Grünwald et al., 2017). In particular, in Grünwald
et al. (2017) it is shown that wrongly modeling heteroscedas-
tic noise errors as homoscedastic, makes Bayesian inference
fail, while tempering fixes this model misspecification. In
our case, the model misspecification is caused by not mod-
eling the strong correlations arising from the data augmenta-
tion process. Finally, although relatively new, the CPE has
been analyzed under other perspectives, and its flourishing
literature includes other works such as (Zeno et al., 2020;
Adlam et al., 2020; Laves et al., 2021).

6. Conclusion
In this work, we showed how data augmentation, in conjunc-
tion with invariance, introduces correlations between errors,
leading to misspecified models. We demonstrated how tem-
pering can reduce this misspecification by approximating
the correct posterior, offering a possible explanation for the
CPE. Tempering is thus more principled from a Bayesian
perspective than previously assumed. We also identified
G-convolutions to be a viable tool for the design of BNNs,
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enhancing their invariance and leading to better priors. Our
theoretical and empirical results suggest several avenues to-
wards combatting the CPE and improving BNNs in general.
From Figure 8, it is manifest that the average invariance, as
measured by the total variation, is determined during the
burn-in epochs. Therefore, we foresee as a promising future
direction to form an estimator of the ideal temperature that
could be computed from the data during the burn-in period.
Crucially, such an estimator could remove the need for ex-
pensive grid searches. Finally, the superior performances
achieved by the models employing G-convolutions further
motivates the developments of more informed priors over
functions that have the desired invariances incorporated into
the model. Finally, we want to highlight that the CPE has
been shown to arise from other causes as well, which do
not involve data augmentation (Fortuin et al., 2021; Noci
et al., 2021). It remains exciting future work to complete
the understanding of the CPE in these settings.
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A. Omitted Proofs
In this section we detail all the calculations and proofs omitted in the main text.

A.1. Proof of Thm. 3.1

We have n independent samples x1, . . . , xn and we consider an additive augmentation x̃b
i = Rη(xi) = xi + ηbi where

ηbi ∼ N (0, σ2
η) for b = 1, . . . , B. Per datapoint xi, we have B augmentations x̃1

i , . . . , x̃
B
i originating from xi with

independent underlying noise η1i , . . . , η
B
i . Augmentations of the same input display correlations which we can easily

calculate

cov(x̃b
i , x̃

b′

i ) = E[x̃b
i x̃

b′

i ]− E[x̃b
i ]E[x̃b′

j ] = E[x2
i ] + E[ηbixi] + E[ηb

′

i xi] + E[ηbi ηb
′

i ]− E[xi + ηbi ]E[xi + ηb
′

i ]

= µ2 + σ2 + 1{b=b′}σ
2
η − µ2

= σ2 + 1{b=b′}σ
2
η

where we used the independence between ηbi , η
b′

i and xi. On the other hand, augmentations from different samples remain
independent:

cov(x̃b
i , x̃

b′

j ) = E[x̃b
i x̃

b′

j ]− E[x̃b
i ]E[x̃b′

j ] = E[xixj ] + E[ηbixj ] + E[ηb
′

j xi] + E[ηbi ηb
′

j ]− E[xi + ηbi ]E[xj + ηb
′

i ]

= µ2 − µ2

= 0

Collecting all xb
i into one vector x̃ ∈ RBn, we can describe the joint distribution as

x̃|µ ∼ N (µ1Bn, Σ̃)

where Σ̃ ∈ RBn×Bn is block-diagonal with blocks Σ = σ2
η1+ σ21Bn1

T
Bn. We know by Bayes rule that the posterior is

proportional to
p(µ|x̃) ∝ p(x̃|µ)p(µ)

Instead of factorizing p(x̃|µ) we just work with the joint distribution directly:

p(µ|x̃; Σ̃) ∝ e−
1
2 (x̃−µ1Bn)

T Σ̃−1(x̃−µ1Bn)e
− 1

2σ2
0
(µ−µ0)

2

= e
− 1

2µ
2

(
1T
BnΣ̃

−11Bn+
1

σ2
0

)
+µ

(
1BnΣ̃

−1x+
µ0
σ2
0

)

