
Supervised Learning with General Risk Functionals

Liu Leqi 1 Audrey Huang 2 Zachary C. Lipton 1 Kamyar Azizzadenesheli 3

Abstract
Standard uniform convergence results bound the
generalization gap of the expected loss over a hy-
pothesis class. The emergence of risk-sensitive
learning requires generalization guarantees for
functionals of the loss distribution beyond the
expectation. While prior works specialize in uni-
form convergence of particular functionals, our
work provides uniform convergence for a gen-
eral class of Hölder risk functionals for which the
closeness in the Cumulative Distribution Func-
tion (CDF) entails closeness in risk. We estab-
lish the first uniform convergence results for es-
timating the CDF of the loss distribution, which
yield uniform convergence guarantees that hold
simultaneously both over a class of Hölder risk
functionals and over a hypothesis class. Thus li-
censed to perform empirical risk minimization,
we develop practical gradient-based methods for
minimizing distortion risks (widely studied subset
of Hölder risks that subsumes the spectral risks,
including the mean, conditional value at risk, cu-
mulative prospect theory risks, and others) and
provide convergence guarantees. In experiments,
we demonstrate the efficacy of our learning proce-
dure, both in settings where uniform convergence
results hold and in high-dimensional settings with
deep networks.

1. Introduction
To date, the vast majority of supervised, unsupervised, and
reinforcement learning research has focused on objectives
expressible as expectations (over some dataset or distribu-
tion) of an underlying loss (or reward) function. This focus
is understandable. The expected loss is mathematically con-
venient and a reasonable default, and a special case of nearly
every proposed family of risks. To be sure, this focus has
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paid off: we now possess a rich body of theory and meth-
ods for evaluating, optimizing, and providing theoretical
guarantees on the expected loss.

However, real-world concerns such as risk aversion, equi-
table allocations of benefits and harms, or alignment with
human preferences, often demand that we address other
functionals of the loss distribution. For example, in finance,
the expectation of returns must be weighed against their
variance to determine an ideal portfolio allocation, as codi-
fied, e.g., in the mean-variance objective (Björk et al., 2014).
Focusing on supervised learning, consider the common sce-
nario in which a population contains a minority (constitut-
ing fraction α of the population) but where group member-
ship was not recorded in the available data. If the pattern
relating the features to the label were different for differ-
ent demographics, a naively trained model might adversely
harm members of a minority group. Absent further informa-
tion, one sensible strategy could be to optimize the worst
case performance over all subsets (of size up to α). This
would translate to the familiar Conditional Value at Risk
(CVaR) objective (Rockafellar et al., 2000). In addition,
even in settings where a model is evaluated in terms of the
expected loss at test time, the training objective may be cho-
sen as other functionals due to reasons including distribution
shifts (Duchi & Namkoong, 2018), noisy labels (Lee et al.,
2020), imbalanced datset (Li et al., 2020), etc.

Risk-sensitive learning research addresses the problem of
learning models under many families of (risk) function-
als, including (among others) distortion risks (Wirch &
Hardy, 2001), coherent risks (Artzner et al., 1999), spectral
risks (Acerbi, 2002), and cumulative prospect theory risks
(Prashanth et al., 2016). Subsuming these risks under a com-
mon framework addressing bounded losses/rewards, Huang
et al. (2021) recently introduced Lipschitz risk functionals,
for which differences in the risk are bounded by (sup norm)
differences in the Cumulative Distribution Function (CDF)
of losses. Thus, because a single CDF estimate can be used
to estimate all Lipschitz risks, sup norm concentration of the
CDF estimate entails corresponding (simultaneous) concen-
tration of all Lipschitz risks calculated on that CDF estimate.
However, this concentration result applies only to a single
hypothesis. In contrast, most uniform convergence results
in learning theory have concentrated largely on the expected
loss (Vapnik, 1999; 2013; Bartlett & Mendelson, 2002).
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While uniform convergence results are known for several
specific risk classes, including the spectral/rank-weighted
risks (Khim et al., 2020) and optimized certainty equivalent
risks (Lee et al., 2020), no results to date provide uniform
convergence guarantees that hold simultaneously over both
a hypothesis class and a broad class of risks.

Tackling this problem, we present, to our knowledge, the
first uniform convergence guarantee on estimation of the
loss CDF. Our bounds rely on appropriate complexity mea-
sures of the hypothesis class. In addition to the traditional
Rademacher complexity and VC dimension, we propose
a new notion of permutation complexity that is especially
suited to CDF estimation.

For general risk estimation, we adopt the broader class (sub-
suming the Lipschitz risks) of Hölder risk functionals, for
which closeness in distribution entails closeness in risk.
Combined with our uniform convergence guarantees for
CDF estimation, this property allows us to establish uniform
convergence guarantees for risk estimation of supervised
learning models, which hold simultaneously over all hy-
potheses in the model class and over all Hölder risks.

These results license us to optimize general risks, assur-
ing that for appropriate model classes and given sufficient
data, the empirical risk minimizer will indeed generalize
and that whichever objective is optimized, all Hölder risk
estimates will be close to their true values. Generalization
aside, optimizing complex risks is non-trivial. To tackle
this problem, we propose a new algorithm for optimizing
distortion risks, a subset of Hölder risks that subsumes the
spectral risks, including the expectation, CVaR, cumulative
prospect theory risks, and others. Our approach extends tra-
ditional gradient-based empirical risk minimization methods
to handle distortion risks (Denneberg, 1990; Wang, 1996).
In particular, we calculate the empirical distortion risk by
re-weighting losses based on CDF values and establish con-
vergence guarantees for the proposed optimization method.
Finally, we experimentally validate our algorithm, both in
settings where uniform convergence results hold and in high-
dimensional settings with deep networks.

In summary, we contribute the following:

1. The first uniform convergence result for CDF estima-
tion together with corresponding new complexity mea-
sures suited to the task (Section 4).

2. Uniform convergence for risk estimation that holds
simultaneously for all Hölder risks, yielding learn-
ing guarantees for empirical risk minimization for the
broad class of distortion risks (Section 5).

3. A gradient-based method for minimizing distortion
risks that re-weights examples dynamically based on
the empirical CDF of losses, and corresponding con-

vergence guarantees (Section 6).

4. Experiments confirming the practical usefulness of our
learning algorithm (Section 7).

2. Related Literature
Risk functionals have long been studied in diverse con-
texts (Sharpe, 1966; Artzner et al., 1999; Rockafellar et al.,
2000; Krokhmal, 2007; Shapiro et al., 2014; Acerbi, 2002;
Prashanth et al., 2016; Jie et al., 2018). CVaR, value-at-risk,
and mean-variance (Cassel et al.; Sani et al., 2013; Vakili
& Zhao, 2015; Zimin et al., 2014) rank among the most
widely studied risks. Prashanth et al. (2016) introduces the
cumulative prospect theory risks, which have been studied
in bandit (Gopalan et al., 2017) and supervised learning set-
tings (Leqi et al., 2019). Many previous works have tackled
the evaluation (Huang et al., 2021; Chandak et al., 2021)
and optimization (Torossian et al., 2019; Munos, 2014) of
risk functionals.

Recent work on risk-sensitive supervised learning has estab-
lished the uniform convergence of a single risk functional
when losses incurred by the models are bounded (Khim
et al., 2020; Lee et al., 2020), or the excess risk of a par-
ticular learning procedure in cases where the loss could be
unbounded (Holland & Haress, 2021). Collectively, these
works have addressed the class of spectral risks (L-risks or
rank-weighted risks) that includes the expected value, CVaR
and cumulative prospect theory risks (Khim et al., 2020;
Holland & Haress, 2021), as well as the class of optimized
certainty equivalent risks that includes the expected value,
CVaR and entropic risks (Ben-Tal & Teboulle, 1986; Lee
et al., 2020) .

To our knowledge, the aforementioned risk-sensitive learn-
ing results are considerably narrower: the analyses apply
only to smaller families of risks and the guarantees hold
only for a single risk functional (not simultaneously over
the family). By contrast, we establish uniform convergence
results that hold simultaneously over both a broader class of
risks and over an entire model class (constrained by an ap-
propriate complexity measure). The key to our approach is
to estimate the CDF of losses and control its sup norm error
uniformly over a hypothesis class. CDF estimation is a cen-
tral topic in learning theory (Devroye et al., 2013). Strong
approximation results provide concentration bounds on the
Kolmogorov–Smirnov distance (sup norm) between the true
and estimated CDF (Massart, 1990). As our uniform con-
vergence results are over a hypothesis class of possibly
infinite number of hypotheses, we control the complexity of
the hypothesis class using data-dependent complexity no-
tions (e.g., Rademacher complexity) and data-independent
complexity notions (e.g., VC dimension) (Alexander, 1984;
Vapnik, 2006; Gänssler & Stute, 1979).
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3. Preliminaries
We use X to denote the space of covariates, Y the space
of labels, and Z = X × Y . Let ℓ : Y × Y → R denote a
loss function and F a hypothesis class, where for any f ∈ F,
f : X → Y . The set Fℓ, with elements ℓf , denotes the
class of functions that are compositions of the loss function
ℓ and a hypothesis f ∈ F, i.e., ∀z ∈ Z , ℓf (z) = ℓ (f(x), y).
Furthermore, we use ℓf (Z) to denote the random variable
of the loss incurred by f ∈ F under data Z = (X,Y ). For
any n ∈ N, [n] := {1, . . . , n}.

