
M AT C H I N G E V E N T S A N D A C T I V I T I E S

P R E P R O C E S S I N G E V E N T L O G S F O R P R O C E S S A N A LY S I S

thomas baier

business process technology

hasso plattner institute , university of potsdam

potsdam , germany

dissertation

zur erlangung des grades eines

doktors der naturwissenschaften

– dr . rer . nat. –

August 2015

Thomas Baier: Matching events and activities, Preprocessing event logs
for process analysis, © August 2015

Published online at the
Institutional Repository of the University of Potsdam:
URN urn:nbn:de:kobv:517-opus4-84548
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84548

I like things matching.
I have an upright bass, a drum kit and a grand piano

that’s the same color.

— Penn Jillette

A B S T R A C T

Nowadays, business processes are increasingly supported by IT ser-
vices that produce massive amounts of event data during process
execution. Aiming at a better process understanding and improve-
ment, this event data can be used to analyze processes using process
mining techniques. Process models can be automatically discovered
and the execution can be checked for conformance to specified be-
havior. Moreover, existing process models can be enhanced and anno-
tated with valuable information, for example for performance anal-
ysis. While the maturity of process mining algorithms is increasing
and more tools are entering the market, process mining projects still
face the problem of different levels of abstraction when comparing
events with modeled business activities. Mapping the recorded events
to activities of a given process model is essential for conformance
checking, annotation and understanding of process discovery results.
Current approaches try to abstract from events in an automated way
that does not capture the required domain knowledge to fit business
activities. Such techniques can be a good way to quickly reduce com-
plexity in process discovery. Yet, they fail to enable techniques like
conformance checking or model annotation, and potentially create
misleading process discovery results by not using the known business
terminology.

In this thesis, we develop approaches that abstract an event log to
the same level that is needed by the business. Typically, this abstrac-
tion level is defined by a given process model. Thus, the goal of this
thesis is to match events from an event log to activities in a given
process model. To accomplish this goal, behavioral and linguistic as-
pects of process models and event logs as well as domain knowledge
captured in existing process documentation are taken into account to
build semiautomatic matching approaches. The approaches establish
a pre–processing for every available process mining technique that
produces or annotates a process model, thereby reducing the manual
effort for process analysts. While each of the presented approaches
can be used in isolation, we also introduce a general framework for
the integration of different matching approaches.

The approaches have been evaluated in case studies with industry
and using a large industry process model collection and simulated
event logs. The evaluation demonstrates the effectiveness and effi-
ciency of the approaches and their robustness towards nonconform-
ing execution logs.

v

Z U S A M M E N FA S S U N G

Heutzutage werden Geschäftsprozesse verstärkt durch IT Services
unterstützt, welche große Mengen an Ereignisdaten während der Pro-
zessausführung generieren. Mit dem Ziel eines besseren Prozessver-
ständnisses und einer möglichen Verbesserung können diese Daten
mit Hilfe von Process–Mining–Techniken analysiert werden. Prozess-
modelle können dabei automatisiert erstellt werden und die Prozess-
ausführung kann auf ihre Übereinstimmung hin geprüft werden. Wei-
terhin können existierende Modelle durch wertvolle Informationen
erweitert und verbessert werden, beispielsweise für eine Performan-
ceanalyse. Während der Reifegrad der Algorithmen immer weiter
ansteigt, stehen Process–Mining–Projekte immer noch vor dem Pro-
blem unterschiedlicher Abstraktionsebenen von Ereignisdaten und
Prozessmodellaktivitäten. Das Mapping der aufgezeichneten Ereig-
nisse zu den Aktivitäten eines gegebenen Prozessmodells ist ein es-
sentieller Schritt für die Übereinstimmungsanalyse, Prozessmodeller-
weiterungen sowie auch für das Verständnis der Modelle aus einer au-
tomatisierten Prozesserkennung. Bereits existierende Ansätze abstra-
hieren Ereignisse auf automatisierte Art und Weise, welche die not-
wendigen Domänenkenntnisse für ein Mapping zu bestehenden Ge-
schäftsprozessaktivitäten nicht berücksichtigt. Diese Techniken kön-
nen hilfreich sein, um die Komplexität eines automatisiert erstellten
Prozessmodells schnell zu verringern, sie eignen sich jedoch nicht
für Übereinstimmungsprüfungen oder Modellerweiterungen. Zudem
können solch automatisierte Verfahren zu irreführenden Ergebnissen
führen, da sie nicht die bekannte Geschäftsterminologie verwenden.

In dieser Dissertation entwickeln wir Ansätze, die ein Ereignislog
auf die benötigte Abstraktionsebene bringen, welche typischerweise
durch ein Prozessmodell gegeben ist. Daher ist das Ziel dieser Disser-
tation, die Ereignisse eines Ereignislogs den Aktivitäten eines Prozess-
modells zuzuordnen. Um dieses Ziel zu erreichen, werden Verhaltens-
und Sprachaspekte von Ereignislogs und Prozessmodellen sowie wei-
tergehendes Domänenwissen einbezogen, um teilautomatisierte Zu-
ordnungsansätze zu entwickeln. Die entwickelten Ansätze ermögli-
chen eine Vorverarbeitung von Ereignislogs, wodurch der notwendi-
ge manuelle Aufwand für den Einsatz von Process–Mining–Techniken
verringert wird.

Die vorgestellten Ansätze wurden mit Hilfe von Industrie-Case-
Studies und simulierten Ereignislogs aus einer großen Prozessmo-
dellkollektion evaluiert. Die Ergebnisse demonstrieren die Effektivi-
tät der Ansätze und ihre Robustheit gegenüber nicht-konformem Pro-
zessverhalten.

vi

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

• Thomas Baier and Jan Mendling. Bridging abstraction layers in
process mining: Event to activity mapping. In Enterprise, Business-
Process and Information Systems Modeling – 14th International Con-
ference, volume 147 of Lecture Notes in Business Information Pro-
cessing, pages 109–123. Springer, 2013.

• Thomas Baier and Jan Mendling. Bridging abstraction layers in
process mining by automated matching of events and activities. In
Business Process Management – 11th International Conference, vol-
ume 8094 of Lecture Notes in Computer Science, pages 17–32.
Springer, 2013.

• Thomas Baier, Jan Mendling, and Mathias Weske. Bridging ab-
straction layers in process mining. Information Systems, volume 46,
pages 123–139, 2014.

• Thomas Baier, Andreas Rogge-Solti, Mathias Weske, and Jan
Mendling. Matching of events and activities – an approach based on
constraint satisfaction. In The Practice of Enterprise Modeling – 7th
IFIP WG 8.1 Working Conference, volume 197 of Lecture Notes in
Business Information Processing, pages 58–72. Springer, 2014.

• Thomas Baier, Andreas Rogge-Solti, Mathias Weske, and Jan
Mendling. Matching of events and activities - an approach based on
behavioral constraint satisfaction. In Proceedings of the 30th Annual
ACM Symposium on Applied Computing, pages 1225–1230. ACM,
2015.

• Thomas Baier, Claudio Di Ciccio, Jan Mendling, and Mathias
Weske. Matching of events and activities - an approach using declar-
ative modeling constraints. In Enterprise, Business-Process and Infor-
mation Systems Modeling – 16th International Conference, volume
214 of Lecture Notes in Business Information Processing, pages 119–
134. Springer, 2015.

vii

A C K N O W L E D G M E N T S

A PhD is — what else could it be? — a process. During this process
there are many people with different roles involved. First of all, I have
been lucky that the role of the supervisor has been taken by Math-
ias Weske and Jan Mendling, who supported me in many aspects of
my dissertation process. Especially their feedback on my work from
sometimes very different angles was extremely helpful for me. Many
thanks for this constant and great support. I am also most grateful
for the discussions and feedback from Hajo Reijers, who took the
role of the third reviewer of this thesis and provided valuable advice
and comments for my work and gave me the possibility to stay and
research at the Technical University in Eindhoven.

Other important roles in the PhD process are taken by colleagues,
who contribute as co–authors, critics, discussion partners, and friends
that support oneself in many ways. I have been happy to collaborate
with many colleagues from different Universities. Starting with my
co–authors, I like to thank Andreas Rogge–Solti and Claudio Di Ci-
ccio for the many discussions we had and for the great input and
help they provided. From my time at Humboldt University, I want
to especially thank Henrik Leopold and Fabian Pittke for our fruitful
discussions on label analysis and for their constant support. With
my change to the Hasso Plattner Institute, I have been welcomed
warmly and integrated very quickly into the group. Thanks heaps
to everybody in the BPT group for the great time and the countless
discussions. A special thanks goes to Marcin Hewelt for our some-
times very long debates on formal aspects of this thesis. Another
important role that has been mostly taken by my colleagues, is the
role of a proof–reader. I really appreciated the input and comments
from the proof–reading of Kimon Batoulis, Rami Eid-Sabbagh, Hen-
rik Leopold, Sankalita Mandal, Adriatik Nikaj, and Katrin Pieper.

Apart from the academic part of the process, there are my friends
and family without whom I would not have reached this stage. There-
fore, I want to express my gratitude to my parents and my brother
for always supporting me in my life. Last, but by far not least, I like
to thank Julia for the many ways in which she supported me, from lis-
tening over encouraging to finally also proof–reading and correcting
parts of my thesis.

ix

C O N T E N T S

i background 1

1 introduction 3

1.1 Research Objective 4

1.2 Contributions 5

1.3 Structure of the Thesis 7

2 preliminaries and related work 9

2.1 Business Process Management 9

2.1.1 BPM Life Cycle 9

2.1.2 Business Process Modeling 11

2.1.3 Business Process Model and Notation 14

2.1.4 Petri Nets 15

2.1.5 Behavioral Profiles 18

2.1.6 Declare 19

2.1.7 Process Execution 22

2.1.8 Process Mining 24

2.2 Constraint Satisfaction Problem Solving 29

2.3 Illustrating Examples 31

2.3.1 An Order Process 31

2.3.2 An Incident Management Process 33

2.4 Requirements 35

2.5 Related Work 46

2.5.1 Approaches Working on Event Logs 47

2.5.2 Approaches Working on Process Models 50

2.5.3 Summary of Related Work 51

ii approaches to match events and activities 57

3 base approach 59

3.1 Requirements and Assumptions 59

3.2 The Matching Problem Formalized 59

3.3 Phases of the Base Approach 63

3.3.1 Matching of Activities and Events on Type Level 64

3.3.2 Definition of Context–sensitive Mappings 66

3.3.3 Transformation of the Event Log 71

3.3.4 Clustering of Event Instances to Activity Instances 73

3.4 Summary 81

4 approach based on log replay 83

4.1 Requirements and Assumptions 83

4.2 Overview of the Replay Approach 84

4.3 Reduction of Potential Event–Activity Mappings 85

4.4 Selection of the Correct Type–level Mapping 88

4.5 Summary 90

xi

xii contents

5 approaches based on behavioral relations 91

5.1 Requirements and Assumptions 91

5.2 General Approach Based on Behavioral Relations 92

5.3 Deriving Constraints from Behavioral Profiles 95

5.4 Deriving Constraints from Declarative Constraints 97

5.5 Constraints for Special Cases 100

5.6 Solving the Constraint Satisfaction Problem 102

5.7 Selection of the Correct Type–level Mapping 103

5.8 Summary 104

6 approach based on label analysis 107

6.1 Requirements and Assumptions 107

6.2 Overview of the Approach Based on Label Analysis 107

6.3 Annotation of Process Model Activities 108

6.4 Matching Activities and Events Based on Common Busi-
ness Objects 109

6.5 Summary 112

7 integrated approach 115

7.1 Requirements and Assumptions 115

7.2 Generalized Integration of Multiple Type–level Match-
ing Approaches 116

7.3 Integrating the Declare and the Label Analysis Approach 118

7.4 Summary 122

iii evaluation and conclusion 123

8 evaluation 125

8.1 Implementation 125

8.2 Evaluation of the Base Approach 130

8.2.1 Evaluation Goals and Setup 130

8.2.2 Results for the Matching of Event Instances to
Activity Life Cycle Transitions 132

8.2.3 Results for the Activity Instance Clustering 134

8.2.4 Summary and Discussion 139

8.3 Evaluation of the Behavioral Approaches 140

8.3.1 Evaluation Goals 140

8.3.2 Evaluation Setup 141

8.3.3 Results for the One-to-one Matching of Activi-
ties and Events 143

8.3.4 Results for the One-to-many Matching of Activ-
ities and Events 163

8.3.5 Summary and Discussion 171

8.4 Evaluation of the Label Analysis Approach 176

8.4.1 Evaluation Goals and Setting 176

8.4.2 Results 177

8.4.3 Summary and Discussion 179

8.5 Evaluation of the Integrated Approach 181

8.5.1 Evaluation Goals and Setting 181

contents xiii

8.5.2 Results 182

8.5.3 Summary and Discussion 185

8.6 Comparison of Matching Approaches 186

9 conclusion 189

9.1 Summary of Results 189

9.2 Limitations and Future Research 191

iv appendix 195

a results of the declare approach for the one-to-
many matching 197

bibliography 199

L I S T O F F I G U R E S

Figure 1 Overview of the matching of events and activ-
ities 4

Figure 2 Business process life cycle 10

Figure 3 Different abstraction levels for process descrip-
tions 12

Figure 4 Imperative vs. declarative process modeling 12

Figure 5 Example BPMN collaboration diagram 15

Figure 6 Petri net representation of the process shown
in Figure 5 17

Figure 7 Activity life cycle model 23

Figure 8 Process model and process instance with event
diagram of life cycle transitions 23

Figure 9 Model and instance level of processes 24

Figure 10 Overview of process mining 25

Figure 11 The L∗ life cycle model for process mining projects 26

Figure 12 Order process model in BPMN 31

Figure 13 Order process with life cycle transitions and
their mappings to event classes. 32

Figure 14 Example of event to activity relations: Incident
Management process model and low-level event
log with shared functionalities and concurrency 33

Figure 15 Relations of the entities of the event log, pro-
cess model, and process execution with assumed
cardinalities 36

Figure 16 Event classes and instances matched in a one-
to-one relation to activities and activity instances 36

Figure 17 Different abstraction results on the instance level 39

Figure 18 Relations of the entities of event log, process
model, and process execution including life cy-
cle transitions with assumed cardinalities 41

Figure 19 Event classes and instances matched in a one-
to-one relation to life cycle transitions and their
instantiations 42

Figure 20 Relations of the entities of the event log, pro-
cess model, and process execution with assumed
cardinalities including activity life cycles and
sub–activity relations 43

Figure 21 Events matched in a one-to-one relation to life
cycle transitions of activities and sub–activities 44

Figure 22 Events matched in a one-to-one relation to life
cycle transitions of activities and sub–activities 44

xiv

List of Figures xv

Figure 23 Classification of related work 46

Figure 24 Relations of the entities of the process model
and process execution recorded in real life logs
that are on a different abstraction level and
contain shared functionalities 60

Figure 25 Relations of the sets of activities and events on
type and instance level 61

Figure 26 Relations of the entities of the event log, pro-
cess model, and process execution including
life cycle transitions 62

Figure 27 Overview of the base approach for mapping
events to defined activities including inputs and
outputs of each of the four phases 64

Figure 28 Different results for clustering activity instances 77

Figure 29 Event sequence example 80

Figure 30 Clustering events of activity X to activity in-
stances using tree structures 81

Figure 31 Steps for matching of events and activities us-
ing the replay approach 84

Figure 32 Control flow patterns for choice and concur-
rency with different impact on potential map-
pings. 89

Figure 33 Detailed flow of the matching approach based
on log replay 89

Figure 34 Steps for matching of events and activities us-
ing behavioral relations 93

Figure 35 Order process with a loop from end to begin-
ning 96

Figure 36 Sequence of activities 104

Figure 37 Steps for matching events and activities using
label analysis 108

Figure 38 Integrated approach for the matching of events
and activities 116

Figure 39 Integrated approach to match activity life cycle
transitions and events on type level 119

Figure 40 FMC Block diagram of the implemented ProM
plug–ins with inputs and outputs 126

Figure 41 ProM action screen showing the type–level map-
ping plug–in 126

Figure 42 Configuration screen for the type–level map-
ping plug–in 127

Figure 43 Configuration screen for the behavioral profile
approach 128

Figure 44 Choosing the correct activity for an event in
the ProM plug–in 128

Figure 45 Screenshot of mapping in ProM 129

xvi List of Figures

Figure 46 Excerpt of the mapping definitions in XML 129

Figure 47 Mined subprocess model for the documenta-
tion activity of the incident management pro-
cess (translated to English) 136

Figure 48 Fraction of correctly clustered event instances
for different instance borders 137

Figure 49 Conformance results for different instance bor-
der definitions 138

Figure 50 Differences in activity performance results for
different instance borders in comparison to the
gold standard 138

Figure 51 Different event models used to generate events 143

Figure 52 Replay approach: Solved and unsolved match-
ings 144

Figure 53 Replay approach: Solved and unsolved match-
ings by number of event classes 144

Figure 54 Replay approach: Number of questions per event
class for each noise level 145

Figure 55 Replay approach: Number of questions depend-
ing on the number of event classes for correctly
matched event logs without noise 146

Figure 56 Replay approach: Duration of the matching
depending on the number of event classes for
event logs without noise (without outliers) 147

Figure 57 Replay approach: Duration of the matching
depending on the noise level of the event log
(without outliers) 147

Figure 58 Behavioral profile approach: Number of cor-
rectly solved matchings in one-to-one setting
for different noise levels 148

Figure 59 Behavioral profile approach: Number of not
correctly matched event logs (all noise levels) 148

Figure 60 Behavioral profile approach: Number of match-
ings with wrong constraints by noise level for
the setting with interleaving constraints 149

Figure 61 Behavioral profile approach with relaxed strict
order constraints: Solution categories by num-
ber of event classes for event logs without noise 150

Figure 62 Behavioral profile approach: Mean number of
questions for each configuration 151

Figure 63 Behavioral profile approach: Boxplots show-
ing the number of required questions for each
noise level for each configuration 152

Figure 64 Behavioral profile approach with direct follower
relations: Number of questions per event class
for each noise level 152

List of Figures xvii

Figure 65 Behavioral profile approach with direct follower
relations: Number of questions per event class
for correctly matched event logs without noise 153

Figure 66 Behavioral profile approach with relaxed map-
ping for strict order relations: Duration of the
matching depending on the number of event
classes (without outliers) 154

Figure 67 Behavioral profile approach with direct follower
relations: Duration of the matching depending
on the noise level (without outliers) 155

Figure 68 Declare approach: Number of correctly solved
matchings in one-to-one setting for different
noise levels 156

Figure 69 Declare approach: Number of not correctly matched
event logs (all noise levels) 156

Figure 70 Declare approach: Number of matchings with
wrong constraints by noise level for the setting
with alternative participation constraints 157

Figure 71 Declare approach with relaxed strict order con-
straints: Solution categories by number of event
classes for event logs without noise 158

Figure 72 Declare approach: Mean number of questions
for each configuration 159

Figure 73 Declare approach: Boxplots showing the num-
ber of required questions for each noise level
for each configuration 160

Figure 74 Declare approach – basic configuration: Num-
ber of questions per event class for each noise
level in one-to-one setting 161

Figure 75 Declare approach – basic configuration: Num-
ber of questions per event class for correctly
matched event logs without noise in one-to-
one setting 161

Figure 76 Declare approach – basic configuration: Dura-
tion of the matching depending on the number
of event classes in one-to-one setting without
noise (without outliers) 162

Figure 77 Declare approach – basic configuration: Du-
ration of the matching depending on the noise
level in one-to-one setting (without outliers) 163

Figure 78 Behavioral profile approach: Number of cor-
rectly solved matchings in one-to-many setting
for different noise levels 164

Figure 79 Behavioral profile approach: Number of not
correctly matched event logs in the one-to-many
setting (all noise levels) 165

xviii List of Figures

Figure 80 Behavioral profile approach: Number of wrong
constraints by type and noise level for the set-
ting with interleaving constraints in the one-
to-many setting 165

Figure 81 Behavioral profile approach with relaxed strict
order constraints: Solution categories by num-
ber of event classes for event logs without noise
in the one-to-many setting 166

Figure 82 Behavioral profile approach: Mean number of
questions for each configuration 166

Figure 83 Behavioral profile approach: Boxplots show-
ing the number of required questions for each
noise level for each configuration 167

Figure 84 Behavioral profile approach with direct follower
relations: Number of questions per event class
for each noise level 168

Figure 85 Behavioral profile approach with direct follower
relations: Number of questions per event class
for correctly matched event logs without noise 168

Figure 86 Behavioral profile approach with direct follower
relations: Duration of the matching depending
on the noise level in the one-to-many setting
(without outliers) 169

Figure 87 Behavioral profile approach with relaxed map-
ping for direct follower relations: Duration of
the matching depending on the number of event
classes in the one-to-many setting (without out-
liers) 169

Figure 88 Declare approach: Number of correctly solved
matchings in one-to-many setting for different
noise levels 170

Figure 89 Declare approach: Number of not correctly matched
event logs in the one-to-many setting (all noise
levels) 171

Figure 90 Declare approach: Mean number of questions
for each configuration in the one-to-many set-
ting 171

Figure 91 Link between process model activities, work
instructions and events 177

Figure 92 Recall and precision for automated matching 178

Figure 93 Correct matches by provenance 178

Figure 94 Behavioral profile approach: Number of incor-
rect constraints by type for the standard change
mapping 183

List of Figures xix

Figure 95 Declare approach: Number of incorrect con-
straints by type for the standard change map-
ping 184

Figure 96 Declare approach with relaxed strict order con-
straints: Solution categories by number of event
classes for event logs without noise in the one-
to-many setting 197

Figure 97 Declare approach: Boxplots showing the num-
ber of required questions for each noise level
for each configuration in the one-to-many set-
ting 197

Figure 98 Declare approach - basic configuration: Num-
ber of questions per event class for each noise
level in the one-to-many setting 198

Figure 99 Declare approach - basic configuration: Num-
ber of questions per event class for event logs
without noise in the one-to-many setting 198

Figure 100 Declare approach - basic configuration: Dura-
tion of the one-to-many matching depending
on the noise level (without outliers) 198

Figure 101 Declare approach - basic configuration: Dura-
tion of the matching depending on the number
of event classes (without outliers) 198

L I S T O F TA B L E S

Table 1 Behavioral profile of the example process 19

Table 2 Co–occurrence relation of the example process 19

Table 3 Declare templates 20

Table 4 Exemplary Declare rules for the example pro-
cess 22

Table 5 Event log L1 of order process 31

Table 6 Mapping for L1 and POrd 31

Table 7 Event log L2 of order process 32

Table 8 Mapping for L2 and POrd 32

Table 9 Activity descriptions for the incident process 34

Table 10 Types of mappings on type level 38

Table 11 Types of mappings on instance level 38

Table 12 Overview of the requirements 45

Table 13 Overview of related work 52

Table 14 Example of the type–level relations between
events and activity life cycle transitions (LTE)
for the incident process 66

Table 15 Example log of the incident process with map-
ping to activities 67

Table 16 Example event class to activity mapping for
the event classes “CI” and “Group” 70

Table 17 Mapping var for the order process 85

Table 18 Mapping val for the order process 85

Table 19 Mapping var for the order process with multi-
ple events per activity 93

Table 20 Potential business objects derived for the inci-
dent process example 109

Table 21 Potential type–level relation of activities and
event classes of the incident example 112

Table 22 Event classes in question with potential activi-
ties derived by the Declare approach and re-
duced potential activities shown in the inte-
grated approach with label analysis 120

Table 23 Conforming example log for the incident pro-
cess without shared functionalities 121

Table 24 Event log statistics for the incident process 134

Table 25 Event log statistics for the change process 134

Table 26 Results for behavioral approaches 172

Table 27 Process model annotations with activity descrip-
tions 177

xx

List of Tables xxi

Table 28 Comparison of requirement fulfillment for the
different matching approaches 187

A C R O N Y M S

BPM Business Process Management

BPMN Business Process Model and Notation

CI Configuration Item

CSP Constraint Satisfaction Problem

DMN Decision Model and Notation

EPC Event-driven Process Chains

FMC Fundamental Modeling Concepts

IT Information Technology

ITIL IT Infrastructure Library

LTL Linear Temporal Logic

NLP Natural Language Processing

OMG Object Management Group

PAIS Process-aware Information System

RPST Refined Process Structure Tree

tf-idf term frequency–inverse document frequency

UML Unified Modeling Language

xxii

Part I

B A C K G R O U N D

1
I N T R O D U C T I O N

With the advent of information technology (IT), companies heavily
rely on IT systems for the execution of their business processes. Within
the last decades, a shift from data orientation to process orientation
has been observed [42, p. 5]. In this context, Business Process Manage-
ment (BPM) became an important topic, as it is crucial for the design,
implementation, controlling, and improvement of IT–supported busi-
ness processes [143]. BPM ideally aims at a process life cycle that
starts with the modeling of the processes. Next, the created model is
used to implement the process in IT systems, where it is executed and
monitored afterwards. From the evaluation of the execution, improve-
ments can be made in the models and then transferred to the imple-
mentation. Yet, there is often not such a strong connection between
the models and the actual implementation [116]. Sometimes there
are no models at all. The research area of process mining evolved
to tackle this problem by using event data from the IT systems to
extract process related information [118, p. 1]. Process mining tech-
niques are able to automatically discover process models from IT
systems, check conformance of past executions with existing mod-
els, and enhance predefined models by repairing them or adding
execution–related data. Many process mining case studies demon-
strate the relevance and impact of these techniques in industry (see,
e.g., [44, 80, 102, 125, 132, 95]).

