
A Minimax Learning Approach to Off-Policy Evaluation in Confounded
Partially Observable Markov Decision Processes

Chengchun Shi * 1 Masatoshi Uehara * 2 Jiawei Huang 3 Nan Jiang 3

Abstract

We consider off-policy evaluation (OPE) in
Partially Observable Markov Decision Processes
(POMDPs), where the evaluation policy depends
only on observable variables and the behavior
policy depends on unobservable latent variables.
Existing works either assume no unmeasured
confounders, or focus on settings where both the
observation and the state spaces are tabular. In
this work, we first propose novel identification
methods for OPE in POMDPs with latent
confounders, by introducing bridge functions that
link the target policy’s value and the observed
data distribution. We next propose minimax
estimation methods for learning these bridge
functions, and construct three estimators based
on these estimated bridge functions, corre-
sponding to a value function-based estimator, a
marginalized importance sampling estimator, and
a doubly-robust estimator. Our proposal permits
general function approximation and is thus
applicable to settings with continuous or large
observation/state spaces. The nonasymptotic
and asymptotic properties of the proposed
estimators are investigated in detail. A Python
implementation of our proposal is available at
https://github.com/jiaweihhuang/
Confounded-POMDP-Exp.

1. Introduction
Reinforcement learning (RL) has been successfully applied
in online settings (e.g., video games) where interaction with
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environments is easy and the data can be adaptively gener-
ated. However, online interaction is often costly and danger-
ous for a number of high-stake domains ranging from health
science to social science and economics. Offline (batch) re-
inforcement learning is concerned with policy learning and
evaluation with limited and pre-collected data in a sample
efficient manner (Levine et al., 2020). The focus of this
paper is the off-policy evaluation (OPE) problem, which
refers to the task of estimating the value of an evaluation
policy offline using data collected under a different behavior
policy. It is critical in sequential decision-making problems
from healthcare, robotics, and education where new policies
need to be evaluated offline before online validation.

There is a growing literature on OPE (see e.g., Precup, 2000;
Jiang & Li, 2016; Thomas & Brunskill, 2016; Liu et al.,
2018; Xie et al., 2019; Yin & Wang, 2020; Liao et al.,
2020; Yang et al., 2020; Pananjady & Wainwright, 2021;
Kuzborskij et al., 2021; Zhang et al., 2021; Shi et al., 2021).
A common assumption made in the aforementioned works
is that of no unmeasured confounders. Specifically, they as-
sume the time-varying state variables are fully observed and
no unmeasured variables exist that confound the observed
actions. However, this assumption is not testable from the
data. It is often violated in observational datasets generated
from healthcare applications.

To allow unmeasured confounders to exist, we model the
observed data by a Partially Observable Markov Decision
Process (POMDP). Under this framework, the behavior pol-
icy is allowed to depend on some unobserved state variables
that confound the action-reward association. The goal of
OPE in POMDPs is to estimate the value of an evaluation
policy, which is a function of observed variables, using the
data generated by such a behavior policy. This is a highly
challenging problem. Directly applying the importance sam-
pling methods (Precup, 2000; Liu et al., 2018) or the value
function-based method (Munos & Szepesvári, 2008) would
yield a biased estimator, as we do not have access to the
unobserved state variables. Tennenholtz et al. (2020); Nair
& Jiang (2021) have made important progresses on this
problem by outlining a consistent OPE estimator in tabular
settings. However, they are not applicable to settings with
continuous observation/state spaces.

https://github.com/jiaweihhuang/Confounded-POMDP-Exp
https://github.com/jiaweihhuang/Confounded-POMDP-Exp
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In this paper, we study OPE in non-tabular POMDPs. Our
contributions are summarized as follows. First, we provide a
novel identification method for OPE with latent confounders.
We only require the existence of two bridge functions, cor-
responding to a weight bridge function and a value bridge
function. These bridge functions are defined as solutions to
some integral equations. They can be interpreted as projec-
tions of the marginalized importance sampling weight and
value functions defined on the latent state space onto the
observation space. They are not always uniquely defined,
but we do not require the uniqueness assumption to achieve
consistent estimation.

Second, we propose minimax learning methods to estimate
the two bridge functions with function approximation. The
proposed method allows us to model these bridge functions
via certain highly flexible function approximators (e.g., neu-
ral networks) and is thus applicable to settings with continu-
ous or large observation/state spaces. Based on the estimated
bridge functions, we further propose three estimators for
the target policy’s value, corresponding to a value function-
based estimator, a marginalized importance sampling (IS)
estimator and a doubly-robust (DR) estimator.

Finally, we systematically study the nonasymptotic and
asymptotic properties of the proposed estimators. Specif-
ically, we first show the finite-sample rate of convergence
under the realizability and Bellman closedness assumptions
on value bridge function. Similar assumptions are imposed
on the Q- or density ratio function in fully observable MDP
settings (Munos & Szepesvári, 2008; Uehara et al., 2021).
Second, when the realizability assumption holds for both
bridge functions, we establish the finite-sample rate of con-
vergence of the proposed estimators without assuming Bell-
man closedness. Finally, when the bridge functions are
uniquely defined, we prove that the DR estimator is asymp-
totically normal and achieves the Cramér-Rao lower bound.
We expect our findings to contribute to the theoretical un-
derstanding of offline RL (see e.g., Munos & Szepesvári,
2008; Chen & Jiang, 2019; Kallus & Uehara, 2019).

1.1. Related Works

We discuss some related works on OPE with unmeasured
confounders and spectral learning in this section. To save
space, some additional related works on minimax estimation
and negative controls are discussed in Appendix A.

OPE with Unmeasured Confounders To handle unmea-
sured confounders, existing OPE methods can be roughly
divided into the following three categories. The first type of
methods proposes to develop partial identification bounds
for the policy value based on sensitivity analysis (Kallus
& Zhou, 2020; Namkoong et al., 2020; Zhang & Barein-
boim, 2021). These methods rely on certain assumptions
that might be difficult to validate in practice. For instance,

Kallus & Zhou (2020) imposes a memoryless unmeasured
confounding assumption.

The second type of methods derive the value estimates by
making use of some auxiliary variables in the observed data
(Zhang & Bareinboim, 2016; Futoma et al., 2020; Wang
et al., 2020; Bennett et al., 2021; Liao et al., 2021; Ying
et al., 2021; Shi et al., 2022b). These methods are not
directly applicable to the POMDP setting we consider. For
instance, Zhang & Bareinboim (2016); Wang et al. (2020);
Liao et al. (2021); Shi et al. (2022b) propose to model the
observed data via a confounded MDP. In these settings,
the time-varying observations satisfy the Markov property.
However, the Markov assumption is violated in POMDPs.

The third type of methods adopt the POMDP model to for-
mulate the confounded OPE problem and develop value
estimators in tabular settings (Tennenholtz et al., 2020; Nair
& Jiang, 2021). However, as we have commented, these
methods are ineffective in non-tabular settings with continu-
ous or large observation/state spaces.

Spectral learning in POMDPs Our proposal is closely
related to a line of works on developing spectral learning
methods in the POMDP literature (Song et al., 2010; Boots
et al., 2011; Hsu et al., 2012; Anandkumar et al., 2014;
Hefny et al., 2015; Kulesza et al., 2015; Jin et al., 2020a).
These methods are originally designed for learning system
dynamics in the absence of unmeasured confounders. They
would yield biased value estimators in the presence of un-
measured confounders.

2. Problem Formulation
We consider a discounted Partially Observable
Markov Decision Process (POMDP) defined as
〈S,A,O, {rt}t≥0, {Pt}t≥0, {Zt}t≥0, γ〉, where S de-
notes the state space, A denotes the finite action space,
O denotes the observation space, Pt : S × A → ∆(S)
denotes the state transition kernel at time t, Zt : S → ∆(O)
denotes the observation function that defines the conditional
distribution of the observation given the state at time t,
rt : S × A → R denotes a bounded reward function that
depends on the state-action pair at time t, and γ ∈ [0, 1) is
a discount factor that balances the immediate and future
rewards. Pt, rt and Zt are unknown to us and need to be
inferred from the observed data.

The data generating process in POMDPs is depicted in Fig-
ure 1. Suppose the environment is in a given state s ∈ S.
The agent selects an action a ∈ A. Then the system transits
into a new state s′ and gives an immediate reward r(s, a) to
the agent. While we cannot directly observe the latent state
s, we have access to an observation o ∼ Z(·|s). This model
is adopted from Tennenholtz et al. (2020) where the obser-
vation does not depend on the previous action. Nonetheless,
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ε True Value Ours Naive
0.25 4.94 5.01 7.0
0.5 4.99 5.008 5.004

0.75 5.03 5.07 3.008

Table 1. The proposed OPE estimator and the naive IS or value
function-based estimator which replaces the state with the observa-
tion when applied to the toy data example with 1e4 trajectories and
100 times points per trajectory. The naive IS and value function-
based estimator are computed via minimax weight and Q-function
learning (Uehara et al., 2020), respectively. The two estimators are
the same under the tabular setting and are denoted by “Naive”.

one may define a new state/observation vector by concate-
nating the current state/observation and the past action. The
resulting formulation is reduced to the general POMDP
setup. A policy is a set of time-dependent decision rules
π = {πt} where each πt : S ×O → ∆(A) maps the state-
observation pair to a probability distribution over the action
space. For a given policy π, the data generating process
can be summarized as S0 ∼ ν0, O0 ∼ Z0(·|S0), A0 ∼
π0(·|S0, O0), R0 = r0(S0, A0), S1 ∼ P0(·|S0, A0), · · ·
where ν0 denotes the initial state distribution. The observed
data up to t is given by τt = (O0, A0, R0, · · · , Ot, At, Rt).
We denote its distribution by Pπ. The policy value J(π) is
defined as the expected cumulative reward Eπ[

∑H
t=0 γ

tRt]
for some 0 < H ≤ +∞, where the expectation is taken
w.r.t. the distribution of trajectories induced by policy π.

For a given evaluation policy πe = {πet }t, the goal of OPE
is to estimate J(πe) from an observational dataset generated
by a behavior policy πb = {πbt}t. Similar to Tennenholtz
et al. (2020), we focus on the setting where πb depends only
on the latent state and πe depends only on the observation.
See also Figure 1. Under this model assumption, the state
variables serve as a confounder between the action and the
reward at each time. Since the state is not fully observed,
the no unmeasured confounder assumption is violated.

Finally, we illustrate the challenge of OPE with latent con-
founders. If we were to observe the latent state, following
the standard OPE methods, we could identify the policy
value using the marginalized IS or the value function-based
estimator. However, since we cannot observe the state, these
methods are not applicable. Naively replacing the state with
the observation would yield biased estimators.

To elaborate, we design a toy example with binary observa-
tion, state, and action spaces. Specifically, the target policy
is a uniform random policy and the behavior policy is given
by πbt (1|1) = πbt (0|0) = 1−ε, for some constant 0 < ε < 1
and any t ≥ 0. When ε = 0.5, the action is independent of
the latent state and no unmeasured confounders exist. The
naive IS or value function-based estimator which replaces
the state with the observation is expected to be consistent
in that case. We report the true value (computed via the
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Figure 1. The data generating process in POMDPs. The evaluation
policy in red depends on the observed variables. The behavior
policy depends on the hidden state variables.

Monte-Carlo method), our proposed value estimator and the
naive estimator when applied to a large dataset with 1e4
trajectories and 100 time points per trajectory in Table 1. It
can be seen that the naive method works only when ε = 0.5,
as expected. In contrast, the proposed estimator is consistent
in all cases.

3. Partially Observable Contextual Bandits
As a warm-up, we start with a partially observable contex-
tual bandit setting (a special case of POMDP with horizon
that equals 1) to present our main idea. Suppose we have N
data tuples that are i.i.d. {O−1, A0, O0, R0} tuples where
O−1 denotes the additional observation that is conditionally
independent of (A0, O0, R0) given S0. The corresponding
Bayesian network is depicted in Figure 2a.

The IS and value-function based estimators are given by

E [η0(S0, A0)R0] ,E [v0(S0)] =
∑
a Eq0(S0, a)πe0(a | S0),

respectively, where q0(S0, A0) = E[R0 | S0, A0], η0 =
πe0/π

b
0 denotes the IS ratio,

∑
a is an abbreviation of

∑
a∈A,

and the expectation E without any subscript is taken w.r.t. to
the distribution of the offline data. As we have commented,
these methods are not applicable since S0 is unobserved.

To handle unmeasured confounders, we first assume the
existence of certain bridge functions that link the target
policy’s value and the observed data distribution.

Assumption 1 (Existence of bridge functions). There exist
functions b′V : A×O → R, b′W : A×O → R that satisfy

E[b′V (A0, O0) | S0, A0] = E[R0π
e
0(A0 | O0) | A0, S0], (1)

E[b′W (A0, O−1) | S0, A0] = 1/πb0(A0 | S0). (2)

We refer to b′V (·) as a value bridge function and b′W (·) as a
weight bridge function.

By definition, weight bridge and value bridge functions can
be interpreted as projections of the importance sampling
weight (i.e., inverse propensity score) and value functions
defined on the latent state space onto the observation space.
It is worthwhile to mention that we do not require these
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bridge functions to be uniquely defined. When S and O
are discrete, the existence of solutions to the integral equa-
tions in (1) and (2) is equivalent to certain matrix rank
assumptions; see the assumptions in Nair & Jiang (2021);
Boots et al. (2011); Hsu et al. (2012). These assumptions
require observed variables to contain sufficient informa-
tion about unobserved states. Specifically, define a matrix
Ωa = Prπb(O0|A0 = a,O−1) whose (i, j)-th element is
given by Prπb(O0 = oi|A0 = a,O−1 = oj) where oi de-
notes the ith element in the observation space. Then they
require rank(Ωa) = |S| for any a ∈ A. See Appendix B
for details. When S and O are continuous, it follows from
Picard’s theorem that Assumption 1 is implied by several
conditions (Carrasco et al., 2007, Theorem 2.41). Here,
we remark the value bridge function is target policy de-
pendent and it might be more appropriate to write b′V as
bπ
e

V ′ . Nonetheless, to ease the notation, we will remove the
superscript πe throughout the paper.

Next, we show that Assumption 1 is a sufficient condition
for policy value identification. The following theorem shows
that if we know b′V and b′W in advance, we can consistently
estimate the target value J(πe) from the offline data.

Lemma 1 (Pseudo identification formula). Suppose As-
sumption 1 holds. Then, for any b′V , b

′
W that solve (1),

J(πe) = E

[∑
a

b′V (a,O0)

]
and

J(πe) = E[b′W (A0, O−1)R0π
e
0(A0 | O0)].

(3)

These formulas outline an IS estimator and a value function-
based estimator for J(πe). It remains to identify the bridge
functions b′V and b′W . However, even if Assumption 1 holds,
it is still very challenging to learn b′V and b′W from the
observed data as their definitions involve the unobserved
state S0. As such, we refer to Lemma 1 as the “pseudo”
identification formula. In the following, we introduce some
versions of bridge functions that are identifiable from the
observed data.