We use U to denote the space of real-valued random vari-
ables that admit CDFs. For any U ∈ U , its CDF is denoted
by FU . A risk functional ρ : U → R is a mapping from
a space of real-valued random variables to reals. A risk
functional is called law-invariant (or version-independent)
if for any pair of random variables U,U ′ ∈ U with the same
law (FU = FU ′), we have ρ(U) = ρ(U ′) (Kusuoka, 2001).
We work with law-invariant risk functionals in this paper,
and with some abuse of notation, we refer to ρ(FU ) and
ρ(U) interchangeably.

4. Uniform Convergence for CDF
Estimation

We begin with an important building block for risk
estimation—CDF estimation with uniform convergence
guarantees. Given a loss function ℓ and a data set of n
labeled data points {Zi}ni=1 where Zi = (Xi, Yi), we are
interested in estimating the CDF of ℓf (Z) for all f ∈ F.
We use the unbiased empirical CDF estimator:

F̂ (r; f) :=
1

n

n∑
i=1

1{ℓf (Zi)≤r}, (1)

where E[F̂ (r; f)] = P(ℓf (Z) ≤ r) = F (r; f). To establish
the uniform convergence of the estimator, our central goal
is to analyze the following quantity:

en(F, ℓ) = sup
f∈F

sup
r∈R

∣∣∣F̂ (r; f)− F (r; f)
∣∣∣ . (2)

In Section 4.1, we exploit the special structure of CDF esti-
mation and propose a new notion of permutation complexity
that captures the complexity of the hypothesis class used for
CDF estimation. In Section 4.2, we apply the more classi-
cal approach for analyzing uniform convergence that does
not exploit any special structure of CDF estimation. Each
approach offers a unique perspective and contributes to our
understanding of CDF estimation. We highlight that the uni-
form convergence we provide hold for any loss distribution
regardless of whether the loss is binary or bounded.

We first introduce notation key to our analysis. The
Rademacher complexity in our setting (for a given loss

function ℓ) is given as follows:

R(n,F) = EP,R

[
sup
f∈F

sup
r∈R

1

n

∣∣∣∣∣
n∑

i=1

ξi1{ℓf (Zi))≤r}

∣∣∣∣∣
]

= EP,R

[
sup
f∈F

sup
g∈G(1)

1

n

∣∣∣∣∣
n∑

i=1

ξig(ℓf (Zi))

∣∣∣∣∣
]
, (3)

with R being a Rademacher measure on a set of Rademacher
random variables {ξi}ni=1 and G(1) := {1{· ≤r} : ∀r ∈ R}
is the set of indicator functions parameterized by a real-
valued r. Using McDiarmid’s inequality and symmetriza-
tion, we obtain the following classical result that bounds
en(F, ℓ) in terms of the Rademacher complexity. All proofs
in this section can be found in Appendix B.

Theorem 4.1. Given a hypothesis class F, any loss function
ℓ : Y × Y → R, and n samples {Zi}ni=1, we have that with
probability at least 1− δ,

en(F, ℓ) ≤ 2R(n,F) +

√
log( 1δ )

2n
.

In general, the Rademacher complexityR(n,F) is hard to
obtain. Researchers have come up with different ways to
control it for various hypothesis classes, e.g., hypothesis
classes with finite VC dimension (Wainwright, 2019). In the
following, we discuss how we work withR(n,F).

4.1. Permutation Complexity
We first notice thatR(n,F) depends jointly on both the hy-
pothesis class F and G(1). A direct approach that follows
from the classical statistical learning theory is to work with
the function class that combines F and G(1), which we pro-
vide more details in Section 4.2. In this section, we propose
a new way of thinking about R(n,F). By exploiting the
special structure of CDF estimation (the structure of G(1)),
we uncover thatR(n,F) can be controlled by only the com-
plexity of the hypothesis class F (or Fℓ with elements ℓf ).
In order to do so, we first introduce the notion of permuta-
tion complexity. This complexity measure is data-dependent
and enables us to work with R(n,F) by disentangling the
complexity of F (or Fℓ) from that of G(1).

For a measurable space V , let ζ : V → R denote a mea-
surable function and {vi}ni=1 denote a set of n points in
V . Satisfying the conditions of selection and maximum
theorems (Guide, 2006, Chapter 17), a permutation func-
tion π : [n] → [n] in the space Π(n) of all permutation
of size n exists, and permutes the indices of {vi}ni=1 such
that ζ(vπ(1)) ≤ ζ(vπ(2)) ≤ . . . ≤ ζ(vπ(n)). We note that
the permutation function can depend on the specific data
points {vi}ni=1 and the function ζ of interests. In the follow-
ing definitions, we consider a function class J of functions
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ζ : V → R and a probability measure µ on (V, σ(V)),
where σ(V) denotes the σ-algebra generated by V .

Definition 4.1 (Permutation Complexity). The instance-
dependent permutation complexity of J at n data points
{vi}ni=1, denoted as NΠ(J, {vi}ni=1), is the minimum num-
ber of permutation functions π ∈ Π(n) needed to sort ele-
ments of {ζ(vi)}ni=1, ∀ζ ∈ J. The permutation complexity
of J at n (random) data points {Vi}ni=1 with measure µ is

NΠ(n, J, µ) := Eµ [NΠ(J, {Vi}ni=1)] .

To obtain a better understanding of permutation complexity,
we provide the permutation complexity of monotone real-
valued functions.

Lemma 4.1. When V is the space of reals, J is a set of
real-valued non-decreasing functions on V , the permutation
complexity NΠ(n, J, µ) = 1.

Proof. For a set of real-valued points {vi}ni=1, we can con-
struct a permutation function π such that vπ(1) ≤ vπ(2) ≤
. . . ≤ vπ(n). Since all functions in J are non-decreasing,
for any ζ ∈ J, we have {vi}ni=1 such that ζ(vπ(1)) ≤
ζ(vπ(2)) ≤ . . . ≤ ζ(vπ(n)). Thus, NΠ(J, {vi}ni=1) = 1
and NΠ(n, J, µ) = 1 for any measure µ.

Remark 4.1. This result implies that the permutation com-
plexity of threshold functions G(1) is one.

Mapping the definition to our setting, the function class J of
interest is Fℓ with elements ℓf . The data points Vi = Zi =
(Xi, Yi) and the measure µ = P (the probability measure
for Z).

An immediate observation is that when |F| is finite,
we only need at most |F| permutation functions to sort
{ℓf (zi)}ni=1 (one permutation function for each f ∈ F),
i.e., NΠ(Fℓ, {zi}ni=1) ≤ |F|. For the special case of bi-
nary classification, where Y = {0, 1} and the loss function
ℓ is the 0/1 loss, a coarse upper bound on the permuta-
tion complexity when F has finite VC dimension ν(F) is
NΠ(n,Fℓ,P) ≤ (n+1)ν(F). This is due to Sauer’s Lemma:
there are at most (n + 1)ν(F) ways of labeling the data,
which suggests that we need at most (n + 1)ν(F) permu-
tation functions. However, as one may have noticed, the
number of permutation functions needed may be (much)
smaller than this number. For example, consider a binary
classification setting where we have 3 data points and F is
large enough such that all 23 possible losses (000, 001, . . .)
can be incurred. In such a case, we only need 4 permuta-
tion functions, since loss sequences that are non-decreasing
(or non-increasing) can share the same permutation func-
tion, e.g., for loss sequences 111, 011, 001, 000, we can use
the same permutation function π(i) = i,∀i ∈ [3]. We
note that the permutation complexity is defined for not just

binary-valued function classes. Precisely characterizing the
permutation complexity for different combinations of func-
tion classes, data distributions and loss functions is of future
interest.

Theorem 4.2. For any hypothesis class F and loss function
ℓ : Y × Y → R, we have that

R(n,F) ≤
√

log(4NΠ(n,Fℓ,P))
2n

.

Theorem 4.2 indicates that, despiteR(n,F) depending on
the supremum over both the function class F and G(1)
where G(1) is an infinite set,R(n,F) can be controlled by
just the complexity of Fℓ. When the permutation complex-
ity NΠ(n,Fℓ,P) is polynomial in the number of samples
n, we obtain thatR(n,F) = O(

√
log(n)/n). The immediate

consequence of Theorem 4.2 when the hypothesis class F is
finite is provided below.

Corollary 4.1. For a finite hypothesis class F,

R(n,F) ≤
√

log(4|F|)
2n

.

Corollary 4.1 suggests that the generalization bound of CDF
estimation follows the same rate as classical generalization
bound of the expected loss for finite function classes, i.e.,
O(
√

log(|F|)/n).

4.2. Classical Approach
In this section, we present a more classical approach for
analyzing the uniform convergence without exploiting the
specific structure of CDF estimation. As we have noted be-
fore,R(n,F) depends on both F and G(1). In this approach,
we directly work with the function class that combines F
and G(1): for a given loss function ℓ, we define

H := {h : Z → {0, 1} :
h(z; r) = 1{ℓf (z)≤r}, f ∈ F, r ∈ R}.

We note that even when F is finite, H is an infinite set. The
Rademacher complexity (3) can be re-written as

R(n,F) = EP,R

[
sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

ξih(Zi)

∣∣∣∣∣
]
.