One of the six guiding principles of the process mining manifesto
[127] notes that events should be related to model elements. During
the execution of a business process, many events — like the receiving
of an order or the arrival of a package — occur and are automatically
recorded by the supporting IT system or in some cases manually by
staff in a log book. Unfortunately, these events are often not correlated
to the modeled activities and thus, can hardly be used for analysis
[62]. Looking at conformance checking and enhancement of process
models, it is obvious that the events stemming from IT systems have
to be mapped to activities defined in process models. Without a map-
ping from events to activities, we cannot tell which activity happened
when. However, the events are typically more fine–granular than the
activities defined by business users. This implies that different lev-
els of abstraction need to be bridged in order to use the mentioned
process mining techniques. Furthermore, such a mapping is not only
necessary for conformance checking and process model enhancement,
but also for the discovery of a process model from the supporting IT
system. The benefit of a discovered process model can only be fully

3

4 introduction

exploited if the presented results are on an abstraction level that is
easily understandable for the business user. However, most current
process mining techniques assume that there is a one-to-one map-
ping between events and activities and they assume that this relation
is given by simple string matching of event names and activity names.
Therefore, these techniques cannot be applied without preprocessing
of the event data. Available methods for event log abstraction, such
as [58, 59, 75], aim to automatically provide such a preprocessing but
fail to include domain knowledge in order to arrive at the required
abstraction level. After all, these approaches do not try to provide a
mapping to existing activities from a given process model, but try
to simplify discovered models by aggregating events that seem to
have a semantic relation. These techniques have limited capabilities
in dealing with complex mappings between events and activities and
most often neglect many-to-many relationships and concurrency in
the execution. Moreover, they provide no or only limited support for
correctly refining these mappings based on domain knowledge.

1.1 research objective

The goal of this thesis is to provide a preprocessing of event logs
that builds the connection between events in the log and activities
defined by a process model. This preprocessing shall enable analysis
techniques from the process mining field that rely on a binding be-
tween events and activities. Namely, these are conformance checking
approaches [100, 128, 138] and process model enrichment techniques
as for example decision point analysis [101], model repair [48], and
performance analysis [128]. In addition to these techniques, discov-
ery algorithms, such as [70, 123, 129, 142], can benefit from event logs
that contain labels of existing model activities. By using the known
terminology, the full potential of discovered process models can be
leveraged and misleading results can be prevented.

Event
Activity

Matching
Process Mining

Event logs

Process models

Log

Model

Matched
Log

Requirements

Requirements

Figure 1: Overview of the matching of events and activities.

Figure 1 gives an overview of the inputs and outputs of the pre-
processing approach at which we aim. The event–activity matching

1.2 contributions 5

takes a process model and the corresponding event log that captures
the execution of the modeled process as input. The output of the
matching is a preprocessed event log containing events that have a
direct link to their corresponding activities from the process model.
The matched event log and optionally also the process model serve
as input for the various process mining techniques.

The work in this thesis follows a design science methodology as,
for example, suggested by Wieringa [144]. The artifacts that are the
results of this thesis are approaches for the matching of events and
activities as a preprocessing for process mining techniques. In order
to design such artifacts, the concrete requirements need to be elicited.
The main requirements for the event–activity matching come from
the process mining techniques that will consume the preprocessed
event log. Yet, the event logs and process models that are used for the
matching pose additional challenges in real world scenarios. Over-
coming these challenges forms new requirements that originate from
the structure of the input data. A rigorous requirements analysis is
therefore inevitable and also part of this thesis’ objective.

Having defined the requirements for the matching of events and
activities, a formal understanding of the required concepts to solve
matching is necessary. From this understanding, a technical solution
can be built. The goal of this thesis is to create, validate and evaluate
such a technical solution for the matching of events and activities and
to provide automation for this solution where applicable.

1.2 contributions

In the light of the discussed research objective, we want to outline
the contributions of this thesis. The main contribution of this thesis
is to provide a preprocessing approach for process mining analysis
that realizes the necessary binding between the activities in a process
model and the events in an event log stemming from the execution
of the modeled process. This contribution can be further divided into
the following sub-contributions:

• Requirements analysis. Employing the state of the art literature
as well as insights from our own case studies, we provide a
rigorous analysis of the requirements for the mapping of events
to their corresponding activities in a process model.

• Formalization of the matching between events and activities. To our
best knowledge, this thesis is the first work to provide a sys-
tematic definition of the technical mapping problem for process
models and their corresponding execution logs. We thereby lay
the foundation not only for our own approach, but also for fu-
ture work that can build on this groundwork.

6 introduction

• General approach for the matching of events and activities on type
and instance level. We introduce and implement a base approach
that fulfills the stated requirements. This base approach works
on two levels:

– The type level describes the conceptual binding of specific
event types — so called event classes — to the conceptually
modeled activities in a process model. Here, we provide
mechanisms to manually define also complex mappings
that can be used for an automated transformation of the
event log.

– The instance level informs about the actual instantiations of
activities during the execution of a process. We assist the
analyst with means to specify rules for the assignment of
events to instances of activities. We introduce a tree-based
clustering approach that employs the user–defined rules
to transform the event log in such a way that it represents
instantiations of activities from a process model.

• Automated support of the type–level matching. We provide automa-
tion techniques for the matching on type level for different set-
tings:

– One-to-one relation of events an activities. When events and
activities are already on the same abstraction level, but
their relation cannot be identified over simple name com-
parison, we employ replay techniques to built a constraint
satisfaction problem that helps in reducing the mapping
problem for the process analyst.

– One-to-many relation of events and activities. For the situ-
ation where events are on a lower abstraction level and
no event type belongs to multiple activities, we leverage
behavioral relations in order to assist the process analyst
in the mapping.

– Labels use natural language. Whenever the labels from both
events and activities contain natural text, we are able to
employ natural language processing (NLP) techniques in
order to assist in the mapping.

• Integrated approach. Finally, we introduce a general framework
to integrate different means of automation for the type–level
matching. While we demonstrate the use of this integration with
the techniques developed in this thesis, the integrated approach
is open to include further techniques that might be results of
future work.

1.3 structure of the thesis 7

1.3 structure of the thesis

In order to conclude this introductory chapter, this section provides
the structure of this thesis. There are three parts that shape the con-
tents of this work:

part i . The first part of this thesis contains this introduction as well
as a chapter on preliminaries and related work. Here, the con-
text of business process management and process mining is in-
troduced and the formal concepts for the used process models
and event logs are laid out. Moreover, the basic concepts of con-
straint satisfaction problems are presented. We introduce two
processes that serve as running examples in the main part of
this thesis. Besides an in-depth classification and discussion of
related work, Chapter 2 incorporates the requirements analysis,
which is one of the contributions of this thesis.

part ii . In the main part of this work, the core contributions are laid
out. We start in Chapter 3 with the formalization of the match-
ing problem and introduce the base approach, which builds
the foundation for all upcoming chapters. Chapter 4, 5 and
6 provide the details for the semiautomated type–level match-
ing. Chapter 4 introduces means to generate constraints by re-
playing the event log on the process model. These constraints
are then used to reduce the number of possible mappings be-
tween events and activities, through which the process analyst
is guided. While this replay technique only works in settings
where events and activities are on the same abstraction level,
Chapter 5 builds on the same idea of generating constraints,
but uses more flexible behavioral relations to derive constraints.
In Chapter 6, we develop an approach for the type–level match-
ing that uses natural language text processing. Here, we also
demonstrate how to incorporate further process knowledge in
terms of process descriptions into the matching. Chapter 7 con-
cludes the main part of this thesis by introducing an approach
for the integration of different type–level matching techniques.

part iii . The last part of this thesis elaborates on the implementa-
tion and evaluation of the introduced concepts. In order to eval-
uate the different approaches we conducted different case stud-
ies with a large German IT outsourcing company and gener-
ated event logs with different characteristics from a large indus-
try process model collection. The results outline the strengths
and weaknesses of the different approaches and allow for an
in-depth comparison. We conclude the thesis with an overview
of the results and outline limitations and potential future work.

2
P R E L I M I N A R I E S A N D R E L AT E D W O R K

This chapter provides the background of this thesis and introduces the formal
concepts that are used. In Section 2.1, we introduce the BPM life–cycle and give
the formal foundations for the process modeling and process mining concepts on

which we ground our work. In particular, we introduce Petri nets, behavioral
profiles and Declare as concepts for the representation of processes. Section 2.2

introduces the concepts of constraint satisfaction problems, which are the base for a
large part of the derived approaches in this thesis. Following the introduction of

preliminary concepts, two example processes, which are later used to illustrate our
approaches, are introduced in Section 2.3. The chapter concludes with a

classification discussion of related work and a summary of the chapter’s contents.

2.1 business process management

“All work is process work” [61, p. 11]. This statement by Hammer
shows the importance of business process management, as it reveals
that actually every work that is being done in a company, is a process.
Even business process management itself is a process. There are many
different definitions of a business process [60, 121, 108, 143, 28, 43].
Weske [143, p. 5] defines a business process as “a set of activities
that are performed in coordination in an organizational and techni-
cal environment”. The activities are carried out to realize a specific
business goal. While a business process is always executed within
one organization, it potentially requires the interaction with another
organization’s processes.

Business process management is defined by Aalst et al. [122] as
“supporting business processes using methods, techniques, and soft-
ware to design, enact, control, and analyze operational processes in-
volving humans, organizations, applications, documents and other
sources of information”.

2.1.1 BPM Life Cycle

The process of business process management can be understood best
by looking at the life cycle of a process described by Weske [143, p.
11ff]. Figure 2 depicts that the business process life cycle consists of
four phases. The first phase is the design and analysis phase. In the
course of this phase, business processes are identified and business
process models are created to formally document, review and vali-
date the business processes. Process models are graphical represen-

9

10 preliminaries and related work

tations of a business process adhering to a given formal notation as,
e.g., Business Process Model and Notation (BPMN). Once a business
process is modeled, it needs to be validated and verified [43, p. 171ff].
The validation is used to check whether the process model reflects the
intended or observed behavior. Thus, validation checks for semantical
correctness. Verification on the other hand assures the formal correct-
ness of a process model, i.e., whether the model complies with the
rules given by the used formal modeling notation.

Configuration

Evaluation

Design &
Analysis

Enactment

Figure 2: Business process life cycle (cf. [143, p. 12]).

Having a validated and verified process model, the next step is to
implement the process in the course of the configuration phase. This
can be done with or without the support of a dedicated IT system.
If no dedicated IT system is used to implement the business process,
a typical means of implementation is the use of policies and work
instructions that people have to follow. Typically, these policies and
work instructions are also in place when using a dedicated IT system.
In order to implement a business process in a dedicated IT system,
the process model needs to be enriched with more technical detail as
they are typically modeled on a higher abstraction level during the
design and analysis phase. The actual implementation encompasses
the configuration of new and existing software systems, and the in-
tegration of different systems. The configuration phase may also in-
clude the development of new software systems. In the context of
process implementation, process–aware information systems (PAIS)
play an important role. Dumas et al. [42] define a PAIS as “a software
system that manages and executes operational processes involving
people, applications, and/or information sources on the basis of pro-
cess models”. One of the main advantages of a PAIS is that changes
in the business process can be implemented without recoding parts
of the IT systems. Instead, only the models need to be changed. Such
changes may come from a changing business context (new competi-
tors, new products), changes in the legal context (new laws), or from
a changing technological context (new technologies) [119]. Yet, often
different models are used for the initial design of the business pro-

2.1 business process management 11

cess than those used for implementation [116]. Therefore, changes in
the business process often lead to a significant gap between business
process models and implementation, even in PAIS.

After the configuration of a business process, the actual enactment
is started and business process instances are executed to fulfill the
goals of the organization. During this phase, data representing the
current state of the process is logged by the supporting IT systems.
This data can be used for instant monitoring of the actual state of the
process, or for deeper process analysis in the evaluation phase.

The evaluation phase uses the data gathered during the process en-
actment to evaluate whether the process has been carried out accord-
ing to specification, and to find potential weaknesses where the pro-
cess needs to be improved. For example bottlenecks, where an activity
with too few resources blocks the execution of subsequent activities,
can be identified using different analysis techniques like Business Ac-
tivity Monitoring (BAM) [27] or process mining [118]. The process
mining research field emerged during the last decade with the goal
of developing techniques to derive such information from execution
data.

2.1.2 Business Process Modeling

Business process models are one of the main artifacts of business
process management and business process modeling describes the
methods to create and manage these models. Business process mod-
els are created for various purposes [43, p. 63]. For example, business
process models are used to gain insight into a process and to share
insights with other stakeholders. Thus, they facilitate communication
about processes. Furthermore, process models can be used to config-
ure IT systems [118, p. 8f].

A model is always an abstraction of the reality [109, p. 131]. De-
pending on the goal, different abstraction levels are needed. The pyra-
mid shown in Figure 3 illustrates different levels of detail considered
for process descriptions. We use the definition given by Dumas et al.
[43], which contains levels 1–3 describing graphical process models,
and extend it with a fourth level of textual process descriptions found
in the abstraction pyramid defined by Scheer [104].

Level one starts with the process landscape model, which is the
most abstract representation of business processes. Each level is linked
to the next lower level (and the other way around). That is, the ele-
ments of the process landscape are connected to more concrete busi-
ness processes on level two, which processes are again detailed on
level three. Level three typically entails the concrete process models
with precise activities, control flow, data objects, and roles. In this
work, we focus on the models of this third level, as they are closest
to the implementation, which is represented by the event logs used

12 preliminaries and related work

Process
landscape

Abstract
process models

Detailed process models

Textual process descriptions

Level 1

Level 2

Level 3

Level 4

Figure 3: Different abstraction levels for process descriptions based on [43]
and [104].

by the process mining techniques we want to enable. The process
models and activities from level three often point to even more de-
tailed textual descriptions found in work instructions. While these
textual descriptions are most often not well structured and miss for-
mal foundations, they can be helpful to bridge the gap between the
implemented process and the process models from level three. In the
course of this thesis, we show how textual descriptions can be lever-
aged to create the mapping between events from the implementation
systems with activities from the process models.Section 3.3 A New Approach for Full Flexibility 81

PROCEDURAL
MODEL

constraints constraints

constraints constraints
adding execution

alternatives

forbidden behavior

Figure 3.34: Declarative vs. procedural approach

bility by design. Moreover, other types of flexibility can also be supported. With
help of the YAWL system and its worklets [44] it is possible to create arbitrary
decompositions of procedural and declarative models and achieve flexibility by un-
derspecification. Flexibility by change can be achieved by ad-hoc change, which
can be easily applied to the constraint-based approach. The so-called optional
constraints allow for flexibility by deviation.

flexibility by
design

flexibility by
underspecification

flexibility by
change

flexibility by
deviation

control-flow
perspective

resource
perspective

data
perspective

Figure 3.35: A new approach for all types of flexibility

Note that it is possible to develop procedural models that allow for flexibility
by design. Consider, for example, a process model consisting of activities A, B
and C, where any execution alternative is possible. Figure 3.36 shows a CPN
representing this model. Between the initiation and termination of the process
(represented by transitions start and end, respectively) it is possible that (1)
each of activities A, B and C is executed zero or more times, (2) activities A, B
and C are executed concurrently and (3) activities A, B and C are executed in
any order. Thus, this model allows for infinitely many execution alternatives and
offer a high degree of flexibility by design (cf. Section 3.2.1). However, adding
some simple rules that should be followed during execution is often too costly

Figure 4: Imperative vs. declarative process modeling based on [87].

Turning to the models used on level three of the abstraction pyra-
mid, there are two main categories of process models: Imperative
and declarative process models [87]. The main difference between
imperative and declarative modeling approaches is shown in Fig-
ure 4. Imperative models, also called procedural models, take an
“inside-to-outside” approach, i.e., imperative languages explicitly de-
fine all allowed behavior. The space of allowed behavior is defined by
specifying all possible execution alternatives. New alternatives have
to be added explicitly to the model. In contrast to that, declarative

2.1 business process management 13

languages only define constraints and thereby only limit the space
of allowed behavior without explicitly defining it. Thus, taking an
“outside-to-inside” approach by setting limits to the space of permit-
ted behavior using constraints. The focus of declarative modeling lan-
guages therefore lies on the what has to be done, while imperative
languages explicitly state how something has to be done [50].

Imperative process modeling languages that are frequently used
in practice are, e.g., Business Process Model and Notation (BPMN),
Event-driven Process Chains (EPCs) [104, 29], and UML activity dia-
grams [83]. While these languages are widely used in industry prac-
tice, they are not well-suited for formal analysis, as they lack formal
semantics and techniques for their analysis. For this reason, we use
Petri nets [89] as a well-established formalism to describe procedural
process models for the formal part of this thesis. For easier reading
and comprehension, example processes used in this thesis are illus-
trated using BPMN. Most of the common modeling languages, as,
e.g., BPMN and EPC, can be transformed into Petri nets [77].

For the analysis and comparison of procedural process models, be-
havioral profiles [138] have been proven to be a useful abstraction
form. We also make use of behavioral profiles for the matching of
events and activities and introduce their main concepts.

Turning to declarative process modeling, there is no widespread
use of these concepts found in industrial practice. Yet, declarative
process models find more and more uptake in the process mining
community [96], as they are believed to yield more compact repre-
sentations of very flexible processes and pertain useful properties for
conformance checking [118, p. 208], [25]. There is an ongoing debate
over advantages and disadvantages of declarative languages in com-
parison to imperative languages [50, 49, 90, 96]. The main arguments
are about the understandability and maintainability of declarative
models. Reijers et al. [96] argue that a combination of declarative and
imperative modeling approaches would be beneficial. However, there
is still not much research about the implementation of such a hybrid
approach.

In this thesis, we consider imperative process models for the pre-
sentation of processes, because this is currently the de facto standard
in industry. Nevertheless, we make use of the underlying concepts
of the declarative modeling language Declare [126], as this has been
proven beneficial for the mapping of events and activities. Therefore,
we introduce both imperative and declarative modeling concepts in
the next sections.
Before we turn to the actual concrete modeling languages and con-
cepts, let us briefly define the common ground for those process
models. Based on the formalization provided by Dijkman [41], we
provide an abstract definition of a process model:

14 preliminaries and related work

Definition 1 (Process model). Let L be a set of labels. A process model
is a tuple P = (N,ω,µ), where

• N is a non-empty finite set of nodes;

• ω ⊆ N×N is the set of edges, which define the control flow;

• µ = N×L is a function that maps nodes to labels.

We denote A ∈ N as the non-empty set of activities. �

The activities in a process model can be hierarchically related. That
means an activity might be detailed using other, more fine–granular
activities. These activities are referred to as sub–activities. The func-
tion subAct : A → P (A) defines this hierarchical relation between
activities. A process model might be further described on level four
with textual descriptions entailing execution details for each activity.
The function

desc(a) =

d if subAct(a) = ∅

d∪
⋃
b∈subAct(a) desc(b) otherwise

assigns each activity a ∈ A the set of corresponding activity descrip-
tions, including those linked to sub–activities. The function desc(P) =⋃
a∈A desc(a) returns all activity descriptions of a process P. The next

sections introduce notations for modeling processes and also include
examples for the introduced formal concepts.

2.1.3 Business Process Model and Notation

Business Process Model and Notation (BPMN) is a standard for pro-
cess modeling notation defined by the Object Management Group
(OMG)1. In 2011, the current version BPMN 2.0 was released [56].
BPMN 2.0 includes different types of diagrams for different purposes.
In this thesis, we make use of BPMN collaboration diagrams only. When-
ever we refer to a BPMN model, a collaboration diagram is meant.
The BPMN 2.0 standard introduces informal execution semantics for
the provided model elements. In general, the execution semantics
is inspired by Petri nets and, therefore, uses a similar means of to-
ken flow. A number of works exist that provide directions into for-
mal semantics of BPMN and mappings from BPMN to Petri nets
[77, 40, 148, 14, 134].