Definition 1 (Learnable bridge functions). The learnable
value bridge function bV : A × O → R and learnable
weight bridge function bW : A×O → R are solutions to

E[R0π
e
0(A0|O0)|A0, O−1] = E[bV (A0, O0)|A0, O−1]

and 1/Pπb(A0|O0) = E[bW (A0, O−1)|A0, O0].
(4)

Throughout this paper, we use b′ to denote a bridge function
and b to denote a learnable bridge function. The following
lemma shows that any bridge function is a learnable bridge
function.

Lemma 2. Bridge functions defined as solutions to (1) and
(2) are learnable bridge functions.

We next present an equivalent definition for bW . This char-
acterization is useful when extending our results to the
POMDP setting.

Lemma 3. E[bW (A0, O−1) | A0, O0] = 1/Pπb(A0 | O0)
holds if and only if

E[
∑
a

f(O0, a)− bW (A0, O−1)f(O0, A0)] = 0, ∀f.

As we have commented, the class of bridge functions are dif-
ficult to estimate from the observed data. On the other hand,
the class of learnable bridge functions is identifiable. How-
ever, they are not necessarily bridge functions. Thus, we
cannot invoke Lemma 1 for value identification. Nonethe-
less, perhaps surprisingly, the following theorem shows that
we can plug-in any learnable bridge function bV and bW for
b′V and b′W in (3) under Assumption 1.

Theorem 1 (Key identification formula). Assume the exis-
tence of value bridge functions and learnable weight bridge
functions. Then, letting bW (·) be a learnable weight bridge
function, we have

J(πe) = E[bW (A0, O−1)R0].

Suppose the existence of weight bridge functions and learn-
able value bridge functions. Then, letting bV (·) be a learn-
able value bridge function, we have

J(πe) = E[
∑
a

bV (a,O0)].

We make a few remarks. First, the assumptions in the first
and second statements do not imply each other. In both
cases, Assumption 1, the existence of bridge functions, plays
a critical role in ensuring the validity of the above equations.
Specifically, when Assumption 1 holds, the assumptions
in both the first and second statements are automatically
satisfied, since bridge functions are learnable bridge func-
tions. If we naively replace Assumption 1 with the existence
of learnable bridge functions that satisfy equation 2, then
Theorem 1 is no longer valid.

Second, Theorem 1 implies that we only need bridge func-
tions to exist, but do not need to identify them. As long
as they exist, learnable bridge functions can be used for
estimation, which are not necessarily bridge functions.

Third, similar identification methods have been developed
in the causal inference literature for evaluating the average
treatment effect with double negative controls; see Appendix
A. However, their settings differ from ours. For instance,
those works require policies to be constant functions of neg-
ative controls. In contrast, we allow our evaluation policy to
depend on the observation which serves as negative controls
in their setting.
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Figure 2. Red lines depict the dependency of evaluation policies
on the observed variables. Blue lines depict the dependence of
behavior policies on the state variables.

Finally, Theorem 1 requires the existence of both the value
and the (learnable) weight bridge functions. Under certain
completeness assumptions, J(πe) can be uniquely identified
by assuming the existence of value bridge functions only,
and the discussion is deferred to Appendix C.

4. OPE in Time-homogeneous POMDPs
In this section, we focus on time-homogeneous POMDPs
where Pt, Zt, rt, πet , π

b
t are stationary over time. We de-

note them by P,Z, r, πe, πb, respectively. OPE in time-
inhomogeneous POMDPs is investigated in Appendices F
and G. Our goal is to estimate the target policy’s value in
the infinite horizon setting (H =∞). Consider a data tuple
(O−, S,O,A,R, S+, O+) following

(O−, S) ∼ Pπb(·), A ∼ πb(·|S), S+ ∼ P (·|S,A),

R = r(S,A), O+ ∼ Z(·|S+),

where Pπb denotes certain distribution over O × S. The
observed data tuple is given by (O−, O,A,R,O+). For
example, for a data trajectory {(Ot, At, Rt)}0≤t≤n+1

under πb, the observations can be summarized as
{(Ot−1, Ot, At, Rt, Ot+1)}1≤t≤n. The above configura-
tion is satisfied with Pπb equal to the occupancy distribution
under πb over O × S. This conversion from trajectories to
tuples is commonly used in the offline RL literature (Chen &
Jiang, 2019). We assume the initial observation distribution
νO(o) :=

∫
Z(o | s)ν(s)d(s) is known to us. If unknown,

it can be estimated by the empirical data distribution. With
a slight abuse of notation, we denote the distribution of
the data as Pπb(·), e.g., Pπb(a | s) = πb(a | s). In addi-
tion, Pπb(s) denote the probability mass function (or the
probability density function) when the state is discrete (or
continuous).

4.1. Identification

First, we extend our definitions of the bridge functions to the
POMDP setting and require their existence in the assump-
tion below. Let w(s) =

∑
t≥0 γ

tPπe,t(s)/Pπb(s) denote

the marginal density ratio where Pπe,t(·) denotes the proba-
bility density function of St under the evaluation policy. In
addition, let qπ

e

(a, s) = Eπe [
∑
t≥0 γ

tRt|A0 = a, S0 = s]
denote the Q-function. These functions play an important
role in constructing marginalized IS and value function-
based estimators in fully observable MDPs. The following
bridge functions play similar roles in POMDPs.

Assumption 2 (Existence of bridge functions). There exist
value bridge functions b′V : A×O → R and weight bridge
functions b′W : A×O → R that satisfy

E[b′V (A0, O0) | A0, S0] = Eπe [
∑
t

γtRtπ
e(A0 | O0)|A0, S0],

E[b′W (A,O−) | A,S] =
w(S)

πb(A|S)
.

We make several remarks. First, the existence of b′W implic-
itly requires πb(a|s) > 0 and w(s) < ∞ for any a and s.
The latter condition is weaker than requiring Pπb(s) > 0
for any s. In other words, we do not require the full cov-
erage assumption. Second, when the states are fully ob-
served and S = O, it follows immediately that b′V (a, s) =
qπ

e

(a, s)πe(a | s) and b′W (a, s) = w(s)/πb(a | s). Sim-
ilar to the bandit setting, these bridge functions can thus
be interpreted as projections of the value functions and the
marginalized IS weights onto the the observation space.
Third, we do not require the bridge functions to be uniquely
defined.

Next, we define the learnable bridge functions. They are
consistent with those in Definition 1 when γ = 0.

Definition 2 (Learnable bridge functions). Learnable value
bridge functions bV are defined as solutions to

E[bV (A,O) | A,O−] = E[Rπe(A | O) | A,O−]

+γE

[∑
a′

bV (a′, O+)πe(A | O) | A,O−
]
.

(5)

Learnable weight bridge functions bW are defined as solu-
tions to

E[LW(bW , f)] = 0, ∀f : O ×A → R (6)

where LW(g, f) equals∑
a′

γg(A,O−)πe(A|O)f(O+, a′)− g(A,O−)f(O,A)

+(1− γ)EÕ∼νO [
∑
a′

f(Õ, a′)].

Finally, we show our key identification formula under As-
sumption 2. It extends Lemma 2 and Theorem 1 to the
POMDP setting.

Theorem 2 (Key identification theorem).
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1. Any bridge function is a learnable bridge function.

2. Suppose the existence of the value bridge function and
learnable weight bridge function bW (·). Then,

J(πe) =
1

1− γ
E[bW (A,O−)Rπe(A | O)].

3. Suppose the existence of the weight bridge function and
learnable value bridge function bV (·). Then,

J(πe) = EÕ∼νO [
∑
a

bV (a, Õ)].

Similar to the bandit setting, any bridge function is a learn-
able bridge function, but the reverse is not true. However,
the target policy’s value can be consistently estimated based
on any learnable bridge function. In addition, similar to
the bandit setting, the existence is equivalent to the rank
assumption rank(Prπb(O0 | a,O−)) = |S| in tabular case.

Theorem 2 forms the basis of our estimation procedure. It
outlines a marginalized IS estimator and a value function-
based estimator for policy evaluation. We remark that con-
ditions in bullet points 2 and 3 do not imply each other. In
addition, when Assumption 2 holds, conditions in 2 and 3
are automatically satisfied.

4.2. Estimation

We first propose three value estimators given certain consis-
tently estimated learnable bridge functions b̂V and b̂W . We
next introduce minimax estimation methods for bV and bW .

Given some b̂V and b̂W , we can construct the following IS
and value function-based estimators accordingly to Theo-
rem 2. Specifically, define ĴIS and ĴVM to be

1

1− γ
ED[b̂W (A,O−)Rπe(A | O)] and EÕ∼νO [

∑
a

b̂V (a, Õ)],

respectively, where ED denotes the empirical average over
all observed data tuples.

In addition, we can combine the aforementioned two es-
timators for policy evaluation. This yields the following
doubly-robust estimator, ĴDR = ED[J(b̂W , b̂V )] where

J(f, g) := EÕ∼νO [
∑
a

g(a, Õ)] +
f(A,O−)

1− γ

×
[
{R+ γ

∑
a′

g(a′, O+)}πe(A | O)− g(A,O)
]
,

(7)

for f : A×O → R and g : A×O → R. It has the desired
doubly-robust property, as shown in Section 4.3.2.

In fully observable MDPs, ĴIS reduces to the marginal-
ized IS estimator (Liu et al., 2018), and ĴDR reduces to

the doubly-robust estimator (Kallus & Uehara, 2019). We
remark that our proposal is not a trivial extension of these ex-
isting methods to the POMDP setting. The major challenge
lies in developing identification formulas in Theorem 2 to
correctly identify the target policy’s value. These results are
not needed in settings without unmeasured confounders.

Next, we present our proposal to estimate bV and bW . To
estimate bV , a key observation is that, it satisfies the follow-
ing integral equation, E[LV(bV , f)] = 0 for any f where
LV(g, f) is given by

[{R+ γ
∑
a′

g(a′, O+)}πe(A|O)− g(A,O)]f(A,O−).

This motivates us to develop the following minimax learning
methods. Specifically, we begin with two function classes
V,V† ⊂ {A × O → R} and a regularization parameter
λ ∈ R+. We next define the following minimax estimator,

b̂V = arg min
g∈V

max
f∈V†

ED[LV(g, f)]− λED[f2]. (8)

Here, we use the function class V to model the oracle value
bridge function, and the function class V† to measure the
discrepancy between a given g ∈ V and the oracle learnable
value bridge function. In practice, we can use linear basis
functions, neural networks, random forests, reproducing
kernel Hilbert spaces (RKHSs), etc., to parameterize these
functions. In the fully observable MDP setting, the above
optimization reduces to Modified Bellman Residual Mini-
mization (MBRM) when λ = 0.5 (Antos et al., 2008) and
Minimax Q-learning (MQL) when λ = 0 (Uehara et al.,
2020). It is worthwhile to mention that fitted Q-iteration
(FQI, Ernst et al., 2005), a popular policy learning method in
MDPs, cannot be straightforwardly extended to the POMDP
setting. This is because the regression estimator in each
iteration of FQI will be biased under the POMDP setting.

Similarly, according to (6), we consider the following esti-
mator for the weight bridge function,

b̂W = arg min
g∈W

max
f∈W†

ED[LW(g, f)]− λED[f2], (9)

for some function classes W,W† ⊂ {A × O → R} and
some λ ∈ R+.

In practice, we recommend to use linear models or RKHSs
to parametrize V † andW†. This allows us to get the closed-
form expression for the inner maximization. To the contrary,
V andW can be parametrized by any function classes such
as neural networks. When V andW are linear models or
RKHSs as well, we can obtain the complete closed-form
solution for b̂W . We discuss this further in Appendix D.

4.3. Theoretical Results for Minimax Estimators

We first investigate the nonasymptotic properties of the value
function-based estimator ĴVM. We next study the asymp-
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totic property of the DR estimator ĴDR. Results of the
importance sampling estimator can be similarly derived. We
discuss this in Appendix D. Our results extend some recently
established OPE theories in MDPs (Munos & Szepesvári,
2008; Chen & Jiang, 2019; Kallus & Uehara, 2019; Uehara
et al., 2021) to the POMDP setting. We assume the observed
dataset D consist of n i.i.d. copies of (O−, O,A,R,O+).
This i.i.d. assumption is commonly employed in the RL
literature to simplify the proof (see e.g., Dai et al., 2020).

4.3.1. VALUE FUNCTION-BASED METHODS

We begin with the value function-based estimator. First, to
measure the discrepancy between the estimated learnable
value bridge function b̂V and bV , we introduce the Bellman
residual error for POMDPs as follows:

Definition 3. The Bellman residual operator T maps a
given function f : A×O → R to another function T fsuch
that

T f(a, o) = E[Rπe(A | O) + γ
∑
a′

f(a′, O+)πe(A | O)

−f(A,O) | A = a,O− = o], ∀a, o.

The bellman residual error is defined as E[{T f(A,O−)}2].

By definition, the Bellman residual error is zero for any
learnable bridge function. As such, it quantifies how a given
function f deviates from the oracle value bridge functions.
In MDPs, it reduces to the standard Bellman residual error.

We next establish the rate of convergence of b̂V in the fol-
lowing theorem.

Theorem 3 (Convergence rate of b̂V ). Set λ > 0 in Equa-
tion 8. Suppose (a) there exists certain learnable bridge
function that satisfies Equation 5; (b) V and V† are finite
hypothesis classes; (c) V contains at least one learnable
bridge function; (d) T V ⊂ V†; (e) There exist some con-
stants CV and CV† such that ∀v ∈ V, ‖v‖∞ ≤ CV and
∀v ∈ V†, ‖v‖∞ ≤ CV† Then, there exists some universal
constant c > 0 such that for any δ > 0, with probability
1− δ, E[{T b̂V (A,O−)}2]1/2 is upper bounded by

cmax(1, CV , CV†)
√

log(|V||V†|c/δ)/n.

It is important to note we only assume the existence of the
learnable value bridge function in (a). We do not impose
any assumptions on weight bridge functions. Assumption
(b) can be further relaxed by assuming that V and V† are
general hypothesis classes. In that case, the convergence
rate will be characterized by the critical radii of function
classes constructed by V and V†. See e.g., Uehara et al.
(2021) for details. Assumption (c) is the realizability as-
sumption. Since learnable bridge functions are not unique,
we only require V to contain one of them. Assumption (d)

is the (Bellman) closedness assumption. It requires that the
discriminator class V† is sufficiently rich and the operator
B is sufficiently smooth. These assumptions are valid in
several examples, including tabular and linear models. To
save space, we relegate the related discussions to Appendix
D.