Lemma 4.2. (Wainwright, 2019, Lemma 4.14) Let
|H({zi}ni=1)| denote the maximum cardinality of the set
H({zi}ni=1) = {(h(z1), . . . , h(zn)) : h ∈ H} , where n ∈
N is fixed and {zi}ni=1 can be any data collection for zi ∈ Z .
Then, we have

R(n,F) ≤ 2

√
log(|H({zi}ni=1)|)

n
.
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Since H consists of binary functions, for any data collection
{zi}ni=1, the set H({zi}ni=1) is finite. When F is finite, we
obtain that |H({zi}ni=1)| ≤ (n + 1)|F|. This is true since
for a given data collection {zi}ni=1 and hypothesis f ∈ F,
after sorting {ℓf (zi)}ni=1, we have at most (n + 1) ways
of labeling them using the indicator functions 1{·≤r} for
r ∈ R. Thus, if we directly apply Lemma 4.2, we obtain
that the Rademacher complexityR(n,F) is on the order of
O(
√

(log |F|+logn)/n), which has an extra log(n) term in the
numerator compared to our bound in Corollary 4.1. In gen-
eral, when H has finite VC dimension ν(H), we obtain that
R(n,F) ≤ O(

√
ν(H) log(n+1)/n). However, this result is far

from being sharp. Using more advanced techniques, e.g.,
chaining and Dudley’s entropy integral (Wainwright, 2019),
one can remove the extra log(n) factor on the numerator,
and obtain that R(n,F) ≤ O(

√
ν(H)/n) (for more details,

see Wainwright (2019, Example 5.24)). As a consequence,
when |F| < ∞, we have ν(H) ≤ log(|F|) and thus obtain
thatR(n,F) ≤ O(

√
log(|F|)/n) which is at the same rate as

our bound in Corollary 4.1.

5. Uniform Convergence for Hölder Risk
Estimation

Using our results in Section 4, we show uniform conver-
gence for a broad class of risk functionals—Hölder risks.
As illustrated in Section 6, uniform convergence for a sin-
gle risk functional provides grounding for learning models
through minimizing the empirical risk. In addition to uni-
form convergence for a single risk, we also provide uniform
convergence results hold for a collection of risks simultane-
ously. The second result is important due to the following
reasons: Although models are trained to optimize a single
risk objective, evaluating their performance under multiple
risks can give a holistic assessment of their behavior—a
task we call risk assessment. For example, models minimiz-
ing CVaR at different α levels may have different tradeoffs
with their expected loss, and monitoring the progress of
both objectives throughout the training process can inform
choice of the best model. In addition, when given a set of
models obtained under different learning mechanisms, one
may want to compare them in terms of different risks. To
this end, using our results on uniform convergence for CDF
estimation (Section 4), we demonstrate how a collection
of models may be assessed under many risks simultane-
ously, with estimation errors of the same order as the CDF
estimation error.

5.1. Hölder Risk Functionals
We begin by introducing a new class of risks—the Hölder
risk functionals—that includes many popularly studied
risks and generalizes the notion of Lipschitz risk function-
als (Huang et al., 2021) and Hölder continuous functionals
in Wasserstein distance (Bhat & LA, 2019).

Definition 5.1. Let d denote a quasi-metric1 on the space
of CDFs. A risk functional ρ is L(ρ, p, d) Hölder on a space
of real-valued random variables U if there exist constants
p > 0 and L(ρ, p, d) > 0 such that for all U,U ′ ∈ U with
CDF FU and FU ′ respectively, the following holds:

|ρ(FU )− ρ(FU ′)| ≤ L(ρ, p, d)d(FU , FU ′)p.

The class of Hölder risk functionals subsumes many other
risk functional classes. In particular, Lipschitz risk func-
tionals (Huang et al., 2021) are L(·, 1,L∞) Hölder on
bounded random variables. As a direct result, distortion
risk functionals with Lipschitz distortion functions (Den-
neberg, 1990; Wang, 1996; Wang et al., 1997; Balbás et al.,
2009; Wirch & Hardy, 1999; 2001), cumulative prospect the-
ory risks (Prashanth et al., 2016; Leqi et al., 2019), variance,
and linear combinations of aforementioned functionals are
all Hölder on bounded random variables. In addition, the
optimized certainty equivalent risks (Lee et al., 2020) and
spectral risks (Khim et al., 2020; Holland & Haress, 2021)
recently studied in risk-sensitive supervised learning litera-
tures, are Lipschitz (hence Hölder) on the space of bounded
random variables. We provide proofs and further details in
Appendix A.

To be more specific, we present a subset of Hölder
risk functionals—distortion risks with Lipschitz distortion
functions—that consists of many well-studied risks includ-
ing the expected value, CVaR and cumulative prospect the-
ory risks. When the loss is non-negative, the distortion risk
of ℓf (Z) is defined to be:

ρ(F (·; f)) =
∫ ∞

0

g(1− F (r; f))dr, (4)

where the distortion function g : [0, 1] → [0, 1] is non-
decreasing with g(0) = 0 and g(1) = 1. In the case of
expected value, the distortion function g is 1-Lipschitz. For
CVaR at level α, the distortion function g is 1

α -Lipschitz.
For more details, we refer the readers to Huang et al. (2021).
In the following, we show uniform convergence for estimat-
ing Hölder risks using our proposed estimator (Section 5.2)
and develop optimization procedures to minimize distortion
risks (Section 6).

5.2. Uniform Convergence for Risk Estimation
For a given hypothesis f ∈ F and loss function ℓ, we esti-
mate the risk ρ(F (·; f)) using the CDF estimator F̂ (·; f) by
plugging it in the functional of interest: ρ(F̂ (·; f)). Many
existing risk estimators in the supervised learning literatures,
including the traditional empirical risk and estimators used
for estimating spectral risks (Khim et al., 2020) and opti-
mized certainty equivalent risks (Lee et al., 2020) can be
viewed as examples of the above estimator.

1Quasi-metrics are defined in Appendix A.



Supervised Learning with General Risk Functionals

Leveraging the uniform convergence results of the CDF
estimator, we present uniform convergence result of the
proposed risk estimator. The uniform convergence holds
both over the hypothesis class F and over a set of Hölder
risk functionals. As the Hölder class contains a large set of
popularly studied risks, our result demonstrates that models
can be assessed under many risks without loss of statistical
power. This is formalized in Theorem 5.1 below.

Theorem 5.1. For a hypothesis class F, a bounded loss
function ℓ, and δ ∈ (0, 1], if P(en(F, ℓ) ≤ ϵ) ≥ 1− δ, then
with probability 1− δ, for all ρ ∈ T, we have

sup
f∈F
|ρ(F (·; f))− ρ(F̂ (·; f))| ≤ L(ρ, 1,L∞)ϵ,

where T is the set of L(·, 1,L∞) Hölder risk functionals on
the space of bounded random variables.

In cases where the CDF estimation error ϵ is of order
O(1/

√
n), we can estimate the set of Hölder risks T for

all hypotheses in F at rate O(1/
√
n). Because our result

is uniform over both the hypothesis class F and the risk
functional class T, it is a generalization of existing uniform
convergence results that are uniform over F, but for a single
risk functional (Khim et al., 2020; Lee et al., 2020).

In Appendix C, we provide similar uniform convergence
results where the set of risk functionals are Hölder smooth
in Wasserstein distance. As a direct consequence to Theo-
rem 5.1, uniform convergence of a single Hölder risk, e.g.,
a distortion risk (4), is given below.

Corollary 5.1. For a hypothesis class F, a bounded loss
function ℓ : Y×Y → [0, D], and δ ∈ (0, 1], if P(en(F, ℓ) ≤
ϵ) ≥ 1− δ, then with probability 1− δ, we have

sup
f∈F
|ρ(F (·; f))− ρ(F̂ (·; f))| ≤ Lϵ,

where ρ is a distortion risk with L
D -Lipschitz distortion

function.

Remark 5.1. As an example, consider a binary classifica-
tion setting where the loss function ℓ is the 0/1 loss and
the hypothesis class F is finite, using our results in Corol-
lary 5.1, we obtain that the the generation error for the
expected value is O(

√
log(|F|)/n) and the generation error

for the CVaR is O(
√

log(|F|)/α2n), which are of the same
rates (with better constants) as the ones in Lee et al. (2020).

6. Empirical Risk Minimization
For a single risk functional, one may want to learn models
that optimize it. Our uniform convergence results for risk
estimation license us to learn models that minimize the pop-
ulation risk through Empirical Risk Minimization (ERM).
We denote the population and empirical risk minimizers as

follows:

f⋆ ∈ argmin
f∈F

ρ(F (·; f)), f̂⋆ ∈ argmin
f∈F

ρ(F̂ (·; f)). (5)

The excess risk of the empirical risk minimizer f̂⋆ can be
bounded by

ρ(F (·; f̂⋆))− ρ(F (·; f⋆)) = ρ(F (·; f̂⋆))− ρ(F̂ (·; f̂⋆))

+ ρ(F̂ (·; f̂⋆))− ρ(F̂ (·; f⋆)) + ρ(F̂ (·; f⋆))− ρ(F (·; f⋆))

≤ 2 sup
f∈F
|ρ(F̂ (·; f))− ρ(F (·; f))|.