BPMN 2.0 provides a large set of modeling constructs and an ex-
haustive introduction in the complete spectrum BPMN is out of the
scope of this thesis. We refer the reader to [143, 43, 105] for a com-
prehensive introduction into BPMN. Figure 5 shows an example pro-
cess containing all constructs that are used in this thesis. Activities

1 http://www.omg.org/

http://www.omg.org/

2.1 business process management 15

o
rg
an
iz
at
io
n ro
le
1

ro
le
2

a

c

b

e

daa ab

data object1

Figure 5: Example BPMN collaboration diagram.

in BPMN are modeled as rounded rectangles. BPMN distinguishes
between atomic activities (sometimes called tasks) and collapsed or
extended subprocesses. In Figure 5, activities aa, ab, b, c, and e are
atomic activities. Activity a is an extended subprocess and activity
d is a collapsed subprocess. Recalling Definition 1, the set of activi-
ties is A = {a,aa,ab,b, c,d, e} and activity a has two sub–activities,
i.e., subAct(a) = {aa,ab}. Note that the set of nodes N also includes
all other objects seen in Figure 5. Yet, we do not intend to formalize
these nodes in this thesis, as we make no use further use of these
nodes apart from visualization.

Control flow is expressed using arcs and gateways. Gateways are
represented by diamond shapes. In this thesis, only the parallel (+)
and the exclusive (×) gateway are used. In the example in Figure 5,
the activities b and c are parallel to each other. In contrast, the activi-
ties d and e are exclusive to each other.

BPMN furthermore introduces events, which are represented by
circles. While there is a vast amount of different events in BPMN, we
only make use of start and end events. The latter are identified by a
thicker line. Another aspect of BPMN is the modeling of data. Data
objects can be connected to activities to show that an activity reads
or writes a data object. In the given example, the data object “data
object1” is read by activity c. Organizational aspects are modeled us-
ing pools and lanes. Lanes typically represent single resources, while
pools group different resources. Figure 20 contains two lanes: role1

and role2. These two lanes are grouped by the pool with the label
“organization”.

2.1.4 Petri Nets

While BPMN has been chosen for the representation of process mod-
els in this thesis, Petri nets are used as the modeling language for the
implementation of the approaches that are based on behavior of activ-
ities. We employ Petri nets because their semantics are well–defined
and because they can be verified for correctness [114]. Petri nets are
widely used in research so that there is a huge body of knowledge
and analysis techniques available [81]. Most of the common modeling

16 preliminaries and related work

languages, such as BPMN and EPC, can be transformed into Petri
nets [77].

Petri nets are bipartite graphs that contain two types of nodes:
places and transitions [97, p. 9]. Transitions correspond to activities
and are represented by boxes. Places are depicted as circles and can
hold tokens, which are indicated by black dots. In order to model
the flow of tokens, i.e., the control flow, transitions and places can
be connected by directed edges. Yet, it is not allowed to connect two
nodes of the same type. In the following, we give the required formal
definitions based on [115]. First of all, Definition 2 gives the formal
definition of a Petri net.

Definition 2 (Petri net). A Petri net is a triplet PN = (TR,PL, F), where
TR is the set of transitions, PL is the set of places, with TR ∩ PL = ∅.
F ⊆ (PL× TR)∪ (TR× PL) defines the flow relation.
Let N = TR ∪ PL be the set of all nodes. The pre-set of a node n ∈ N is
denoted as •n = {m ∈ N | (m,n) ∈ F}. The post-set of a node n is defined
as n• = {m ∈ N | (n,m) ∈ F}. �

Figure 6 gives an example of a Petri net that includes the same
behavior as the BPMN model shown in Figure 5. The transitions in
the net either contain a label (a, b, c, d, e) or are colored black. La-
belled transitions represent activities while unlabelled transitions are
only necessary for syntactical reasons. Unlabelled transitions are also
called silent transitions. We denote the set of all silent transitions as
τ ⊆ TR. Taking silent transitions into account, the set of transitions
is split into transitions representing activities and silent transitions:
TR = A∪ τ.

The state of a Petri net is determined by its marking. The marking
is defined by the function M : PL → N0, which assigns a place to
a natural number. N0 is the set of natural numbers including 0. In
the graphical representation of Petri nets the marking of a Petri net is
indicated by drawing black dots onto the places. The marking of the
Petri net shown in Figure 6 is defined as M(pl1) = 1 and M(pl2) =

M(pl3) = M(pl4) = M(pl5) = M(pl6) = M(pl7) = 0. As a short
representation, one can also list only the places with an indication
of the number of tokens as superscript. The marking of the example
Petri net is represented by the list [pl11].

For the execution of an activity, the corresponding transition needs
to be enabled. A transition tr is enabled if there is a token on every
place pli that is connected via an incoming arc to the transition tr,
i.e., ∀ (pli, tr) ∈ F,M(pli) > 0. The execution of a transition is called
firing and consumes a token from every incoming place and produces
a token on every place connected to the firing transition by an out-
going arc. Thereby, the distribution of the tokens over the places is
changed. That is, a firing of a transition tr describes the change of
the state (M) of a Petri net to a new state (M ′), denoted as M tr−→M ′.

2.1 business process management 17

M1
∗−→ Mn implies that there is a firing sequence of transitions tr1,

tr2, . . . , trn−1 such that Mi
tri−−→ Mi+1 for 1 6 i < n. If and only if

M
∗−→M ′, the marking M ′ is called reachable from marking M.

There are two types of special markings of a Petri net: initial mark-
ings and final markings. An initial marking identifies the start of a
process and a final marking its termination. The initial marking can
be any marking where at least one transition is enabled. In the final
marking there shall be only tokens in places with an empty post-
set. Note that not all Petri nets necessarily contain a final marking.
Nonetheless, in this thesis, we only allow Petri nets that have a given
initial marking and at least one final marking.

Firing sequences starting in the initial markingMi and leading to a
final marking Mf (Mi

∗−→Mf), are referred to as sound firing sequences.
We denote the set of all sound firing sequences as SFS.

a b

c

d

e

pl1 pl2

pl3

pl4

pl5

pl6 pl7

Figure 6: Petri net representation of the process shown in Figure 5.

Looking at the process illustrated in Figure 6, the initial marking
is given as Mi = [pl11], i.e., there is only one token in the first place
(pl1), which enables transition a. Once a fires, it produces a token
on place pl2 and a token on place pl3, which enables transitions b
and c. Once b and c both have fired, there are two tokens in the
places pl4 and pl5, enabling the connected silent transition, which
immediately consumes these tokens and creates a new one on place
pl6. The transitions d and e as well as the second silent transition are
now enabled. These three transitions are all exclusive to each other,
because they share one input place that can only contain a single
token for every execution of the process. Hence, when one of the three
transitions fires, it consumes the token from place pl6 and the other
transitions are no longer enabled. After one of the three transitions
has fired, a token is produced on pl7. In this marking, no transition is
enabled anymore and the process terminates. Thus, the final marking
[pl17] is reached.

If a Petri net contains only one initial place pli ∈ PL with •pli = ∅
and one final place plf ∈ PL with plf• = ∅, and all transitions lie
on a path between these two places, the net is called a workflow
net [115]. The class of workflow nets has been specifically proposed
for the modeling and analysis of business processes. In this thesis,
we do not require process models to be transformable into workflow

18 preliminaries and related work

nets. Nevertheless, the presence of a workflow net often allows for
dedicated and more efficient analysis methods.

Another important class of Petri nets is the class of free-choice Petri
nets [111, 13]. Free-choiceness means the separation of synchroniza-
tion and conflict in Petri nets. Synchronization refers to transitions
with multiple places in its pre-set and conflict relates to places with
multiple transitions in its post-set. A Petri net is a free-choice net if
it holds ∀pl ∈ PL, tr ∈ TR, (pl, tr) ∈ F =⇒ •tr × pl• ⊆ F. This
definition is known as extended free-choiceness as it is less restrictive
as the definition that has been utilized before. Yet, it is commonly
used and it has been shown that each extended free-choice net can
be transformed into a free-choice net with the same behavior with
respect to the labelled transitions.

Furthermore, boundedness is an important property of Petri nets that
is referred to in this thesis. A Petri net is bounded if there exists only
a finite number of markings reachable from the initial marking [114].

2.1.5 Behavioral Profiles

This section introduces a different, more abstract means to represent
the behavior of business processes. In [136], Weidlich et al. introduce
the notion of behavioral profiles. The relations defined for a behav-
ioral profile are based on the weak order relation, denoted by �. Two
activities a and b are in weak order, if a firing sequence exists where
a is followed by b. Note that this does not imply that b has to directly
follow a. Using the notion of weak order, three relations forming the
behavioral profile are defined in Definition 3 (cf. [136]).

Definition 3 (Behavioral Profile). LetA be the set of activities of a given
process model P. Two activities (a,b) ∈ A×A can be in one of the three
behavioral relations:

• The strict order relation , if a � b and b 6� a.

• The exclusiveness relation +, if a 6� b and b 6� a.

• The interleaving order relation ||, if a � b and b � a.

The behavioral profile of A is defined as BPA = { ,+, ||}. �

As a counterpart of the strict order relation, the reverse strict order
relation is introduced. The reverse strict order relation is defined as
 −1= {(b,a) ∈ A×A |a b}. Weidlich et al. extend this behavioral
profile to also include causality between activities. Therefore, the co–
occurrence relation is added. Let PN = (TR,PL, F) be the Petri net
representation of the given process model P. Two activities (a,b) ∈
TR× TR are in the co–occurrence relation�, if for all firing sequences
fs allowed by PN it holds that a ∈ fs =⇒ b ∈ fs. Table 1 and 2 show
the behavioral profile and respectively the co–occurrence relation for
the example process depicted in Figure 6.

2.1 business process management 19

Table 1: Behavioral profile of the
example process in Fig-
ure 6.

a b c d e

a +

b −1 + ||

c −1 || +

d −1 −1 −1 + +

e −1 −1 −1 + +

Table 2: Co–occurrence relation
of the example process in
Figure 6.
a b c d e

a � � �
b � � �
c � � �
d � � � �
e � � � �

Weidlich et al. present in [139] an approach to derive causal be-
havioral profiles from process models based on the Refined Process
Structure Tree (RPST). While this approach is very efficient, it can only
handle free-choice workflow nets. In [137] Weidlich et al. introduce a
more generalized approach for the derivation of behavioral profiles
using from bounded Petri nets. The latter approach uses Petri net
unfoldings and thereby relaxes the assumption of a free-choice work-
flow net, but is computationally much harder than the RPST-based
approach. Therefore, we use the RPST-based approach whenever pos-
sible and only fall back to the more general approach if necessary.

2.1.6 Declare

Having introduced the basic concepts of two imperative process mod-
eling languages as well as the concept of behavioral profiles, we now
turn to the declarative language Declare. Declare evolved from the ex-
tendable, template-based declarative language ConDec [88]. It models
workflows by means of temporal rules2.

The semantics of the used temporal rules are defined by Linear
Temporal Logic (LTL) formulas. LTL is a modal temporal logic de-
veloped by Pnueli in 1977 [91]. It can be used to specify and check
system properties. In order to achieve this, propositional or predicate
logic is extended by modalities permitting to express the behavior
of a reactive system [5]. Therefore, LTL introduces modalities refer-
ring to time that can be used to verify different properties in a linear
path. Hence, the LTL language adds operators to refer to time-related
properties to the basic logical operators, like ∨, ∧, and ¬. Using the
operator ♦ (“eventually”) on can specify that a property evaluates to
true at at least one point in the time starting from now. The operator�
(“always”) expresses that a property has to hold in every state. Using
the operator © (“nexttime”) requires a property to hold in the next

2 In literature, these temporal rules are called “constraints”. In this thesis, we do not
use the term “constraint” when talking about Declare in order to avoid the conflict
with the term “constraints” in the context of constraint satisfaction problems (CSPs),
which are introduced in Section 2.2.

20 preliminaries and related work

state, i.e., the second state from now. With prop1 ∪ prop2 (“prop1
until prop2”) it is declared that a property prop1 has to hold until
property prop2 holds.

Rule Explanation Cat. Positive and negative examples

Participation(a) a occurs at least once CE X bcac X bcaac × bcc × c

Init(a) a is the first to occur CE X acc X abac × cc × bac

End(a) a is the last to occur CE X bca X baca × bc × bac

CoExistence(a, b) If b occurs, then a oc-
curs, and viceversa

CR X cacbb X bcca × cac × bcc

NotCoExistence(a, b) a and b never occur
together

CR X cccbbb X ccac × accbb × bcac

Precedence(a, b) b occurs only if pre-
ceded by a

C→R X cacbb X acc × ccbb × bacc

AlternatePrecedence(a, b) Each time b occurs, it
is preceded by a and
no other b can recur
in between

C→R X cacba X abcaacb × cacbba × acbb

ChainPrecedence(a, b) Each time b occurs,
then a occurs immedi-
ately beforehand

C→R X abca X abaabc × bca × bacb

Succession(a, b) a occurs if and only if
it is followed by b

C→R X cacbb X accb × bac × bcca

AlternateSuccession(a, b) a and b if and only if
the latter follows the
former, and they al-
ternate each other in
the trace

C→R X cacbab X abcabc × caacbb × bac

ChainSuccession(a, b) a and b occur if and
only if the latter im-
mediately follows the
former

C→R X cabab X ccc × cacb × cbac

NotSuccession(a, b) a can never occur be-
fore b

C→R X bbcaa X cbbca × aacbb × abb

Table 3: Declare templates adapted from [38].

Based on LTL, Declare rules are meant to impose specific condi-
tions on the occurrence of tasks in execution sequences. The rationale
is, that every behavior in the enactment of a process is allowed, as
long as it does not violate the specified rules. That is why declara-
tive models are said to be “open”, in contrast to the “closed” fashion
of classical imperative models [78]. The Declare standard provides a
predefined library of templates, listing default restrictions that can be
imposed on the control–flow. For a complete list of rules we refer to
[120].

Table 3 encompasses the set of Declare rules that are utilized in
this thesis. The table provides conforming and violating examples of
execution sequences for every rule to illustrate the effects of a rule.
We group the Declare rules into three different categories: existence
rules, relation rules, and ordering relation rules (C→R).

2.1 business process management 21

Starting with the existence rules, we cluster rules that express a con-
dition on the execution of a single activity. The set of existence rules is
denoted as CE. For instance, Participation(a) is an existence rule stat-
ing that activity a must occur in every execution sequence. Further
rules that fall into this category are Init(a) and End(a). These rules
constrain the first and last activity of an execution sequence.

Turning to relation rules, we group Declare rules that constrain the
execution of pairs of activities. We declare CR as the set of all rela-
tion rules. NotCoExistence(a, b) is a relation rule that constrains a and
b, and implies that a and b never occur together in the same execu-
tion sequence. In contrast to the NotCoExistence rule, CoExistence(a, b)
requires that whenever activity a is part of an execution sequence,
activity b is also part of the same execution sequence.

Looking at relation rules, we further differentiate rules that impose
an ordering of activities. Templates of this category are grouped by
the set C→R . Precedence(a, b) is the ordering relation rule establishing
that, if b occurs in the execution sequence, then it must be preceded
by at least one occurrence of a. AlternatePrecedence(a, b) is an ordering
relation rule, which strengthens Precedence(a, b) stating that not only b
must be preceded by a, but also no other b occurs between pairs of a’s
and b’s. ChainPrecedence(a, b) further restricts AlternatePrecedence(a, b)
(and Precedence(a, b), a fortiori), imposing that every b must be im-
mediately preceded by a, without any other activity occurring in-
between. Such transitive restrictions in rule semantics constitute the
so-called subsumption relation among templates [36]. This relations
defines that AlternatePrecedence(a, b) is subsumed by Precedence(a, b),
ChainPrecedence(a, b) is subsumed by AlternatePrecedence(a, b) (and by
Precedence(a, b)).

The subsumption relation implies that those execution sequences
that are compliant with the subsumed rule, are also valid for the
subsuming one. That is, execution sequences that satisfy the rule
ChainPrecedence(a, b) also satisfy the rules AlternatePrecedence(a, b) and
Precedence(a, b). From the definitions provided in Table 3, we can also
state that AlternateSuccession(a, b) is subsumed by Succession(a, b), as
well as ChainSuccession(a, b) is subsumed by AlternateSuccession(a, b)
and Succession(a, b). Succession, AlternateSuccession and ChainSuccession
rules are very similar to their corresponding precedence rules. The
difference lies in the implied co–occurrence. Precedence(a, b) enforces
that activity b can only occur if activity a has happened before, en-
forcing a co–occurrence of a and b only for cases that contain b. That
is, activity a can occur without activity b. Succession(a, b) imposes
the same ordering of activities a and b, but activity a cannot be exe-
cuted without activity b. Thus, Succession subsumes CoExistence and
adds an ordering. AlternateSuccession and ChainSuccession strengthen
Succession in the same way as AlternatePrecedence and ChainPrecedence
strengthen Precedence.

22 preliminaries and related work

To exemplify the usage of the introduced Declare rules, Table 4

outlines Declare rules to closely represent the example process used
in the previous sections. This time, we used the two sub–activities aa
and ab instead of a. There are two important things to note. First, the
behavior captured by the rules given in Table 4 do not exactly reflect
the behavior of the process given in the BPMN model in Figure 5.
For example, the activities d and e are only restrained in that they
are exclusive to each other and that they cannot happen before any
of the other activities. Yet, both d and e could be executed multiple
times without violating any of the given rules. The second important
thing to note is that there are obviously multiple ways to model the
same behavior with other rules. Hence, Table 4 does not give the only
possible way of modeling the example process with Declare rules.

Table 4: Exemplary Declare rules for the process shown in Figure 5.

Declare rule Explanation

Init(aa) The process starts with aa.

ChainSuccession(aa, ab) aa and ab only occur iff aa occurs
directly before ab.

Succession(ab, b) ab only occurs iff followed by b.

Succession(ab, c) ab only occurs iff followed by c.

Precedence(b, d) d occurs only if preceded by b.

Precedence(c, d) d occurs only if preceded by c.

Precedence(b, e) e occurs only if preceded by b.

Precedence(c, e) e occurs only if preceded by c.

NotCoExistence(d, e) d and e never occur together.

2.1.7 Process Execution

Once a business process is designed and configured, it is enacted and
thus, executed. The execution can be performed completely automat-
ically, completely manually, or a mixture of both. In this thesis, we
do not differentiate between automatic or manual executions, yet, we
will impose certain restrictions on how the execution of a process
has to be logged in order to apply the introduced techniques. This
is covered in the next section, which deals with process mining. In
this section, the formal foundations are laid to cover business process
execution.

When a process is executed, the activities of the corresponding
process model are instantiated. During the life time of an activity
instance, the activity instance is in different states. There are different
life cycle models proposed in literature (see, e.g., [118, p. 101], [143, p.

2.1 business process management 23

start
suspend

resumeskip
complete

Figure 7: Activity life cycle model based on [118, p. 101].

83ff.]). In this thesis, we adopt the life cycle model proposed by Aalst
in [118, p. 101]. Figure 7 shows the activity life cycle model based
on the model proposed by Aalst. Definition 4 provides the formal
definition of an activity life cycle model.

Definition 4 (Activity life cycle model). Let LCS be a set of states,
and LT be the set of activity life cycle transactions. An activity life cycle
model ALM = (LCS, lcsI, lcsF,LT , θ) is a transition system that defines
the allowed sequences of life cycle transactions. Here, θ ⊆ LCS× LT × LCS
is a finite set of transition relations modeling the allowed life cycle transitions
in a given state. An activity life cycle model has an initial state lcsI ∈ LCS
and a final state lcsF ∈ LCS. �

As shown in Figure 7, we use a reduced set of activity life cycle
transitions LT ⊆ {start, skip, suspend, resume, complete}. There are
two reasons for reducing the set of transitions proposed by Aalst.
The first reason is simplification. In order to introduce the concepts
developed in this thesis, an excessive set of life cycle transitions is
not necessary. Moreover, the concepts do not heavily depend on the
specific transitions and the set can therefore easily be altered and ex-
tended if necessary. The second reason, why we chose the specific set
of life cycle transitions is that these are the transitions we encountered
in our industry case studies.

a
c

b1

a1

c1

c2

p

start compl

suspendstart complresume

start compl

start compl

P

A
ct

iv
it

y
in

st
an

ce
s

w
it

h
 li

fe
 c

yc
le

tr

an
si

ti
o

n
in

st
an

ce
s

A
ct

iv
it

y
cl

as
se

s

b

Figure 8: Process model and process instance with event diagram of life
cycle transitions.

For the instantiation of activity life cycle models, event diagrams
are used as proposed by Weske [143, 86f.]. Figure 8 shows a simple
example process P and a corresponding process instance p̂ with the
events for each life cycle transition of an activity. Events are repre-

24 preliminaries and related work

sented by black bullets and represent the execution of a life cycle
transition. Time proceeds from left to right in an event diagram.

Figure 9 shows the relations of model and instance level. When
a process is executed, this is interpreted as an instantiation of the
process model, which can happen zero or many times. A process
model has one or more activities that get instantiated during process
execution. Activities can have sub–activities, thus there is a relation
between activities as well as between activity instances. Each activity
has a life cycle model and the instantiation of this life cycle model
is connected to the corresponding activity instance. On the lowest
level, the instances of the life cycle transitions are connected to their
corresponding life cycle instance.

1

1..*

1

1..*

1 0..*

1 0..*
1

1

1

1

1..*

1

1

1

1..*

Activity Activity Instance

Process InstanceProcess Model

Life Cycle Model

Life Cycle Transition
Life Cycle Transition

Instance

Life Cycle Instance1 0..*

1 0..*

1

0..* 0..*

Model Instance

Figure 9: Model and instance level of processes.

2.1.8 Process Mining

2.1.8.1 Overview of Process Mining Techniques

Process mining refers to a toolset of technologies to leverage the in-
formation recorded by IT systems that support business processes.
Automated discovery of information from event logs created by IT
systems is the main goal of process mining [113]. Figure 10 gives an
overview of the general process mining setting. Processes are carried
out by machines and people with the help of software systems. These
software systems record event logs, which range from simple text
files to data hidden in complex structures of large databases. Once
we have extracted an event log from the IT systems, process min-

2.1 business process management 25

1.3 Process Mining 9

Fig. 1.4 Positioning of the three main types of process mining: discovery, conformance, and en-
hancement

However, most information systems store such information in unstructured form,
e.g., event data is scattered over many tables or needs to be tapped off from sub-
systems exchanging messages. In such cases, event data exist but some efforts are
needed to extract them. Data extraction is an integral part of any process mining
effort.

Let us assume that it is possible to sequentially record events such that each
event refers to an activity (i.e., a well-defined step in the process) and is related to
a particular case (i.e., a process instance). Consider, for example, the handling of
requests for compensation modeled in Fig. 1.1. The cases are individual requests
and per case a trace of events can be recorded. An example of a possible trace
is ⟨register request, examine casually, check ticket, decide, reinitiate request, check
ticket, examine thoroughly, decide, pay compensation⟩. Here activity names are used
to identify events. However, there are two decide events that occurred at different
times (the fourth and eighth event of the trace), produced different results, and may
have been conducted by different people. Obviously, it is important to distinguish
these two decisions. Therefore, most event logs store additional information about
events. In fact, whenever possible, process mining techniques use extra information
such as the resource (i.e., person or device) executing or initiating the activity, the
timestamp of the event, or data elements recorded with the event (e.g., the size of an
order).