∝ N
(
µΣ̃

post,
(
σΣ̃

post

)2)
with the posterior mean and variance estimate

µΣ̃
post =

1T
BnΣ̃

−1x̃+ µ0

σ2
0

1T
BnΣ̃

−11Bn + 1
σ2
0

=

1
σ2
η+Bσ2

∑Bn
i=1 x̃i +

µ0

σ2
0

Bn
σ2
η+Bσ2 + 1

σ2
0

(
σΣ̃

post

)2
=

1

1T
BnΣ̃

−11Bn + 1
σ2
0

=
1

Bn
σ2
η+Bσ2 + 1

σ2
0

We can perform the same calculation for tempered likelihoods assuming (wrongly) that the likelihood factorizes, leading to
the tempered posterior

pT (µ|x̃;1) = N (µT , σ
2
T )

with tempered posterior statistics

µT =

(
Bn

T (σ2 + σ2
η)

+
1

σ2
0

)−1
(
µ0

σ2
0

+
1

T (σ2 + σ2
η)

Bn∑
i=1

x̃i

)
σ2
T =

(
Bn

T (σ2 + σ2
η)

+
1

σ2
0

)−1

We can check that setting the temperature as

T =
σ2
η +Bσ2

σ2
η + σ2

leads to an equality in distribution, i.e. pT (µ|x;1) = p(µ|x̃; Σ̃)



How Tempering Fixes Data Augmentation in Bayesian Neural Networks

A.2. Correlations in Regression Setting

We can calculate the correlation in the regression setting as follows:

cov(ϵ̃i, ϵ̃j) = E[ϵ̃iϵ̃j ] = E[(ϵ+ δηi
)(ϵ+ δηj

)] = E[ϵ2] = σ2
ϵ

where we used that ϵ̃’s are centered by assumption since δ’s are centered. On the other hand, we can compute the respective
variance as

var(ϵ̃i) = E[(ϵ+ δηi
)2] = E[ϵ2] + E[δ2ηi

] = σ2 + var(δη)

The resulting correlation is thus given by

cor(ϵ̃i, ϵ̃j) =
cov(ϵ̃i, ϵ̃j)

var(ϵ̃i)
=

σ2
ϵ

σ2
ϵ + var(δη)

A.3. Correlations in Logistic Regression

Correlations are not an artifact of the regression setting but also arise in classification tasks. To that end, we rely on the
latent variable model of logistic regression, where a latent variable

z = fθ∗(x) + ϵ

is introduced, with ϵ ∼ Logistic(0, 1) following a centered logistic variable with variance. These latent variables z then
give rise to the response through the relation

y = 1{z≥0}.

In perfect duality to the regression setting, the errors implied by augmentations of the same covariate x exhibit significant
correlations. More concretely, we again augment as x̃ = Rη(x) and set ỹ = y. Here we have a latent variable z̃ which
might differ from z. Notice that in the case of z̃ = z, we are in the same setting as regression. In general, this might however
not be true but we know that for two augmentations ηi and ηj with errors ϵ̃i and ϵ̃j , the following relation holds:

ỹi = y = ỹj ⇐⇒ 1{fθ∗ (Rηi
(x))+ϵ̃i≥0} = 1{fθ∗ (x)+ϵ≥0} = 1{fθ∗ (Rηj

(x))+ϵ̃j≥0} a.s.

Hence, the two errors are related through the equation

1{fθ∗ (Rηi
(x))+ϵ̃i≥0} = 1{fθ∗ (Rηj

(x))+ϵ̃j≥0} a.s.

and hence ϵ̃i and ϵ̃j share significant correlation. In case of perfect invariance, i.e.fθ∗(Rηi
(x)) = fθ∗(Rηj

(x)) = fθ∗(x),
we find that

1{ϵ̃i≥−fθ∗ (x)} = 1{ϵ̃j≥−fθ∗ (x)} a.s.

which, for infinitely supported random variables such as the logistic distribution, can only hold if ϵ̃i = ϵ̃j a.s., hence leading
to perfectly correlated errors.