We study ERM when the loss function is non-negative and
the risk functional of interest is a distortion risk with a Lips-
chitz distortion function (4). Such distortion risk function-
als consist many well-studied risks, including the expected
value, CVaR, cumulative prospect theory risks, and other
spectral risks (Bäuerle & Glauner, 2021). Using Corol-
lary 5.1, we obtain that when en(F, ℓ) = O(1/

√
n) and the

loss ℓ is bounded, the excess risk of f̂⋆ is O(1/
√
n).

We consider settings where the hypothesis class F is a class
of parameterized functions, e.g., linear models and neural
networks and use Θ ⊆ Rd to denote the set of parameters.
For a hypothesis f ∈ F parameterized by θ ∈ Θ, we denote
F (·; f) and ℓf (zi) by Fθ and ℓθ(i), respectively. Similarly,
we use θ⋆ and θ̂⋆ for referring to f⋆ and f̂⋆. As in Section 4.1,
we use πθ : [n] → [n] to denote the permutation function
such that ℓθ(πθ(i)) is the i-th smallest loss under the current
model θ and the fixed dataset {zi}ni=1. Using the CDF
estimator F̂θ (1), the empirical distortion risk ρ(F̂θ) can be
re-written as

n∑
i=1

g

(
1− i− 1

n

)
· (ℓθ(πθ(i))− ℓθ(πθ(i− 1))) ,

where for all θ ∈ Θ, we set ℓθ(πθ(0)) := 0 since the losses
are non-negative.

To employ first-order methods for minimizing the empirical
distortion risk, it is natural to first identify when ρ(F̂θ) is
differentiable.

Lemma 6.1. If {ℓθ(zi)}ni=1 are Lipschitz continuous in
θ ∈ Θ, then for all i ∈ [n], ℓθ(πθ(i)), i.e., the i-th smallest
loss, is Lipschitz continuous in θ and ρ(F̂θ) is differentiable
in θ almost everywhere.

When ρ(F̂θ) (and ℓθ(πθ(i))) is differentiable, the gradient
∇θρ(F̂θ) can be written as

n∑
i=1

(
g

(
1− i− 1

n

)
− g

(
1− i

n

))
· ∇θℓθ(πθ(i)). (6)
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VGG-11 GoogLeNet ShuffleNet Inception ResNet-18

Accuracy 69.022% 69.772% 69.356% 69.542% 69.756%
E[ℓf ] 1.261 1.283 1.360 1.829 1.247

CVaR.05(ℓf ) 1.327 1.350 1.431 1.925 1.313
E[ℓf ] + 0.5Var(ℓf ) 5.215 4.376 6.718 14.416 5.353

HRM.3,.4(ℓf ) 1.374 1.336 1.542 2.214 1.382
HRM.2,.8(ℓf ) 1.233 1.239 1.344 1.845 1.225

Table 1. Risks for different ImageNet classification models evaluated on the validation set. ℓf (Z) is the cross-entropy loss for each model
f . For simplicity, we omitted the arguments Z in the table. CVaRα is the expected value of the top 100α percent losses. HRMa,b is the
cumulative prospect theory risk defined in Leqi et al. (2019). All results are rounded to 3 digits.

When g(x) = x, the distortion risk is the same as the ex-
pected loss and we recover the gradient for the traditional
empirical risk.

To avoid the non-differentiable points, we add a small noise
to the gradient descent steps. By doing so, we ensure that
the descent steps will end up in differentiable points almost
surely. Choose initial point θ1 ∈ Θ. At iteration t, the
parameter is updated as follows

θt+1 ← θt − η
(
∇θρ(F̂θ) + wt

)
, (7)

where η is the learning rate,∇θρ(F̂θ) is given in (6) and wt

is sampled from a d-dimensional Gaussian with mean 0 and
variance 1

d .

In general, even when the loss function ℓ is convex in the
parameter θ, the empirical distortion risk ρ(F̂θ) may not be
convex in θ. In Corollary 6.1, we show local convergence
of θt obtained through following (7).

Corollary 6.1. If {ℓθ(zi)}ni=1 are Lipschitz continuous and
ρ(F̂θ) is β-smooth in θ, then the following holds almost
surely when the learning rate in (7) is η = 1

β
√
T

:

1

T

T∑
t=1

E
[
∥∇θρ(F̂θt)∥2

]
≤ 2β√

T

(
ρ(F̂θ1)− ρ(F̂θ⋆) +

1

2β

)
.

Corollary 6.1 demonstrates that the average gradient magni-
tude over T iterations shrinks as T goes to infinity, suggest-
ing that performing gradient descent by following (7) will
converge to an approximate stationary point.

7. Experiment
In our experiments, we demonstrate the efficacy of our
proposed estimator for risk estimation and proposed learn-
ing procedure for obtaining risk-sensitive models. In Sec-
tion 7.1, we work with a risk assessment setting where we
simultaneously inspect a finite set of models in terms of
multiple risks. In Section 7.2, we show the performance of
empirical risk minimization under various distortion risks.

After showing that the classifier learned under different risk
objectives behave differently in a toy example, we learn
risk-sensitive models for CIFAR-10.

7.1. Risk Assessment on ImageNet Models
We perform risk assessments on pretrained Pytorch models
for ImageNet classification. In particular, we choose models
with similar accuracy (both reported on the official Pytorch
website and confirmed by us) on the validation set (50,000
images) for the ImageNet classification challenge (Rus-
sakovsky et al., 2015). The models are VGG-11 (Simonyan
& Zisserman, 2014), GoogLeNet (Szegedy et al., 2015),
ShuffleNet (Ma et al., 2018), Inception (Szegedy et al.,
2016) and ResNet-18 (He et al., 2016) and the accuracy
of these models evaluated on the validation set are around
69% (Table 1). By assessing the risks of models with sim-
ilar accuracy, we highlight how models with similar per-
formance under traditional metrics (e.g., accuracy) could
have different risk performances. For example, though In-
ception has similar accuracy compared to other models, its
loss variance is much higher compared to others, which
may be detrimental in settings where high-varying perfor-
mance is not preferred. We also evaluated the CVaR of these
models under different α’s (Figure 3 in Appendix E). Our
theoretical results suggest that all these evaluations hold
simultaneously across the risk functionals and models of
interest with the error being O(

√
log |F|/n) (|F| = 5 in this

experiment). In addition to showcasing the power of our
theoretical results, this example demonstrates how model
assessments under multiple risk notions provide a better
understanding of model behaviors.

7.2. Empirical Distortion Risk Minimization
To illustrate the difference among models learned under dif-
ferent risk objectives, we first present a toy example for com-
paring models learned under the expected loss objective and
the CVaR objective respectively. We then show the efficacy
of our proposed optimization procedure through training
deep neural networks on CIFAR-10. In both cases, the mod-
els are learned by following (7). For more details on these
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Figure 1. Prediction (predicted probability of a covariate being labeled as 1) contours and loss histograms of two models learned under the
expected loss and the CVaR.05 objective, respectively. The blue pluses and orange dots represent two classes. The loss distribution for the
expected loss model has extremely high values for a small subset of the covariates.
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Figure 2. Performance of VGG-16 models trained under expected loss, CVaR.05, CVaR.7 and HRM.3,.4. In Figures 2a and 2b, each
model is trained and evaluated on the same objective. In Figures 2c and 2d, we only train one model under the expected loss but report all
four objectives of that model. All results are averaged over 5 runs.

experiments, we refer the readers to Appendix E.

Toy Example In the toy example, we work with a binary
classification task where the covariates are 2-dimensional.
In Figure 1, the blue pluses and orange dots represent two
classes, respectively. We have learned logistic regression
models to minimize the expected loss and the CVaR.05 (ex-
pected value of the top 5% losses) through minimizing their
empirical risks. The loss distribution along with the predic-
tion contours of the two classifiers showcase the difference
between the two models. In particular, the model learned
under expected loss suffers high loss for a small subset of
the covariates while the model learned under CVaR.05 have
all losses concentrated around a small value. Indicated by
the (uniform) grey color in the contour plot, the predictions
(predicted probability of a covariate being labeled as 1) for
the CVaR.05 model are around 0.5. In contrast, the predic-
tions for the expected loss model spread across a wide range
between 0 and 1.

CIFAR-10 We have trained VGG-16 models on CIFAR-
10 through minimizing the empirical risks for expected loss,
CVaR.05, CVaR.7 and HRM.3,.4 (Leqi et al., 2019) using
the gradient descent step presented in (7). The models are
trained over 150 epochs and the learning rate is chosen to
be 0.005. As shown in Figure 2a and 2b, in general, the

objective values are decreasing over the epochs during train-
ing and testing. In addition, we observe that minimizing the
empirical risk for expected loss does not necessarily imply
minimizing other risks, e.g., CVaR.05 (Figure 2c). These
results suggest the efficacy of our proposed optimization
procedure for minimizing distortion risks.

8. Discussion
We have presented a principled framework, including ana-
lytic tools and algorithms for risk-sensitive learning and as-
sessment that: (1) obtains the empirical CDF; (2) estimates
the risks of interest through plugging in the empirical CDF;
and (3) minimizes the empirical risk (for risk-sensitive learn-
ing). Our theoretical results on the uniform convergence
of the proposed risk estimators hold simultaneously over a
hypothesis class (constrained by an appropriate complexity
measure) and over Hölder risks. The key building block
for these results is the uniform convergence of the CDF
estimator.