Event logs can be used to conduct three types of process mining as shown in
Fig. 1.4.

Figure 10: Overview of process mining [118, p. 9].

ing provides three types of actions: Discovery, conformance checking,
and enhancement.

There is a plethora of different discovery algorithms, which distin-
guish three different perspectives: the process, the organization or the
case [130]. The aim of the discovery algorithms that focus on the pro-
cess perspective is to generate a process model covering the behavior
found in the event log. In this area currently the majority of discov-
ery algorithms can be found and there are many different approaches
such as the α–algorithm and its extensions [123, 31, 74], heuristic min-
ing [142], fuzzy mining [58], genetic mining [32, 22], region–based
mining [129], and inductive mining [70]. The organizational perspec-
tive deals for example with the relations between persons and roles
based on their handover of work or based on the execution of similar
activities. The case perspective focuses on the different characteriza-
tions of a process instance. It analyzes the data elements as well as
the roles and persons contributing to a process instance.

Turning to the second process mining technique, the conformance
checking, we deal with the comparison of the process as recorded
in an event log to a given process definition, e.g., a process model.
Different approaches have been suggested as means for conformance
checking. Rozinat et al. [100] introduce a conformance checker plug–
in in ProM 5, which employs a log replay technique to check to which
degree an event log matches the behavior specified in a given Petri
net. Another technique is provided by Aalst et al. [128], who define
alignments of event log and process model to pinpoint deviations.
Based on the behavioral profile described in Section 2.1.5, Weidlich et
al. [138] suggest a conformance checking approach that is less strict
than the previous ones. The majority of approaches focuses on con-
formance of event logs to process models. In contrast to this, van der
Aalst et al. [124] employ LTL formulas to specify business rules and

26 preliminaries and related work

to check these against the process execution recorded in an event log.
While no process model is necessary for this approach, the activities
found in process models are typically used in the specified business
rules.

The third technique in process mining is called enrichment and deals
with the improvement of process models based on the information
captured in event logs [118, p. 10]. For example, one can extract per-
formance data as, such as activity durations or waiting times, and
plot this information onto process models. Another example of en-
richment is decision point analysis introduced by Rozinat and Aalst
in [101]. Here, the event log is analyzed to extract rules describing the
reasons for choosing between exclusive paths in a process model.

Stage 0: plan and justify

Stage 2: create control-flow model
and connect event log

Stage 1: extract

historic
data

handmade
models

objectives
(KPIs)

questions

event log control-flow model

Stage 3: create integrated process
model

event log process model

data understanding business understanding

Stage 4: operational support

explore
discover

check
compare
promote

enhance

detect
predict

recommend

in
te
rp
re
t

diagnose

current data

redesign

adjust

intervene

support

Fig. 1: The L∗ life-cycle model describing a process mining project consisting of five stages: plan and justify (Stage 0), extract
(Stage 1), create control-flow model and connect event log (Stage 2), create integrated process model (Stage 3), and operational
support (Stage 4)

and (e) assess. Both methodologies are very high-level and
provide little support. Moreover, existing methodologies are
not tailored towards process mining projects. Therefore, we
propose the L∗ life-cycle model shown in Fig. 1. This five-
stage model describes the life-cycle of a typical process mining
project aiming to improve a Lasagna process.

In the remainder, we discuss each of the five stages shown
in Fig. 1.

Stage 0: Plan and Justify

Any process mining project starts with a planning and a
justification of the planned activities. Before spending efforts
on process mining activities, one should anticipate benefits that
may result from the project. There are basically three types of
process mining projects:

• A data-driven (also referred to as “curiosity driven”)
process mining project is powered by the availability
of event data. There is no concrete question or goal,
however, some of the stakeholders expect that valuable
insights will emerge by analyzing event data. Such a
project has an explorative character.

• A question-driven process mining project aims to answer
specific questions, e.g., “Why do cases handled by team
X take longer than cases handled by team Y?” or “Why
are there more deviations in weekends?”.

• A goal-driven process mining project aspires to improve
a process with respect to particular KPIs, e.g., cost
reduction or improved response times.

For an organization without much process mining experience
it is best to start with a question-driven project. Concrete
questions help to scope the project and guide data extraction
efforts.

Like any project, a process mining project needs to be
planned carefully. For instance, activities need to be scheduled
before starting the project, resources need to be allocated,
milestones need to be defined, and progress needs to be
monitored continuously.

Stage 1: Extract

After initiating the project, event data, models, objectives,
and questions need to be extracted from systems, domain
experts, and management.

Figure 11: The L∗ life cycle model for process mining projects [117].

There are different approaches towards structuring a process min-
ing project, such as [117, 19, 132]. Figure 11 shows the L∗ life cycle of
a process mining project as introduced by Aalst [117]. The life cycle
starts with the planning and justification of the project. Having a con-
crete plan, the required data is gathered in Stage 1. Besides event
logs, also handmade models are collected for conformance or en-
hancement activities. Furthermore, objectives should be set and ques-
tions for which an answer is sought, should be formulated. Stage 2

aims at building a control–flow model that is tightly connected to the

2.1 business process management 27

given event log. This can be done by discovering a process model
from the event log, by verifying an existing handmade model using
conformance checking, or by merging an existing handmade model
with a discovered model. Having a process model that reasonably
represents the recorded executions, previously formulated questions
might already be answered and actions like redesign can be initiated.
Next, an integrated process model is built using enhancement tech-
niques in Stage 3. The integrated model can again be used to an-
swer questions and take actions. In Stage 4 the integrated model is
used in conjunction with current data of the IT systems, to provide
operational support. For example, the duration of currently running
process instances can be predicted, or activities can be recommended
to process participants on the basis of the historic data encapsulated
in the event log and integrated process model.

2.1.8.2 Fundamental Concepts of Process Mining

Coming from the main applications of process mining, this section
introduces the fundamental formal background on which we will
ground the work in the upcoming chapters. The basis for every pro-
cess mining algorithm are events recorded by one or more IT systems
during the execution of a business process. Etzion and Niblett [45,
p.4] define an event as follows:

“An event is an occurrence within a particular system
or domain; it is something that has happened, or is con-
templated as having happened in that domain. The word
event is also used to mean a programming entity that rep-
resents such an occurrence in a computing system.”

Etzion and Niblett differentiate between “something that has hap-
pened”, i.e., a real world event as, e.g., an incoming call in a help
desk, and the “programming entity” that reflects the occurrence of
the real world event in an IT system. The authors also stress that a
single occurrence of an event can be represented by multiple event en-
tities. These entities might be stored in one or in multiple distributed
systems.

In this thesis, we refer to an event occurrence as event instance of a
particular event class. Whenever the term event is used in this thesis,
it is used as a synonym for event instance. Definition 5 introduces the
formal terms for events, which are used throughout this thesis.

Definition 5 (Event class, event instance, event attributes). Let Ê
be the set of event instances. Each event instance has different attributes,
which are specified in the set of all attributes, called ATE. For each attribute
#attr(ê) refers to the value of the attribute attr ∈ ATE for the event ê ∈ Ê.
An event instance has at least the attribute #time(ê), which refers to the
time when it occurred, and the attribute #class(ê) = e, which links to the
event class e ∈ E, where E is the non-empty set of event classes. �

28 preliminaries and related work

As stated in Definition 5, an event instance is a particular occur-
rence of an event belonging to a specific event class. For example,
the incoming call from Mrs. Smith at 4.35 PM on July 23, 2014 is an
event instance of the event class “Incoming call”. Formally, there is an
event class, e = “Incoming call”, and an event instance, ê, with the at-
tributes #time(ê) = “07/23/2014 16:35:00” and #class(ê) = e. We use
the circumflex over the symbol of an event class to imply an event
instance of this particular class. That is, ê implies that #class(ê) = e.
Note that the described attributes are only the mandatory attributes
we assume for every event. Other attributes may contain role infor-
mation or values of changed database fields. For the example event
there might be an attribute capturing the phone number of the calling
person, e.g., #phone(ê) = “ + 493012345678 ′′.

In order to gain insight into a particular process, event instances
need to be correlated to their corresponding process instance. Event
instances belonging to the same process instance are grouped in a
trace. An event log groups a set of traces for a single process.

Definition 6 (Trace, event log). A trace is a list of the form Ê∗, where the
contained event instances are ordered by their time attribute. The ordering
of two event instances is furthermore captured in the ordering relation >ê∈
Ê× Ê. We write ê1 >ê ê2 to indicate that event instance ê1 occurs before
event instance ê2 in a trace. A trace can have attributes assigned to it. The
set of all possible trace attributes is called ATT and #attr(t) refers to the
value of a trace attribute attr ∈ ATT. An event log L is a set of traces. �

Like events, traces have attributes. Regarding trace attributes, we
only assume the attribute #case(t), which uniquely relates a trace to
a process instance, as mandatory. Nevertheless, more attributes can
be defined and used in the matching of events and activities.

Every event instance is assigned to a trace and each trace in an
event log is related to a process instance. Note that the relation of
event instances to traces might not be trivial in every practical setting.
Yet, there is plenty of work on event correlation that identifies the
relation between event instances and traces (see, e.g., [86, 103]). In this
work, we therefore assume this relation to be already given. Although
each trace can contain multiple instances of the same event class, we
assume that each event instance in a trace can be uniquely identified
by its attribute values.

Let E = {k, l,m} with k = “Incoming call”, l = “Ticket created” and
m = “Ticket closed” be the set of event classes. Consider the trace
t1 = 〈k̂1, l̂1, k̂2, m̂1〉. We use indices to be able to directly refer to event
instances from event classes that occur more than once. Yet, there
are multiple ways of describing traces for instances of these event
classes. In case we do not need to make direct reference to single event
instances, we may omit the indices. In this case, we can also write
t1 = 〈Incoming call, Ticket created, Incoming call, Ticket closed〉.

2.2 constraint satisfaction problem solving 29

Traces might be split for analysis of particular parts of a trace. A
continuous part of a trace is called a sub-trace. We use the | operator
for the concatenation of traces or sub-traces. Looking at trace t1, we
could declare t11 = 〈k̂1, l̂1〉 and t12 = 〈k̂2, m̂1〉. Then, t1 = t11|t12.

Typically, there are many traces in an event log that contain the
exact same ordering of events. Consider the event log L1 = {t1 = 〈k̂,
l̂, m̂〉, t2 = 〈k̂, m̂, l̂〉, t3 = 〈k̂, l̂, m̂〉}. The traces t1 and t3 are identical,
if we abstract from event attributes and regard traces as lists of event
class labels. The specific ordering of events is referred to as a variant,
denoted as v ∈ V , where V is the list of all variants. Using variants,
the event log L1 can also be written as L1 = {v1 = 〈k, l,m〉2, v2 = 〈k,
m, l〉}. The number of occurrences of a variant is indicated as a super-
script. If a variant is represented by only one trace, the superscript is
omitted. As a generalization, we also write V = 〈vw11 , . . . , vwii 〉, where
the number of occurrences of a variant, called weight, is represented
by w. The list of all variant weights is W = 〈w1, . . . ,wi〉. The weight
at index i in W refers to the variant at index i in V .

2.2 constraint satisfaction problem solving

This section introduces the general concepts of constraint satisfaction
problems, which will play a major role in the matching of events
and activities in this thesis. Constraint programming makes use of
a combination of reasoning and computing techniques. It is applied
in a wide range of disciplines from molecular biology over electrical
engineering to business applications like option trading. In order to
apply constraint programming to a real world problem, it first needs
to be transformed into a constraint satisfaction problem (CSP). This
transformation is done in two steps: First, variables are introduced
that range over specific domains. Second, constraints over these vari-
ables are defined. Such constraints are usually a subset of first-order
logic. The definition of a constraint satisfaction problem is called mod-
eling [2, p. 1ff].

Formally, a CSP is a triple CSP = (X,D,CST) where X = 〈x1, x2,
. . . , xn〉 is an n-tuple of variables with the corresponding domains
specified in the n-tuple D = 〈d1,d2, . . . ,dn〉 such that xi ∈ di, with
i ∈ 1..n [53]. CST = 〈cst1, cst2, . . . , cstt〉 is the t-tuple of constraints.
We use predicate logic to express the constraints used in this paper.

Once the real world problem is expressed in terms of a CSP, the
CSP needs to be solved. The solution of a CSP can be approached
using either domain specific methods like, e.g., linear programming,
or general methods, which employ specific search methods to reduce
the search space [2, p. 2]. Also a combination of domain specific and
general methods is possible.

The set of solutions to a CSP is formally denoted as S = {S1, S2,
. . . , Sm}, where each solution Sk = 〈s1, s2, . . . , sn〉 is an n-tuple with

30 preliminaries and related work

k ∈ 1..m, si ∈ di, i ∈ 1..n, and every constraint in CST is satisfied.
The value si at index i in a solution Sk represents the value of the
variable xi at index i in X.

To exemplify the use of a CSP, consider the following classic exam-
ple taken from [2]. The equation SEND+MORE =MONEY is given
and the task is to replace each letter by a different digit in such a
way that the equation is correct. In order to express this as a CSP, the
variables are defined as X = 〈S,E,N,D,M,O,R, Y〉. The domain of
each of the variables is the integer interval [0, 9] except for variables S
and M, which have the interval of [1, 9] as their domain since they are
the leading digits. One constraint cst1 ∈ CST is defined as follows.

cst1 ≡ 1000 · S + 100 · E + 10 ·N + D (1)

+ 1000 ·M + 100 ·O + 10 · R + E

= 10000 ·M + 1000 ·O + 100 ·N + 10 · E + Y

There is exactly one solution to this CSP, which leads to the correct
equation 9567+ 1085 = 10652. In order to solve such a CSP, different
algorithms exist that fall into one of three categories: inference, search,
or a combination of both [53]. In this thesis, we will not go into the
details of algorithms for solving CSPs but rely on existing implemen-
tations that automatically detect an appropriate search strategy.

2.3 illustrating examples 31

2.3 illustrating examples

This section introduces the two example processes that we will use
to illustrate both the requirements that need to be fulfilled by the
methods we introduce, as well as the methods and concepts them-
selves. The two example processes demonstrate different features of
IT supported business processes found in real life scenarios.

2.3.1 An Order Process

Starting with an example of an order process, Figure 12 depicts a
process model that starts with the activity “Check order”, specifies
the handling of an order, and ends with the archiving of the processed
order. Table 5 shows an exemplary event log with 5 traces, which
have been produced by an IT system supporting the order process
depicted in Figure 12. Obviously, it is not straightforward to interpret
the given event log, because the event labels are cryptic database field
names, which cannot be easily matched to the names of the activities
in the process model. Yet, once the mapping is established as shown

Check
order

Change
order

Process
order

Send
invoice

Ship
products

Archive
order

Send
notification

Figure 12: Order process model in BPMN.

in Table 6, we can use the event log to check conformance between
the model and the log. For example, we are able to detect that in the
case represented by trace t3, the customer has already been notified
before the products were shipped. According to the process model,
this should not happen. It is critical for organizations to detect, and
accordingly react to such nonconforming behavior [118].

Table 5: Event log L1 of order process
POrd.

Label sequence

t1 〈 O_CHK, O_PRC, I_SM, P_SP, O_ARC 〉
t2 〈 O_CHK, O_RCO, O_CHK, O_PRC, P_SP,

P_NOT, I_SM O_ARC 〉
t3 〈 O_CHK, O_PRC, I_SM, P_NOT, P_SP,

O_ARC 〉
t4 〈 O_CHK, O_PRC, O_RCO, P_SP, P_NOT,

I_SM, O_ARC 〉
t5 〈 O_CHK, O_PRC, P_SP, I_SM, P_NOT,

O_ARC 〉

Table 6: Mapping for L1
and POrd.

Activity Event class

Check order O_CHK

Change order O_RCO

Process order O_PRC

Send invoice I_SM

Ship Products P_SP

Send notification P_NOT

Archive order O_ARC

32 preliminaries and related work

Table 7: Event log L2 of order process
POrd.

Label sequence

t1 〈 O_CHK_S, O_PR_S, O_PR_E, I_SM_E,
P_SP_E, O_ARC_S, O_ARC_E 〉

t2 〈 O_CHK_S, O_RC_SB, O_RC_E,
O_CHK_S, O_PR_S, O_PR_E, P_SP_E,
P_NOT_E, I_SM_E O_ARC_S, O_ARC_E 〉

t3 〈 O_CHK_S, O_RC_SA, O_RC_E,
O_CHK_S, O_PR_S, O_PR_E, P_NOT_E,
I_SM_E, P_SP_E, O_ARC_S, O_ARC_E 〉

t4 〈 O_CHK_S, O_PR_S, O_PR_E, P_SP_E,
P_NOT_E, I_SM_E, O_ARC_S, O_ARC_E 〉

t5 〈 O_CHK_S, O_PR_S, O_PR_E, P_SP_E,
P_NOT_E, I_SM_E, O_ARC_S, O_ARC_E 〉

Table 8: Mapping for L2
and POrd.

Activity Event class

Check order O_CHK_S

Change order O_RC_SA,
O_RC_SB,
O_RC_E

Process order O_PR_S,
O_PR_E

Send invoice I_SM_E

Ship products P_SP_E

Send notification P_NOT_E

Archive order O_ARC_S,
O_ARC_E

Another example of an event log (L2) from an IT system that sup-
ports the order process is given in Table 6. Yet, this time, more events
have been logged by the system. By simply counting the number of
different event classes in the log, it can be seen that there are more
event classes than activities in the process model. Table 8 provides
the required mapping between events and activities. For some of the
activities multiple events are being logged, while for others only one
type of events can be observed. Looking at the events of the “Change
order” activity, not necessarily all events belonging to an activity are
generated when the activity is executed. The event instances of classes
O_RC_SA and O_RC_SB are exclusive to each other, i.e., they never
occur together in a single trace. In contrast to this, the events belong-
ing to activity “Process order” and “Archive order” always occur
together in a trace. Having the mapping provided in Table 8, one can
again conduct a conformance analysis to detect that in trace t3 the
notification has been sent out before the products were shipped.

Check
order

Change
order

Process
order

Send
invoice

Ship
products

Archive
order

Send
notification

O_CHK_S O_ARC_SO_RC_SA O_RC_SB O_RC_E O_PR_S O_PR_E P_SP_E I_SM_E P_NOT_E O_ARC_E

start compl

start compl

start compl

start compl

start compl

start compl

start compl

Figure 13: Order process with life cycle transitions and their mappings to
event classes.

Figure 13 sketches another type of mapping. In addition to the
typical process model, each activity is annotated with its life cycle.
Here, the life cycle for each activity is the same, consisting of a start

2.3 illustrating examples 33

and an end transition. The dotted lines represent a mapping of event
classes to the activity life cycle transitions. While some of the life
cycle transitions cannot be mapped to any event class, the start tran-
sition of “Change order” has two different event classes assigned to
it. For those activities, where both start and complete transitions are
mapped to event classes, it is now possible to compute the run time
of the activity instances for each process instance. These activity du-
rations can then be plotted onto the process model, as many popular
process mining tools as, e.g., Disco3 and Celonis Process Mining4 do.

2.3.2 An Incident Management Process

In this section, we introduce another example process that is used
for the illustration of our concepts and the requirements imposed on
them. Figure 14 depicts the process of incident management based
on the definition found in the IT Infrastructure Library (ITIL) [23].
The process is executed by three different roles. The main role is the
first level, which is responsible for logging, classifying and initial di-
agnosis of an incident. In case a first level agent cannot resolve the
incident on their own, the incident can be functionally escalated to
one of the other two roles, i.e., a second level agent or to security. In
any case, the first level performs the final resolution and recovery and
closes the incident. Table 9 entails further descriptions of the activi-

IT
IL

 O
rg

an
iz

at
io

n

Fi
rs

t
le

ve
l

Se
co

n
d

le
ve

l
Se

cu
ri

ty

Incident
logging

Incident
classification

Functional
escalation

Initial
diagnosis

Incident
closure

Investigation
and diagnosis

Resolution
and recovery

Security
incident
handling

Case 1:

Case 2:

Case 3:

Case 4:

Case 5:

Case 6:

Group,

Group,

Group,

Group,

Group,

Details,

Classification,

Classification,

Classification,

Classification,

Group,

Details,

CI,

CI, CI,

CI,

CI, CI,

Details,

Details,

Details,

Details,

Details,

Group,

Group,

CI,

CI, CI,

Solution,

Solution,

Solution,

Solution,

Solution,

Solution,

Group,

Group,

CI,

CI,

CI,

Status

Status

Status

Status

Status

Status

 ...

 .

 ..

 ..

 Message, .. .

 Message, .. .

 ..

 ..

 . ..

 .

 .

 .

 ..

 ..

 ..

Figure 14: Example of event to activity relations: Incident Management
process model and low-level event log with shared functionali-
ties and concurrency

ties contained in the process model in Figure 14. Such descriptions
are often attached in process modeling tools or separately provided
in more detailed work instructions. The goal of these descriptions is
to give a better understanding of the tasks that need be carried out
in order to perform a given activity. While our exemplifying descrip-

3 See http://fluxicon.com/disco/

4 See http://www.celonis.de/en/discover/our-product

http://fluxicon.com/disco/
http://www.celonis.de/en/discover/our-product

34 preliminaries and related work

tions are rather short, these textual instructions can be very long and
comprehensive in practical settings.

Table 9: Activity descriptions for the incident process

Activity Description

Incident logging The responsible group within the 1st level is automati-
cally assigned. A member of this group needs to log the
details of the incident.

Incident classification Depending on the logged details, the appropriate classi-
fication needs to be chosen.

Initial diagnosis The assigned 1st level supporter needs to research the
knowledge base for the described problem and has to
detect the configuration item (CI) that needs fixing.

Functional escalation If no solution can be found in the knowledge base, the
1st level supporter has to route the incident ticket to the
responsible 2nd level group or to the security team.

Investigation and diagnosis A 2nd level supporter needs to perform a technical inves-
tigation and diagnosis of the reported incident, select the
correct configuration item (CI), and report the solution
back to the 1st level group.

Security incident handling The security group needs to track a potential attack of
an IT system in the security database and has to perform
all required actions to resolve the issue. The solution is
then passed back to the responsible 1st level group.

Resolution and recovery Once the solution for the incident is found, it needs to be
logged and, if necessary, saved to the knowledge base. If
required, the customer is informed.

Incident closure Finally, the configuration item (CI) and documentation
of the incident is checked and the incident is closed.