Next, we derive the convergence guarantee of the policy
value estimator.
Theorem 4 (Convergence rate of ĴVM). Suppose the weight
bridge functions b′W (·) and learnable value bridge functions
exist, and Assumption (a)-(e) in Theorem 3 hold. Then, there
exists some universal constant c > 0 such that for any δ > 0,
with probability 1− δ, |J(πe)− ĴVM| is upper bounded by

c
1−γ {max(1, CV , CV†)E[b′2W (A,O−)]} 1

2

√
log(|V||V†|c/δ)

n .

Theorem 4 requires a stronger condition than Theorem 3,
as we assume the existence of weight bridge function. Its
proof relies on the following key equation,

|J(πe)− ĴVM| ≤ E[b′2W (A,O−)]1/2E[{T b̂V (A,O−)}2]1/2,

where the upper bound for the second term on the right-
hand-side is given in Theorem 3.

Notice that Theorem 3 relies on the closedness assumption,
e.g., Assumption (d). We remark that this condition is not
necessary to derive the convergence rate of the final pol-
icy value estimator. In Theorem 10 (see Appendix D), we
show that when bV ∈ V, bW ∈ V†, similar results can be
established without any closedness conditions.

4.3.2. DR METHODS

We focus on the DR estimator in this section. We first
establish its doubly-robustness property in Theorem 5. It
implies that as long as either b̂W or b̂V is consistent, the
final estimator ĴDR is consistent.
Theorem 5 (Doubly-robustness property). Suppose As-
sumption 2 holds. Then J(f, g) defined in Equation 7 equals
J(πe) as long as either f = bW or g = bV .

We next show that ĴDR is efficient in the sense that it is
asymptotically normal with asymptotic variance equal to
the Cramér-Rao Lower Bound.

First, we provide the Cramér-Rao Lower Bound. To sim-
plify the technical proof, we focus on the tabular setting.
Nonetheless, we conjecture that the same result still holds
in the non-tabular setting as well. We leave further investi-
gation of this conjecture to future work.
Theorem 6. Suppose S,A,O are finite discrete spaces.
Assume rank(Prπb(O | A = a,O−)) = |S| = |O|. The
Cramér-Rao Lower Bound is given by

VEIF = E[J(bW , bV )2].
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We impose a rank assumption in Theorem 6. This condition
implies that the bridge functions are uniquely defined, and
so are the learnable bridge functions. We remark that with-
out such a uniqueness assumption, the Cramér-Rao Lower
Bound is not well-defined.

Next, we analyze the property of DR estimator. To avoid
imposing certain Donsker conditions (van der Vaart, 1998),
we focus on a sample-split version of ĴDR as in Zheng &
van der Laan (2011). It splits all data trajectories in D into
two independent subsets D1,D2, computes the estimated
bridge function b̂(1)

V , b̂
(1)
W (b̂(2)

V , b̂
(2)
W ) based on the data subset

in D2 (D1), and does the estimation of the value based on
the remaining dataset. Finally, we aggregate the resulting
two estimates to get full efficiency. This yields the following
DR estimator,

Ĵ∗DR = 0.5ED1
[J(b̂

(1)
W , b̂

(1)
V )] + 0.5ED2

[J(b̂
(2)
W , b̂

(2)
V )].

We summarize the results in the following theorem. Notice
that they are valid in the non-tabular setting as well.
Theorem 7. Assume the existence and uniqueness of bridge
and learnable bridge functions. Suppose b̂W , bW , b̂V , bV
are uniformly bounded by some constants, E[{b̂(j)W −
bW }2(A,O−)] = op(1),E[{T b̂(j)V (A,O−)}2] = op(1),

E[{
∑
a b̂

(j)
V (a,O) − bV (a,O)}2]1/2 = op(1),E[{b̂(j)W −

bW }2(A,O−)]1/2E[{T b̂(j)V (A,O−)}2]1/2 = op(n
−1/2)

for j = 1, 2. Then,
√
n(Ĵ∗DR − J(πe)) weakly converges to

a normal distribution with mean 0 and variance VEIF.

We again, make a few remarks. First, although the estimated
bridge functions are required to satisfy certain nonparamet-
ric rates only, the resulting value estimator achieves a para-
metric rate of convergence (e.g. n−1/2). This is essentially
due to the doubly-robustness property, which ensures that
the bias of the estimator can be represented as a product
of the difference between the two estimated bridge func-
tions and their oracle values. Second, Theorem 7 derives
the asymptotic variance of Ĵ∗DR, which can be consistently
estimated from the data. This allows us to perform a handy
Wald-type hypothesis testing. Finally, Theorem 7 requires a
stronger assumption, i.e., the uniqueness of bridge functions,
which implies that |S| = |O|. Without this assumption, it
remains unclear how to define the L2 error of the estimated
bridge function. However, we would like to remark that
imposing the uniqueness condition is not a weakness of
our analysis, but the CR lower bound statement we hope to
prove does not make sense if the condition fails.

5. Experiments
In this section, we evaluate the empirical performance of our
method using two synthetic datasets. In both datasets, the
state spaces are continuous. Hence, existing POMDP eval-
uation methods such as Tennenholtz et al. (2020) and Nair

Figure 3. Logarithms of relative biases and mean squared errors
(see Appendix E for the detailed definitions) of the proposed and
the baseline methods, with difference choices of w and sample
sizes. Confidence intervals are calculated from 10 simulations.
Upper panels: sample size equals 2e5. σO equals 0.5, 1.0 and 1.5,
from left to right. Bottom panels: σO is fixed to 1.

& Jiang (2021) are not directly applicable. The discounted
factor γ is fixed to 0.95 in all experiments.

5.1. One-Dimensional Dynamic Process

Environment We first consider a simple dynamic process
with a one-dimensional continuous state space and binary
actions. Similar environments have been considered in the
literature (see e.g., Shi et al., 2022a). The initial state distri-
bution, reward function and state transition are given by

S0 ∼ N (0, 0.52), Rt = St + 2At−1 − 1,

St+1 = 0.5St + (2At − 1) +N (0, 0.52),

respectively. The observation is generated according to
the additive noise model, Ot = St + N(0, σ2

O). Here, the
variance parameter σO characterizes the degree of partial
observability and hence the degree of unmeasured confound-
ing. In the extreme case where σO = 0, the states become
fully-observable and no unmeasured confounders exist. We
set the behavior and target policies to be sigmoid functions
of the state and the observation, respectively,

πb(1|s) =
1

1 + exp(s+ 1)
, πew(1|o) =

1

1 + exp(wo+ 1)
,

for w ∈ {−3,−2, 1, 2}.

Implementation and Baseline Method We use linear ba-
sis functions to approximate the bridge functions. In this
case, the proposed three estimators (ĴVM, ĴIS, ĴDR) coin-
cide with each other (see a similar phenomenon in Uehara
et al., 2020), so we compute the value function-based esti-
mator only. We compare our estimator to the standard linear
value function-based estimator that assumes no unmeasured
confounders, i.e., LSTDQ (Lagoudakis & Parr, 2003). See
additional implementation details in Appendix E.
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Figure 4. Logarithms of relative biases (left) and MSEs (right) of
the proposed (solid lines) and the baseline (dashed lines) estimators
and the associated confidence interval, based on 10 simulations,
with different choices of the temperature parameter τO . Obser-
vation in top panels is generated by injecting Gaussian noises
whereas the location of the cart is removed from the observation
in bottom panels.

Results For each simulation, we first generate 2000 tra-
jectories with 100 time points per trajectory. This yields
a total of 2e5 observations. Reported in the upper panels
of Figure 3 are the logarithms of relative mean squared er-
rors of the proposed and baseline methods, with different
choices of ω and σO. We make a few observations. First,
when σO ≥ 1, the proposed estimator is significantly better
than the baseline estimator. Second, when σO = 0.5, the
two methods perform comparably. As we have commented,
σO measures the degree of unmeasured confounding. For
moderately large σO, the baseline estimator cannot handle
unmeasured confounders, yielding a biased estimator. In
contrast, a smaller σO produces a less confounded dataset.
The two estimators thus achieve similar performance.

We next fix σO to 1.0, vary the number of trajectories gen-
erated in each simulation, and report the corresponding
relative biases and mean squared errors of the proposed and
baseline methods as well as the associated confidence in-
tervals in the bottom panels of Figure 3 and Figure 5 (see
Appendix E). It can be seen that the baseline estimator suf-
fers from a large bias. Their bias and MSE are constant
as functions of sample size. To the contrary, the bias and
MSE of the proposed estimator generally decrease with the
sample size, demonstrating its consistency.

5.2. CartPole

We next consider the CartPole environment from the Ope-
nAI Gym environment (Brockman et al., 2016). The state
variables are 4-dimensional and fully-observable. To create
partially observable environments, we simulate observations

by either adding independent Gaussian noises to each di-
mension of the states, i.e., O(j) = S(j)(1 + N (0, 0.12)),
1 ≤ j ≤ 4, or removing the location of the cart from the
observation. To generate data, we apply DQN (Mnih et al.,
2015) to the data that include latent states instead of ob-
servations, and set the behavior policy to a softmax policy
based on the estimated Q-function. The evaluation policy is
set to another softmax policy based on DQN applied to the
observational data (i.e., no latent states) with the tempera-
ture parameter given by τO. For each simulation, we collect
the dataset according to the behavior policy until the sample
size reaches 2e5. We consider three baseline estimators,
corresponding to the minimax Q-learning (MQL), minimax
weight learning (MWL) and DR estimators (Uehara et al.,
2020). These estimators cannot handle unmeasured con-
founders. The proposed value function-based, marginalized
IS and DR estimators are denoted by PO-MQL, PO-MWL
and PO-DR, respectively. We parametrize the bridge func-
tions using a two-layer neural network, and set the function
spaces V† andW† to RKHSs to facilitate the computation.
Some additional details about the environment and imple-
mentation are given in Appendix E. Results are reported
in Figures 4. It can be seen that the proposed estimator
achieves better performance in all cases.

6. Conclusion
We study OPE on POMDPs where behavior policies depend
on unobserved state variables. We propose a novel identifi-
cation method for the target policy’s value in the presence
of unmeasured confounders. Our proposal only relies on
the existence of bridge functions. We further propose mini-
max learning methods for computing these estimated bridge
functions that can be naturally coupled with function approx-
imation to handle a continuous or large state/observation
space. We also develop three types of policy value estima-
tors based on the bridge function estimators and provide
their nonasymptotic and asymptotic properties. In Section A,
we discuss the different between our proposal and a highly-
related concurrent work by Bennett & Kallus (2021).
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A. Additional Related Works
We discuss some additional related works in this section.

Minimax Estimation Our proposal defines the value and weight bridge functions as solutions to some integral equations.
Nonparametrically estimating these bridge functions is closely related to nonparametric instrumental variables (NPIV)
estimation. In NPIV estimation, the standard regression estimator is biased and variants of minimax estimation methods have
been developed to correct the bias (Dikkala et al., 2020; Muandet et al., 2019; Hartford et al., 2017; Bennett & Kallus, 2020).
In the RL literature, the minimax learning method has also been widely used for OPE without unmeasured confounders
(Antos et al., 2008; Chen & Jiang, 2019; Nachum et al., 2019; Feng et al., 2019; Uehara et al., 2020).

Negative Controls Our proposal is closely related to a line of research on developing causal inference methods to evaluate
the average treatment effect (ATE) with double-negative control adjustment. Among those works, Miao et al. (2018)
outlined a consistent estimator for ATE with a categorical confounder. More recent methods generalize their approach to the
continuous confounder setting (Deaner, 2018; Cui et al., 2020; Singh, 2020; Ghassami et al., 2021; Xu et al., 2021; Mastouri
et al., 2021). All the aforementioned methods focus on a contextual bandit setting (i.e., one-shot decision making) and are
not directly applicable to POMDPs that involve sequential decision making.

Comparison with Bennett & Kallus (2021) The difference between the work of Bennett & Kallus (2021) and our
proposal can be summarized as follows. Methodologically, the IS, VM, DR estimators developed in the two papers are
different. First, consider the IS estimator as an example. In fully-observable MDPs, our proposed estimator is reduced to
marginal IS estimators (Liu et al., 2018; Xie et al., 2019) whereas the IS estimator developed by Bennett & Kallus (2021) is
reduced to the cumulative IS estimator (Precup, 2000). Second, Bennett & Kallus (2021) do not introduce value bridge
functions as in our paper. Instead, they introduce an outcome bridge function to approximate the reward function at each
time step 0 ≤ t ≤ H − 1. Because of the difference between these definitions, their estimating procedure for the outcome
bridge functions involves the estimated weight bridge functions. In contrast, the estimation of value bridge functions in our
paper is agnostic to the estimation of weight bridge function.

Theoretically, we focus on the derivation of finite-sample error bounds. To the contrary, Bennett & Kallus (2021) focus
on establishing asymptotic properties. In addition, the efficiency bound they developed differs from ours (see Theorem 6).
Specifically, they focused on the non-tabular case whereas our bounded is limited to the tabular setting. Moreover, since we
focus on evaluating Markovian and stationary policies, in fully-observable MDPs, our bounds are reduced to those in Kallus
& Uehara (2019) whereas their bound is reduced to the one in Jiang & Li (2016).

B. Some Additional Details Regarding OPE in Partially Observable Contextual Bandits
We specialize our results in Section 3 to tabular settings. We use the following notation. Let X,Y be random variables
taking values {x1, · · · , xn} and {y1, · · · , ym}, respectively. Then we denote a n×m matrix with elements Pr(xi | yj) by
Pr(X | Y). Similarly, Pr(X) denotes a n-dimensional vector with elements xi. We denote the Moore-penrose inverse of
Pr(X | Y) by Pr(X | Y)+.

We next introduce the following assumption.

Assumption 3. Suppose rank(Prπb(O0|S0)) = |S| and rank(Prπb(O−1|S0)) = |S|.

As we have mentioned, Assumption 3 implies that |O| ≥ |S| and is weaker than the condition in Tennenholtz et al. (2020)
that requires the state and observation spaces have the same cardinality. The following lemma states that 3 is equivalent to
Assumption 2 in Nair & Jiang (2021).

Lemma 4. Suppose overlap conditions:

Prπb(O
− = o− | A0 = a) > 0, Prπb(O

− = o− | A0 = a) > 0

for any (s, a, o) ∈ S × A × O. Then, Assumption 3 holds if and only if rank(Prπb(O0|A0 = a,O−1)) = |S| for any
a ∈ A.

Then following Nair & Jiang (2021), the policy value can be explicitly identified as follows:
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Theorem 8 (Identification formula in the tabular setting).

J(πe) =
∑
a,r,o

rπe0(a|o)Prπb(r, o|O−1){Prπb(O0|A0 = a,O−1)}+Prπb(O0).

C. Identification under the Existence of Value Bridge Functions
To identify policy values, we have so far imposed the following assumptions: (a) learnable value bridge functions exist and
weight bridge functions exist; (b) learnable weight functions exist and value bridge functions exist. In this section, we show
that the policy value can also be identified with the existence of the learnable value bridge functions only. However, in that
case, we would need to impose some completeness conditions. We summarize the results in the following theorem.