There are multiple future directions of our work. First, we
hope to more precisely characterize the permutation com-
plexity (under various hypothesis classes). Second, our gra-
dient descent procedure (7) requires sorting all losses. An
important next step would be to allow minibatches (sorting
only a small subset of losses) when minimizing empirical
distortion risks. Third, as shown in Figure 1, models learned
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under different risk objectives behave distinctly. Character-
izing these model behaviors theoretically and empirically,
and understanding the trade-offs among these objectives is
crucial for building future models.
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A. Hölder Risk Functionals
In the definition of Hölder risk functionals, we require d to be a quasi-metric, which we provide the definition here.

Definition A.1. A function d : L∞(R,B(R))× L∞(R,B(R))→ [0,+∞) is a quasi-metric if the following two conditions
hold:

• For all FU , FU ′ ∈ L∞(R,B(R)), d(FU , FU ′) = 0 if and only if FU = FU ′ ;

• For all FU , FU ′ , FZ′′ ∈ L∞(R,B(R)), d(FU , FZ′′) ≤ d(FU , FU ′) + d(FU ′ , FZ′′).

If a quasimetric is symmetic, i.e., for all FU , FU ′ ∈ L∞(R,B(R)), d(FU , FU ′) = d(FU ′ , FU ), it is also a metric. The set
of quasi-metrics contains symmetric quasi-metics, e.g., sup norms L∞, Wasserstein distance, along with non-symmetric
quasi-metrics, e.g., Kullback-Leibler divergence.

We will now discuss why optimized certainty equivalent (OCE) risks (e.g., mean-variance, entropic risk, CVaR) and spectral
risks with bounded spectrum (e.g., CVaR, certain CPT-inspired Risks) are Lipschitz on bounded random variables. OCE
risks, first introduced by Ben-Tal & Teboulle (1986), are defined as

ρoce(FU ) := inf
λ∈R
{λ+ E[ϕ(U − λ)]} ,

where ϕ : R→ R ∪ {+∞} is a nondecreasing, closed and convex function with ϕ(0) = 0 and 1 ∈ ∂ϕ(0). To complement
the risk-averse OCEs, a risk-seeking version (inverted OCE) is proposed:

ρoce(FU ) := sup
λ∈R
{λ− E[ϕ(λ− U)]} .

Proposition A.1. If ϕ is continuously differentiable, then the OCE risks ρoce and inverted OCE risks ρoce are Lipschitz on
the space of bounded random variables with support [0, D]:

|ρoce(FU )− ρoce(FU ′)| ≤ max
x∈[0,D]

(ϕ(D − x)− ϕ(−x))∥FU − FU ′∥∞,

|ρoce(FU )− ρoce(FU ′)| ≤ max
x∈[0,D]

(ϕ(x−D)− ϕ(x))∥FU − FU ′∥∞.

Remark A.1. Similar to Huang et al. (2021, Lemma 4.1), Proposition A.1 shows that the expected value and CVaRα are D-
and D

α -Lipschtiz on random variables with support [0, D], respectively. In addition, this result also provides Lipschitzness
of the entropic risks (since the corresponding ϕ is continuously differentiable (Lee et al., 2020, Table 1)) and other OCE and
inverted OCE risks that do not belong to distortion risk functionals.

Proof. When U has support [0, D], as shown in Lee et al. (2020, Lemma 9), we can re-write the OCE and inverted OCE
risks as follows:

ρoce(FU ) = min
λ∈[0,D]

{λ+ E[ϕ(U − λ)]}

ρoce(FU ) = max
λ∈[0,D]

{λ− E[ϕ(λ− U)]} .

For any U,U ′ ∈ [0, D], denote λU ∈ argminλ∈[0,D] λ + EU [ϕ(U − λ)] and λU ′ ∈ argminλ∈[0,D] λ + EU ′ [ϕ(U ′ − λ)].
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Consider the case where ρoce(FU ) < ρoce(FU ′).

|ρoce(FU )− ρoce(FU ′)| = ρoce(FU ′)− ρoce(FU )

= λU ′ + EU ′ [ϕ(U ′ − λU ′)]− λU − EU [ϕ(U − λU )]

(i)

≤ λU + EU ′ [ϕ(U ′ − λU )]− λU − EU [ϕ(U − λU )]

=

∫ D

0

ϕ(u− λU )d (FU ′(u)− FU (u))

(ii)
= ϕ(u− λU ) (FU ′(u)− FU (u))

∣∣∣u=D

u=0
−
∫ D

0

ϕ′(u− λU ) (FU ′(u)− FU (u)) du

(iii)

≤ ∥FU − FU ′∥∞
∫ D

0

ϕ′(u− λU )du

= (ϕ(D − λU )− ϕ(−λU )) ∥FU − FU ′∥∞,

where (i) comes from the definition of λU ′ , (ii) uses integration by parts, and (iii) uses the fact that ϕ is non-decreasing,
i.e., ϕ′ is non-negative, and FU (0) = FU ′(0) = 0, FU (D) = FU ′(D) = 1. The case when ρoce(FU ′) < ρoce(FU ) proceeds
similarly:

|ρoce(FU )− ρoce(FU ′)| = ρoce(FU )− ρoce(FU ′)

≤
∫ D

0

ϕ(u− λU ′)d (FU (u)− dFU ′(u))

= ϕ(u− λU ′) (FU (u)− FU ′(u))
∣∣∣u=D

u=0
−
∫ D

0

ϕ′(u− λU ′) (FU (u)− FU ′(u)) du

≤ (ϕ(D − λU ′)− ϕ(−λU ′)) ∥FU − FU ′∥∞.

Putting it together, we have that

|ρoce(FU )− ρoce(FU ′)| ≤ max
λ∈[0,D]

(ϕ(D − x)− ϕ(−x))∥FU − FU ′∥∞.

For inverted OCE risks, denote λU ∈ argmaxλ∈[0,D] λ+ EU [ϕ(λ− U)] and λU ′ ∈ argmaxλ∈[0,D] λ+ EU ′ [ϕ(λ− U)].
The proof proceeds similarly by using the fact that ρoce(FU ′) − ρoce(FU ) ≤ EU [ϕ(λU ′ − U)] − EU ′ [ϕ(λU ′ − U ′)] and
ρoce(FU )− ρoce(F

′
U ) ≤ EU ′ [ϕ(λU − U ′)]− EU [ϕ(λU − U)]. Following similar steps, we obtain that

|ρoce(FU )− ρoce(FU ′)| ≤ max
λ∈[0,D]

(ϕ(x−D)− ϕ(x))∥FU − FU ′∥∞.

Spectral risks (also known as L-risks or rank-weighted risks) are a subset of distortion risk functionals. As noted in Bäuerle
& Glauner (2021), a spectral risk can be written as a distortion risk (Equation (4)) with the following distortion function: for
t ∈ [0, 1],

g(t) =

∫ t

0

h(s)ds,

where h : [0, 1]→ R+ is the non-decreasing spectrum function that integrates to 1. Since g is Lipschitz when h is bounded
(i.e., g′(t) = h(t) for t ∈ (0, 1)), spectral risks are Lipschitz on the space of bounded random variables when their spectrum
is bounded.

Finally, examples of risk functionals that are Hölder but are not Lipschitz include distortion risks whose distortion functions
are Hölder but not Lipschitz.
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B. Proof of Results in Section 4
We note that in the following proofs, Z is used to denote a generic random variable and the loss function is denoted by
ℓ : X × Y × Y → R. (The loss function presented in the main text is a special case of this.) For a given (X,Y, f(X)), the
loss is denoted by ℓ(X,Y, f(X)).

B.1. Auxillary Lemmas
The below two auxillary lemmas are mainly adaptations to the class note from Professor Roberto Imbuzeiro Oliveira (Oliveira
& Yang).

Lemma B.1. Let G(1) :=
{
g(· ; r) := 1{· ≤r} : ∀r ∈ R

}
. For a fixed f ∈ F, iid sample {Xi, Yi}ni=1 with joint probability

measure P, and a loss function ℓ : X × Y × Y → R, we have that

sup
g∈G(1)

∣∣∣∣∣
n∑

i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣ = max
j∈[n]

∣∣∣∣∣
j∑

i=1

ξi

∣∣∣∣∣ , (8)

and further

EP,R

[
exp

(
λ

n
sup

g∈G(1)

∣∣∣∣∣
n∑

i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣
)]
≤ 2ER

[
max
j∈[n]

(
exp

(
λ

n

j∑
i=1

ξi

)
1{

∑j
i=1 ξi≥0}

)]
. (9)

Remark B.1. We note that an important property of Lemma B.1 is that the bound is independent of the samples {Xi, Yi}ni=1.