Besides the process model, Figure 14 depicts an excerpt of an event
log with six traces. In contrast to the example logs shown for the
order process in the previous section, the events recorded by the sup-
porting IT system for the incident management process contain actual
human readable words. Still, the relation between events and activi-
ties cannot be easily done using simple string matching, as the terms
used in the event log only rarely occur in the names of the activities.
For instance, the two event classes “Group” and “Details” have to be
related to the activity “Incident logging”. Again, there are sometimes
multiple event classes assigned to some of the activities. These may be
related to life cycle transitions of those activities and thereby enable
performance analysis for these activities in the same way as shown
for the order process. What is more interesting in this example, is
the fact that there are event classes that are mapped to multiple ac-
tivities. For example, event instances of the event class “CI” can be
assigned to four different activities. The activity “Initial diagnosis”
can be reflected by an event of the class “CI”, but also the activities
“Investigation and Diagnosis”, “Security incident handling”, or to the
activity “Incident closure” can be mapped to such an event. Similarly,

2.4 requirements 35

the events of class “Group” are mapped to either one of the activities
“Incident logging”, “Functional escalation” “Investigation and Diag-
nosis”, or “Security incident handling”. Thus, these events represent
some common functionality that can be used by multiple activities
and which always logs the same type of events.

Furthermore, there are events of the event class “Message”, which
are not related to any activity. These may stem from system activities
that are not actually part of the incident process but still related to
the case. Such activities could for instance include a monitoring of
the incident cases.

It can also be seen that the execution is almost never according to
the process model. The process model requires a sequential execu-
tion of the activities “Incident logging”, “Incident classification” and
“Initial diagnosis”. Yet, in the event log there are events related to
the activity “Incident logging” before and after the events recorded
for the other two activities. Thus, it seems that the activity “Incident
logging” is running in parallel to “Incident classification” and “Initial
diagnosis”.

In contrast to the non-conforming behavior seen in the order pro-
cess, the incident process does not contain only rare non-conforming
execution but rather systematically differs from the designed process
model in some of its parts. A matching approach has to take such
circumstances into consideration. The next section will elaborate on
the concrete requirements for the matching approach in more detail.

2.4 requirements

The goal of this thesis is to provide a preprocessing of event logs
used by different process analysis techniques, such as process discov-
ery, conformance, and enhancement techniques. Based on this goal,
this section defines the requirements such a preprocessing approach
needs to fulfill. The requirements that we present have been assem-
bled based on existing literature as well as on the data of the real life
case studies that we have conducted.

Starting with techniques that measure the conformance of an event
log to a given process model, it can easily be seen that activities and
events have to be matched in order to know which activity in the
model has been executed when a particular event is seen in the event
log. Currently available approaches based on log replay (e.g., [100])
or alignment (e.g., [128]) assume that events and activities can be
matched over their labels, thereby implying a one-to-one relation be-
tween activities and events on both type and instance level. Further-
more, most of the process discovery techniques (e.g., [70, 123, 129,
142]) also use the label of an event as the label of the corresponding
activity in a discovered process model. In order to make a discov-
ered process model easily understandable for business analysts, the

36 preliminaries and related work

model activities should use business activity names instead of event
names. Thus, also for process discovery it is required to match events
to activities.

1

1..*

1

1

1

1..*

1 0..*

1 0..*

1 0..* 1..* 1 1..* 1

1

1

1

1

Event Instance

Activity Activity Instance

Process Instance

Trace Event LogEvent Class

Process Model

Figure 15: Relations of the entities of the event log, process model, and
process execution with assumed cardinalities

Figure 15 shows the relation between process models and event
logs and cardinalities assumed by most conformance checking and
discovery techniques. A process model is connected to process in-
stances reflecting the actual executions of the modeled process as ex-
plained in Section 2.1.7. It is assumed that there is a trace in the event
log for each process instance and that each event instance is related
to exactly one trace. Note that the relation of event instances to traces
might not be trivial in every practical setting. Yet, there is plenty of
work on event correlation, which relates event instances to traces (see,
e.g., [86, 103]). In this work we therefore assume that this relation is
already given. Furthermore, we assume that the link between a pro-
cess instance and a trace is given. As process models represent the
design of a process and event logs represent the execution of a pro-
cess, activities in a process model cannot be directly linked to event
instances in an event log. Instead, event instances need to be linked
to the execution instances of activities, called activity instances.

a
c

b1a1
p

k1 l1 m1

P

kE

Ev
en
t

cl
as
se
s

Ev
en
t

in
st
an
ce
s

A
ct
iv
it
y

cl
as
se
s

l m

b

c2c1

m2

A
ct
iv
it
y

in
st
an
ce
s

Time

t

Figure 16: Event classes and instances matched in a one-to-one relation to
activities and activity instances

A small example of a mapping with a one-to-one relation on both
type and instance level is depicted in Figure 16. Figure 16 shows a

2.4 requirements 37

simple process P with a sequence of the three activities a, b, and c,
with c being an activity that can be repeated in a loop. On the level
below the process model, a process instance p̂ with one repetition
of activity c is shown. As described before, conformance checking
methods and many process mining techniques assume a one-to-one
relation between activities and events on type and on instance level.
Consequently, there have to be four event instances with three dif-
ferent event classes in the trace that represents p̂. Note that we illus-
trate event instances from an event log as white bullets with a black
double-line border, to distinguish these events from the bullets used
in the event diagram for activity instance life cycles. As there is no
activity life cycle attached to the activities in Figure 16, we connect
the activity instances with the dots of the event diagram for simplic-
ity. The mapping between activity instances and event instances in
Figure 16 is represented by a dotted line. Yet, the before mentioned
process mining techniques do not take any mapping as input, but
require events and activities to share the same labels for matching.
The string–based matching between event classes and activities that is
assumed by many process mining techniques, is not always possible.
There are mainly two reasons for this. First, when retrieving event
logs from databases or similar sources without deeper knowledge of
the underlying process, it is very unlikely to obtain the same naming
of events and corresponding activities. In the worst case, one may be
confronted with many rather cryptic event names stemming from the
column names of the database tables they have been retrieved from as
seen in the order process example in Section 2.3.1. But even if event
names are human readable, there might not be a one-to-one match
due to different naming. The naming might stem from humans, but
can also stem from automated retrieval of events or from an event
clustering approach like [75]. In order to have the required naming
of events referring to activities, a preprocessing of the event log is
necessary. In the example in Figure 16, the trace t therefore has to
be transformed to trace t ′ =

〈
â1, b̂1, ĉ1, ĉ2

〉
. For the order process

example log in Table 5 the transformation of trace t1 = 〈 O_CHK,
O_PRC, I_SM, P_SP, O_ARC 〉 would look as follows: t ′1 = 〈 Check
order, Process order, Send invoice, Ship products, Archive order 〉. For
further reference we define this prerequisite of conformance checking
and discovery techniques as Requirement R1.

Requirement R1. Match activities and events in a one-to-one relationship
on type and on instance level.

Looking at the examples given in Section 2.3, we can see that there
are different starting points with regard to the abstraction level of
a given event log. For the events from the order process event log
shown in Table 5 and the process model in Figure 12, there is exactly
one activity for each event class and each event instance represents
one activity instance. Yet, the concrete mapping between event classes

38 preliminaries and related work

and activities is unknown and cannot be established by simple string
matching. For the event log displayed by Table 7, we do not find
such a one-to-one mapping, as there are more event classes in the
event log than activities in the process model. This is another major
challenge that can be found in real life settings: events are not on
the required abstraction level [118, p. 114]. Table 10 and 11 show the

Table 10: Types of mappings on
type level

Relation Type level

1:1 Exactly one event class rep-
resents one activity.

1:n One activity is represented
by different event classes
due to lower level of abstrac-
tion in the event log.

n:1 Multiple activities are re-
flected by the same event
class because a certain sub–
activity is performed in
more than one activity.

1:0 An activity is not recorded
in the event log.

0:1 Event class is out of scope
and cannot be mapped to an
activity.

Table 11: Types of mappings on
instance level

Relation Instance level

1:1 One activity instance
consists of exactly one
event instance.

1:n An activity instance can
be represented by multi-
ple event instances.

n:1 One event instance re-
flects instances of multi-
ple activities.

1:0 An activity has not
taken place.

0:1 Event class is out
of scope and event
instance cannot be
mapped to an activity
instance.

different types of relations between events and activities on type and
on instance level. An event to activity mapping is always a combi-
nation of both a mapping on class and a mapping on instance level.
Most often events are more fine–granular than activities found in a
business process model, leading to a one-to-many (1:n) relation on
both type and instance level. While there are different approaches
for abstracting event logs to a higher level, like [58, 59, 75], none of
these approaches aims at mapping events to defined activities with
a particular abstraction level. Yet, in order to fulfill Requirement R1,
it is required to perform an aggregation targeting at the specific ab-
straction level of the process model that corresponds to the event log
at hand. Taking the first trace of the example log shown in Table 7,
t1 = 〈 O_CHK_S, O_PR_S, O_PR_E, I_SM_E, P_SP_E, O_ARC_S,
O_ARC_E 〉, the transformed and aggregated trace is t ′1 = 〈 Check
order, Process order, Send invoice, Ship products, Archive order 〉.
Note that the two events O_PR_S and O_PR_E have been aggregated
to one event “Process order”. In the same manner the two events
O_ARC_S and O_ARC_E have been aggregated to the event “Archive
order”. We refer to this requirement as Requirement R2:

Requirement R2. Match activities and events that are on different abstrac-
tion levels.

2.4 requirements 39

Taking different abstraction levels into account, Figure 17 illustrates
two different mapping strategies that lead to different discovered pro-
cess executions. On the bottom line we have the unaltered events that
have been extracted from the supporting IT system. In the first step,
each event reported by the IT system is mapped to an activity from
the designed process model. Applying the mapping to the event log
results in a new event log of the same size where all events have been
renamed with the names of the corresponding activities they have
been mapped to.

A C

X1 X2 Y1 X3 X4 Y2 Y3 Z1 Y4 Y5 Z2 Z3

A A B A A B B C B B C C

B

Events

Activity
correlation

Activity
instances

X1 X2 Y1 X3 X4 Y2 Y3 Z1 Y4 Y5 Z2 Z3

A A B A A B B C B B C C

B A C B B C A

(a)

A C

X1 X2 Y1 X3 X4 Y2 Y3 Z1 Y4 Y5 Z2 Z3

A A B A A B B C B B C C

B

Events

Activity
correlation

Activity
instances

X1 X2 Y1 X3 X4 Y2 Y3 Z1 Y4 Y5 Z2 Z3

A A B A A B B C B B C C

B A C B B C A

(b)

Figure 17: Different abstraction results on the instance level

The fact that multiple event classes may belong to one activity
again reflects that event log and process model do not have the same
level of abstraction. Thus, the mapped event log contains duplicate
entries where different events have been mapped to the same activity
name. Looking at the example in Figure 17, we have four instances
of activity A in the mapped event log. Existing event log abstraction
approaches like [59] assume that one can group all adjacent events
mapped to the same activity to one activity instance, as shown in
Figure 17a. This, again, leads to several instances of activity a, imply-
ing a loop. Yet, if there is concurrency in the process, we could also
take the approach to merge all event occurrences of one activity into
one activity instance, as illustrated in Figure 17b. Using this strategy
raises the problem that we eliminate all loops and rework from the
event log. Thereby, concurrency is introduced. This is due to the fact
that this strategy does not allow more than one instance of an activity.

Both presented strategies may not reflect reality well and a map-
ping approach rather needs to support a mixture of loops and con-
currency. Therefore, reasonable strategies for dealing with loops and
concurrency need to be provided, as stated in Requirement R3.

Requirement R3. Provide strategies to deal with loops and parallelism.

Besides a one-to-many relation on type and instance level, Table 10

and 11 also include many-to-one (n:1) relations on both levels. So far,
we assumed that event instances of the same event class are mapped
to instances of the same activity or activity life cycle transition. Yet,
in modern IT systems, activities make use of the same functionalities
that are also used by other activities. Consider, for example, a pro-
tocol functionality where the process participant logs preliminary or

40 preliminaries and related work

final results for the currently executed activity. Such a logging might
be required for more than one activity. Yet, the IT system might not
differentiate between protocol entries for different activities and it
remains unclear to which activity an event generated by protocol
logging corresponds. Thus, events carrying the same label may be-
long to different activities. Other examples are given by the incident
management process in Figure 14. Here, the event class “CI” is either
mapped to the activity “Initial diagnosis”, “Investigation and Diagno-
sis”, “Security incident handling”, or “Incident closure”. In the same
manner, the events of class “Group” are assigned to one of the activ-
ities “Incident logging”, “Functional escalation”, “Investigation and
Diagnosis”, or “Security incident handling”. These cases describe a
many-to-one relation between activities and events on type level. Be-
sides such cases where different event instances from the same event
class refer to different activities, there are cases where a single event
instance refers to the execution of different activities, i.e, two differ-
ent activity instances. For example activities sharing the same data
field for documentation. In order to arrive at an event log that can
be used by common process mining techniques, such events need to
be preprocessed to reflect the correct mapping to their corresponding
activities. This requirement is referred to as Requirement R4.

Requirement R4. Match event instances that reflect shared functionalities
to the instances of their corresponding activities or activity life cycle transi-
tions.

Considering the possible types of relation in Table 10 and 11, there
are also one-to-zero (1:0) and zero-to-one (0:1) relationships on each
of the two levels. On type level, a one-to-zero relation between events
and activities means that an activity is simply not recorded in the
event log. This can be due to the fact that the activity is executed
without IT system support and thus, no logging is in place. Yet, it
can also happen that an IT supported activity is not being logged,
e.g., for performance reasons. On instance level, a one-to-zero relation
between events and activities means that an activity is simply not
executed. We assume that this can only happen if the activity is not
recorded at all. Thus, we assume that each event class is found at
least once in an event log. If no events are available for an activity,
this has to be taken into account by a mapping solution in order to
fulfill Requirement R1, for which each activity needs to be mapped
to exactly one event on both type and instance level. We refer to this
requirement as Requirement R5.

Requirement R5. Deal with missing events.

Similar to missing events, are events for which there is no activity
(zero-to-one relation). Here, the event classes or event instances are
out of scope for the considered process model and need to be filtered

2.4 requirements 41

out in order to arrive at a one-to-one mapping on type and instance
level. Note that it is possible that there are different relation types
on instance and type level. For example, it is possible that an event
class represents a shared functionality and is therefore mapped to
multiple different activities. Still, not all of its corresponding event
instances may be relevant for the process model at hand. Consider
the protocol example again. There may be types of protocol entries
that are simply not relevant for the process execution of the process
model in that an analyst is interested, and thus these event instances
cannot be mapped to any of the activities. Nevertheless, other event
instances of the same class may well be mapped to activities of the
process model. Dealing with such additional events is captured in
Requirement R6.

Requirement R6. Conditionally filter out additional events.

So far we have looked at the requirements imposed by conformance
checking techniques as well as by many process discovery algorithms.
Here, a one-to-one relation between events and activities on both type
and instance level is required. Turning to performance analysis, a one-
to-one relation between event instances and activity instances is not
enough as at least two timestamps are necessary to calculate the dura-
tion of an activity, i.e., the start and complete timestamps. Figure 18

1

1..*

1

1

1

1..*

1 0..*

1 0..*

1 0..* 1..* 1 1..* 1

1

1

1

1

1

1..*

1

1

1

1..*

1

1

Event Instance

Activity Activity Instance

Process Instance

Trace Event LogEvent Class

Process Model

Life Cycle Model

Life Cycle Transition
Life Cycle Transition

Instance

Life Cycle Instance1 0..*

1 0..*

Figure 18: Relations of the entities of event log, process model, and process
execution including life cycle transitions with assumed cardinali-
ties

depicts the extended class diagram that also includes the life cycle
model of activities and shows the connection between events and life
cycle transitions. As explained in Section 2.1.7, an activity has a con-
nected life cycle model with a number of life cycle transitions. Apart
from start and complete transitions, also other life cycle transitions
might be taken into account. For example, suspending and resuming

42 preliminaries and related work

of an activity might be considered for the measurement of perfor-
mance on activity level. Each timestamp needs to be retrieved from
a single event instance and related to the corresponding instance of
a life cycle transition and thereby, to the corresponding activity in-
stance. Each event instance in the event log represents an instance of
a life cycle transition. Thus, each event class needs to be connected to
a life cycle transition.

a
c

b1

a1

c1

c2

p

k1 l1 n1 o1 p1 q1 r1 s1

start compl

suspendstart complresume

start compl

start compl

r2 s2

P

t

k o sE

Ev
en

t
cl

as
se

s
Ev

en
t

in
st

an
ce

s

A
ct

iv
it

y
in

st
an

ce
s

w
it

h
 li

fe
 c

yc
le

tr

an
si

ti
o

n
in

st
an

ce
s

A
ct

iv
it

y
cl

as
se

s

l n p q r

b

time

Figure 19: Event classes and instances matched in a one-to-one relation to
life cycle transitions and their instantiations

In Figure 19, the previous example from Figure 16 is extended to
include the life cycle instances of each activity instance. Each event
instance is matched to exactly one instance of an activity life cycle
transition. For example, activity instance â1 is connected to a start
and a complete transition instance in process instance p̂. These two
life cycle transitions are represented by the events of the event classes
k and l. Thus, the two life cycle transition instances connected to â1,
are represented by the two event instances k̂1 and l̂1 in trace t.

Having only the event log containing trace t and the process model
P with connected activity life cycle models, the connection between
event instances and activity life cycle transition instances is unknown
and needs to be established in order to conduct performance analysis.
We denote this requirement as Requirement R7:

Requirement R7. Match activity life cycle transitions and events in a one-
to-one relationship on type and instance level.

Requirement R7 implicitly includes a one-to-many relation between
activity instances and event instances. Such a relation can also be
used by process mining techniques to enable zoom-in functionality
on activity level as presented for the fuzzy miner in [17]. While Re-
quirement R7 requires a very specific mapping of event instances
to activity life cycle transition instances, discovery algorithms with
zoom-in functionality do not need the relation of an event instance to

2.4 requirements 43

a life cycle transition instance of an activity, but rather to a life cycle
transition instance of a sub–activity.

In order to include sub–activities, Figure 20 shows the adopted
class diagram that also allows for connections between activities, rep-
resenting a hierarchical ordering. Note that this connection of activi-
ties and sub–activities does not only exist on the model level, but also
on the instance level. An example of a matching with sub–activities

1

1..*

1

1

1

1..*

1 0..*

1 0..*

1 0..* 1..* 1 1..* 1

1

1

1

1

1

1..*

1

1

1

1..*

1

1

Event Instance

Activity Activity Instance

Process Instance

Trace Event LogEvent Class

Process Model

Life Cycle Model

Life Cycle Transition
Life Cycle Transition

Instance

Life Cycle Instance1 0..*

1 0..*

1

0..*

1

0..*

Figure 20: Relations of the entities of the event log, process model, and
process execution with assumed cardinalities including activity
life cycles and sub–activity relations

is depicted in Figure 22. Here, activity b has two sub–activities ba
and bb. Both sub–activities have a life cycle model with a start and
a complete transition attached. The life cycle of activity b addition-
ally contains a suspend and a resume transition, which match to the
complete transition of ba and the start transition of bb respectively.
Depending on the abstraction level we are interested in, the corre-
sponding event instances of event classes n, o, p, q need to be either
matched to the life cycle transition instances of activity b or to those
of the sub–activities ba and bb.

In a process mining tool, a possible visualization could look as
depicted in Figure 21. When selecting an activity, either the connected
life cycle model is presented or the model of the sub–activities. Using
the timestamps from the connected events, performance information
can be plotted onto the model as known, e.g., from the process mining
tool Disco. In order to accomplish process discovery with zooming
to predefined abstraction levels, the necessary mapping information
needs to be included in the event log. Therefore, the events need to
be matched to life cycle transition instances of hierarchically related
activities. We refer to this requirement as Requirement R8:

Requirement R8. Match event instances to life cycle transition instances
of hierarchically related activities.

44 preliminaries and related work

b

a ba
c

b1

a1

c1

c2

p

bb

ba1

bb1

k1 l1 n1 o1 p1 q1 r1 s1

start compl

suspendstart

start compl

start compl

complresume

start compl

start compl

r2 s2

P

t

k o sE

Ev
en
t

cl
as
se
s

Ev
en
t

in
st
an
ce
s

A
ct
iv
it
y

in
st
an
ce
s

A
ct
iv
it
y

cl
as
se
s

l n p q r

time

Figure 21: Events matched in a one-to-one relation to life cycle transitions
of activities and sub–activities

a cb

completestart

20 min
5 min

9 h 17 min

20 min
completestart

17 min

47 min

1 day

bbba
9 h1 h

completestart
1 h

completestart
1 h

1 h

Figure 22: Events matched in a one-to-one relation to life cycle transitions
of activities and sub–activities

Considering conformance checking and process discovery, it is ob-
vious that such analyses are only useful if the matching approach
is able to deal with nonconforming executions. Non-conformance of
process executions to the process model can be either due to will-
ingly or unwillingly incorrect executions by the process participants
or due to incorrect logging. As it is not possible for an algorithm
to distinguish between incorrect executions and incorrect logging (cf.
[118, p. 148]), we assume that the logs we are dealing with, do not
contain logging errors. In literature, the term “noise” is used to re-
fer to unwanted or exceptional behavior (cf. [25, 118]). This behavior
relates to missing activities, wrong order of activity execution or du-
plicate activity executions. We furthermore distinguish between be-
havior that is systematically non-conforming, i.e., patterns of noncon-
forming behavior that frequently repeat, and nonconforming behav-
ior where no repeating patterns can be found. The incident process
introduced in Figure 14 shows an example of systematically noncon-
forming behavior: in cases where events of the class “Classification”

2.4 requirements 45

occur, the events of class “Details” always occur after the events of
class “Classification”, which behavior is not allowed when consider-
ing the mapping to the given process model. In contrast, the order
process examples do not show any frequently recurring patterns of
nonconforming behavior. Yet, there is a wrong order of execution in
one of the traces where the customer has been notified before the
products were shipped.

Requirement R9. Match events to activities where process execution may
be nonconforming to the process model.

This section introduced the major requirements that have to be met
to use the different process mining techniques with real life event
logs. Table 12 gives a summary of the requirements and introduces
their short names, which we will use for easier reference in the text.

Table 12: Overview of the requirements

Short name Description

R1 1:1 matching to activities Match activities and events in a one-to-one
relationship on type and on instance level.

R2 Different abstraction levels Match activities and events that are on differ-
ent abstraction levels.

R3 Loops and parallelism Provide strategies to deal with loops and
parallelism.

R4 Shared functionalities Match event instances that reflect shared
functionalities to the instances of their cor-
responding activities or activity life cycle
transitions.

R5 Missing events Deal with missing events.

R6 Additional events Conditionally filter out additional events.

R7 1:1 matching to life cycle transitions Match activity life cycle transitions and
events in a one-to-one relationship on type
and instance level.

R8 Hierarchical matching Match event instances to life cycle transition
instances of hierarchically related activities.

R9 Nonconforming execution Match events to activities where process exe-
cution may be nonconforming to the process
model.