A.4. Correlation in Linear Regression

As seen in the main text, it holds that
ϵ̃ = ϵ+ δη

where δη = −ηTx. Since η ∼ N (0,Ση), it is evident that E[δη] = 0 since E[η] = 0. Moreover

var(ϵ̃) = σ2
ϵ + E[xTηηTx] = σ2

ϵ + xTΣηx

Finally, for two augmentations ηi, ηj , it holds for the respective errors that ϵ̃i, ϵ̃j that

cov(ϵ̃i, ϵ̃j) = E[ϵ̃iϵ̃j ] = E[ϵ2] = σ2
ϵ

We can hence conclude that the correlation is given by

cor(ϵ̃i, ϵ̃j) =
σ2
ϵ

σ2
ϵ + xTΣηx
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A.5. Intermediate Values for Correlation

In this section we study to what degree tempering with T can reduce the misspecification stemming from ignoring the
correlation between errors. The posteriors in both the i.i.d. and correlation setting are intractable for general models fθ but
the two likelihoods take a simple form. We show that in general, no temperature T can be found to make the two likelihoods
match, i.e. their KL-divergence is not 0. This in turn implies that the posteriors cannot match either (both models use the
same prior).
For simplicity we again assume a linear regression setting with one sample (x, y) and additive augmentations, i.e. fθ(x) =
θTx and Gη(x) = x+ η for η ∼ N (0, σ2

η1). As a result, we find that the augmentation errors ϵ̃1, . . . , ϵ̃B still follow a
joint Gaussian distribution with

ϵ̃ ∼ N (0, Σ̃)

with Σ̃ii = σ2
ϵ + σ2

η and Σ̃ij = σ2
ϵ . On the other hand, we can also decide to ignore the correlations and temper, i.e. just

work with
σ2
ϵ+σ2

η

T 1, and thus factorize the likelihood. In both cases, we have a Gaussian likelihood of the form

pT (y|x,θ;1) ∼ N (X̃θ, (σ2
ϵ + σ2

η)1) p(y|x,θ; Σ̃),∼ N (X̃θ, Σ̃))

where we define the matrix of augmentations X̃ ∈ RB×d.

In general, we can express the KL-divergence between two Gaussians ρ1 ∼ N (µ1,Σ1) and ρ2 ∼ N (µ2,Σ2) as

KL(ρ1 || ρ2) =
1

2

[
log
|Σ2|
|Σ1|

−B + Tr(Σ−1
2 Σ1) + (µ2 − µ1)

TΣ−1
2 (µ2 − µ1)

]
. (10)

In our case, let ρ1 ∼ N (X̃θ,
σ2
ϵ+σ2

η

T 1) be the tempered likelihood and ρ2 ∼ N (X̃θ, Σ̃) the correlated likelihood. We have

that |σ
2
ϵ+σ2

η

T 1| =
(

σ2
ϵ+σ2

η

T

)B
and therefore the derivative of its logarithm w.r.t T is:

∂

∂T
B log

σ2
ϵ + σ2

η

T
= −B

T
. (11)

For the trace term we have that:

∂

∂T
Tr

(
(σ2

ϵ + σ2
η)Σ̃

−1

T

)
= −

σ2
ϵ + σ2

η

T 2
Tr(Σ̃−1) (12)

So, by setting the derivative of the KL to zero and solving for T :

T ∗ = (σ2
ϵ + σ2

η)
Tr(Σ̃−1)

B
(13)

Plugging-in the optimal value T ∗ into the KL-divergence gives

2KL
(
pT∗(y|x,θ;1) || p(y|x,θ; Σ̃)

)
= log(|Σ̃|)−B log

 B

Tr
(
Σ̃−1

)
 !

= 0

or equivalently

log(|Σ̃|) !
= B log

 B

Tr
(
Σ̃−1

)
 ⇐⇒ |Σ̃| !

=

 B

Tr
(
Σ̃−1

)
B

We can plug-in the concrete Σ̃ = σ2
η1+ σ2

ϵ1B1
T
B to find

(σ2
η +Bσ2

ϵ )σ
2(B−1)
η

!
=

(
σ2
η(σ

2
η + σ2

ϵB)

σ2
η + σ2

ϵ (B − 1)

)B
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We observe that if B > 1 this equation cannot hoald for a general σ2
η. On the other hand, σ2

η6 governs the correlation
coefficient , which was shown in Appendix A.4 to be

cor(ϵ̃i, ϵ̃j) =
σ2
ϵ

σ2
ϵ + σ2

η

Tempering can hence not match the likelihoods exactly for a general correlation (i.e. general σ2
η) and hence the posteriors

cannot match either. 1 and B !