Proof. Let {Ri}ni=1 denote the sorted sequence of {ℓ(Xi, Yi, f(Xi))}ni=1, where R1 ≤ R2 . . . ≤ Rn. Using {Ri}ni=1, we
have

EP,R

[
exp

(
λ

n
sup

g∈G(1)

∣∣∣∣∣
n∑

i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣
)]

= EP,R

[
exp

(
λ

n
sup

g∈G(1)

∣∣∣∣∣
n∑

i=1

ξig(Ri)

∣∣∣∣∣
)]

Consider a function g(t; r) = 1{t≤r}. For such a function,
∑n

i=1 ξig(Ri; r) is equal to

• 0 if r < mini∈[n] Ri,

•
∑j

i=1 ξi when Rj ≤ r < Rj+1 for some j ∈ {1, . . . , n− 1},

•
∑n

i=1 ξi otherwise.

Therefore, we have that

sup
g∈G(1)

∣∣∣∣∣
n∑

i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣ = max
j∈[n]

∣∣∣∣∣
j∑

i=1

ξi

∣∣∣∣∣ .
Finally, we notice that

EP,R

[
sup

g∈G(1)

exp

(
λ

n

∣∣∣∣∣
n∑

i=1

ξig(Ri)

∣∣∣∣∣
)]

= EP,R

[
max
j∈[n]

exp

(
λ

n

∣∣∣∣∣
j∑

i=1

ξi

∣∣∣∣∣
)]

=EP,R

[
max
j∈[n]

(
exp

(
λ

n

j∑
i=1

ξi

)
1{

∑j
i=1 ξi≥0} + exp

(
−λ

n

∑
i = 1jξi

)
1{

∑j
i=1 ξi<0}

)]
=EP,R

[
max
j∈[n]

(
exp

(
λ

n

j∑
i=1

ξi

)
1{

∑j
i=1 ξi≥0}

)]
+ EP,R

[
max
j∈[n]

(
exp

(
−λ

n

j∑
i=1

ξi

)
1{

∑j
i=1 ξi<0}

)]

≤2EP,R

[
max
j∈[n]

(
exp

(
λ

n

j∑
i=1

ξi

)
1{

∑j
i=1 ξi≥0}

)]
. (10)
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Lemma B.2. Let {Zi}ni=1 taking values in Z denote independent samples drawn from P and w : Z → R+. For n
independent Rademacher random variables {ξi}ni=1, we have that for all λ ≥ 0,

EP,R

[
exp

(
max
j∈[n]

λ

n

j∑
i=1

w(Zi)ξi

)]
≤ 2EP,R

[
exp

(
λ

n

n∑
i=1

w(Zi)ξi

)]
.

Further, if 1
n

∑n
i=1 w(Zi)ξi is mean zero γ2

n -subGaussian, then

ER

[
exp

(
max
j∈[n]

λ

n

j∑
i

ξi

)]
≤ 2 exp

(
λ2γ2

2n

)
.

Remark B.2. We note that an immediate consequence of Lemma B.2 is

EP,R

[
max
j∈[n]

(
exp

(
λ

n

j∑
i=1

w(Zi)ξi

)
1{

∑j
i=1 w(Zi)ξi≥0}

)]

≤EP,R

[
exp

(
max
j∈[n]

λ

n

j∑
i=1

w(Zi)ξi

)]
≤ 2EP,R

[
exp

(
λ

n

n∑
i=1

w(Zi)ξi

)]
.

Proof. The proof contains two main steps:
Step 1: We will show that for all t > 0,

P

(
max
j∈[n]

j∑
i=1

w(Zi)ξi ≥ t

)
≤ 2P

(
n∑

i=1

w(Zi)ξi ≥ t

)
. (11)

To show (11), for t > 0, consider events E0 := ∅ and Ej := {
∑j

i=1 w(Zi)ξi ≥ t,
∑l

i=1 w(Zi)ξi < t,∀l < j} for j ∈ [n],
which states that j is the first index such that the partial sum

∑j
i=1 w(Zi)ξi is at least t. We first notice that{

max
j

j∑
i=1

w(Zi)ξi ≥ t

}
⊂

n⋃
j=0

Ej .

Since Ej and
∑n

i=j+1 w(Zi)ξi ≥ 0 implies that
∑n

i=1 w(Zi)ξi ≥ t, we obtain

n⋃
j=0

Ej

⋂
n∑

i=j+1

w(Zi)ξi ≥ 0


 ⊂ { n∑

i=1

w(Zi)ξi ≥ t

}
. (12)

Moreover, for any j ∈ [n], we have

P

 n∑
i=j+1

w(Zi)ξi ≥ 0

 ≥ 1

2
, (13)

since
∑n

i=j+1 w(Zi)ξi is symmetic around 0 (i.e.,
∑n

i=j+1 w(Zi)ξi
d
= −

∑n
i=j+1 w(Zi)ξi) for all i ∈ {0, . . . , n}. For any

j ∈ [n], since the event Ej (dependeing on {w(Zi), ξi}i≤j) is independent of {
∑n

i=j+1 w(Zi)ξi ≥ 0}, we have

P

Ej

⋂
n∑

i=j+1

w(Zi)ξi ≥ 0


 = P (Ej)P

 n∑
i=j+1

w(Zi)ξi ≥ 0

 ≥ P (Ej)

2
.
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As a result, we have

P

(
n∑

i=1

w(Zi)ξi ≥ t

)
≥ P

 n⋃
j=0

Ej

⋂
n∑

i=j+1

w(Zi)ξi ≥ 0




=

n∑
j=0

P

Ej

⋂
n∑

i=j+1

w(Zi)ξi ≥ 0




≥
n∑

j=1

P (Ej)

2

≥ 1

2
P

(
max
j∈[n]

j∑
i=1

w(Zi)ξi ≥ t

)
,

where the first equality holds because for i ̸= j, Ei ∩ Ej = ∅, the first inequality follows from (12) and the last inequality
comes from the union bound.

Step 2: For any differentiable f and random variable X ,

E[f(X)1{X≥0}] = E

[(
f(0) +

∫ X

0

f ′(t)dt

)]

= f(0)E[1{X≥0}] + E
[∫ ∞

0

f ′(t)1{X≥t}dt

]
= f(0)P(X ≥ 0) +

∫ ∞

0

f ′(t)P(X ≥ t)dt, (14)

where the last equality follows from Fubini’s theorem. Putting it altogether, we have

EP,R

[
exp

(
max
j∈[n]

λ

n

j∑
i=1

w(Zi)ξi

)]

=1 + λ

∫ ∞

0

exp (λt)P

(
max
j∈[n]

1

n

j∑
i=1

w(Zi)ξi ≥ t

)
dt

≤1 + 2λ

∫ ∞

0

exp (λt)P

(
1

n

n∑
i=1

w(Zi)ξi ≥ t

)
dt

=1 + 2EP,R

[(
exp

(
λ

n

n∑
i=1

w(Zi)ξi

)
− 1

)
1{

∑n
i=1 w(Zi)ξi≥0}

]

=1 + 2EP,R

[
exp

(
λ

n

n∑
i=1

w(Zi)ξi

)]
− 2P

(
n∑

i=1

w(Zi)ξi ≥ 0

)

≤2EP,R

[
exp

(
λ

n

n∑
i=1

w(Zi)ξi

)]
,

where the first inequality follows from (11), the second equality uses (14) with f(t) = eλt and X =

maxj∈[n]
1
n

∑j
i=1 w(Zi)ξi, and the last inequality follows from (13). Finally, if 1

n

∑n
i=1 w(Zi)ξi is mean zero γ2

n -
subGaussian, then using the definition of a subGaussian random variable, we obtain

2EP,R

[
exp

(
λ

n

n∑
i=1

w(Zi)ξi

)]
≤ 2 exp

(
λ2γ2

2n

)
.
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B.2. Proof of Theorem 4.1

Theorem 4.1. Given a hypothesis class F, any loss function ℓ : Y × Y → R, and n samples {Zi}ni=1, we have that with
probability at least 1− δ,

en(F, ℓ) ≤ 2R(n,F) +

√
log( 1δ )

2n
.

Proof. We first analyze the sensitivity of the sup-norm of the CDF estimator over F and G(1). For a given two sets
{xi, yi}ni=1 and {x′

i, y
′
i}ni=1, which just differ in j’th entry, let

F̂1(r; f) :=
1

n

n∑
i=1

1{ℓ(yi,f(xi))≤r} and, F̂2(r; f) :=
1

n

n∑
i=1

1{ℓ(y′
i,f(x

′
i))≤r}

Then, if supf∈F supr∈R

∣∣∣F̂1(r; f)− F (r; f)
∣∣∣ ≥ supf∈F supr∈R

∣∣∣F̂2(r; f)− F (r; f)
∣∣∣, we have

sup
f∈F

sup
r∈R

∣∣∣F̂1(r; f)− F (r; f)
∣∣∣− sup

f∈F
sup
r∈R

∣∣∣F̂2(r; f)− F (r; f)
∣∣∣

= sup
f∈F

sup
r∈R

∣∣∣∣∣ 1n
n∑

i=1

1{ℓ(Xi,yi,f(xi))≤r} − F (r; f)

∣∣∣∣∣− sup
f∈F

sup
r∈R

∣∣∣∣∣ 1n
n∑

i=1

1{ℓ(xi,y′
i,f(x

′
i))≤r} − F (r; f)

∣∣∣∣∣
= sup

f∈F
sup
r∈R

∣∣∣∣∣ 1n
n∑

i=1

1{ℓ(x′
i,y

′
i,f(x

′
i))≤r} +

1

n

(
1{ℓ(xj ,yj ,f(xj))≤r} − 1{ℓ(x′

j ,y
′
j ,f(x

′
j))≤r}

)
− F (r; f)

∣∣∣∣∣
− sup

f∈F
sup
r∈R

∣∣∣∣∣ 1n
n∑

i=1

1{ℓ(x′
i,y

′
i,f(x

′
i))≤r} − F (r; f)

∣∣∣∣∣
= sup

f∈F
sup
r∈R

1

n

∣∣∣1{ℓ(xj ,yj ,f(xj))≤r} − 1{ℓ(x′
j ,y

′
j ,f(x

′
j))≤r}

∣∣∣ ≤ 1

n
.