Theorem 9 (Identification with completeness). Suppose a learnable value bridge function bV exists, and a completeness
assumption holds:

E[g(S,A) | A,O−] = 0 =⇒ g(S,A) = 0.

Then, we have J(πe) = Eõ∼νO [
∑
a bV (a, õ)].

Compared to Theorem 2, the existence of weight bridge functions is replaced with the completeness assumption.

D. Some Additional Details Regarding OPE in Time-Homogeneous POMDPs
As we have commented, we can use linear basis functions or RKHSs to estimate the bridge functions. Specifically, when V†
orW† is set to be the unit ball in an RKHS, then there exists a close form expression for the inner maximization problem
(see e.g., Liu et al., 2018). When linear basis functions are used, the proposed minimax optimization has explicit solutions,
as we elaborate in the example below.

Example 1 (Linear models). Let V = V† = {(a, o) 7→ θ>φ(a, o) : θ ∈ Θ} and λ = 0, where φ : A×O → Rd is a feature
vector and Θ ⊂ Rd. When the parameter space Θ is sufficiently large, it is immediate to see that

b̂V =

(
ED[φ(A,O−)φ>(A,O)]− γED

[∑
a′

πe(A | O)φ(A,O−)φ>(a′, O+)

])+

ED[Rπe(A | O)φ(A,O−)].

The resulting policy value estimator is given by

ED[
∑
a

φ(a,O)]>

(
ED[φ(A,O−)φ>(A,O)]− γED

[∑
a′

πe(A | O)φ(A,O−)φ>(a′, O+)

])+

ED[Rπe(A | O)φ(A,O−)].

Consider the standard MDP setting where S = O = O−, S+ = O+. By setting V = {(s, a) 7→ θ>πe(a | s)φ(a, s)},V† =
{(s, a) 7→ θ>φ(a, s)/πe(a | s)}, the above estimator reduces to classical LSTDQ estimator (Lagoudakis & Parr, 2003):

ED[φ(πe, S)]>
(
ED[φ(A,S)φ>(A,S)]− γED

[
φ(A,S)φ>(πe, S+)

])+ ED[Rφ(A,S)],

where φ(πe, s) = Ea∼πe(s)[φ(a, s)].

Alternatively, we may set V := {(a, o)→ πe(a|o)θ>φ(a, o) : θ ∈ Θ} instead. As discussed in Section 5.1, we find such a
parametrization has smaller approximation error in the implementation. The corresponding estimator is given by

EO∼νO,a∼πe(·|O)[φ(a,O)]>
(
ED[φ(A,O−)φ>(A,O)πe(A | O)

− γφ(A,O−)πe(A | O)Ea′∼πe(·|O+)[φ
>(a′, O+)]]

)+ED[Rπe(A | O)φ(A,O−)].

We next introduce two examples to further elaborate Theorem 3.

Example 2 (Tabular models). Consider the tabular case, and V and V† are fully expressive classes, i.e., linear in the
one-hot encoding vector over (A×O). Then, log(|V||V†|) is substituted by |O||A|. The Bellman closedness T V ⊂ V† is
satisfied. Our finite sample result circumvents the potentially complicated matrix concentration argument in POMDPs (see
e.g., Hsu et al., 2012) by viewing the problem from a general perspective.
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Example 3 (Linear models). Consider the case where V and V† are linear models. Then, log(|V||V|†) can be substituted by
the dimension of the feature vector d. The Bellman closedness assumption is satisfied when Pπb(R,O,O+ | A,O−) is linear
in φ(A,O−). In fully-observable MDPs, this reduces to the linear MDP model (Jin et al., 2020b), i.e., Pπb(R,S+ | A,S) is
linear in φ(A,S).

The next theorem shows that the finite sample rate of convergence for the value function-based estimator can be established
without any closedness assumption.

Theorem 10 (Convergence rate without closedness). Set λ in equations 8 and 9 to zero. Suppose (a) Assumption 2 holds so
that the bridge functions exist; (b) V and V† are symmetric finite hypothesis classes; (c) V contains certain learnable reward
bridge function; (d) V† contains learnable weight bridge function; (e) ∀v ∈ V, ‖v‖∞ ≤ CV and ∀v ∈ V†, ‖v‖∞ ≤ CV† .
Then, with probability 1− δ,

|J(πe)− ĴVM| ≤ cmax(1, CV , CV†)
2(1− γ)−2

√
log(|V||V†|c/δ)/n,

for some universal constant c > 0.

Next, we discuss the theoretical properties of the IS estimator. To establish its convergence rate, we can define the adjoint
Bellman residual operator T ′ as in (Uehara et al., 2021), and derive the convergence rate of E[{T ′b̂W (A,O+)}2]1/2 under
realizability (bW ∈ W) and (adjoint) closedness (T ′W ⊂W†). Similar to the proof of Theorem 4, this (adjoint) Bellman
residual error can be translated into the error of the estimated policy value. Without the closedness assumption, similar
results can be derived when bW ∈ W and bV ∈ W†.

E. Experiments
Measure of Estimation Error Given n datasetsD1, D2, ..., Dn, the estimators computed based on each dataset V̂1, ..., V̂n,
and the true value V , we define the relative bias to be

| 1
n

n∑
i=1

V̂i
V
− 1|.

Define the relative mean squared error to be:

| 1
n

n∑
i=1

( V̂i − V
V

)2

|.

In our experiments, we use the above two definitions to measure the estimation error of different estimators.

Additional Details for the 1d Continuous Dynamic Process Example Notice that the definition of the bridge value
function involves the evaluation policy. Instead of directly using linear models to parametrize bV , we set the function space
to V := {(a, o)→ πe(a|o)θ>φ(a, o) : θ ∈ Θ}. We find that such a parametrization has smaller approximation error. The
closed-form expression of the resulting estimator is given in Section D. We use the Python function RBFsampler to generate
random Fourier features. To mitigate the randomness arising from the features, for each dataset and each method, we use 5
different random seeds to generate 5 sets of RBF features and use the average value as the final estimator. The RBF kernel is
set to exp(−5x2), and the feature dimension is set to 100.

Additional Figures We next report the relative MSE of the two estimators in the following figure.
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Figure 5. Experiments with varying sample size. Noise Level σO = 1.0

CartPole Environment The state space is 4-dimensional, including position and velocity of cart, and angle and angle
velocity of pole. The action space is {0, 1}, corresponding to pushing the cart to the left or to the right. In addition, we use a
modified reward function to better distinguish values among different policies. Specifically, the reward is defined as

r = |2.0− x

xclip
| · |2.0− θ

θclip
| − 1.0

where x and θ are the position of Cart and angle of Pole, respectively, and xclip and θclip are the thresholds such that the
episode will terminate (done = True) when either |x| ≥ xclip or |θ| ≥ θclip. Under this definition, the reward will be larger
when the cart is closer to the center and the angle of the pole is closer to perpendicular. It is straightforward to show that r is
bounded between 0 and 3. Since we set γ = 0.5, the value is bounded between 0 and 60.

CartPole Implementation We set the adversarial function spaces V† andW† to RKHSs to facilitate the computation.
Both bv in PO-MQL and bw in PO-MWL are parameterized by a two-layer neural network with layer width = 256 and
ReLU as activation function, and are optimized by a kernel loss function (see the derivation below).

In the following, we use K(x1;x2) to denote the RBF kernel:

K(x1;x2) := exp(−‖x1 − x2‖2
2β2

)

where β denotes the bandwidth parameter. We choose β = med/2 during the training of PO-MWL (bw) or MWL, and
β = med/5 for PO-MQL (bv) or MQL, where “med” is the median of the l2-distance over the samples in the dataset.

Derivation of the Loss Function for PO-MQL (bv) Similar to the experiments in Toy environments, we reparameterize
g function with ḡ · πe, and therefore the predictor with g should be adjusted by replacing g with ḡ · πe:

EO∼νO,A∼πe [ḡ(O,A)πe(A|O)].

The loss function is given by:

max
f

L2
V (g, f) = max

f

(
E[(Rπe(A|O) + γEa′∼πe [g(a′, O+)]πe(A|O)− g(A,O)πe(A|O))f(A,O−)]

)2

= max
f

(〈
f,E[Rπe(A|O) + γEa′∼πe [g(a′, O+)]πe(A|O)− g(A,O)πe(A|O)]K(A,O−; ·)

〉
HK

)2

=E[
(
Rπe(A|O) + γEa′∼πe [g(a′, O+)]πe(A|O)− πe(A|O)g(A,O)

)
K(A,O−; Ā, Ō−)

·
(
R̄πe(Ā|Ō) + γEā′∼πe [g(ā′, Ō+)]πe(Ā|Ō)− πe(Ā|Ō)g(Ā, Ō)

)
].
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Derivation of the Loss Function for PO-MWL (bw) Similarly, we reparameterize f function with f̄ · πe. Since we do
not change the parameterization of bw, we only need to adjust the loss function without changing the estimator:

max
f

L2
W (g, f)

= max
f

(
E[γg(O−, A)πe(A|O)

∑
a′

f(O+, a′)− g(O−, A)f(O,A)] + (1− γ)EO∼νO [
∑
a′

f(O, a′)]
)2

= max
f

(
E[γg(O−, A)πe(A|O)Ea′∼πe(·|O+)[f̄(O+, a′)]− g(O−, A)πe(A|O)f̄(O,A)] + (1− γ)EO∼νO,a′∼πe [f̄(O, a′)]

)2

= max
f

(
E[γg(O−, A)πe(A|O)Ea′∼πe(·|O+)[〈f̄ ,K(O+, a′; ·)a]− g(O−, A)πe(A|O)〈f̄ ,K(O,A; ·)a]

+ (1− γ)EO∼νO,a′∼πe [〈f̄ ,K(O, a′; ·)a]
)2

= max
f

(
〈f̄ ,E[γg(O−, A)πe(A|O)

(
Ea′∼πe(·|O+)[K(O+, a′; ·)]−K(O,A; ·)

)
] + (1− γ)EO∼νO,a′∼πe [K(O, a′; ·)]a

)2

=E[g(O−, A)πe(A|O)g(Ō−, Ā)πe(Ā|Ō)·(
γ2K(O+, πe; Ō+, πe) +K(O,A; Ō, Ā)− γK(O+, πe; Ō, Ā)− γK(O,A; Ō+, πe)

)
]

+ (1− γ)2E[K(O0, π
e; Ō0, π

e)] (no gradient)

+ γ(1− γ)E[g(O−, A)πe(A|O)K(O+, πe; Ō0, π
e) + g(Ō−, Ā)πe(Ā|Ō)K(O0, π

e; Ō+, πe)]

− (1− γ)E[g(O−, A)πe(A|O)K(O,A; Ō0, π
e) + g(Ō−, Ā)πe(Ā|Ō)K(O0, π

e; Ō, Ā)].

where we denote

K(O, πe; Ō, πe) := Ea′∼πe(·|O),ā′∼πe(·|Ō)[K(O, a′; Ō, Ā), K(O, πe; Ō, Ā) := Ea′∼πe(·|O)[K(O, a′; Ō, Ā)].

Loss Function for Baseline Estimators We follow Uehara et al. (2020) to define the MQL and MWL loss function with
the adversarial function space given by RHKSs. The loss function for MQL is given by:

max
f

L2
q(f, q) =E[

(
R+ γEa′∼πe(·|O+)[q(a

′, O+)]− q(A,O)
)
K(A,O; Ā, Ō)

(
R̄+ γEā′∼πe(·|Ō+)[q(ā

′, Ō+)]− q(Ā, Ō)
)

].

The loss function for MWL is given by:

max
f

L2
w(f, w)

=E[w(O,A)w(Ō, Ā)
(
K(O+, πe; Ō+, πe) +K(O,A; Ō, Ā)− γK(O+, πe; Ō, Ā)− γK(O,A; Ō+, πe)

)
]

+ (1− γ)2E[K(O0, π
e; Ō0, π

e)] (no gradient)

+ γ(1− γ)E[w(O,A)K(O+, πe; Ō0, π
e) + w(Ō, Ā)K(O0, π

e; Ō+, πe)]

− (1− γ)E[w(O,A)K(O,A; Ō0, π
e) + w(Ō, Ā)K(O0, π

e; Ō, Ā)].

In addition, we use the same neural network architecture and the same choice of bandwidth during the training of MQL/MWL
as those for PO-MQL/PO-MWL.

F. OPE in Time-inhomogeneous POMDPs
We consider the time-inhomogeneous setting in this section where the system dynamics, evaluation and behavior policies
are allowed to vary over time. We first introduce the identification method for the target policy’s value by introducing value
and weight bridge functions. We next present the proposed value function-based, IS and DR estimators. We remark that
although we focus on evaluation of Markovian policies in this section, the proposed value function-based estimator can be
extended to settings where evaluation policies are history-dependent in Section G.
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Ok-1 Sk Ok

Ak Rk

(a) The case where we use the prior observation as a negative control.

Jk-1 Sk Ok

Ak Rk

(b) The case where we use the prior history as a negative control.

F.1. Identification

We first introduce the bridge function and the learnable bridge function. For any j ≥ 1, Let µj(sj) =
Pπe,j(sj)
P
πb,j

(sj)

where Pπe,j and Pπb,j are the marginal density functions of Sj under πe and πb, respectively. Let Jj−1 =
{O0, A0, O1, A1, R1, O2, · · · , Rj−1}.

Assumption 4 (Existence of bridge functions). There exist value bridge functions {b′[j]V }
H−1
j=0 and weight bridge functions

{b′[j]W }
H−1
j=0 , defined as solutions to

E[b
′[j]
V (Aj , Oj) | Aj , Sj ] = Eπe [

H−1∑
t=j

γt−jRtπ
e
j (Aj | Oj)|Aj , Sj ], (10)

E[b′jW (Aj , Jj−1) | Aj , Sj ] = µj(Sj)
1

Pπb(Aj | Sj)
. (11)

Definition 4 (Learnable bridge functions). Learnable value bridge functions {b[j]V }
H−1
j=0 and learnable weight bridge

functions {b[j]W }
H−1
j=0 are defined as solutions to

E[b
[j]
V (Aj , Oj) | Aj , Jj−1] = E[Rjπ

e
j (Aj | Oj) + γ

∑
a′

b
[j+1]
V (a′, Oj+1)πej (Aj | Oj) | Aj , Jj−1],

E

[∑
a′

b
[j]
W (Aj , Jj−1)πej (Aj |Oj)f(Oj+1, a

′)− b[j+1]
W (Aj+1, Jj)f(Oj+1, Aj+1)

]
= 0, ∀f : A×O → R.

(12)

It is important to note that we use the whole history Jj−1 in the integral equations to define the learnable bridge functions.
Alternatively, one can replace Jj−1 with the most recent observation Oj−1. The advantage of using the whole history over a
single observation is that it requires weaker assumptions to ensure the existence of the bridge functions. See the discussion
below Assumption 5 for details.