46 preliminaries and related work

2.5 related work

In this section, we want to elaborate on the work that is related to
the research presented in this thesis. In order to structure related
work, we have built a literature classification, of which parts have
already been published in [8]. On a high level, the mapping between
events and activities is similar to the matching problem known from
ontologies and data integration [46]. Yet, techniques in this field most
often try to use data structures for the matching and do not consider
process specific circumstances. Using the internal data structures of
events and activities is most often not possible because activities typ-
ically do not have further attributes attached, and if they have, these
attributes typically are very different from the attributes found in
event logs. Therefore, we focus on the research that takes the specifics
of business processes into account.

Related work

Event logs
Process
models

Event
abstraction

Event log
extraction

Event-activity
mapping

Process model
abstraction

Process model
similarity

Process model
matching

Figure 23: Classification of related work.

As depicted in Figure 23, research related to this thesis can be
generally subdivided into approaches working on event logs and ap-
proaches working on process models. The work that focuses on event
logs can be mainly subdivided into event correlation, event abstrac-
tion, event log extraction, and event–activity mapping. The related
techniques that work on process models fall into one of three cate-
gories: process model abstraction, process model matching and pro-
cess model similarity. In both main categories — work on event logs
and on process models — there are a few hybrid approaches that
take both an event log and a process model as input. Yet, they always
focus on either log or model when it comes to the objectives and the
output of those techniques. An exception is the work by Herzberg
et al. [62], which aims at a strong connection between events and
process models.

Besides the classification of work into one of the aforementioned
categories, we assessed two criteria: The usage of external knowl-
edge and the possible types of relations on class level. The usage
of external knowledge shows whether the approach at hand relies
on further input beyond process model or event log. A dependency
on external knowledge may impose further restrictions because the
required external knowledge may not be available. Yet, on the other
hand, the usage of external knowledge may also facilitate new and

2.5 related work 47

better means for solving the problem at hand. With this in mind, we
examined whether external knowledge is used and if this is the case,
we specify what kind of knowledge is used.

With the second criteria, the possible types of relations on class
level, we inspect to which extend a technique is able to match arti-
facts of different abstraction levels. If a technique requires a one-to-
one (1:1) relation between matched artifacts, this means they need to
be on the same abstraction level. While a one-to-one relation between
events and activities is one of the requirements (Requirement R1) for
many process mining techniques, it is typically not given in the start-
ing situation. More often, we face one-to-many relations (1:n). When
one-to-many relations are supported, we talk about techniques that
typically match artifacts from a lower abstraction level to a higher ab-
straction level. While some process mining techniques require a one-
to-many relation, as stated in Requirement R7, being able to match ar-
tifacts that are in a one-to-many relation not only facilitates the usage
of these approaches, but also enables further processing to achieve a
one-to-one relation as required by Requirement R1 when facing dif-
ferent abstraction levels (Requirement R2). Approaches that support
many-to-many (n:m) relations are able to deal with settings where
there is no clear direction of granularity between two sets of artifacts.
In the context of event to activity matching, this is required when
different abstraction levels are faced (Requirement R2) and addition-
ally one or more of the event classes represent a shared functionality
(Requirement R4).

Table 13 provides the classification of the most relevant related
work using the described categories. In the following we will briefly
discuss the categorized work with respect to the introduced criteria.

2.5.1 Approaches Working on Event Logs

We start with approaches that focus on event logs and, in particular,
with the event correlation approaches. The main objective of event cor-
relation is to assign each event instance to its corresponding process
instance. Looking at these techniques only one approach makes use
of external knowledge. The work by Pérez-Castillo et al. [86] uses
modified sources code as external knowledge to generate candidate
correlation attributes. Therefore, this approach requires not only read
access to the source code of the supporting IT system, but also needs
to modify the source code, which in many situations is not possible
or too costly. The relations between the matched objects in event cor-
relation are typically one-to-many relations, since these techniques
correlate a set of event instances to a single process instances. Only
the work by Steinle et al. [110] considers many-to-many relations by
allowing one event instance to belong to multiple process instances.
Nevertheless, since the work on event correlation deals with matching

48 preliminaries and related work

event instances to process instances, it is not suited for the matching
of event instances to activities, which are on a much more fine granu-
lar level than process instances.

In contrast to this, the approaches that deal with event abstraction
aim at the matching of event instances to higher level activities. Look-
ing at the possible relations between matched objects on type level,
we found that most works in the area of event abstraction support
one-to-many relations, which is natural in the context of abstraction.

Günther et al. introduce in [57] an approach that clusters events to
activities using a distance function based on time or sequence posi-
tion. Due to performance issues with this approach, a new means of
abstraction on the level of event classes is introduced in [59]. Here,
event classes are clustered globally based on co–occurrence of related
terms, yielding better performance but lower accuracy. Still, both ap-
proaches are only able to relate a particular event class to one spe-
cific activity. Thus, they are not able to identify shared functionalities
and therefore do not address Requirement R4. The approach intro-
duced by Li et al. [75] can handle many-to-many relations by defining
context-dependent patterns and thereby addresses Requirement R4.
The approach of Li et al. is based on the work by Bose et al. [15, 17]
and also uses co–occurrence of events to find patterns of events that
always appear in the same context and are therefore supposed to
be semantically related. Yet, context in that work is limited to event
classes of surrounding event instances, which is a rather strong re-
striction as an activity that uses a shared functionality might well
have multiple different patterns of surrounding event classes due to
choice constructs in the model. Therefore, other means of defining
context are necessary. Another shortcoming of the approach by Li et
al. is that two events belonging to one activity instance cannot be sep-
arated by more than one event of another activity instance in between.
This leads to problems when dealing with concurrency as formulated
in Requirement R3. Another approach that uses pattern recognition
and machine learning techniques for abstraction is introduced in [26].
The authors aim at recognizing activities in streams of sensor data
and are able to provide a matching with 60–80 % accuracy. Unfortu-
nately, this approach does not allow to refine mappings to obtain full
accuracy and only allows for one-to-many relations.

Folino et al. [52] introduce an approach that aims at building a per-
formance prediction model for traces. They combine event clustering
and trace clustering and iteratively improve the clustering with re-
spect to the measured prediction error. They use the values of event at-
tributes for the clustering of event instances, thus, integrating context
data into their clustering approach. Yet, the approach does not aim at
predefined activities, but looks for the clustering that yields the best
performance prediction. A different means of abstracting event logs is

2.5 related work 49

to simply remove insignificant behavior. This requires that a relation
between events and activities has already been established. Together
with the fuzzy miner, an approach is defined to abstract a mined pro-
cess model by removing and clustering less frequent behavior [58].
While the clusters are not directly related to activities, they can be
interpreted as such. Nevertheless, the approach only allows for one-
to-many relations between event classes and clusters. The approach
reported in [55] clusters process instances with similar behavior in or-
der to abstract behavior that is different between these clusters. While
this is an interesting approach for exploratory analysis, it is not able
to abstract events that always occur together.

Furthermore, there are different approaches that apply behavior ab-
straction in process discovery and trace alignment [16, 47, 92] aiming
at better understandable process models by hiding complexity.

In summary, it can be said that all of the presented event abstrac-
tion approaches do not aim at predefined activities. Instead, they try
to automatically cluster event instances that may belong to the same
activity without actually referencing an existing activity.

Looking at the relation of events and existing activities, approaches
in the category of event log extraction try to generate events that are
related to predefined activities. That is, these approaches do not take
an event log as input, but initially produce an event log. Li et al.
[76] introduce an approach aiming at intelligently extracting events
from IT systems and relating them to automatically identified activi-
ties. The authors make intensive use of external knowledge by build-
ing process lexica from existing process documents and industry-
standard process references. Using the process lexica potential tasks
candidates are automatically generated. The process lexica are fur-
thermore used to scan the database of the supporting IT system for
relevant attributes and rank them. The list of task candidates and the
ranked database attributes are then presented to the analyst to iden-
tify the process mining related information. The matching between
the activities and database attributes is done manually by the process
analyst. As there is no further mechanism to deal with attributes that
relate to multiple activities, the approach only supports one-to-many
relations. Another approach in the category of event log extraction is
the technique proposed by Pérez-Castillo et al. in [85]. In this work,
the authors manipulate the source code of the supporting IT system
in order to generate events that belong to predefined business activi-
ties. Again, the authors do not provide any mechanism to deal with
shared functionalities and therefore only support one-to-many rela-
tions. As this technique requires deep control and manipulation of
the supporting IT system, it is only feasible in very few settings.

50 preliminaries and related work

The last category in the group of approaches focusing on event
logs is the event to activity mapping category. Here, existing events are
mapped to predefined activities from a process model. So far, we
could only identify one work in this specific category. Herzberg et
al. [62] present a framework to correlate events to predefined process
event monitoring points (PEMP) in a process model. These PEMPs are
attached to the life cycle of activities. The focus of their work is on
the conceptual framework of event correlation to business processes
and touches only the correlation of events to process instances in a
concrete manner, using ESPER or SQL queries. They do not provide
concrete mechanism for the relation of events to PEMPs. While the
work in [62] conceptually considers many-to-many relations between
activities and events, it assumes that event instances of event classes
that are related to multiple activities, always reflect the execution of
all related activities. Thus, it is not possible to have context-dependent
assignment of events from the same event class to multiple activities.

2.5.2 Approaches Working on Process Models

Having elaborated on the approaches that focus on event logs, we
turn to the second category, i.e., approaches that concentrate on pro-
cess models. Process model techniques are more advanced when it
comes to the usage of external knowledge. Especially in recent years,
more sophisticated techniques that use linguistic information have
evolved [71, 66]. Other model-based techniques — as, e.g., in [106]
— leverage different semantic information as, e.g., roles, resources or
data objects, which can be seen as external knowledge in this area. In
this thesis, we built on these works by also leveraging different types
of external knowledge. While we use linguistic information in the
matching of events and activities, we furthermore make use of pro-
cess descriptions to extend the available information about activities
in the process model.

Pointing the focus to the possible relations between matched ob-
jects, it can be seen that there are differences in the particular subcate-
gories of model-based approaches. For all subcategories, the matched
objects are activities only. That is, activities are matched to other activ-
ities. In the works on process model abstraction we typically find one-
to-many relations between the matched activities. Model similarity
tries to make one-to-one relations between the sets of activities of two
different process models. In the area of process model matching there
are several works that establish many-to-many relations [20, 135, 140].
The work on ICoP defines a generic framework for process model
matching [135]. This framework is extended with semantic concepts
and probabilistic optimization in [71], adapting general concepts from
ontology matching [46]. The implications of different abstraction lev-
els for finding correspondences are covered in [66, 140, 141]. In [67],

2.5 related work 51

Klinkmüller et al. introduce an iterative mixed–initiative approach for
the matching of activities from different process models. To this end,
they automatically derive potential matches using different indicators
such as position, neighborhood, label specificity, label and execution
semantics. The user is provided with the discovered correspondences
and has to decide on correctness and add missing matches. Based on
these decisions the matching algorithm is updated for the next match-
ings. However, all these works focus on finding matches between two
process models, not between events and activities.

2.5.3 Summary of Related Work

To conclude the research on related work, it can be said that there
is an already quite large body of work that deals with similar topics
in the field of business process management. Nevertheless, there are
only very few works that directly focus on the matching of events
to predefined activities. Only the work by Herzberg et al. specifically
looks at the binding of events to activities in a process model. Yet,
as most of the discusses approaches, it only provides limited possi-
bilities to handle Requirement R4 (Shared functionalities) and gives
rather conceptual guidance than automated support for the match-
ing of events and activities. To this respect, this thesis advances the
state of the art providing the formal and technical background for the
matching as well as automated support to assist the process analyst.

52 preliminaries and related work

Ta
bl

e
1

3
:O

ve
rv

ie
w

of
re

la
te

d
w

or
k.

A
ut

ho
rs

(Y
ea

r)
Ti

tl
e

A
pp

ro
ac

h
C

at
eg

or
y

M
od

el
in

pu
t

Ev
en

t
lo

g
in

pu
t

Ex
te

rn
al

kn
ow

le
dg

e
C

la
ss

le
ve

l
re

la
ti

on

Be
he

sh
ti

et
al

.(
2
0
1
1
)

[1
2

]
A

Q
ue

ry
La

ng
ua

ge
fo

r
A

na
ly

zi
ng

Bu
si

ne
ss

Pr
oc

es
s

Ex
ec

ut
io

n
R

el
at

ed
ev

en
ts

ar
e

gr
ou

pe
d

in
to

fo
ld

-
er

s
(p

ro
ce

ss
in

st
an

ce
s)

an
d

pa
th

s
(m

od
el

s)
by

co
rr

el
at

io
n

co
nd

it
io

ns
ex

-
pr

es
se

d
in

an
ex

te
ns

io
n

of
SP

A
R

Q
L

ev
en

t
co

rr
el

at
io

n
no

ye
s

no
1

:n

Bo
se

et
al

.(
2
0
1
3
)

[1
8
]

En
ha

nc
in

g
D

ec
la

re
M

ap
s

Ba
se

d
on

Ev
en

t
C

or
re

la
ti

on
s

Pr
un

in
g

re
la

ti
on

s
be

tw
ee

n
ev

en
ts

no
t

sh
ar

in
g

th
e

sa
m

e
da

ta
ob

je
ct

s
an

d
di

s-
am

bi
gu

at
io

n
of

ev
en

t
re

la
ti

on
s

us
in

g
co

nd
it

io
ns

on
th

ei
r

at
tr

ib
ut

es

ev
en

t
co

rr
el

at
io

n
ye

s
ye

s
no

1
:n

M
ot

ah
ar

i-
N

ez
ha

d
et

al
.(

2
0
1
0
)

[8
2

]
Ev

en
t

co
rr

el
at

io
n

fo
r

pr
oc

es
s

di
s-

co
ve

ry
fr

om
w

eb
se

rv
ic

e
in

te
ra

ct
io

n
lo

gs

C
or

re
la

ti
ng

ev
en

ti
ns

ta
nc

es
to

pr
oc

es
s

in
st

an
ce

s
us

in
g

at
tr

ib
ut

e
va

lu
es

ev
en

t
co

rr
el

at
io

n
no

ye
s

no
1

:n

Pé
re

z-
C

as
ti

llo
et

al
.

(2
0
1
2
)

[8
6
]

A
ss

es
si

ng
ev

en
t

co
rr

el
at

io
n

in
no

n-
pr

oc
es

s-
aw

ar
e

in
fo

rm
at

io
n

sy
st

em
s

D
is

co
ve

ri
ng

co
rr

el
at

io
n

se
ts

ov
er

at
-

tr
ib

ut
es

fr
om

ev
en

ts
ge

ne
ra

te
d

by
in

-
se

rt
in

g
so

ur
ce

co
de

st
at

em
en

ts

ev
en

t
co

rr
el

at
io

n
no

ye
s

so
ur

ce
co

de
1

:n

R
oz

sn
ya

i(
2
0
1
1
)

[1
0
3
]

D
is

co
ve

ri
ng

Ev
en

t
C

or
re

la
ti

on
R

ul
es

fo
r

Se
m

i-
St

ru
ct

ur
ed

Bu
si

ne
ss

Pr
oc

es
se

s

D
is

co
ve

ry
of

ev
en

t
co

rr
el

at
io

n
ru

le
s

ba
se

d
on

st
at

is
ti

cs
of

ev
en

t
at

tr
ib

ut
es

ev
en

t
co

rr
el

at
io

n
no

ye
s

no
1

:n

St
ei

nl
e

et
al

.(
2
0
0
6
)

[1
1
0

]
M

ap
pi

ng
M

ov
in

g
La

nd
sc

ap
es

by
M

in
in

g
M

ou
nt

ai
ns

of
Lo

gs
:N

ov
el

Te
ch

ni
qu

es
fo

r
D

ep
en

de
nc

y
M

od
el

G
en

er
at

io
n

C
or

re
la

ti
ng

ev
en

t
cl

as
se

s
(h

er
e

sy
s-

te
m

s)
by

ti
m

e
pr

ox
im

it
y

an
d

us
er

se
s-

si
on

s

ev
en

t
co

rr
el

at
io

n
no

ye
s

no
n:

m

Bo
se

et
al

.(
2
0
0
9
)

[1
5
]

A
bs

tr
ac

ti
on

s
in

pr
oc

es
s

m
in

in
g:

A
ta

xo
no

m
y

of
pa

tt
er

ns
C

lu
st

er
in

g
of

co
rr

el
at

ed
ev

en
t

cl
as

se
s

ev
en

t
ab

st
ra

ct
io

n
no

ye
s

no
n:

m

Bo
se

et
al

.(
2
0
1
1
)

[1
7
]

D
is

co
ve

ri
ng

H
ie

ra
rc

hi
ca

lP
ro

ce
ss

M
od

el
s

U
si

ng
Pr

oM
H

ie
ra

rc
hi

ca
l

cl
us

te
ri

ng
of

co
rr

el
at

ed
ev

en
t

cl
as

se
s

ev
en

t
ab

st
ra

ct
io

n
no

ye
s

no
n:

m

C
oo

k
et

al
.(

2
0
1
3

)
[2

6
]

A
ct

iv
it

y
D

is
co

ve
ry

an
d

A
ct

iv
it

y
R

ec
og

ni
ti

on
:A

N
ew

Pa
rt

ne
rs

hi
p

M
ap

pi
ng

se
ns

or
da

ta
to

ac
ti

vi
ti

es
us

-
in

g
m

ac
hi

ne
le

ar
ni

ng
te

ch
ni

qu
es

ev
en

t
ab

st
ra

ct
io

n
no

ye
s

no
n:

m

C
on

ti
nu

ed

2.5 related work 53

A
ut

ho
rs

(Y
ea

r)
Ti

tl
e

A
pp

ro
ac

h
C

at
eg

or
y

M
od

el
in

pu
t

Ev
en

t
lo

g
in

pu
t

Ex
te

rn
al

kn
ow

le
dg

e
C

la
ss

le
ve

l
re

la
ti

on

Fo
lin

o
et

al
.(

2
0
1
4
)

[5
2

]
M

in
in

g
Pr

ed
ic

ti
ve

Pr
oc

es
s

M
od

el
s

ou
t

of
Lo

w
-l

ev
el

M
ul

ti
di

m
en

si
on

al
Lo

gs

C
lu

st
er

in
g

ev
en

t
in

st
an

ce
s

to
ac

ti
vi

-
ti

es
us

in
g

ev
en

t
at

tr
ib

ut
es

;
ta

rg
et

in
g

op
ti

m
al

pe
rf

or
m

an
ce

pr
ed

ic
ti

on

ev
en

t
ab

st
ra

ct
io

n
no

ye
s

no
1
:n

G
ün

th
er

et
al

.(
2
0
0
6
)

[5
7

]
M

in
in

g
A

ct
iv

it
y

C
lu

st
er

s
Fr

om
Lo

w
-l

ev
el

Ev
en

t
Lo

gs
C

lu
st

er
in

g
co

rr
el

at
ed

ev
en

t
in

st
an

ce
s

ba
se

d
on

pr
ox

im
it

y
on

tr
ac

e
le

ve
l

ev
en

t
ab

st
ra

ct
io

n
no

ye
s

no
1
:n

G
ün

th
er

et
al

.(
2
0
0
7
)

[5
8

]
Fu

zz
y

m
in

in
g:

ad
ap

ti
ve

pr
oc

es
s

si
m

pl
ifi

ca
ti

on
ba

se
d

on
m

ul
ti

-
pe

rs
pe

ct
iv

e
m

et
ri

cs

C
lu

st
er

in
g

co
rr

el
at

ed
ev

en
t

cl
as

se
s;

om
it

ti
ng

in
fr

eq
ue

nt
ev

en
t

cl
as

se
s

ev
en

t
ab

st
ra

ct
io

n
no

ye
s

no
1
:n

G
ün

th
er

et
al

.(
2
0
0
9
)

[5
9

]
A

ct
iv

it
y

m
in

in
g

by
gl

ob
al

tr
ac

e
se

gm
en

ta
ti

on
H

ie
ra

rc
hi

ca
l

cl
us

te
ri

ng
of

co
rr

el
at

ed
ev

en
t

cl
as

se
s

ev
en

t
ab

st
ra

ct
io

n
no

ye
s

no
1
:n

Li
et

al
.(

2
0
1
1
)

[7
5
]

M
in

in
g

co
nt

ex
t-

de
pe

nd
en

t
an

d
in

te
ra

ct
iv

e
bu

si
ne

ss
pr

oc
es

s
m

ap
s

us
in

g
ex

ec
ut

io
n

pa
tt

er
ns

H
ie

ra
rc

hi
ca

l
cl

us
te

ri
ng

of
co

rr
el

at
ed

ev
en

t
cl

as
se

s;
om

it
ti

ng
of

in
si

gn
ifi

-
ca

nt
ev

en
t

cl
as

se
s

ev
en

t
ab

st
ra

ct
io

n
no

ye
s

no
n:

m

Li
et

al
.(

2
0
1
5
)

[7
6
]

A
n

in
te

lli
ge

nt
ap

pr
oa

ch
to

da
ta

ex
tr

ac
ti

on
an

d
ta

sk
id

en
ti

fic
at

io
n

fo
r

pr
oc

es
s

m
in

in
g

A
ut

om
at

ed
ta

sk
id

en
ti

fic
at

io
n

an
d

de
ri

va
ti

on
of

re
le

va
nt

da
ta

ba
se

at
-

tr
ib

ut
es

fo
r

pr
oc

es
s

m
in

in
g

us
in

g
ge

n-
er

at
ed

pr
oc

es
s

le
xi

ca

ev
en

t
lo

g
ex

tr
ac

ti
on

no
no

pr
oc

es
s

do
cu

m
en

ts
,

re
fe

re
nc

e
pr

oc
es

se
s

1
:n

Pé
re

z-
C

as
ti

llo
et

al
.