B. Experimental Details
In this section we describe the experimental setup, including the architectural details and the SG-MCMC hyperparameters.
For the SG-MCMC sampler, we adapted the code from Wenzel et al. (2020)2. For the implementation of the group
equivariant layers, we used the code from Veeling et al. (2018)3

B.1. SG-MCMC

For the experiments with ResNet20 and G-ResNets on CIFAR-10, we have the following hyperparameters:

• initial learning rate: 0.1

• burn-in period: 150 epochs

• cycle length: 50 epochs

• total training time: 1500 epochs

For the experiments with convolutional and G-convolutional networks on CIFAR-10, we have the following hyperparameters:

• initial learning rate: 0.5

• burn-in period: 150 epochs

• cycle length: 50 epochs

• total running time: 1000 epochs

Note that for the experiments where only the likelihood is tempered, the reparamterization of the SG-MCMC updates
explained in Section 4 force one to adapt the learning rate to the temperature: if we increase the temperature by 10 times, we
should make the learning 10 times larger. Therefore the learning rate specified above refers to the learning rate at T = 1.
We stress that we adapt the learning rate for a fair comparison of runs with different temperature, but changing the learning
rate does not affect the posterior distribution, while the temperature does. We refer to Aitchison (2021) for the details of a
similar argument in the different context of dataset curation.

Finally, the experiments are executed on Nvidia DGX-1 GPU nodes equipped with 4 20-core Xeon E5-2698v4 processors,
512 GB of memory and 8 Nvidia V100 GPUs.

B.2. Neural Network Architectures

For the SG-MCMC experiments, we use a 20-layer architecture with residual layers (He et al., 2016) and batch normalization.
The architecture with only convolutional layers is composed of 4 convolutional layers, the first two with 32 filters and the
last two with 64 filters. We experiments both with 2-strided and 1-strided convolutions, as detailed in Section 4. The batch
size is 128 across all experiments. The group equivariant architectures (G-ResNet and G-Conv) are designed by replacing
the convolutional layers and pooling layer with the Group equivariant counterpart, as detailed in (Cohen & Welling, 2016).
To build more invariant architectures, also G-batch normalization layers should replace batch norm. However, due to a code
incompatibility between the two code repositories (SG-MCMC and Group equivariant layers) we are not able to use G-batch
norms.

2https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
3https://github.com/basveeling/keras-gcnn

https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
https://github.com/basveeling/keras-gcnn
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B.3. Data Augmentation

The datapoints are always transformed in an online fashion and not precomputed, as it is commonly done in deep learning
for memory efficiency. This means that when a batch of original datapoints St is processed at epoch t, then each datapoint is
preprocessed with the augmentation function and then propagated through the network. This means that at every epoch we
potentially have new augmented datapoints. Therefore the total the number of augmentationd per datapoint is equal to the
number of epochs. On the contrary, for the experiment with fixed number of augmentations, we fix a sequence of B random
seeds, which is then repeated every B epochs, guaranteeing that the total number of augmentations is fixed.

C. Further Results
Here we show the figures of the plot for all the experiments of Section 4.

Hot or Cold Posteriors? In Fig. 10, we plot the accuracy results for ResNet20 for the tempered posterior and tempered
likelihood cases.

Figure 9: Test accuracy as a function of the temperature T for posterior tempering (blue) and likelihood tempering (orange).

G-Convolutions alleviates the CPE In Fig. 10, we plot the accuracy results for ResNet20 and G-ResNet20 trained
with and without additional 90◦ rotations. Additionally, in Fig. 11, we plot the evolution of the invariance measure (total
variation) for the G-ResNet trained with and without additional 90◦ rotation.

Figure 10: Test accuracy as a function of the temperature T for a ResNet with standard convolutions (blue) and G-
convolutions (orange), with or without extra 90◦ rotations (dashed lines).

An Almost Invariant Model Finally, in Fig. 12 and Fig. 13 we plot the accuracy for the G-Convolutional networks
trained with flip and 90◦ rotations and with additional random 10◦ rotations.
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Figure 11: Total variation during learning for the experiments with G-ResNet20. A lower value of the total variation
indicates a greater degree of invariance.

Figure 12: Test accuracy as a function of the temperature for a model trained 2-strided (blue) and 1-strided (orange)
G-convolutional network.

Figure 13: Same setting as in Fig. 12, but this time we perform an extra random rotation of 10◦. Note how the loss of
invariance shifts the optimal temperature significantly, in both the 2-strided and 1-strided case.