Next, we present our key identification theorem under Assumption 4.

Theorem 11. Suppose Assumption 4 holds. Then, bridge functions are learnable bridge functions. In addition, any
learnable bridge function satisfies

J(πe) = E[
∑
a

b
[0]
V (a,O0)], J(πe) = E[

H−1∑
t=0

b
[t]
W (At, Jt−1)πet (At | Ot)γtRt].
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The next theorem states we can similarly identify the policy value by assuming the completeness.
Theorem 12. Suppose the existence of leanrbale value bridge functions and the completeness:

E[g(Sj , Aj) | Aj , Jj−1] = 0 =⇒ g() = 0.

Then, any learnable bridge function satisfies

J(πe) = E[
∑
a

b
[0]
V (a,O0)].

To further elaborate Assumptions in Theorem 11 and Theorem 12, we focus on the tabular setting in the rest of this section
when S,O, and the reward space are discrete.

First, we see sufficient conditions to ensure Assumptions in Theorem 11. Assumptions in Theorem 11, i.e., Assumption 4,
are immediately implied by the following conditions.
Assumption 5. For any 0 ≤ j ≤ H − 1,

rank(Pr(Oj | Sj)) = |S|, rank(Pr(Jj−1 | Sj)) = |S|.

Next, we see sufficient conditions to ensure Assumption in Theorem 12. Assumptions in Theorem 12 are immediately
implied by the following conditions.
Assumption 6. For any 0 ≤ j ≤ H − 1,

rank(Pr(Oj | Sj)) = |S|, rank(Pr(Sj | Jj−1, Aj = a)) = |S|.

These assumptions imply that the state space is sufficiently informative and |O| ≥ |S|. Clearly, this shows the advantage
of using the whole Jj−1 as a negative control rather than Oj−1 itself since rank(Pr(Jj−1 | Sj)) = |S| is weaker than
rank(Pr(Oj−1 | Sj)) = |S|, and similarly, rank(Pr(Sj | Jj−1, Aj = a)) = |S| is weaker than rank(Pr(Sj | Oj−1)) =
|S|.

In addition, Assumption 6 is equivalent to Assumption 2 in Nair & Jiang (2021) (rank(Pr(Oj | Jj−1, Aj = a)) = |S| ) as
we see in the bandit setting. Under this assumption, the policy value is identifiable, as we show in the following lemma.
Lemma 5. Suppose Assumption 6 holds. Then the policy value equals

∑
s0,a0,··· ,rH−1

H−1∑
k=0

γkrkτkPrπb(rk, ok | ak,Jt−1)Prπb(Ok | ak,Jt−1)
+Prπb(Ok, ok−1 | ak−1,Jk−2)Prπb(Ok−1 | ak−1,Jk−2)

+

× · · ·Prπb(O0),

where τk =
∏k
t=1 π

e
t (at | ot).

F.2. Estimation

We present the estimation method in this section. Suppose we have certain consistent estimators b̂V = {b̂[j]V } and b̂W = {b̂[j]W }
for bV = {b[j]V } and bW = {b[j]W }, respectively. Theorem 11 suggests that we can estimate the policy value based on the
following value function-based and IS estimators.

ĴVM = E[
∑
a

b̂
[0]
V (a,O0)], ĴIS = ED[

H−1∑
t=0

b̂
[t]
W (At, Jt−1)πet (At | Ot)γtRt].

In addition, we can similarly combine these two estimators to construct the DR estimator ĴDR = ED[J(b̂V , b̂W )] where

J(f, g) =
∑
a

f [0](a,O0) +

H−1∑
k=0

γkg[k](Ak, Jk−1)

(
πek(Ak | Ok){Rk + γ

∑
a+

f [k+1](a+, Ok+1)} − f [k](Ak, Ok)

)
,

where f = {f [t]} and g = {g[t]} such that f [t] : A×O → R, g[t] : A× Jt−1 → R. Here, Jt denotes the domain over Jt.

In the fully observable MDP setting, ĴIS reduces to the one in Xie et al. (2019) and ĴDR reduces to the one in Kallus &
Uehara (2020). The following theorem proves the doubly-robustness property of ĴDR.
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Theorem 13 (Doubly robust property). Under Assumption 4, for any f = {f [t]} and g = {g[t]} such that g[t] : A×Jt−1 →
R, f [t] : A×O → R, we have

J(πe) = E[J(bV , g)] = E[J(f, bW )].

Finally, we discuss how to estimate the learnable bridge functions. Similar to equation 8 and equation 9, we can employ
minimax learning to estimate bV and bW based on the integral equations in equation 12. However, different from equation 8
and equation 9, bV and bW need to be estimated in a recursive fashion in the time-inhomogeneous setting. Specifically, to
estimate bV , we begin by defining b̂[H]

V = 0. We next sequentially estimate b̂[H−1]
V , b̂

[H−2]
V , · · · , b̂[0]

V in a backward manner.
Similarly, to learn bW , we define b̂[−1]

W = 1 and recursively estimate b̂[0]
W , b̂

[1]
W , · · · , b̂

[H−1]
W in a forward manner. Theoretical

properties of these minimax estimators can be similarly established, as in Section 4.3, and we omit the technical details.

G. Evaluation of History-Dependent Policies
We have so far assumed that the evaluation policies are Markovian. In this section, we consider the case when evaluation
policies are history-dependent, i.e., πe : O × J̃t−1 → ∆(A) where J̃t−1 =

∏t−1
k=0(O ×A). Note J̃t−1 is different from

Jt−1 recalling Jt−1 = O × {
∏t−1
k=0(O ×A)}. We mainly analyze the value-function based estimator in this section.

We introduce the value and learnable bridge functions as follows. They are natural extensions of Assumption 4 and
Definition 4 for history-dependent policies. Let J̃j−1 = {O0, A0, · · · , OH−1, AH−1}. Note this is contained in Jj−1 =
{O−0 , O0, A0, · · · , OH−1, AH−1}.

Assumption 7 (Existence of bridge functions). There exist value bridge functions {b′[j]V }
H−1
j=0 defined as solutions to

E[b
′[j]
V (Aj , Oj , J̃j−1) | Aj , Sj , J̃j−1] = Eπe [

H−1∑
t=j

γt−jRtπ
e
j (Aj | Oj , J̃j−1)|Aj , Sj , J̃j−1].

There exist weight bridge functions {b′[j]W }
H−1
j=0 defined as solutions to

E[b
′[j]
W (Aj , Jj−1) | Aj , Sj , J̃j−1] = µj(Sj , J̃j−1)/πbj(Aj | Sj)

where µj(Sj , J̃j−1) is Pπe,j(Sj , J̃j−1)/Pπb,j(Sj , J̃j−1).

Definition 5 (Learnable bridge functions). Learnable value bridge functions {b[j]V }
H−1
j=0 are defined as solutions to

E[b
[j]
V (Aj , Oj , J̃j−1) | Aj , Jj−1] = E[Rjπ

e
j (Aj | Oj , J̃j−1) + γ

∑
a′

b
[j+1]
V (a′, Oj+1, J̃j)π

e
j (Aj | Oj , J̃j−1) | Aj , Jj−1].

It is worthwhile to note Jj is contained in J̃j . If evaluation policies depend on the whole Jj , it is unclear how to identify the
policy value in our framework.

Now, we are ready to prove the identification formula.

Theorem 14.

• Suppose Assumption 7. Then, any learnable bridge function satisfies

J(πe) = E[
∑
a

b
[0]
V (a,O0)].

• Suppose the existence of value bridge functions and the completness assumption:

E[g(Sj , Aj , J̃j−1) | Aj , Jj−1] = 0 =⇒ g(·) = 0

for any 0 ≤ j ≤ H − 1. Then, any learnable bridge function satisfies

J(πe) = E[
∑
a

b
[0]
V (a,O0)].
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Similar to Section F, bV can be estimated in a recursive fashion. In the tabular setting, the sufficient conditions to ensure the
existence of value bridge functions and the completness is

rank(Pr(Oj | Aj = a,Jj−1)) = |S|.

The nonasymptotic properties of the resulting estimator can be similarly established as in Section 4.3

H. Omitted proof
H.1. Proof of Section 3

Proof of Lemma 1. First, we prove the value-function based identification formula:

E[
∑
a

b′V (a,O0)] = E[
∑
a

E[b′V (a,O0)|S0]] = E[
∑
a

E[b′V (a,O0)|A0 = a, S0]] (A0 ⊥ O0 | S0)

= E[
∑
a

E[R0π
e(a|O0)|A0 = a, S0]] (Definition of bridge functions)

= E[
∑
a

E[R0|A0 = a, S0]E[πe(a | O0) | A0 = a, S0]] (R0 ⊥ O0 | A0, S0)

= E[
∑
a

E[R0|A0 = a, S0]E[πe(a | O0) | S0]] (A0 ⊥ O0 | S0)

= E[
∑
a

E[R0|A0 = a, S0]πe(a | O0)]

= J(πe). (From standard regression formula)

Second, we prove the importance sampling identification formula:

E[bW (A0, O
−
0 )R0π

e(A0 | O0)] = E[E[b′W (A0, O
−
0 ) | S0, A0]R0π

e(A0 | O0)] (O−0 ⊥ R0 | S0, A0)

= E[1/πb(A0 | S0)πe(A0 | O0)R0] (Definition of b′W )
= J(πe). (From standard IPW formula)

Proof of Lemma 2. We first prove reward bridge functions are learnable reward bridge functions:

E[R0π
e(A0|O0) | A0, O

−
0 ] = E[E[R0π

e(A0|O0) | A0, S0, O
−
0 ] | A0, O

−
0 ]

= E[E[R0π
e(A0|O0) | A0, S0] | A0, O

−
0 ] (R0, O0 ⊥ O−0 | S0, A0)

= E[E[b′V (A0, O0) | A0, S0] | O−0 , A0] (Definition of bridge functions)

= E[E[b′V (A0, O0) | S0, O
−
0 , A0] | O−0 , A0] (O0 ⊥ O−0 | S0, A0)

= E[b′V (A0, O0) | O−0 , A0].

Next, we prove weight bridge functions are learnable weight bridge functions:

E[b′W (A0, O
−
0 ) | A0, O0] = E[E[b′W (A0, O

−
0 ) | A0, O0, S0] | A0, O0]

= E[E[b′W (A0, O
−
0 ) | A0, S0] | A0, O0] (O0 ⊥ O−0 | A0, S0)

= E[1/πb(A0 | S0) | A0, O0] (Definition of bridge functions)

= E[1/πb(A0 | S0, O0) | A0, O0] (A0 ⊥ O0 | S0)
= 1/Pπb(A0 | O0).
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Proof of Lemma 3. First, note

E[
∑
a

f(O0, a)− bW (A0, O
−
0 )f(O0, A0)] = 0, ∀f : O ×A → R,

is equivalent to

E[f(O0, a)− bW (A0, O
−
0 )I(A0 = a)f(O0, a)] = 0, ∀f : O ×A → R,∀a ∈ A.

This condition is equivalent to

E[f(O0, a){1− bW (A0, O
−
0 )πb(a0 | O0)}] = 0, ∀f : O ×A → R.

This is equivalent to bW (A0, O
−
0 )πb(a0 | O0) = 1.

Proof of Theorem 1. We prove the importance sampling formula. Let b′V be a reward bridge function and bW be an learnable
bridge function. Then,

J(πe) = E[
∑
a

b′V (a,O0)] = E[1/Pπb(A0 | O0)b′V (A0, O0)] (Result of Lemma 1)

= E[E[bW (A0, O
−
0 ) | A0, O0]b′V (A0, O0)] (Definition)

= E[bW (A0, O
−
0 )b′V (A0, O0)]

= E[bW (A0, O
−
0 )E[b′V (A0, O0) | A0, S0]]

= E[bW (A0, O
−
0 )E[R0π

e(A0 | O0) | A0, S0]] (Definition)

= E[bW (A0, O
−
0 )R0π

e(A0 | O0)].

We prove the value function based formula. Let b′W be a weight bridge function and bV be an learnable weight bridge
function. Then,

J(πe) = E[b′W (A0, O
−
0 )R0π

e(A0 | O0)] = E[b′W (A0, O
−
0 )E[R0π

e(A0 | O0) | A0, O
−
0 ]] (Result of Lemma 1)

= E[b′W (A0, O
−
0 )bV (A0, O0)] (Definition)

= E[E[b′W (A0, O
−
0 ) | A0, S0]bV (A0, O0)]

= E[1/πb(A0 | S0)bV (A0, O0)] (Definition)

= E[
∑
a

bV (a,O0)].

H.1.1. DISCRETE SETTING

(Tennenholtz et al., 2020) assume the following.

Assumption 8. Pr(O0 | A0 = a,O−0 ),Pr(S0 | A0 = a,O−0 ) are invertible.

This implies |S| = |O|, which is very strong. Remark this is also assumed in the paper which proposed negative controls
(Miao et al., 2018). Instead, we require the following weaker assumption:

Assumption 9. rank(Pr(O0 | S0)) = |S| and rank(Pr(O−0 | S0)) = |S|.

We show this is equivalent to the assumption in (Nair & Jiang, 2021):

Assumption 10. rank(Pr(O0 | A0 = a,O−0 )) = |S|.
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Proof of Lemma 4. Assumption 9 implies Assumption 10 since

|S| = rank(Pr(O0 | A0 = a,O−0 )) ≤ min(rank(Pr(O0 | A0 = a,S0)), rank(Pr(S0 | A0 = a,O−0 ))).

Besides, we have

{Pr(S0 | A0 = a,O−0 )}> = Λ1Pr(O−0 | A0 = a,S0)Λ2

where Λ1 is a |O−| × |O−| matrix s.t. (i, i)-th element is 1/Pπb(O
− = o− | S0 = s) and Λ2 is a |S| × |S| matrix s.t.

(i, i)-th element is Pπb(S − 0 = s | A0 = a). Thus, rank(Pr(O−0 | S0)) = rank(Pr(O−0 | A0 = a,S0)) = rank(Pr(S0 |
A0 = a,O−0 )) ≥ |S|. Then, Assumption 10 is concluded.

Assumption 9 implies assumption 10 from Sylvester’s rank inequality:

|S| = rank(Pr(O0 | A0 = a,S0)) (From Assumption 9)

= rank(Pr(O0 | A0 = a,S0)) + rank(Pr(O−0 | A0 = a,S0))− |S| (From Assumption 9)

= rank(Pr(O0 | A0 = a,S0)) + rank(Pr(S0 | A0 = a,O−0 ))− |S| (See argument above)

≤ rank(Pr(O0 | A0 = a,S0)Pr(S0 | A0 = a,O−0 )) ( Sylvester’s rank inequality:)

= rank(Pr(O0 | A0 = a,O−0 )).

Besides,

rank(Pr(O0 | A0 = a,O−0 )) ≤ min(rank(Pr(O0 | A0 = a,S0)), rank(Pr(S0 | A0 = a,O−0 ))) = |S|.