(2
0
1
1
)

[8
5
]

G
en

er
at

in
g

ev
en

t
lo

gs
fr

om
no

n-
pr

oc
es

s-
aw

ar
e

sy
st

em
s

en
ab

lin
g

bu
si

ne
ss

pr
oc

es
s

m
in

in
g

G
en

er
at

in
g

ev
en

ts
th

at
re

fle
ct

bu
si

-
ne

ss
ac

ti
vi

ti
es

by
in

se
rt

in
g

so
ur

ce
co

de
st

at
em

en
ts

ev
en

t
lo

g
ex

tr
ac

ti
on

no
no

so
ur

ce
co

de
1
:n

H
er

zb
er

g
et

al
.(

2
0
1
3
)

[6
2

]
Im

pr
ov

in
g

th
e

U
nd

er
st

an
di

ng
of

BA
M

Te
ch

no
lo

gy
fo

r
R

ea
l-

Ti
m

e
D

ec
is

io
n

Su
pp

or
t

Pl
at

fo
rm

fo
r

en
ri

ch
in

g
of

ra
w

ev
en

ts
an

d
co

rr
el

at
io

n
to

pr
oc

es
s

ex
ec

ut
io

n
us

in
g

m
an

ua
lly

de
fin

ed
qu

er
ie

s

ev
en

t
to

ac
ti

vi
ty

m
ap

pi
ng

ye
s

ye
s

co
nt

ex
t

da
ta

1
:n

Fa
hl

an
d

et
al

.(
2
0
1
3
)

[4
7

]
Si

m
pl

if
yi

ng
D

is
co

ve
re

d
Pr

oc
es

s
M

od
el

s
in

a
C

on
tr

ol
le

d
M

an
ne

r
G

en
er

al
iz

e
be

ha
vi

or
of

a
m

od
el

us
in

g
lo

g-
in

du
ce

d
un

fo
ld

in
gs

an
d

m
od

el
st

ru
ct

ur
e

si
m

pl
ifi

ca
ti

on
s

m
od

el
ab

st
ra

ct
io

n
ye

s
ye

s
no

n/
a

G
re

co
et

al
.(

2
0
0
8

)
[5

5
]

M
in

in
g

ta
xo

no
m

ie
s

of
pr

oc
es

s
m

od
el

s
A

bs
tr

ac
ti

on
of

ac
ti

vi
ti

es
fr

om
hi

-
er

ar
ch

ic
al

cl
us

te
re

d
pr

oc
es

s
m

od
el

s
m

in
ed

us
in

g
tr

ac
e

cl
us

te
ri

ng

m
od

el
ab

st
ra

ct
io

n
ye

s
ye

s
no

1
:n

C
on

ti
nu

ed

54 preliminaries and related work

A
ut

ho
rs

(Y
ea

r)
Ti

tl
e

A
pp

ro
ac

h
C

at
eg

or
y

M
od

el
in

pu
t

Ev
en

t
lo

g
in

pu
t

Ex
te

rn
al

kn
ow

le
dg

e
C

la
ss

le
ve

l
re

la
ti

on

Le
op

ol
d

et
al

.(
2
0
1
4
)

[7
3

]
Si

m
pl

if
yi

ng
pr

oc
es

s
m

od
el

ab
st

ra
c-

ti
on

:T
ec

hn
iq

ue
s

fo
r

ge
ne

ra
ti

ng
m

od
el

na
m

es

C
on

st
ru

ct
na

m
e

pr
op

os
al

fr
om

th
e

te
xt

la
be

ls
of

a
pr

oc
es

s
m

od
el

m
od

el
ab

st
ra

ct
io

n
ye

s
no

sy
no

ny
m

re
la

ti
on

s
an

d
Li

n
m

et
ri

c

n/
a

Po
ly

vy
an

yy
et

al
.

(2
0
0
8
)

[9
2
]

Pr
oc

es
s

M
od

el
A

bs
tr

ac
ti

on
:A

Sl
id

er
A

pp
ro

ac
h.

A
gg

re
ga

ti
on

an
d

el
im

in
at

io
n

of
in

-
si

gn
ifi

ca
nt

m
od

el
el

em
en

ts
m

od
el

ab
st

ra
ct

io
n

ye
s

no
pr

ob
ab

ili
ti

es
1

:n

Po
ly

vy
an

yy
et

al
.

(2
0
0
9
)

[9
3
]

O
n

A
pp

lic
at

io
n

of
St

ru
ct

ur
al

D
e-

co
m

po
si

ti
on

fo
r

Pr
oc

es
s

M
od

el
A

bs
tr

ac
ti

on

H
ie

ra
rc

hi
ca

l
st

ru
ct

ur
al

de
co

m
po

si
-

ti
on

of
pr

oc
es

s
m

od
el

s
m

od
el

ab
st

ra
ct

io
n

ye
s

no
no

1
:n

Sm
ir

no
v

et
al

.(
2
0
1
2

)
[1

0
6

]
Fr

om
fin

e-
gr

ai
ne

d
to

ab
st

ra
ct

pr
oc

es
s

m
od

el
s

:A
se

m
an

ti
c

ap
pr

oa
ch

A
ct

iv
it

y
ag

gr
eg

at
io

n
by

cl
us

te
ri

ng
w

it
h

a
di

st
an

ce
m

ea
su

re
ov

er
th

e
pr

op
er

ti
es

of
ac

ti
vi

ti
es

m
od

el
ab

st
ra

ct
io

n
ye

s
no

ro
le

s,
da

ta
1

:n

Sm
ir

no
v

et
al

.(
2
0
1
3

)
[1

0
7

]
Bu

si
ne

ss
Pr

oc
es

s
M

od
el

A
bs

tr
ac

ti
on

Ba
se

d
on

Sy
nt

he
si

s
fr

om
W

el
l-

St
ru

ct
ur

ed
Be

ha
vi

or
al

Pr
ofi

le
s.

Le
ve

ra
gi

ng
be

ha
vi

or
al

pr
ofi

le
s

to
de

-
ri

ve
co

nt
ro

l–
flo

w
st

ru
ct

ur
e

fo
r

ab
-

st
ra

ct
ed

m
od

el
s

m
od

el
ab

st
ra

ct
io

n
ye

s
no

no
1

:n

Br
an

co
et

al
.(

2
0
1
0
)

[2
0

]
M

at
ch

in
g

bu
si

ne
ss

pr
oc

es
s

w
or

k-
flo

w
s

ac
ro

ss
ab

st
ra

ct
io

n
le

ve
ls

M
at

ch
in

g
of

m
od

el
fr

ag
m

en
ts

ba
se

d
on

at
tr

ib
ut

es
an

d
co

nt
ro

l
flo

w
st

ru
c-

tu
re

us
in

g
pr

oc
es

s
st

ru
ct

ur
e

tr
ee

s.

m
od

el
m

at
ch

in
g

ye
s

no
no

n:
m

K
lin

ke
m

ül
le

r
et

al
.

(2
0
1
4
)

[6
7
]

Li
st

en
to

m
e:

Im
pr

ov
in

g
Pr

oc
es

s
M

od
el

M
at

ch
in

g
th

ro
ug

h
U

se
r

Fe
ed

ba
ck

M
at

ch
in

g
of

pr
oc

es
s

m
od

el
ac

ti
vi

ti
es

in
an

it
er

at
iv

e
m

ix
ed

–i
ni

ti
at

iv
e

ap
-

pr
oa

ch
ba

se
d

on
di

ff
er

en
t

in
di

ca
to

rs
an

d
us

er
fe

ed
ba

ck
.

m
od

el
m

at
ch

in
g

ye
s

no
no

n:
m

K
lin

ke
m

ül
le

r
et

al
.

(2
0
1
3
)

[6
6
]

In
cr

ea
si

ng
R

ec
al

lo
f

Pr
oc

es
s

M
od

el
M

at
ch

in
g

by
Im

pr
ov

ed
A

ct
iv

it
y

La
be

lM
at

ch
in

g

M
at

ch
in

g
ba

se
d

on
ba

g-
of

-w
or

ds
an

d
la

be
lp

ru
ni

ng
m

od
el

m
at

ch
in

g
ye

s
no

se
m

an
ti

c
re

la
ti

on
s

(W
or

dN
et

,
Li

n
m

et
ri

c)

1
:1

Le
op

ol
d

et
al

.(
2
0
1
2
)

[7
1

]
Pr

ob
ab

ili
st

ic
O

pt
im

iz
at

io
n

of
Se

m
an

-
ti

c
Pr

oc
es

s
M

od
el

M
at

ch
in

g
M

at
ch

in
g

ba
se

d
on

an
no

ta
ti

on
,

se
-

m
an

ti
c

re
la

ti
on

s
an

d
be

ha
vi

ou
ra

lc
on

-
st

ra
in

ts

m
od

el
m

at
ch

in
g

ye
s

no
se

m
an

ti
c

re
la

ti
on

s
(W

or
dN

et
,

Li
n

m
et

ri
c)

1
:1

W
ei

dl
ic

h
et

al
.(

2
0
1
0
)

[1
3
5

]
Th

e
IC

oP
Fr

am
ew

or
k

:I
de

nt
ifi

ca
ti

on
of

C
or

re
sp

on
de

nc
es

be
tw

ee
n

Pr
oc

es
s

M
od

el
s

M
at

ch
in

g
ba

se
d

on
sy

nt
ac

ti
c

la
be

l
si

m
ila

ri
ty

m
od

el
m

at
ch

in
g

ye
s

no
no

n:
m

C
on

ti
nu

ed

2.5 related work 55

A
ut

ho
rs

(Y
ea

r)
Ti

tl
e

A
pp

ro
ac

h
C

at
eg

or
y

M
od

el
in

pu
t

Ev
en

t
lo

g
in

pu
t

Ex
te

rn
al

kn
ow

le
dg

e
C

la
ss

le
ve

l
re

la
ti

on

D
ijk

m
an

et
al

.(
2
0
1
1
)

[3
9

]
Si

m
ila

ri
ty

of
bu

si
ne

ss
pr

oc
es

s
m

od
el

s:
M

et
ri

cs
an

d
ev

al
ua

ti
on

M
at

ch
in

g
of

m
od

el
s

us
in

g
se

m
an

ti
c

la
be

lm
at

ch
in

g,
st

ru
ct

ur
al

an
d

be
ha

v-
io

ra
lm

at
ch

in
g

m
od

el
si

m
ila

ri
ty

ye
s

no
sy

no
ny

m
re

la
ti

on
s

1
:1

D
on

ge
n

et
al

.(
2
0
0
8
)

[1
3
1

]
M

ea
su

ri
ng

Si
m

ila
ri

ty
be

tw
ee

n
Bu

si
ne

ss
Pr

oc
es

s
M

od
el

s
M

at
ch

in
g

of
m

od
el

s
ba

se
d

on
la

be
ls

an
d

in
pu

t/
ou

tp
ut

co
nt

ex
t

m
od

el
si

m
ila

ri
ty

ye
s

no
sy

no
ny

m
re

la
ti

on
s

1
:1

K
un

ze
et

al
.(

2
0
1
1

)
[6

9
]

Be
ha

vi
or

al
si

m
ila

ri
ty

-
a

pr
op

er
m

et
ri

c
Si

m
ila

ri
ty

m
ea

su
re

of
tw

o
m

od
el

s
ba

se
d

on
th

e
Ja

cc
ar

d
co

ef
fic

ie
nt

us
in

g
be

ha
vi

or
al

pr
ofi

le
s

m
od

el
si

m
ila

ri
ty

ye
s

no
no

1
:1

Po
ly

vy
an

yy
et

al
.

(2
0
1
2
)

[9
4
]

Is
ot

ac
ti

cs
as

a
Fo

un
da

ti
on

fo
r

A
lig

nm
en

t
an

d
A

bs
tr

ac
ti

on
of

Be
ha

vi
or

al
M

od
el

s

Eq
ui

va
le

nc
e

of
al

ig
ne

d
m

od
el

s
w

it
h

co
m

pl
ex

co
rr

es
po

nd
en

ce
s

us
in

g
co

n-
cu

rr
en

cy
se

m
an

ti
cs

m
od

el
si

m
ila

ri
ty

ye
s

no
no

n:
m

W
ei

dl
ic

h
et

al
.(

2
0
1
2
)

[1
4
0

]
Be

ha
vi

ou
r

Eq
ui

va
le

nc
e

an
d

C
om

pa
t-

ib
ili

ty
of

Bu
si

ne
ss

Pr
oc

es
s

M
od

el
s

w
it

h
C

om
pl

ex
C

or
re

sp
on

de
nc

es

D
et

er
m

in
in

g
be

ha
vi

or
al

eq
ui

va
le

nc
e

be
tw

ee
n

se
ts

of
ac

ti
vi

ti
es

m
od

el
si

m
ila

ri
ty

ye
s

no
no

n:
m

Part II

A P P R O A C H E S T O M AT C H E V E N T S A N D
A C T I V I T I E S

3
B A S E A P P R O A C H

This chapter introduces our base approach to the mapping problem. The presented
work has partly been published in [6, 7, 8]. The base approach provides a

framework to fulfill all presented requirements. We will briefly recap the made
assumptions in Section 3.1. In Section 3.2, the matching problem is formalized.

The focus lies on the complete description and formalization of the mapping
problem with all its facets coming from the different presented requirements. Based

on this formalization, the concrete steps and concepts of the base approach are
introduced in Section 3.3. While the base approach does not aim at a high degree of
automation for the type–level matching, it does deliver a complete initial approach

for the mapping of events to activities on type level and provides automated
mapping on instance level once the type–level mapping is provided. The approaches

that are presented in later chapters are grounded on the base approach and add
possible automation of the type–level matching for certain specific scenarios.

3.1 requirements and assumptions

As input for the base approach we assert to have a set of activities, A,
as well as an event log L. The set of activities may come from an exist-
ing process model but could potentially also be manually provided
by an analyst without a model. For simplicity, we assume that the
activities are contained in a process model. Note that this does not
impose any restrictions in terms of available data, because the base
approach will not make use of the flow relation of activities. Thus,
a process model could easily be created using only the user defined
activities without any flow relation. Activities may be related by the
subAct function to implement a hierarchical composition. The event
log L has to follow the structures described in Section 2.1.8. Note that
this also includes additional event attributes. The base approach is
able to make use of additional non-standard attributes, but it does
not explicitly require their availability. Furthermore, we assume that
event log L contains executions of the set of activities A. We do not
make any further assumptions about the properties of the event log.

3.2 the matching problem formalized

The goal of the base approach is to provide a generic approach that
fulfills all requirements listed in Section 2.4. This section formally
defines the matching problem in the light of the defined requirements.

59

60 base approach

As a starting point, Definition 7 defines the general relations of events
and activities on type and instance level.

Definition 7 (Activity event relations). Let P = (N,ω,µ) be a process
model with A ∈ N as the non-empty set of activities. Let L ∈ B(Ê∗) be
an event log that records the execution of the process described by P, with E
being the set of contained event classes in L. ThenAE ⊆ A×E is the relation
that maps activities to their corresponding event classes. ÂÊ ⊆ Â× Ê is
the relation which assigns every event instance from the event log L to an
activity instance of process instance of P. �

Requirement R1 demands that the relation of event instances to
activity instances as well as the relation of event classes to activity
types follows a one-to-one relationship. Regarding Requirement R2

and R4, it is obvious that the relations AE and ÂÊ do not describe
one-to-one relationships of activities and events when events are on
different abstraction levels and events potentially represent shared
functionalities. Events are most often on a more fine granular abstrac-
tion level than activities, leading to a one-to-many relation between
activities and events. That means, one activity in the process model
is represented by events from multiple event classes in the event log.
Therefore, also a single activity instance may relate to multiple event
instances. Shared functionalities lead to event classes that are related
to multiple activities. As shared functionalities can occur on type and
instance level, they lead to many-to-one relations between activities
and events on both levels. Thus, shared functionalities in combina-
tion with different abstraction levels lead to a many-to-many relation
between activities and event classes.

1

1..*

0..*

0..*

1

1..*

1 0..*

1 0..*

1 0..* 1..* 1 1..* 1

1

1

Unknown relation / entity

0..*

0..*

Event Instance

Activity Activity Instance

Process Instance

Trace Event LogEvent Class

Process Model

Figure 24: Relations of the entities of the process model and process execu-
tion recorded in real life logs that are on a different abstraction
level and contain shared functionalities.

Figure 24 depicts the relations between process models and event
logs with the cardinalities faced in real life logs. In order to use any
process mining technique, the event instances found in the traces of
the event log need to be connected to activity instances. Yet, activity
instances are not known without the event log. While this connection
can be partly established using the link from event instances to event
classes and the connection between model activities and event classes,

3.2 the matching problem formalized 61

typically, the latter connection is also unknown. As the relation on
type level is a lot smaller than the relation on instance level in terms
of the number of entities that have to be matched, it can often be
created manually with reasonable effort. Chapter 4, 5 and 6 all deal
with semiautomatic approaches to retrieve the relation AE.

Activities Event classes

Activity instances Event instances

(a) Real life log

Activities Event classes

Activity instances Event instances

(b) Requirement R1

Activities Event classes

Activity instances Event instances

(c) Requirement R7, R8

Figure 25: Relations of the sets of activities and events on type and in-
stance level.

Figure 25 depicts a comparison of the different types of relations
between the set of activities and the set of events, i.e., the different
cardinalities for relations AE and ÂÊ. Here, one can see the differ-
ence between the relations found in real life logs and those required
by process mining techniques. As shown in Figure 25a, the relations
AE and ÂÊ potentially describe many-to-many relationships for real
life logs. Hence, the event log L has to be transformed to an event
log L ′ such that both relations AE and ÂÊ are bijective functions, in
order to fulfill Requirement R1. The transformed event log allows for
a bijective function AE1:1 : E → A, which assigns each event class
to exactly one activity, as depicted in Figure 25b. There is no activity
that is not matched to an event class and no event class that is not
matched to an activity. Hence, all events in an event log have to be
either mapped onto their corresponding activity or removed from
the log. Knowing to which activity an event instance belongs does
not yet reveal to which instance of that activity the event instance
belongs, as there may be multiple instances of that activity. Require-
ment R1 requires a bijective function ÂÊ1:1 : Ê → Â, which assigns
each event instance in the transformed event log to exactly one activ-
ity instance. Thus, techniques have to be defined to derive the relation
ÂÊ1:1, which essentially informs about the existing activity instances.
Having the function ÂÊ1:1, the given event log can be transformed to
be used by conformance checking or discovery methods. Therefore, a
transformation function transformEA : L× ÂÊ1:1 → L is needed.

Requirement R7 (1:1 matching to life cycle transitions) and Require-
ment R8 (Hierarchical matching) demand a one-to-many relation be-
tween events and activities as shown in Figure 25c. In contrast to
Requirement R1, which requests a direct mapping from events to
activities, Requirement R7 and R8 request an assignment of events

62 base approach

1

1..*

0..*

0..*

1

1..*

1 0..*

1 0..*

1 0..* 1..* 1 1..* 1

1

1

1

1

1

1..*

1

1

1

1..*

0..*

0..*

Event Instance

Activity Activity Instance

Process Instance

Trace Event LogEvent Class

Process Model

Life Cycle Model

Life Cycle Transition
Life Cycle Transition

Instance

Life Cycle Instance1 0..*

1 0..*

1

0..*

1

0..*
Unknown relation / entity

Figure 26: Relations of the entities of the event log, process model, and
process execution including life cycle transitions.

to activity life cycle transitions as needed for performance analysis.
Again, a one-to-one relation is needed on both type and instance
level. We denote the corresponding relations as LTE ⊆ LT × E and
L̂T Ê ⊆ L̂T × Ê. Similar to the direct matching of events to activities for
Requirement R1, we need to end up with two bijective functions that
describe the one-to-one matching. On type level, the bijective func-
tion LTE1:1 : E→ LT assigns each event class to exactly one life cycle
transition. On instance level, the bijective function L̂T Ê1:1 : Ê → L̂T

assigns each event instance to exactly one instance of a life cycle tran-
sition.

Figure 26 depicts the relations between process models and event
logs including the life cycle entities with the cardinalities found in
real life scenarios. In the same manner as explained before, we are
facing a many-to-many relation between life cycle transitions and
event classes due to shared functionalities and different abstraction
levels. Due to the before mentioned fact that activity instances are
unknown without the connection of process model and log, also the
life cycle instances and the instances of the life cycle transitions are
unknown. Similarly to the direct matching of activities and events, the
relations can be concluded by establishing the links between events
and activity life cycle transitions on type level, i.e., by deriving the
relation LTE, which also has to be transformed from a many-to-many
relation to the bijective function LTE1:1 (see Figure 25c). Having the
function LTE1:1, techniques have to be established to derive L̂T Ê1:1,
which informs about the instances of life cycle transitions and thereby
about life cycle instances and activity instances. Using the function
L̂T Ê1:1, a transformation function transformELT : L × L̂T Ê1:1 → L

can be defined to preprocess the event log for performance analysis
techniques.

3.3 phases of the base approach 63

The class diagram depicted in Figure 26 also contains the hierarchi-
cal relations between activities. Requirement R8 demands to match
events to those hierarchically related activities. This matching can be
done using multiple different mapping functions, one for each ab-
straction level of the activities. Yet, to actually reflect the hierarchical
relation in the transformed event log, another relation is required
that relates event instances mapped to an activity A to the traces of
event instances that are mapped to sub–activities of A. To this end,
a new event log La is created for each activity a ∈ A. The function
subLog : A → L captures the relation from activities to their corre-
sponding event log. The event log La related by subLog(a) contains
a trace tâ for each activity instance â of activity a. Such a trace en-
tails all event instances that are mapped to activity instance â, i.e., for
each ê ∈ tâ it holds that ÂÊ(ê) = â or respectively L̂T Ê(ê) = l̂t with
l̂t being a life cycle transition instance of â.

3.3 phases of the base approach

The previous section formally defined the matching problem. This
section introduces our base approach to tackle the matching problem.
The approach consists of four distinct phases, which together address
the defined requirements:

1. Matching of activities and events on type level.

2. Definition of context–sensitive mappings.

3. Transformation of the event log.

4. Clustering of event instance to activity instances.

Figure 27 shows the four phases of the base approach with their
inputs and outputs. In the first phase, the relation between activities
and events is established on type level, i.e., the relation AE is defined.
The second phase deals with the handling of shared functionalities re-
quested by Requirement R4. Context–sensitive mappings are defined
in order to define under which contextual circumstance an event is
mapped to a particular activity in case its event class is mapped to
multiple activities in AE. Furthermore, specific life cycle mappings
can be defined if necessary, leading to a partly defined LTE relation.
The third phase transforms the given event log using the previously
defined AE relation as well as the LTE relation where applicable. The
transformation leads to the relation of event instances to activity life
cycle transitions (LTÊ). During the last phase, the transformed event
log is again processed to cluster event instances to their correspond-
ing activity instances. The clustering phase uses user–defined defini-
tions for identifying where an activity instance starts and where it
ends. It thereby automatically derives start and complete transitions

64 base approach

of the activity instance life cycle. Thus, the relation L̂T Ê is derived in
this phase, thereby deducing ÂÊ, the relations of event instances to
activity instance. Moreover, the last phase also completes the type–
level relation of events and activity life cycle transitions (LTE). This
phase also controls whether the ÂÊ relation is a one-to-one relation-
ship or one-to-many relationship, depending on the required result.
The following sections will detail each of the four phases.

Match activity life

cycle transitions and

events on type level

Define context-

sensitive mappings

Cluster event

instances to activity

instances

Mapped

event log

L

(LTÊ)

Transform event log

Preprocessed

event log

L

(LTÊ)

Event class to activity

life cycle mapping

LTEM

Event log

L

Event class to activity

life cycle relation

LTE

Extended event class to

activity life cycle mapping

LTEM*

Process model

P

Figure 27: Overview of the base approach for mapping events to defined
activities including inputs and outputs for each phase.