∣∣∣∣∣supf∈F
sup
r∈R

∣∣∣F̂1(r; f)− F (r; f)
∣∣∣− sup

f∈F
sup
r∈R

∣∣∣F̂2(r; f)− F (r; f)
∣∣∣∣∣∣∣∣

≤ sup
f∈F

sup
r∈R

1

n

∣∣∣1{ℓ(xj ,yj ,f(xj))≤r} − 1{ℓ(x′
j ,y

′
j ,f(x

′
j))≤r}

∣∣∣ = 1

n

This bound holds no matter what j and what data set we choose. Using bounded difference inequality, i.e., McDiarmid’s
inequality (Boucheron et al., 2013), we have,

P

sup
f∈F

sup
r∈R

∣∣∣F̂ (r; f)− F (r; f)
∣∣∣− EP

[
sup
f∈F

sup
r∈R

∣∣∣F̂ (r; f)− F (r; f)
∣∣∣] ≤

√
log( 1δ )

2n

 (15)

with probability at least 1− δ. Using a ghost sample set {X ′
i, Y

′
i }ni=1 we have

EP

[
sup
f∈F

sup
r∈R

∣∣∣F̂ (r; f)− F (r; f)
∣∣∣]

=EP

[
sup
f∈F

sup
r∈R

∣∣∣∣∣ 1n
n∑

i=1

1{ℓ(Xi,Yi,f(Xi))≤r} − EP

[
1

n

n∑
i=1

1{ℓ(X′
i,Y

′
i ,f(X

′
i))≤r}

]∣∣∣∣∣
]
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=EP

[
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣ 1n
n∑

i=1

g(ℓ(Xi, Yi, f(Xi)))− EP

[
1

n

n∑
i=1

g(ℓ(X ′
i, Y

′
i , f(X

′
i)))

]∣∣∣∣∣
]

=EP

[
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣ 1nEP

[
n∑

i=1

g(ℓ(Xi, Yi, f(Xi)))−
n∑

i=1

g(ℓ(X ′
i, Y

′
i , f(X

′
i)))
∣∣∣σ ({Xi, Yi}ni=1)

]∣∣∣∣∣
]

≤EP

[
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣ 1n
n∑

i=1

(g(ℓ(Xi, Yi, f(Xi)))− g(ℓ(X ′
i, Y

′
i , f(X

′
i))))

∣∣∣∣∣
]

≤EP,R

[
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣ 1n
n∑

i=1

ξi (g(ℓ(Xi, Yi, f(Xi)))− g(ℓ(X ′
i, Y

′
i , f(X

′
i))))

∣∣∣∣∣
]

≤2EP,R

[
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣ 1n
n∑

i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣
]
= 2R(n,F). (16)

Putting (15) and (16) together concludes the proof.

B.3. Permuation Complexity
We note that this proof, along with many other proofs for Section 4, is based on the machinery and techniques in Massart’s
finite class Lemma (Massart, 2000) and DKW inequality in (Devroye et al., 2013).

Theorem 4.2. For any hypothesis class F and loss function ℓ : Y × Y → R, we have that

R(n,F) ≤
√

log(4NΠ(n,Fℓ,P))
2n

.

Proof. For a positive λ, we have,

exp (λR(n,F)) = exp

(
λ

n
EP,R

[
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣
n∑

i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣
])

≤ EP,R

[
exp

(
λ

n
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣
n∑

i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣
)]

≤ EP,R

[
EP,R

[
exp

(
λ

n
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣
n∑

i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣
) ∣∣∣σ ({Xi, Yi}ni=1)

]]
(17)

For any f ∈ F, let πf denote a permutation such that ℓ(Xπf (i), Yπf (i), f(Xπf (i))) ≤ ℓ(Xπf (j), Yπf (j), f(Xπf (j))) for any
i, j ∈ [n] and i ≤ j. Therefore we have,

sup
g∈G(1)

∣∣∣∣∣
n∑

i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣ = sup
g∈G(1)

∣∣∣∣∣
n∑

i=1

ξπf (i)g(ℓ(Xπf (i), Yπf (i), f(Xπf (i))))

∣∣∣∣∣
Consider a function g(r′) = 1{r′≤r}. For such a function,

∑n
i=1 ξπf (i)g(ℓ(Xπf (i), Yπf (i), f(Xπf (i)))) is equal to,

• 0 if r < mini{ℓ(Xπf (i), Yπf (i), f(Xπf (i)))}ni ,

•
∑j

i ξπf (i) when ℓ(Xπf (j), Yπf (j), f(Xπf (j))) ≤ r < ℓ(Xπf (j+1), Yπf (j+1), f(Xπf (j+1))) for a j ∈ {1, . . . , n− 1},

•
∑n

i ξπf (i) otherwise.

Using this property, we have,

sup
g∈G(1)

∣∣∣∣∣
n∑

i=1

ξπf (i)g(ℓ(Xπf (i), Yπf (i), f(Xπf (i))))

∣∣∣∣∣ = max
j

∣∣∣∣∣
j∑
i

ξπf (i)

∣∣∣∣∣ (18)
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Using this equality, we can further extend the Eq. 17,

exp (λR(n,F)) ≤ EP,R

[
EP,R

[
exp

(
λ

n
sup
f∈F

max
j

∣∣∣∣∣
j∑
i

ξπf (i)

∣∣∣∣∣
) ∣∣∣σ ({Xi, Yi}ni=1)

]]

≤ EP,R

[
EP,R

[
NΠ(Fℓ, {Xi, Yi}ni=1) exp

(
λ

n
max

j

∣∣∣∣∣
j∑
i

ξi

∣∣∣∣∣
) ∣∣∣σ ({Xi, Yi}ni=1)

]]

≤ NΠ(n,Fℓ,P)EP,R

[
exp

(
λ

n
max

j

∣∣∣∣∣
j∑
i

ξi

∣∣∣∣∣
)]

, (19)

where the second inequality follows from the fact that effectively, there are at most NΠ(Fℓ, {Xi, Yi}ni=1) number of πf ’s.
Using the same derivation for (10) (Lemma B.1), we have

exp (λR(n,F)) ≤ 2NΠ(n,Fℓ,P)EP,R

[
max

j

(
exp

(
λ

n

j∑
i

ξi

)
1{

∑j
i ξi≥0}

)]
.

By Lemma B.2, we have

exp (λR(n,F)) ≤ 4NΠ(n,Fℓ,P) exp
(
λ2

2n

)

Now, taking the log from both sides, and dividing by λ, we have R(n,F) ≤ log(4NΠ(n,Fℓ,P))
λ + λ

2n . Choosing λ =√
2n log(2NΠ(n,Fℓ,P)), we obtain the final result

R(n,F) ≤
√

log(4NΠ(n,Fℓ,P))
2n

.

Corollary 4.1. For a finite hypothesis class F,

R(n,F) ≤
√

log(4|F|)
2n

.

Proof. The result follows since when |F| <∞, NΠ(n,Fℓ,P) ≤ |F|, i.e., we need at most one permutation function to sort
the losses for each f ∈ F.
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C. Proof of Results in Section 5
Theorem 5.1. For a hypothesis class F, a bounded loss function ℓ, and δ ∈ (0, 1], if P(en(F, ℓ) ≤ ϵ) ≥ 1− δ, then with
probability 1− δ, for all ρ ∈ T, we have

sup
f∈F
|ρ(F (·; f))− ρ(F̂ (·; f))| ≤ L(ρ, 1,L∞)ϵ,

where T is the set of L(·, 1,L∞) Hölder risk functionals on the space of bounded random variables.

Proof. For all ρ ∈ T, since ρ is L(ρ, 1,L∞) Hölder, we have that |ρ(F (·; f))− ρ(F̂ (·; f))| ≤ L(ρ, 1,L∞)∥F − F̂∥∞. The
desired result then follows.

The error of risk assessment can be bounded using distances other than the sup-norm, such as the Wasserstein distance. For
two random variables U and U ′ with bounded support [0, D], the dual form of the Wasserstein distance W1(FU , FU ′) is
given by (Vallender, 1974),

W1(FU , FU ′) =

∫ D

0

|FU (t)− FU ′(t)|dt ≤ D∥FU − FU∥∞.

This inequality suggests the following corollary.

Corollary C.1. Under the setting of Theorem 5.1 where the loss has support [0, D], with probability 1− δ, for all ρ ∈ T,
we have

sup
f∈F
|ρ(F (·; f))− ρ(F̂ (·; f))| ≤ L(ρ, p,W1)D

pϵp,

where T is the set of L(·, p,W1) Hölder risk functionals on the space of bounded random variables.