Thus,

rank(Pr(O0 | A0 = a,O−0 )) = |S|.

Finally, we give the identification formula:

Proof of Theorem 8. We have

Pr(O0 | O−0 , a) = Pr(O0 | S0, a) Pr(S0 | O−0 , a), Pr(r, o | O−0 , a) = Pr(r, o | S0, a) Pr(S0 | O−0 , a).

Let the SVD decomoposition of Pr(O0 | O−0 , a) be ABC, where A is a |O| × |S| matrix, B is a |S| × |S| matrix, and C is
a |S| × |O| matrix.

I = A> Pr(O0 | O−0 , a)C>B−1 = A> Pr(O0 | S0, a) Pr(S0 | O−0 , a)C>B−1.

Therefore, we have

A> Pr(O0 | S0) = {Pr(S0 | O−0 , a)C>B−1}−1.

noting Pr(S0 | O−0 , a)C>B−1 is full-rank matrix from the assumption.

In addition, we have

Pr(r, o | O−0 , a)C>B−1 = Pr(r, o | S0, a) Pr(S0 | O−0 , a)C>B−1. (13)

Thus,

Pr(r, o | S0, a) = Pr(r, o | O−0 , a)C>B−1{Pr(S0 | O−0 , a)C>B−1}−1 (From (13))

= Pr(r, o | O−0 , a)C>B−1A> Pr(O0 | S0, a)

= Pr(r, o | O−0 , a){Pr(O0 | O−0 , a)}+ Pr(O0 | S0).
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Besides,

J =
∑
a,r,o,s

rp(r, o | s, a)πe(a | o)p(s) (Definition)

=
∑
a,r,o,s

Pr(r, o | O−0 , a){Pr(O0 | O−0 , a)}+ Pr(O0 | s)πe(A | O)p(s)

=
∑
a,r,o

rπe(a | o) Pr(r, o | O−0 , a){Pr(O0 | O−0 , a)}+ Pr(O0).

H.2. Proof of Section 4.1

We define Q(s, a) := E[b′V (a,O) | A = a, S = s]. We show this Q(s, a) satisfies a recursion formula.

Lemma 6.

Q(S,A) = E[Rπe(A | O) | A,S] + γE

[∑
a′

Q(S+, a′)πe(A | O) | A,S

]
.

Proof of Lemma 6. From the definition,

Q(s, a) = E[R0π
e(a | O0) | A0 = a, S0 = s] + Eπe

[ ∞∑
t=1

γtRtπ
e(a | O0) | A0 = a, S0 = s

]
.

Then, we have

Eπe
[ ∞∑
t=1

γtRtπ
e(a | O0) | A0 = a, S0 = s

]

= γE

[∑
a′

Eπe [
∞∑
t=1

γt−1Rt | S1, A1 = a′]πe(a′ | O1)πe(a | O0) | A0 = a, S0 = s

]

= γE

[∑
a′

Eπe [
∞∑
t=1

γt−1Rt | S1, A1 = a′]E[πe(a′ | O1) | S1, A1 = a′]πe(a | O0) | A0 = a, S0 = s

]

= γE

[∑
a′

Eπe [
∞∑
t=1

γt−1Rtπ
e(a′ | O1) | S1, A1 = a′]πe(a | O0) | A0 = a, S0 = s

]
(R1, · · · , RH−1 ⊥ O1 | S1, A1)

= γE

[∑
a′

Qπ
e

(a′, S1)πe(a | O0) | A0 = a, S0 = s

]
.

In conclusion,

Q(S,A) = E[Rπe(a | O) | A,S] + γE

[∑
a′

Q(S+, a′)πe(A | O) | A,S

]
.

By using the above lemma, we show learnable reward bridge functions are reward bridge functions. This is a part of the
statement in Theorem 2.

Lemma 7 (Learnable reward bridge functions are reward bridge functions).

E[b′V (A,O) | A,O−] = E[Rπe(a | O) | A,O−] + γE

[∑
a′

b′V (a′, O+)πe(A | O) | A,O−
]
.
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Proof. From Lemma 6, we have

E[b′V (A,O) | S,A] = E[Rπe(a | O) | A,S] + γE

[∑
a′

E[b′V (a′, O+)|S+]πe(A | O) | A,S

]

= E[Rπe(a | O) | A,S] + γE

[∑
a′

b′V (a′, O+)πe(A | O) | A,S

]
.

Then, from O,R,O+ ⊥ O− | S,A, we have

E[E[b′V (A,O) | S,A]|A,O−] = E[E[b′V (A,O) | S,A,O−]|A,O−] = E[b′V (A,O) | A,O−]

E[E[Rπe(A | O) | A,S]|A,O−] = E[E[Rπe(A | O) | A,S,O−]|A,O−] = E[Rπe(A | O) | A,O−]

E

[[∑
a′

b′V (a′, O+)πe(A | O) | A,S

]
| A,O−

]
= E

[∑
a′

b′V (a′, O+)πe(A | O) | A,O−
]
.

In conclusion,

E[b′V (A,O) | A,O−] = E[Rπe(A | O) | A,O−] + γE

[∑
a′

b′V (a′, O+)πe(A | O) | A,O−
]
.

Next, we show learnable weight bridge functions are action bridge functions. This is a part of the statement in Theorem 2.
Here, letting w(s) = dπe(s)/b(s), recall

E
[
γw(S)

πe(A|O)

πb(A|S)
f(S′)− w(S)f(S)

]
+ (1− γ)ES̃∼ν [f(S̃)] = 0, ∀f : S → R (14)

from Kallus & Uehara (2019, Lemma 16 ) which is a modification of the lemma in (Liu et al., 2018). Recall ν is an initial
distribution.

Lemma 8 (Learnable weight bridge functions are weight bridge functions.).

E
[
γb′W (A,O−)πe(A|O)f(O+, a′)− I(A = a′)b′W (A,O−)f(O,A)

]
+ (1− γ)EÕ∼νO [f(Õ, a′)] = 0, ∀f : S → R.

Similarly,

E

[∑
a′∈A

γb′W (A,O−)πe(A|O)f(O+, a′)− b′W (A,O−)f(O,A)

]
+ (1− γ)EÕ∼νO [

∑
a′∈A

f(Õ, a′)] = 0, ∀f : S → R.

Proof. We first prove the first statement:

E
[
γb′W (A,O−)πe(A | O)f(O+, a′)− I(A = a′)b′W (A,O−)f(O,A)

]
= E

[
γE[b′W (A,O−) | A,S,O+, O]πe(A | O)f(O+, a′)− I(A = a′)E[b′W (A,O−) | A,S,O]f(O,A)

]
= E

[
γE[b′W (A,O−) | A,S]πe(A | O)f(O+, a′)− I(A = a′)E[b′W (A,O−) | A,S]f(O,A)

]
= E

[
γw(S)/πb(A | S)πe(A|O)f(O+, a′)− w(S)I(A = a′)/πb(A | S)f(O,A)

]
(Definition)

= E
[
γw(S)/πb(A | S)πe(A|O)E[f(O+, a′) | S+, A,O, S]− w(S)I(A = a′)/πb(A | S)E[f(O,A) | S,A = a′]

]
= E

[
γw(S)πe(A|O)/πb(A | S)E[f(O+, a′) | S+]− w(S)E[f(O, a′) | S]

]
= −(1− γ)ES∼ν [E[f(Õ, a′) | S]] (From (14))

= −(1− γ)EÕ∼νO [f(Õ, a′)].

The second statement is proved by taking summation over the action space.
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Finally, we show if bridge functions exist, we can identify the policy value. Before proceeding, we prove the following
helpful lemma.

Lemma 9 (Identification formula with (unlearnable) bridge functions ). Assume the existence of bridge functions. Then, let
b′V , b

′
W be any bridge functions. Then, we have

J(πe) = EÕ∼νO [
∑
a

b′V (a, Õ)], J(πe) = (1− γ)−1E[b′W (A,O−)Rπe(A | O)].

Proof. The first formula is proved as follows:

EÕ∼νO [
∑
a

b′V (a, Õ)] = ES∼ν [E[
∑
a

b′V (a, Õ) | S]] = ES∼ν [E[
∑
a

b′V (a, Õ) | A = a, S]]

= ES0∼ν [E[
∑
a

b′V (a, Õ0) | A0 = a, S0]]

= ES0∼ν [
∑
a

Eπe [
∞∑
t=0

γtRtπ
e(a | O0)|A0 = a, S0]] (Definition)

= ES0∼ν [
∑
a

Eπe [Eπe [
∞∑
t=0

γtRt | A0 = a, S0, O0]πe(a | O0)|A0 = a, S0]]

= ES0∼ν [
∑
a

qπ
e

(S0, a)Eπe [πe(a | O0)|A0 = a, S0]]

= ES0∼ν [
∑
a

qπ
e

(S0, a)Eπe [πe(a | O0)|S0]] = ES0∼ν [
∑
a

qπ
e

(S0, a)πe(a | O0)]

= J(πe).

Here, we define Eπe [
∑∞
t=0 γ

tRt|A0 = a, S0 = s] = qπ
e

(a, s).

The second formula is proved as follows:

E[b′W (A,O−)Rπe(A | O)] = E[E[b′W (A,O−) | A,S,R,O]πe(A | O)R]

= E[E[b′W (A,O−) | A,S]πe(A | O)R] ( O− ⊥ R,O | S,A)

= E
[
w(S)

πb(A|S)
πe(A | O)R

]
(Definition)

= J(πe).

We are ready to give the proof of the final identification formula Theorem 2. The statement is as follows.

Theorem 15. Assume the existence of bridge functions. Let bV , bW be any learnable bridge functions. Then,

J(πe) = EÕ∼νO [
∑
a′

bV (Õ, a′)], J(πe) = (1− γ)−1E[bW (A,O−)Rπe(A | O)].

Proof. First, we prove the first formula. This is concluded by

J(πe) = (1− γ)−1E[b′W (A,O−)Rπe(A | O)] (From Lemma 9)

= (1− γ)−1E[b′W (A,O−)E[Rπe(A | O) | A,O−]]

= (1− γ)−1E

[
b′W (A,O−)E

[
γ
∑
a′

bV (a′, O+)πe(A | O)− bV (A,O) | A,O−
]]

(b′W is also an learnable action bridge function.)

= EÕ∼νO [
∑
a′

bV (Õ, a′)]. (From Lemma 8)
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Next, we prove the second formula. This is concluded by

J(πe) = EÕ∼νO [
∑
a′

b′V (Õ, a′)] (From Lemma 9)

= (1− γ)−1E

[
bW (A,O−)E

[
γ
∑
a′

b′V (a′, O+)πe(A | O)− b′V (A,O) | A,O−
]]

(Definition of bW )

= (1− γ)−1E[bW (A,O−)E[Rπe(A | O) | A,O−]] (b′V is also an learnable reward function.)

= (1− γ)−1E[bW (A,O−)Rπe(A | O)].

Proof of Theorem 9. We show any learnable value bridge functions also are value bridge functions. Then, from Lemma 9,
the statement is immediately concluded.

By the assumption O,R,O+ ⊥ O− | S,A we can conclude any bV satisfies

E

[
E

[
γ
∑
a′

bV (a′, O+) +Rπe(A | O)− bV (A,O) | S,A

]
| A,O−

]
= 0.

From the completeness assumption,

E

[
γ
∑
a′

bV (a′, O+) +Rπe(A | O)− bV (A,O) | S,A

]
= 0.

Then, from a fixed-point theorem, this implies

E[bV (a,O) | S,A] = qπ(s, a).

Thus, bV is a value bridge function.

H.3. Proof of Section 4.3.1

Proof of Theorem 3. By simple algebra, the estimator is written as

b̂V = inf
f∈V

sup
g∈V†

ED[(Zf)2]− ED[(Zf − g(A,O−))2]

where Zf = Rπe(A | O) +
∑
a′ f(a′, O+)πe(A | O)− f(A,O). In this proof, we define

C̄ = max(CV , CV† , 1).

Furthermore, c is some universal constant.

Show the convergence of inner maximizer For fixed f ∈ V , we define

ĝf = sup
g∈V†

−ED[(Zf − g(A,O−))2],

we want to prove with probability 1− δ:

∀f ∈ V : |ED[(Zf − ĝf (A,O−))2]− ED[(Zf − T f)2(A,O−)]| ≤ C̄2 c log(|V||V†|c/δ)
n

.

Note since T f is the Bayes optimal regressor, we have

E[(Zf − T f(A,O−))2 − (Zf − g(A,O−))2] = E[(T f − g(A,O−))2]. (15)
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Hereafter, to simplify the notation, we often drop (A,O−). Then, from Bernstein’s inequality, with probability 1− δ,

∀f ∈ V,∀g ∈ V† : |{ED − E}[(Zf − T f)2 − (Zf − g)2]| ≤ cC̄
√

E[(T f − g)2] log(|V||V†|c/δ)
n

+
cC̄2 log(|V||V†|c/δ)

n
.

(16)

Hereafter, we condition on the above event. In addition, from Bellman closedness assumption T V ⊂ V†,

ED[(Zf − ĝf )2 − (Zf − T f)2] ≤ 0. (17)

Then,

E[(T f − ĝf )2] = E[(Zf − T f)2 − (Zf − ĝf )2] (From (15))

≤ |{ED − E}[(Zf − T f)2 − (Zf − ĝf )2]|+ ED[(Zf − ĝf )2 − (Zf − T f)2]

≤ |{ED − E}[(Zf − T f)2 − (Zf − ĝf )2]| (From (17))

≤ cC̄
√

E[(T f − ĝf )2] log(|V||V†|c/δ)
n

+
cC̄2 log(|V||V†|c/δ)

n
. (From (16))

This concludes

E[(T f − ĝf )2] ≤ cError, Error :=
C̄2 log(|V||V†|c/δ)

n
. (18)

Then,

|ED[(Zf − ĝf )2]− ED[(Zf − T f)2]| ≤ E[(Zf − T f)2 − (Zf − ĝf )2] + cError ( From (16) and from (18))

= E[(T f − ĝf )2] + cError (From (15))
≤ 2cError. (From (18))

Show the convergence of outer minimizer From the first observation, we can see

ED[(Z b̂V )2 − (Z b̂V − T b̂V (A,O−))2] ≤ ED[(ZbV )2 − (ZbV − T bV (A,O−))2] + cError. (19)

Note

E[(Zf)2 − (Zf − T f(A,O−))2 − {(ZbV )2 − (ZbV − T bV (A,O−))2}] = E[(T f)(A,O−)2]

Here, from Bernstein’s inequality, with probability 1− δ,

∀f ∈ V,(ED − E)[(Zf)2 − (Zf − T f)2 − {(ZbV )2 − (ZbV − T bV )2}] (20)

≤ C̄
√
E[(T f)2(A,O−)]

log(|V|/δ)
n

+
C̄2 log(|V|/δ)

n
. (21)

Hereafter, we condition on the above event. Then,

E[(T b̂V )2(A,O−)] = E[(Z b̂V )2 − (Z b̂V − T b̂V )2 − {(ZbV )2 − (ZbV − T bV )2}]

≤ |(ED − E)[(Z b̂V )2 − (Z b̂V − T b̂V )2 − {(ZbV )2 − (ZbV − T bV )2}]

+ ED[(Z b̂V )2 − (Z b̂V − T b̂V )2 − {(ZbV )2 − (ZbV − T bV )2}]|

≤ C̄
√
E[(T b̂V )2(A,O−)]

log(|V|c/δ)
n

+
C̄2 log(|V|c/δ)

n
+ cError.

In the last line, we use (21) and (19). This concludes

E[(T b̂V )2(A,O−)] ≤ cError.
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Proof of Theorem 4. Recall

J(πe) = E[bW (A,O−)E[Rπe(A | O) | A,O−]

from Theorem 15 and the existence of bW . Furthermore,

(1− γ)EÕ∼νO [
∑
a′

b̂V (Õ, a′)]

= E

[
bW (A,O−)E

[
γ
∑
a′

b̂V (a′, O+)πe(A | O)− b̂V (A,O) | A,O−
]]

.

(bW ’s are also observe bridge functions form Theorem 2)

Thus, this concludes

J(πe)− EÕ∼νO [
∑
a′

b̂V (Õ, a′)]

= (1− γ)−1E

[
bW (A,O−)E

[
γ
∑
a′

b̂V (a′, O+)πe(A | O) +Rπe(A | O)− b̂V (A,O) | A,O−
]]

= (1− γ)−1E
[
bW (A,O−)T b̂V (A,O−)

]
.

Then, from CS inequality, we have

|J(πe)− EÕ∼νO [
∑
a′

b̂V (Õ, a′)]| ≤ (1− γ)−1E[bW (A,O−)2]1/2E[{T b̂V (A,O−)}2]1/2.

This concludes the final statement.

H.4. Proof of Section 4.3.2

Proof of Theorem 5. The first statement J(πe) = E[J(f, bV )] is proved by Lemma 8:

E[J(f, bV )] = EÕ∼νO [
∑
a

bV (a, Õ)] + E

[
f(A,O−)

1− γ
{{R+ γ

∑
a′

bV (a′, O+)}πe(A | O)− bV (A,O)}

]
= EÕ∼νO [

∑
a

bV (a, Õ)] (Definition of reward bridge functions)

= J(πe). (From Theorem 15)

The second statement J(πe) = E[J(bW , f)] is proved by Lemma 7:

E[J(bW , f)] = EÕ∼νO [
∑
a

f(a, Õ)] + E

[
bW (A,O−)

1− γ
{{R+ γ

∑
a′

f(a′, O+)}πe(A | O)− f(A,O)}

]
= (1− γ)−1E[Rπe(A | O)bW (A,O−)] (Definition of weight bridge functions)
= J(πe). (From Theorem 15)

Proof of Theorem 6. Recall we have the observation:

Z = {O−, A,O,R,O+}.
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We define

τk =

k∏
t=1

πet (at | ot), τa:b =

b∏
t=a

πet (at | ot).

From (Nair & Jiang, 2021; Tennenholtz et al., 2020), the target functional is

J =
∑
k=0

γk
∑
jrk

rkτkPr(rk, ok | ak,Ok−1){Pr(Ok | ak,Ok−1}−1Pr(Ok, ok−1 | ak−1,Ok−2){Pr(Ok−1 | ak−1,Ok−2)}−1 · · ·Pr(O0).

We use the assumption rank(Pr(O | A = a,O−)) = |S| = |O|, i.e., Pr(O | A = a,O−) is full-rank.

We will show the existence of φEIF(Z) s.t.

∇J(θ) = E[φEIF(Z)∇ logP (Z)].

Then, E[φEIF(Z)φ>EIF(Z)] is the Cramér-Rao lower bound.

Before the calculation, we introduce the bridge functions. Due to the assumptions, these are unique. By letting jk :=
{o0, a0, r0, a1, o1, r1, · · · , rk}, we define bV (a, o) as

bV (a0, o0) =

∞∑
k=0

γk
∑

jrk\(a0,o0)

rkτkPr(rk, ok | ak,Ok−1){Pr(Ok | ak,Ok−1}−1 · · · {Pr(O0 | a0,O−1)}−1I(O0 = o0).

Next, we define bW (a, o−). Recall

dπ
e

k (ok) =
∑

jok\ok

τk−1I(Ok = ok)>Pr(Ok, ok−1 | ak−1,Ok−2){Pr(Ok−1 | ak−1,Ok−2)}−1 · · ·Pr(O0).

where jok := {o0, a0, r0, a1, o1, r1, · · · , ok}. Then, we define bW (a, o−) as

bW (a, o−) =
I(O− = o−)

Pr(a, o−)
{Pr(O | a,O−}−1dπ

e

(O), dπ
e

(o) =

∞∑
k=0

γkdπ
e

k (o)/(1− γ).

Now, we are ready to calculate the Cramér-Rao lower bound. We have

∇J(θ) = B1 +B2 +B3

where B1, B2 and B3 are given by∑
k=0

γk
∑
jrk

rkτk∇Pr(rk, ok | ak,Ok−1){Pr(Ok | ak,Ok−1}−1Pr(Ok, ok−1 | ak,Ok−2){Pr(Ok−1 | ak−1,Ok−2)}−1 · · ·Pr(O0),

∑
j

∑
k=0

γk
k∑
t=0

rkτkPr(rk, ok | ak,Ok−1){Pr(Ok | ak,Ok−1}−1 · · ·Pr(Ot+1, ot | at,Ot−1)∇{Pr(Ot | at,Ot−1)}−1 · · ·Pr(O0),

∑
j

∑
k=0

γk
k−1∑
t=0

rkτkPr(rk, ok | ak,Ok−1){Pr(Ok | ak,Ok−1}−1 · · ·∇Pr(Ot+1, ot | at,Ot−1){Pr(Ot | at,Ot−1)}−1 · · ·Pr(O0),

respectively. Here, we use the notation j = {s0, a0, r0, · · · }.
We first analyze B1: It is equal to∑
k=0

γk
∑
jrk

rkτk∇Pr(rk, ok | ak,Ok−1){Pr(Ok | ak,Ok−1}−1Pr(Ok, ok−1 | ak,Ok−2){Pr(Ok−1 | ak−1,Ok−2)}−1 · · ·Pr(O0)

= (1− γ)−1
∑
r,a,o

rπe(a | o)∇Pr(r, o | a,O−){bW (a,O−)� Pr(a,O−)}

= (1− γ)−1
∑

r,a,o,o−

rπe(a | o)∇Pr(r, o | a, o−)bW (a, o−)Pr(a, o−)

= (1− γ)−1
∑

r,a,o,o−

rπe(a | o){∇ log Pr(r, o | a, o−)}bW (a, o−)Pr(r, o, a, o−),
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where � is an element-wise product. Then, we have

(1− γ)B1 = E[bW (A,O−)Rπe(A | O)∇ log Pr(R,O | A,O−)]

= E[bW (A,O−){Rπe(A | O)− E[Rπe(A | O) | A,O−]}∇ log Pr(R,O | A,O−)]

= E[bW (A,O−){Rπe(A | O)− E[Rπe(A | O) | A,O−]}∇ log Pr(R,O,A,O−)]

= E[bW (A,O−){Rπe(A | O)− E[Rπe(A | O) | A,O−]}∇ log Pr(O+, R,O,A,O−)].

Next, we analyze B2:

∑
j

∑
k=0

γk
k∑
t=0

rkτkPr(rk, ok | ak,Ok−1){Pr(Ok | ak,Ok−1}−1 · · ·Pr(Ot+1, ot | at,Ot−1)∇{Pr(Ot | at,Ot−1)}−1 · · ·

× Pr(O0) =
∑
j

∑
t=0

γt
∞∑
k=t

γk−tτkrkPr(rk, ok | ak,Ok−1){Pr(Ok | ak,Ok−1}−1 · · ·Pr(Ot+1, ot | at,Ot−1)

×∇{Pr(Ot | at,Ot−1)}−1 · · ·Pr(O0) =
∑
j

∑
t=0

γt
∞∑
k=t

γk−tτkrkPr(rk, ok | ak,Ok−1){Pr(Ok | ak,Ok−1}−1 · · ·

× Pr(Ot+1, ot | at,Ot−1){Pr(Ot | at,Ot−1)}−1{∇Pr(Ot | at,Ot−1)}{Pr(Ot | at,Ot−1)}−1 · · ·Pr(O0)

= −
∑
t=0

γtτtbV (at,Ot){∇Pr(Ot | at,Ot−1)}{Pr(Ot | at,Ot−1)}−1 · · ·Pr(O0)

= −(1− γ)−1
∑
a

bV (a,O){∇Pr(O | a,O−){bW (a,O−)� Pr(a,O−)}}.

Further, we have

(1− γ)B2 = E[bW (A,O−)bV (A,O)∇ log Pr(O | A,O−)]

= E[bW (A,O−)bV (A,O){∇ log Pr(O | A,O−) +∇ log Pr(R,O+ | A,O−, O)}]
= E[bW (A,O−)bV (A,O)∇ log Pr(R,O+, O | A,O−)]

= E[bW (A,O−){bV (A,O)− E[bV (A,O) | A,O−]}∇ log Pr(R,O+, O | A,O−)]

= E[bW (A,O−){bV (A,O)− E[bV (A,O) | A,O−]}∇ log Pr(R,O+, O,A,O−)].

Finally, we analyze B3:

∑
j

∑
k=0

γk
k−1∑
t=0

rkτkPr(rk, ok | ak,Ok−1){Pr(Ok | ak,Ok−1}−1 · · ·∇Pr(Ot+1, ot | at,Ot−1){Pr(Ot | at,Ot−1)}−1

· · · × Pr(O0) =
∑
j

∑
t=0

γtτt

∞∑
k=t+1

γk−trkτt+1:kPr(rk, ok | ak,Ok−1){Pr(Ok | ak,Ok−1}−1 · · ·∇Pr(Ot+1, ot | at,Ot−1)

× {Pr(Ot | at,Ot−1)}−1 · · ·Pr(O0) =
∑
j

∑
t=0

γtτtbat+1(Ot+1)∇Pr(Ot+1, ot | at,Ot−1){Pr(Ot | at,Ot−1)}−1 · · ·Pr(O0)

= (1− γ)−1
∑
j

γπe(a | o)bV (a+,O+)∇Pr(O+, o | a,O−){bW (A,O−)� Pr(a,O−)}

= (1− γ)−1
∑

a+,o+,o,a,o−

γπe(a | o)bV (a+, o+)∇ logP (o+, o | a, o−)bW (a, o−)Pr(o+, o, a, o−).

Thus, (1− γ)B3 is equal to

γE[bW (A,O−)πe(A | O)
∑
a+

bV (a
+, O+)∇ logP (O+, O | A,O−)]

= γE[bW (A,O−)πe(A | O)
∑
a+

bV (a
+, O+)∇ logP (R,O+, O | A,O−)]

= γE[bW (A,O−){πe(A | O)
∑
a+

bV (a
+, O+)− E[πe(A | O)

∑
a+

bV (a
+, O+) | A,O−]}∇ logP (R,O+, O | A,O−)]

= γE[bW (A,O−){πe(A | O)
∑
a+

bV (a
+, O+)− E[πe(A | O)

∑
a+

bV (a
+, O+) | A,O−]}∇ logP (R,O+, O,A,O−)].
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Combining all things together, (1− γ)(B1 +B2 +B3) is

E[bW (A,O−){Rπe(A | O)− E[Rπe(A | O) | A,O−]}∇ log Pr(O+, R,O,A,O−)]

+ E[bW (A,O−){bV (A,O)− E[bV (A,O) | A,O−]}∇ log Pr(R,O+, O,A,O−)]

+ γE[bW (A,O−){πe(A | O)
∑
a+

bV (a+, O+)− E[πe(A | O)
∑
a+

bV (a+, O+) | A,O−]}∇ logP (R,O+, O,A,O−)]

= E[bW (A,O−){Rπe(A | O) + γπe(A | O)
∑
a+

bV (a+, O+)− bV (A,O)}∇ logP (R,O+, O,A,O−)].

Hence, the following is φEIF:

φEIF = (1− γ)−1bW (A,O−){Rπe(A | O) + γπe(A | O)
∑
a+

bV (a+, O+)− bV (A,O)}.

Proof of Theorem 7. By some algebra, we have

J(f, g)− J(bV , bW ) = B1 +B2 +B3

where

B1 = {f(a, o−)− bW (a, o−)}{{γ
∑
a′

{g(a′, O+)− bV (a′, o+)}}πe(a | o)− g(a, o) + bV (a
′, o+)},

B2 = Eõ∼νO [
∑
a′

g(a, õ)]− Eõ∼νO [
∑
a′

bV (a, õ)] + bW (a, o−){γ
∑
a′

{g(a′, o+)− bV (a′, o+)}πe(a | o)− g(a, o) + bV (a, o)},

B3 = {bW (a, o−)− f(a, o−)}{{r + γ
∑
a′

bV (a
′, o+)}πe(a | o)− bV (a, o)}}.

Recall the estimator is constructed as

Ĵ∗DR = 0.5ED1 [J(b̂
(1)
W , b̂

(1)
V )] + 0.5ED2 [J(b̂

(2)
W , b̂

(2)
V )].

We analyze ED1
[J(b̂

(1)
W , b̂

(1)
V )]− J(πe). This is expanded as

√
n(ED1

[J(b̂
(1)
W , b̂

(1)
V )]− J(πe)) =

√
n/n1GD1

[J(b̂
(1)
W , b̂

(1)
V )− J(bW , bV )]

+
√
n/n1GD1

[J(bW , bV )]

+
√
n/n1(E[J(b̂

(1)
W , b̂

(1)
V ) | D2]− J(πe))

where GD1
=
√
n1(ED1

− E). In the following, we analyze each term.

Analysis of
√
n/n1GD1

[J(b̂
(1)
W , b̂

(1)
V )− J(bW , bV )]. We show that the conditional variance given D2 is op(1). Then, the

rest of the argument is the same as the proof of Kallus & Uehara (2019, Theorem 7). This is proved by

var[
√
n1ED1 [J(b̂

(1)
W , b̂

(1)
V )] | D2] = E[B2

1 +B2
2 +B2

3 + 2B1B2 + 2B1B3 + 2B1B2 | D2] = op(1).

For example, E[B2
3 | D2] = op(1) is proved by

E[B2
3 | D2] . E[(b̂W − bW )2(A,O−)]E[{T b̂V }2(A,O−)] = op(1).