Proof. For all ρ ∈ T, since ρ is L(ρ, p,W1) Hölder, we have that |ρ(F (·; f)) − ρ(F̂ (·; f))| ≤ L(ρ, p,W1)W1(F, F̂ )p ≤
L(ρ, p,W1)D

p∥F − F̂∥p∞. The desired result then follows.

Corollary 5.1. For a hypothesis class F, a bounded loss function ℓ : Y × Y → [0, D], and δ ∈ (0, 1], if P(en(F, ℓ) ≤ ϵ) ≥
1− δ, then with probability 1− δ, we have

sup
f∈F
|ρ(F (·; f))− ρ(F̂ (·; f))| ≤ Lϵ,

where ρ is a distortion risk with L
D -Lipschitz distortion function.

Proof. As is shown in Huang et al. (2021, Lemma 4.1), ρ is L-Lipschitz. Thus, directly applying Theorem 5.1 concludes
the proof.
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D. Proofs for results in Section 6
D.1. Proof of Lemma 6.1
Before proving Lemma 6.1, we first present two auxiliary lemmas.

Lemma D.1. For any continuous function g, h : Rd → R, min(g, h) and max(g, h) are continuous. Similarly, for any
Lipschitz continuous function g, h : Rd → R, min(g, h) and max(g, h) are Lipschitz continuous.

Proof. Denote fmin = min(g, h) and fmax = max(g, h).
Continuity: Continuity: We first consider the case when both g and h are continuous. Define Θ = {θ ∈ Rd : g(θ) = h(θ)}.
For θ /∈ Θ, fmin and fmax are continuous since g, h are continuous. Consider θ ∈ Θ. For every ϵ > 0, there exists
δg, δh > 0 such that for all θ′ ∈ Rd, ∥θ − θ′∥ ≤ ϵ =⇒ |g(θ) − g(θ′)| ≤ δg, |h(θ) − h(θ′)| ≤ δh. In addition,
fmin(θ) = g(θ) = h(θ), fmax(θ) = g(θ) = h(θ) and fmin(θ

′), fmax(θ
′) can be either g(θ′) or h(θ′). Combining both

facts gives us that |fmin(θ)− fmin(θ
′)| ≤ max(δg, δh) and |fmax(θ)− fmax(θ

′)| ≤ max(δg, δh).

Lipschitz Continuity: We next work with the case where both g and h are Lipschitz continuous. When |fmax(θ) −
fmax(θ

′)| = |g(θ)− h(θ′)|, we have the following two cases:

1. g(θ) > h(θ′): |g(θ)− h(θ′)| = g(θ)− h(θ′) ≤ g(θ)− g(θ′), since fmax(θ
′) = h(θ′).

2. g(θ) ≤ h(θ′): |g(θ)− h(θ′)| = h(θ′)− g(θ) ≤ h(θ′)− h(θ), since fmax(θ) = g(θ).

Since both h and g are Lipschitz continuous, we obtain that

|fmax(θ)− fmax(θ
′)|≤ max

f∈{g,h}
|f(θ)− f(θ′)| ≲ ∥θ − θ′∥,

showing that fmax is Lipschitz continuous. The proof completes with the fact that min(f, g) = −max(−f,−g).

Lemma D.2. If {ℓθ(xj , yj)}nj=1 are Lipschitz continuous in θ, then for all i ∈ [n], ℓθ(πθ(i)), i.e., the i-th smallest loss
evaluated using data points {xj , yj}nj=1, is Lipschitz continuous in θ.

Proof. The key observation is that the i-th smallest loss can be defined as ℓθ(πθ(i)) = min{max{ℓθ(j) : j ∈ J} :
J ⊆ [n], |J | = i}. Since each ℓθ(j) is Lipschitz continuous in θ and that for j′ ∈ J , max{ℓθ(j) : j ∈ J} =
max{ℓθ(j′),max{ℓθ(j) : j ∈ J \ {j′}}}, by Lemma D.1, we have max{ℓθ(j) : j ∈ J} to be Lipschitz continuous in θ.
Similarly, since max{ℓθ(j) : j ∈ J} is Lipschitz continuous in θ, we have min{max{ℓθ(j) : j ∈ J} : J ⊆ [n], |J | = i} to
be Lipschitz continuous.

Lemma 6.1. If {ℓθ(zi)}ni=1 are Lipschitz continuous in θ ∈ Θ, then for all i ∈ [n], ℓθ(πθ(i)), i.e., the i-th smallest loss, is
Lipschitz continuous in θ and ρ(F̂θ) is differentiable in θ almost everywhere.

Proof. Using Lemma D.2, we obtain that ℓθ(πθ(i)) is Lipschitz in θ ∈ Θ. Following from a classical result of
Rademacher (Rockafellar & Wets, 2009, Theorem 9.60), i.e., a locally Lipschitz function is differentiable almost ev-
erywhere, we have that ρ(F̂θ) is differentiable almost everywhere.

D.2. Local Convergence
The proofs for Corollary 6.1 are standard (Bottou et al., 2018), which we provide for completeness.

Corollary 6.1. If {ℓθ(zi)}ni=1 are Lipschitz continuous and ρ(F̂θ) is β-smooth in θ, then the following holds almost surely
when the learning rate in (7) is η = 1

β
√
T

:

1

T

T∑
t=1

E
[
∥∇θρ(F̂θt)∥2

]
≤ 2β√

T

(
ρ(F̂θ1)− ρ(F̂θ⋆) +

1

2β

)
.

Proof. For notation simplicity, we use h(θ) to denote ρ(F̂θ) and gt to denote ∇θρ(F̂θ) when θ = θt. Since h(θ) is
differentiable almost everywhere, following (7), the sequence {h(θt)}Tt=1 will be differentiable almost surely. Since h is
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β-smooth, we have that

h(θt+1)− h(θt) ≤ ∇θh(θt)
⊤(θt+1 − θt) +

β

2
∥θt+1 − θt∥2.

We denote the filtration for the stochastic process {θt}Tt=1 to be {Ft}Tt=1. Extending the above inequality, we have

h(θt+1)− h(θt) ≤ ∇θh(θt)
⊤(−η(gt + wt)) +

β

2
∥ − η(gt + wt)∥2,

which suggests that

E[h(θt+1)− h(θt)] ≤ −η∇θh(θt)
⊤gt + η2

β

2
(∥gt∥2 + dσ2

w),

where σ2
w = 1/d is the variance of wt. Therefore, for the conditional expectation, we have

E
[
h(θt+1)− h(θt)

∣∣∣Ft

]
≤ E

[
−η∇θh(θt)

⊤gt + η2
β

2
(∥gt∥2 + 1)

∣∣∣Fk

]
= −(η − η2

β

2
)E
[
∥∇θh(θt)∥2

∣∣∣Ft

]
+ η2

β

2
.

Using the telescoping sum and law of total expectation, we obtain

E
[
h(θT )− h(θ1)

∣∣∣F1

]
= E

[
T∑

t=1

h(θ1)− h(θt−1)
∣∣∣F1

]
≤ (η − η2

β

2
)E

[
T∑

t=1

−∥∇θh(θt)∥2
∣∣∣F1

]
+ Tη2

β

2
. (20)

Use the fact that h(θ⋆) ≤ h(θT ), we have E [h(θ1)− h(θT )] ≤ h(θ1)− h(θ⋆), which implies

(η − η2
β

2
)E

[
T∑

t=1

∥∇θh(θt)∥2
]
≤ h(θ1)− h(θ⋆) + Tη2

β

2
.

Plugging the learning rate η = 1
β
√
T

, we have η − η2 β
2 = 1

β
√
T
− 1

2βT ≥
1

β
√
T
− 1

2β
√
T
≥ 1

2β
√
T
> 0. Therefore we have

1

2β
√
T
E

[
T∑

t=1

∥∇θh(θt)∥2
]
≤ h(θ1)− h(θ⋆) +

1

2β
.

Rearranging the above inequality gives the result.
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E. Additional Experimental Details
E.1. Risk Assessment on ImageNet Models
Figure 3 shows the CVaR of models presented in Table 1 under different α’s. We note that CVaRα is the expected value
above the top 100α percent losses.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.81
2
3
4
5
6
7
8

CV
aR

vgg11, accuracy: 0.69022
googlenet, accuracy: 0.69772
shufflenet, accuracy: 0.69356
inception, accuracy: 0.69542
resnet18, accuracy: 0.69756

Figure 3. CVaRα(ℓf (Z)) across different α’s where ℓf is the cross-entropy loss evaluated on the ImageNet validation dataset.

E.2. Empirical Distortion Risk Minimization
Toy Example The data used in this experiment is generated using the make_blobs function from
sklearn.datasets with the following parameters: n_samples = [1000, 50], centers = [[0.0, 0.0],
[1.0, 1.0]], cluster_std = [1.5, 0.5], random_state = 0, shuffle = False.

CIFAR-10 For completeness, we report the average test accuracy for the VGG-16 models obtained through minimizing
the empirical risks for expected loss, CVaR.05, CVaR.7 and HRM.3,.4. The models are trained over 150 epochs and the
learning rate is chosen to be 0.005. The accuracy is 55.2%, 13.2%, 51.3%, and 53.9% respectively. We note that the goal of
this experiment is to illustrate the efficacy of our proposed optimization procedure for minimizing distortion risks instead of
arguing for the usage of a particular risk functional for finding a model with the highest test accuracy.