Analysis of
√
n/n1(E[J(b̂

(1)
W , b̂

(1)
V ) | D2]− J(πe)). Here,we have

E[J(b̂
(1)
W , b̂

(1)
V ) | D2] = |E[B1 +B2 +B3 | D2]|

= |E[B3 | D2]| ≤ E[B2
3 | D2]1/2 ≤ E[(b̂W − bW )2(A,O−)]1/2E[{T b̂V }2(A,O−)]1/2

= op(n
−1/2
1 ). (From convergence rate condition)
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Combine all things. Thus,
√
n(ED1

[J(b̂
(1)
W , b̂

(1)
V )]− J(πe)) =

√
n/n1GD1

[J(bW , bV )] + op(n
−1/2).

This immediately concludes
√
n(Ĵ∗DR − J(πe)) = Gn[J(bW , bV )] + op(n

−1/2)

where Gn =
√
n(ED − E).

H.5. Proof of Appendix D

Proof of Theorem 10. From Hoeffding inequality, we use with probability 1− δ:

∀f ∈ V,∀g ∈ V†; |(E− ED)
[
f(A,O−)Zg(A,R,O,O+))

]
| ≤ c{max(1, CV , CV†)}

√
log(|V||V†|/δ)/n. (22)

Recall Z : g(a, o) 7→ rπe(a | o) +
∑
a′ g(a′, O+)πe(a | o)− g(a, o). Hereafter, we condition this event.

In this proof, we often use the following:

E[f(A,O−)(Zg)(A,R,O,O+)] = E[f(A,O−)T g(A,O−)].

Recall T : g 7→ E[Rπe(A | O) +
∑
a′ f(a′, O+)πe(a | O)− g(A,O) | A = a,O− = o].

As a first step, we have

|J(πe)− ĴVM| ≤
∣∣∣(1− γ)−1E

[
bW (A,O−)Z b̂V (A,R,O,O+)

]∣∣∣ .
Here, we have∣∣∣E [bW (A,O−)Z b̂V (A,R,O,O+)

]∣∣∣
≤
∣∣∣(E− ED)

[
bW (A,O−)Z b̂V (A,R,O,O+)

]∣∣∣+
∣∣∣ED [bW (A,O−)Z b̂V (A,R,O,O+)

]∣∣∣
≤ c
√

log(|V||V†|c/δ)/n+ sup
f∈V†

∣∣∣ED [f(A,O−)Z b̂V (A,R,O,O+)
]∣∣∣ (Use (22) and bW ∈ V†)

≤ c
√

log(|V||V†|c/δ)/n+ sup
f∈V†

∣∣ED [f(A,O−)ZbV (A,R,O,O+)
]∣∣ (bV ∈ V)

= c
√

log(|V||V†|c/δ)/n+ sup
f∈V†

∣∣ED [f(A,O−)T bV (A,O−)
]∣∣

≤ c
√

log(|V||V†|c/δ)/n.

In the final line, we use

E
[
f(A,O−)T bV (A,O−)

]
= 0, ∀f : A×O → R;

thus,

sup
f∈V†

∣∣ED [f(A,O−)ZbV (A,R,O,O+)
]∣∣

=
∣∣ED [f�(A,O−)ZbV (A,R,O,O+)

]∣∣ ( f� = maxf∈V† |ED [f(A,O−)ZbV (A,O−)]|)

≤
∣∣E[
[
f�(A,O−)ZbV (A,R,O,O+)

]∣∣+ c
√

log(|V||V†|c/δ)/n (From (22))

=
∣∣E[
[
f�(A,O−)T bV (A,O−)

]∣∣+ c
√

log(|V||V†|c/δ)/n = c
√

log(|V||V†|c/δ)/n.
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H.6. Proof of Section F

We denote E[b′jV (Aj , Oi) | Aj = a, Sj = s] by Qj(a, s).

Lemma 10.

Qj(Aj , Sj) = E[Rjπ
e
j (Aj | Oj) | Aj , Sj ] + γE

[∑
a′

Qj+1(a′, Sj+1)πej (Aj | Oj) | Aj , Sj

]
.

Proof. From the definition, we have

Qj(Aj , Sj) = E[Rjπ
e
j (Aj | Oj) | Sj , Aj ] + Eπe

 H−1∑
t=j+1

γt−jRtπ
e
j (Aj | Oj) | Aj , Sj

 .
Then,

Eπe

 ∑
t=j+1

γt−jRtπ
e
j (Aj | Oj) | Aj , Sj

 = Eπe

Eπe
 ∑
t=j+1

γt−jRt | Aj , Sj+1, Oj+1, Oj , Sj

πej (Aj | Oj) | Aj , Sj


= E

∑
a′

Eπe [
∑
t=j+1

γt−jRt | Sj+1, Aj+1 = a′, Oj+1, Oj ]π
e
j+1(a′ | Oj+1)πej (Aj | Oj) | Aj , Sj


= E

∑
a′

Eπe [
∑
t=j+1

γt−jRt | Sj+1, Aj+1 = a′]πej+1(a′ | Oj+1)πej (Aj | Oj) | Aj , Sj


= E

∑
a′

Eπe [
∑
t=j+1

γt−jRt | Sj+1, Aj+1 = a′]E[πej+1(a′ | Oj+1) | Sj+1, Aj+1 = a′]πej (Aj | Oj) | Aj , Sj


= E

∑
a′

Eπe [
∑
t=j+1

γt−jRtπ
e
j+1(a′ | Oj+1) | Sj+1, Aj+1 = a′]πej (Aj | Oj) | Aj , Sj


= γE

[∑
a′

Qj+1(a′, Sj+1)πej (Aj | Oj) | Aj , Sj

]
.

Lemma 11 (Learnable reward bridge functions are reward bridge functions).

E[b
′[j]
V (Aj , Oj) | Aj , Jj−1] = E[Rjπ

e
j (Aj | Oj) | Aj , Jj−1] + γE

[∑
a′

b
′[j+1]
V (a′, Oj+1)πej (Aj | Oj) | Aj , Jj−1

]
.

Proof. From Lemma 10, we have

E[b
′[j]
V (Aj , Oj) | Aj , Sj ]

= E[Rjπ
e
j (Aj | Oj) | Aj , Sj ] + γE

[∑
a′

E[b
′[j+1]
V (a′, Oj+1)|Sj+1, Oj ]π

e
j (Aj | Oj) | Aj , Sj

]

= E[Rjπ
e
j (Aj | Oj) | Aj , Sj ] + γE

[∑
a′

b
′[j+1]
V (a′, Oj+1)πej (Aj | Oj) | Aj , Sj

]
.
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Then, from Oj , Oj+1, Rj ⊥ Jj−1 | Aj , Sj , the statement is concluded by

E[E[b
′[j]
V (Aj , Oj) | Aj , Sj ] | Aj , Jj−1] = E[b

′[j]
V (Aj , Oj) | Aj , Jj−1],

E[E[Rjπ
e
j (Aj | Oj) | Aj , Sj ] | Aj , Jj−1] = E[Rjπ

e
j (Aj | Oj) | Aj , Jj−1],

E

[
E

[∑
a′

b
′[j+1]
V (a′, Oj+1)πej (Aj | Oj) | Aj , Sj

]
| Aj , Jj−1

]
= E

[∑
a′

b
′[j+1]
V (a′, Oj+1)πej (Aj | Oj) | Aj , Jj−1

]
.

Lemma 12 (Learnable weight bridge functions are weight bridge functions).

E
[
b
′[j]
W (Aj , Jj−1)πej (Aj |Oj)f(Oj+1, a

′)− I(Aj+1 = a′)b
′[j+1]
W (Aj+1, Jj)f(Oj+1, Aj+1)

]
= 0, ∀f : O ×A → R.

and

E

[∑
a′

b
′[j]
W (Aj , Jj−1)πej (Aj |Oj)f(Oj+1, a

′)− b′[j+1]
W (Aj+1, Jj)f(Oj+1, Aj+1)

]
= 0, ∀f : O ×A → R.

Proof. We first prove the first statement:

E
[
b
′[j]
W (Aj , Jj−1)πej (Aj |Oj)f(Oj+1, a

′)− I(Aj+1 = a′)b
′[j+1]
W (Aj+1, Jj)f(Oj+1, Aj+1)

]
= E

[
E[b
′[j]
W (Aj , Jj−1) | Aj , Oj , Sj , Oj+1]πej (Aj |Oj)f(Oj+1, a

′)
]

− E
[
I(Aj+1 = a′)E[b

′[j+1]
W (Aj+1, Jj) | Oj+1, Aj+1, Sj+1]f(Oj+1, Aj+1)

]
= E

[
µ(Sj)ηj(Aj |Oj)f(Oj+1, a

′)− I(Aj+1 = a′)
µ(Sj+1)

Pπb(Aj+1 | Sj+1)
f(Oj+1, Aj+1)

]
= Eπe [f(Oj+1, a

′)]− Eπe [f(Oj+1, a
′)]

= 0.

Then, we can prove the second statement by taking summation over the action space.

Lemma 13 (Identification formula with unlearnable bridge functions). Assume the existence of bridge functions. Then, let
b′V = {b′[j]V }, b′W = {b′[j]W } be any bridge functions.

J(πe) = E

∑
j

γjb
′[j]
W (Aj , Jj−1)πej (Aj | Oj)Rj

 , J(πe) = E

[∑
a

b
′[0]
V (a,O0)

]
.

Proof. We prove the first formula:

E

∑
j

γjb
′[j]
W (Aj , Jj−1)πej (Aj | Oj)Rj

 = E

∑
j

γjE[b
′[j]
W (Aj , Jj−1) | Aj , Sj ]πej (Aj | Oj)Rj


= E

∑
j

γj
µj(Sj)

Pπb(Aj | Sj)
πej (Aj | Oj)Rj

 (Definition of bridge functions)

= J(πe).
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We prove the second formula:

E

[∑
a

b
′[0]
V (a,O0)

]
= E

[
E[
∑
a

b
′[0]
V (a,O0) | S0]

]
= E

[
E[
∑
a

b
′[0]
V (a,O0) | S0, A0 = a]

]

= E

[∑
a

Eπe [
H−1∑
t=0

γtRtπ
e
0(a | O0) | S0, A0 = a]

]
(Definition of bridge functions)

= E

[∑
a

Eπe [
H−1∑
t=0

γtRt | S0, A0 = a]E[πe0(a | O0) | S0, A0 = a]

]

= E

[∑
a

Eπe [
H−1∑
t=0

γtRt | S0, A0 = a]πe0(a | O0)

]
= J(πe).

Lemma 14 (Final identification formula). Assume the existence of bridge functions. Let bV = {b[j]V }, bW = {b[j]W } be any
learnable bridge functions.

J(πe) = E[
∑
a

b
[0]
V (a,O0)], J(πe) = E

H−1∑
j=0

γjb
[j]
W (Aj , Jj−1)πej (Aj | Oj)Rj

 .

Proof. We prove the first formula:

J(πe) = E

∑
j

γjb
′[j]
W (Aj , Jj−1)πej (Aj | Oj)Rj

 (From Lemma 13)

= E

∑
j

γjb
′[j]
W (Aj , Jj−1)E[πej (Aj | Oj)Rj | Aj , Jj−1]


= E

∑
j

γjb
′[j]
W (Aj , Jj−1){γ

∑
a

E[b
[j+1]
V (a,Oj+1)πej (Aj | Oj) | Aj , Jj−1]− E[b

[j]
V (Aj , Oj) | Aj , Jj−1]}


(bV are value bridge functions.)

=

H−1∑
j=1

γjE

[
b′j−1
W (Aj−1, Jj−2)πej−1(Aj−1 | Oj−1)

∑
a

b
[j]
V (a,Oj)− b′[j]W (Aj , Jj−1)b

[j]
V (Aj , Oj)

]
+ E[

∑
a

b
[0]
V (a,O0)]

= E[
∑
a

b
[0]
V (a,O0)]. (Value bridge functions are learnable bridge functions.)
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Next, we prove the second formula:

J(πe) = E[
∑
a

b
′[0]
V (a,O0)] (From Lemma 13)

=

H−1∑
j=1

γjE

[
b
[j−1]
W (Aj−1, OJj−2)πej−1(Aj−1 | Oj−1)

∑
a

b
′[j]
V (a,Oj)− b[j]W (Aj , Jj−1)b

′[j]
V (Aj , Oj)

]
(Definition of weight bridge functions)

+ E[
∑
a

b
′[0]
V (a,O0)]

= E

∑
j

γjb
[j]
W (Aj , Jj−1){γ

∑
a

E[b
′(j+1)
V (a,Oj+1)πej (Aj | Oj) | Aj , Jj−1]− E[b′jV (Aj , Oj) | Aj , Jj−1]}


= E

∑
j

γjb
[j]
W (Aj , Jj−1)E[πej (Aj | Oj)Rj | Aj , Jj−1]


(Reward bridge functions are learnable reward bridge functions)

= E

∑
j

γjb
[j]
W (Aj , Jj−1)πej (Aj | Oj)Rj

 .

Proof of Lemma 5. This is proved in Nair & Jiang (2021, Theorem 3). Especially, our formula is their specific formula
when using left singular vectors for M . We refer the readers to read their proof.

Next, we prove the doubly robust property.

Proof of Theorem 13. The first statement J(πe) = E[J(bV , g)] is proved by the definition of reward bridge functions:

E

[∑
a

b
[0]
V (a,O0) +

H−1∑
k=0

γkg[k](Ak, Jk−1)

(
πek(Ak | Ok){Rk + γ

∑
a+

b
[k+1]
V (a+, Ok+1)} − b[k]

V (Ak, Ok)

)]

= E

[
H−1∑
k=0

γkg[k](Ak, Jk−1)E

(
πek(Ak | Ok){Rk + γ

∑
a+

b
[k+1]
V (a+, Ok+1)} − b[k]

V (Ak, Ok) | Ak, Jk−1

)]

+ E

[∑
a

b
[0]
V (a,O0)

]
= E

[∑
a

b
[0]
V (a,O0)

]
(From the definition of reward bridge functions)

= J(πe). (From identification results, Theorem 14)
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The second statement J(πe) = E[J(f, bW )] is proved by the definition of weight bridge functions:

E

[∑
a

f [0](a,O0) +

H−1∑
k=0

γkb
[k]
W (Ak, Jk−1)

(
πek(Ak | Ok){Rk + γ

∑
a+

f [k+1](a+, Ok+1)} − f [k](Ak, Ok)

)]

= E

[
H−1∑
k=0

γkb
[k]
W (Ak, Jk−1)πek(Ak | Ok)Rk

]
+

+ E

(
H−1∑
k=1

γkb
[k−1]
W (Ak−1, Jk−2)πek−1(Ak−1 | Ok−1)

∑
a+

f [k](a+, Ok)− γkb[k]
W (Ak, Jk−1)f [k](Ak, Ok)

)

= E

[
H−1∑
k=0

γkb
[k]
W (Ak, Jk−1)πek(Ak | Ok)Rk

]
(From the definition of weight bridge functions)

= J(πe). (From identification results, Theorem 14)