3.3.1 Matching of Activities and Events on Type Level

The goal of this phase is to establish the type–level relations between
events and activities (AE), or between events and life cycle transi-
tions (LTE). For the base approach we assume that the relations AE
and LTE can be provided manually by an analyst. As explained be-
fore, different process mining techniques have different requirements.
Some request for a mapping of events to life cycle transitions and
some do not. Yet, having the mapping of events to life cycle transi-
tions of activities entails the mapping of events to activities. We will
introduce an approach that is able to automatically assign the two
common life cycle transitions, start and complete, automatically. The
user is requested to assign all other life cycle transitions. But this as-
signment is only requested, if it is needed to fulfill the requirements
of the process mining technique for which an event log is prepro-
cessed. The approach will automatically assign start and complete
transitions and tag all other events with a special life cycle transition,
named execute, if no specific mapping is defined by the user. Hence, if
the analyst does not need any special life cycle transitions other than
start and complete, they do not have to specify any relation to life
cycle transitions, but only to the activities. Therefore, we will from

3.3 phases of the base approach 65

now on work with the relation LTE and disregard the relation AE,
which can be derived from LTE. In order to reflect assignments that
are derived automatically in a later phase, we introduce the place
holder φ for the set of automatically derivable life cycle transitions
{start, complete}. Thus, the set of life cycle transitions for this phase of
the matching is LT = LT ∪φ \ {start, complete}.

While the main goal is to map events to activities, there may be
events in an event log which cannot be mapped to an activity, be-
cause they are out of scope. Thus, we need to abstract from them.
While some of the existing event log abstraction approaches, like [58],
implement this type of abstraction by automatically hiding events
from infrequent event classes, we observed that it is often better to
let a domain expert control what to omit and what to keep. Some-
times, events that occur very often are not interesting from a business
point of view and infrequent events can be highly important once
they occur. In some cases one might also not want to omit all events
belonging to a specific event class, but only those event instances
fulfilling certain conditions. We therefore introduce an activity place
holder for LTE, called REMOVE_EVENT. The next section will show
how context–sensitive mappings can be defined that can also be used
to conditionally remove events. In the same fashion, it can be helpful
to abstract from complete traces that contain certain behavior identi-
fied by event instances in a certain context. The activity place holder
for removing complete traces is called REMOVE_TRACE.

As a last step of the type–level matching, activities for which the
execution is not captured in the event log of the supporting IT system
need to be identified. These activities can either be removed from the
process model or turned into silent transitions in the Petri net repre-
sentation. By that, they will not be considered for the mapping and
in further process mining analyses, such as conformance checking or
performance analysis.

Table 14 provides an example for type–level relation of events to
activity life cycle transitions, which is the result of this phase. The
relation is taken from our incident process example. Every event
class except for the “Message” event class is assigned to the φ life
cycle transition of an activity. By that, event classes are not directly
assigned to a life cycle transition but only to a place holder that
is replaced later during the mapping. The event class “Message” is
mapped to the REMOVE_EVENT placeholder as it cannot be related
to any activity of the incident process. One can also see that event
classes are mapped to multiple activities, as, e.g., “CI” and “Group”.
These represent shared functionalities. On the other hand, there are
also activities, such as “Incident Logging”, that occur in multiple tu-
ples. This shows that these activities are on a higher abstraction level
than their corresponding events.

66 base approach

Table 14: Example of the type–level relations between events and activity
life cycle transitions (LTE) for the incident process.

Event class Activity Life cycle transition

CI Incident closure φ

CI Initial diagnosis φ

CI Investigation and diagnosis φ

CI Security incident handling φ

Classification Incident classification φ

Details Incident logging φ

Group Functional escalation φ

Group Incident logging φ

Group Investigation & diagnosis φ

Group Security incident handling φ

Message REMOVE_EVENT

Solution Resolution and recovery φ

Status Incident closure φ

3.3.2 Definition of Context–sensitive Mappings

As stated in Requirement R4, there are often events representing
shared functionalities, which are used by multiple activities. Hence,
the event–activity relations on type level cannot be directly used for
the mapping of event instances, as we have to disambiguate the event
instances for which there are multiple relations of their correspond-
ing event class in LTE. This section describes the necessary steps to
get from the relations to a concrete event–activity mapping that can
be used to transform the event log. The challenge in this context is
to identify the conditions that help to decide when one event class
matches one of alternative activities. To this end, we consider the
context of an event instance, either as defined over the event or trace
attributes or over the surrounding event instances.

First, we take attributes into account. Table 15 shows a more detailed
event log for the incident process. The log includes a timestamp, the
executing role, and the new value that has been assigned for each
event instance. Furthermore, the correct activity has been annotated
to illustrate the goal for the current phase. From the last phase it is
known that the selection of a configuration item (CI) signals the exe-
cution of either one of the activities “Initial diagnosis”, “Investigation
and diagnosis”, “Security incident handling”, or “Incident closure”.
Looking at Figure 14, it can be seen that the differentiation can be
made partly using the role attribute. The selection of a configuration
item belongs to the activity “Investigation and diagnosis” when exe-
cuted by a second level agent while event instances of the same event
class refer to the activity “Security incident handling” when executed
by a member of the security role. When an event instance of class “CI”
occurs with the change executed by a first level supporter, it belongs

3.3 phases of the base approach 67

Table 15: Example log of the incident process with mapping to activities.

Trace Event class Value Time stamp Role Activity

t1 Group 1st-SAP 04.02.14 12:31 1st level Incident logging

t1 Classification SAP 04.02.14 12:35 1st level Incident classification

t1 Details SAP is offline 04.02.14 12:36 1st level Incident logging

t1 Details SAP R3 is offline 04.02.14 12:45 1st level Incident logging

t1 Solution Cleared cache 04.02.14 13:31 1st level Resolution and recovery

t1 Status Closed 04.02.14 13:33 1st level Incident closure

t2 Group 1st-Intra 04.02.14 12:51 1st level Incident logging

t2 Classification Password 04.02.14 12:54 1st level Incident classification

t2 CI US1234 04.02.14 12:55 1st level Initial diagnosis

t2 Details Password forgotten 04.02.14 12:59 1st level Incident logging

t2 Solution Password reset 04.02.14 13:09 1st level Resolution and recovery

t2 Status Closed 04.02.14 13:10 1st level Incident closure

t3 Group 1st-Mail 04.02.14 14:29 1st level Incident logging

t3 Classification Mail 04.02.14 14:35 1st level Incident classification

t3 CI Outlook Client 04.02.14 14:37 1st level Initial diagnosis

t3 CI Outlook Server 1 04.02.14 14:39 1st level Initial diagnosis

t3 Details Cannot send mails 04.02.14 14:44 1st level Incident logging

t3 Group 2nd-Mail 04.02.14 14:45 1st level Functional escalation

t3 CI Outlook Server 2 04.02.14 14:46 2nd level Investigation and diagnosis

t3 Group 1st-Mail 04.02.14 15:21 2nd level Investigation and diagnosis

t3 Solution Change client settings 04.02.14 15:36 1st level Resolution and recovery

t3 CI Outlook Client 04.02.14 15:46 1st level Incident closure

t3 Status Closed 04.02.14 15:56 1st level Incident closure

t4 Group 1st-generic 04.02.14 12:53 1st level Incident logging

t4 CI Notebook 325 04.02.14 12:54 1st level Initial diagnosis

t4 Details Virus found 04.02.14 12:55 1st level Incident logging

t4 Group Security 04.02.14 12:56 1st level Functional escalation

t4 CI Station 133 04.02.14 12:57 Security Security incident handling

t4 CI Win-LP231 04.02.14 12:57 Security Security incident handling

t4 Group 1st-generic 04.02.14 13:35 Security Security incident handling

t4 Solution Virus removal 04.02.14 13:42 1st level Resolution and recovery

t4 CI Win-LP232 04.02.14 13:51 1st level Incident closure

t4 Status Closed 04.02.14 13:59 1st level Incident closure

t5 Group 1st-monitor 05.02.14 08:17 1st level Incident logging

t5 Classification Backup 05.02.14 08:23 1st level Incident classification

t5 CI Backup Server 1 05.02.14 08:25 1st level Initial diagnosis

t5 CI HD 142 05.02.14 08:27 1st level Initial diagnosis

t5 Details Disk space shortage 05.02.14 08:32 1st level Incident logging

t5 Solution Changed broken HD 05.02.14 08:33 1st level Resolution and recovery

t5 CI HD 157 05.02.14 08:43 1st level Incident closure

t5 Status Closed 05.02.14 08:53 1st level Incident closure

t6 Details High network traffic 06.02.14 06:34 1st level Incident logging

t6 Group 1st-monitor 06.02.14 06:35 1st level Incident logging

t6 Solution Short peak. No action 06.02.14 06:55 1st level Resolution and recovery

t6 Status Closed 06.02.14 06:59 1st level Incident closure

68 base approach

either to the activity “Initial diagnosis”, or to the activity “Incident
closure”. In this case, the differentiation cannot be made on the role
or any other attribute attached to any event instance. While the selec-
tion of a CI normally happens during the activities “Initial diagnosis”,
“Investigation and diagnosis”, or “Security incident handling”, it can
also be performed as a quality improvement step during the closure
of the incident ticket by a member of the first level role. This is al-
ways the case if the solution has been documented before the event
“CI” occurs, as shown in Figure 14 and also visible in Table 15. Also,
an event instance might be interpreted differently if it occurs for the
first time or if it has been preceded by earlier executions of event
instances from the same event class. In the example in Figure 14 and
Table 15, the working group is always set in the beginning where
it refers to the logging of the incident while every other change of
the working group refers to a functional escalation or the handover
made in the end of the activities “Investigation and diagnosis” and
“Security incident handling” depending on the executing role.

Concluding our examples, the relation of an event instance to an
activity might depend on attribute data as well as on the context in
terms of preceding or succeeding event instances. In order to use
such domain knowledge it has to be encoded in a formal way. We
therefore introduce attribute conditions and event context conditions
in Definitions 8 and 9.

Definition 8 (Attribute condition). Let AT = ATE ∪ ATT be the set
that unites all event and trace attributes. Let O be the set of comparison
operators and let V be the set of values that an attribute attr ∈ AT should be
tested against. Then, an attribute condition is a tuple ac ∈ AT×O×V . AC
is the set of all attribute conditions. An attribute condition ac is evaluated
for an event instance by the function EVac(ac, ê) = o(#attr(ê), v), where
o ∈ O is a boolean function that compares two given input values, and
v ∈ V is the value given by the attribute condition. �

Definition 9 (Event context condition). Let T bet the set of all traces.
The event context EC for an event instance ê is defined as EC(ê) = (tbefore,
tafter) such that ∃ t ∈ T : t = tbefore‖ê‖tafter where tbefore and tafter are
sub-traces of trace t. The sub-traces can be accessed by the function EC(ê,
r) → T , where r ∈ {before, after} refers to the part of an event context EC.
EC(ê, before) returns the sub-trace tbefore and EC(ê, after) returns the sub-
trace tafter.

A condition over a trace is defined by a function f : T → {true, false},
which evaluates a linear temporal logic (LTL) formula [91]. The set of all
LTL formula functions is referred to as F.

An event context condition is a tuple ecc ∈ F× {before, after}. ECC is
the set of all event context conditions. An event context condition ecc is
evaluated for an event instance with respect to its context using the function
EVecc(ecc, ê) = f(EC(ê, r)). �

3.3 phases of the base approach 69

When shared functionalities are discovered in the first matching
phase, the user needs to define the necessary attribute and event con-
text conditions in order to dissolve the assignment problem. Assume
that all event instances of the incident event log have the attribute
role and that the set of available comparison operators O = {equals,
contains, startswith}. A context condition to identify if an event in-
stance of the event class “CI” belongs to the activity “Investigation
and diagnosis” could be written as (’role’, ’equals’, ’2nd level’). To
identify the cases when an instance of the event class “Group” be-
longs to the activity “Incident logging” we can create the event con-
text condition (!♦(’Group’), ’before’). The formula !♦(’Group’) is an
LTL formula that stands for “eventually event ’Group’ occurs”. LTL
has been chosen as it gives good flexibility for defining temporal con-
ditions. In order to check the LTL statements on the event log we use
the functionality of the ProM LTL Checker plug–in as introduced by
Aalst et al. [124]. Note that this requires a particular syntax to distin-
guish between event labels and attributes. For a complete reference
of the LTL Checker plug–in see [30].

It is also possible that multiple conditions need to match in order to
map an event instance to an activity. Hence, we define a context con-
dition c as the conjunction of attribute conditions and event context
conditions as presented in Definition 10.

Definition 10 (Context condition). A context condition c is a tuple
c = (AC ′,ECC ′) with AC ′ ⊆ AC and ECC ′ ⊆ ECC. The set of all
context conditions is denoted as C. The evaluation function checks whether
all defined conditions hold for an event instance. It is defined as

EV(c, ê) =


true

∀ac ∈ AC’ : EVac(ac, ê) = true ∧

∀ ecc ∈ ECC’ : EVecc(ecc, ê) = true

false otherwise

�

Having defined the context conditions, we introduce an event class
to activity mapping EAM based on event classes and conditions that
have to be fulfilled for a corresponding event instance in order to be
mapped to a specific life cycle transition of an activity.

Definition 11 (Event class to activity life cycle mapping). An event
to activity mapping is a relation LTEM ⊆ LTE×C, which relates an event
class to a life cycle transition of an activity based on a context condition. �

Definition 11 gives the mapping between activities from a process
model and event classes found in an event log. For our the event
classes “CI” and “Group” of our incident process example, the event
class to activity mapping could be defined by a domain expert as
shown in Table 16. Note that the mappings, in general, should be non-

70 base approach

overlapping as there is no ordering in which the rules are tested and
all matching relations will be taken into account in the next phase.

Table 16: Example event class to activity mapping for the event classes “CI”
and “Group” .

e ∈ E a ∈A lt ∈ LT c ∈ C

CI Incident closure φ ({}, {(♦(’Solution’), ’before’)}

CI Initial diagnosis φ ({(’role’, ’equals’, ’1st level’)},
{(!♦(’Solution’), ’before’)})

CI Investigation & diagnosis φ ({(’role’, ’equals’, ’2nd level’)}, {})

CI Security incident handling φ ({(’role’, ’equals’, ’Security’)}, {})

Group Incident logging φ ({}, {(!♦(’Group’), ’before’)}

Group Functional escalation φ ({(’role’, ’equals’, ’1st level’)},
{(!♦(’Group’), ’before’)})

Group Investigation & diagnosis φ ({(’role’, ’equals’, ’2nd level’)}, {})

Group Security incident handling φ ({(’role’, ’equals’, ’Security’)}, {})

In order to give some examples for the context–sensitive removal
of events or whole traces, consider the case where for each activity
of the incident process model there is a protocol event containing
a description of the concrete steps taken by the executing process
participant. An analyst may decide to only keep the protocol events
for the resolution of the incident, i.e., those that occurred after the
solution was found and entered into the system. The mapping for
this example is specified as follows: {(’Protocol’, ’REMOVE_EVENT’,
φ, ({}, {(!♦(’Solution’), ’before’)})), (’Protocol’, ’Resolution and recov-
ery’, φ, ({}, {(♦(’Solution’), ’before’)}))}. Concerning the removal of
complete traces, one might be interested in analyzing only incidents
that do not concern security issues. To achieve this, we are required
to remove all cases that contain security issues. These cases can be
identified by event instances of the event class ”CI” that have been
created by a member of the role ”Security”. The following mapping
tuple can be used to remove cases that contain such event instances:
(’CI’, ’REMOVE_TRACE’, ({(’role’, ’equals’, ’Security’)}, {})).

Having defined the basic type–level mapping aspects to fulfill the
given requirements, we now turn to two special cases that we en-
countered in our case studies that can potentially be captured with
the previously defined concepts but only with higher manual efforts.
So far, we have been looking at cases where an event class refers to a
subset of the given activities and that reference may depend on one or
more conditions. A special case is when an event class potentially be-
longs to every activity in the process model. One example for this are
protocol events, which signal that a process participant documented
what they did. Another example we encountered in practice are sta-
tus events, which show if somebody is currently working on a case
or if it is on hold. These events show the life cycle of the individual

3.3 phases of the base approach 71

activities and can for instance be used to calculate idle times within
the execution of an activity. Such events typically belong to the ac-
tivity that is currently executed or about to start. In order to achieve
such a dynamic mapping, we introduce a special activity place holder
that can be used in the LTEM mapping definition. This place holder
is called CLOSEST_ACTIVITY and is processed after all other map-
pings. It signals the mapping algorithm to assign an event instance to
the activity to which its closest neighbor is assigned to. The distance
for the determination of the closest event is measured over the time
stamps of the event instances.

While the conditions introduced in Definition 10 allow to mix at-
tribute and context conditions, practical settings often require to as-
sess whether a certain event has happened before and fulfills a certain
attribute condition. Consider the scenario where the role attribute is
not present in our example event log from Table 15. The mapping
of event instance from the class “CI” in the incident management
process partly depends on the role and on the fact whether an event
instance of the class “Solution” has been seen before. With a close
look at the given event log, one can see that the mapping can also
be done without the role attribute by taking into account the value
set in the previous event of the event class “Group”. Whenever this
value starts with “1st”, the role that performed the subsequent steps
is the first level role. If it starts with “2nd” or “Security”, either a
member of the second level or of the security role is responsible for
the upcoming event instances.

In order to easily capture such dependencies, we introduce global
event attributes that are added to each event instance. The values of
these attributes are updated by the attribute values of occurrences
of event instances of specific classes that are defined in the global
attribute relation GATR ⊆ E×ATE. Assuming that the event instances
of the class “Group” have an attribute called “value” that stores the
group that has been set, the tuple for this example would be specified
as (“Group”, “value”). An attribute with the name “Group” is added
to all event instances and its value is set to the last value provided
by an event instance of class “Group”, or the value will be empty
if no such event instance occurred before. In this way, an attribute
condition can be used to evaluate the current group when assessing
the matching activity for an event of the event class “CI”.

3.3.3 Transformation of the Event Log

Having defined the relations between event classes and activities on
the type level, we can turn to the instance level. The goal of the phase
described in this section is to transform the event log so that each
event instance is mapped to its corresponding activity. Thus, we are
mapping the instance level of the events to the type level of the activ-

72 base approach

ities. This is a necessary preprocessing step for the next phase, which
deals with the clustering of event instances to activity instances. Defi-
nition 12 specifies the relation LTÊ, which maps event instances to the
life cycle transitions of the activities declared in the relation LTEM,
for which all defined context conditions hold.

Definition 12 (Event instance to activity mapping). Relation LTÊ ⊆
Ê×A× LT defines the mapping of event instances to life cycle transitions
of activity types, for which (ê,a, lt) ∈ LTÊ =⇒ ∃ (e,a, lt, c) ∈ LTEM :

e = #class(ê), Ev(c, ê) = true. �

Note that LTÊ is a relation that allows for multiple mappings of an
event instance to different activities or activity life cycle transitions.
This is a reflection of Requirement R4, which describes that there
can be event instances that relate to multiple activities due to the
use of shared functionalities. Consider the following example taken
from one of our industry case studies: When an incident needs to be
resolved with a change in the IT infrastructure, one has to document
necessary steps as well as a back-out plan for the case something goes
wrong during implementation. When the supporting IT system only
reserves one field for these two texts, e.g. the field “Change Protocol”,
it will also only save one event for the change of this field. If the pro-
cess model distinguishes the writing of the plan and back-out plan in
two activities, there is one event instance representing two activities.
Consider the event instance ê1 with #class (ê1) = ’Change Protocol’
and #value (ê1) = ’Necessary steps: First do. . . then. . . If it fails, the back-
out is done as follows:. . . ’. We know that for this case a protocol event
always entails the writing of the plan. By defining conditions over
the content of the protocol attached to the event instance as attribute
“value”, one can find out whether also the activity for writing the
back-out plan has been executed, e.g., by searching for keywords
such as “back-out”. In this case, the relation LTEM contains multi-
ple tuples for the event class “Change Protocol” that have matching
context conditions for ê1. These tuples are: {(’Change Protocol’, ’Doc-
ument change plan’, φ, ({}, {})), (’Change Protocol’, ’Document back-
out plan’, φ, ({(’value’, contains, ’back-out’)}, {}))}.

As stated before, the goal of this phase is to transform the event log
such that each event instance is mapped to its corresponding activity.
Algorithm 1 depicts the general algorithm for the log transformation.
We iterate over the traces in a log and check for each event instance,
for which tuples in LTEM all conditions hold. For each trace t, we
create a new transformed trace t ′, which is added to the transformed
event log L ′. For an event instance ê there may be multiple tuples
in LTEM with matching conditions due to shared functionalities, as
previously explained. All found tuples for an event instance ê are
added to the LTÊ relation (see line 9). For each of these tuples, the
event instance ê is copied and inserted into the transformed trace t ′

as new event instance ê ′ (see line 12-18). The event class of ê ′ is al-

3.3 phases of the base approach 73

Algorithmus 1 : Transform event log with LTÊ.
1: transformLog(EventLog L, Relation LTEM)
2: EventLog L ′ := ∅
3: for all t ∈ L do
4: Trace t ′ := 〈〉
5: for all ê ∈ t do
6: Set LTÊ := ∅
7: for all (e,a, lt, c) ∈ LTEM do
8: if e = #class(ê), Ev(c, ê) = true then
9: LTÊ := LTÊ∪ {(ê,a, lt)}

10: end if
11: end for
12: for all (ê,a, lt) ∈ LTÊ do
13: ê ′ := copy(ê)
14: #class(ê ′) := a
15: #source(ê ′) := #class(ê)
16: #transition(ê ′) := lt
17: t ′ := t ′ | ê ′

18: end for
19: end for
20: L ′ := L ′ ∪ {t ′}
21: end for
22: return L ′

tered to reflect the matching activity and the corresponding life cycle
transition is set as additional attribute. In case multiple mappings
match for an event instance ê — as in the protocol example above
— we duplicate ê as many times as needed. In order to keep the re-
lation to the original event class, we introduce a new event attribute
#source(ê ′), which contains the original event class. We refer to the
attribute #source(ê ′) as source event class. The result of this phase
is a preprocessed event log where all event instances are assigned to
their corresponding activity and, if specified in the relation LTEM, to
the matching life cycle transition.

3.3.4 Clustering of Event Instances to Activity Instances

The previous section described the first transformation of the event
log. In this transformation phase the event instances are mapped to
activities on type level and, if known, to the corresponding life cycle
transitions. Building on this mapping, the goal of the phase described
in this section is to derive the final event log with a mapping from
event instances to activity instances and life cycle transition instances.
As described in Section 3.2, activity instances are not known without
the connection of event log and process model. Having an event log
where the event instances are mapped to their activities on type level,
i.e., having the relation LTÊ, activity instances can be derived using

74 base approach

clustering techniques. From the mapping to activity instances, the
start, complete and execute life cycle transitions can be matched au-
tomatically. All other life cycle transitions have been assigned before
using the user defined mappings from the relation LTEM.

The algorithm we propose for the clustering of events to activity in-
stances is grounded on a tree-based incremental clustering algorithm
known from classical data mining (cf. incremental clustering in [145]).
For every activity in the process model the clustering forms a tree
with the event instances as leaves and the activity instances on the
next higher level. At the start of the clustering, all trees contain only
an empty root node. The event instances are incrementally inserted
into the tree. Updating the tree is done by finding the right place for a
new leaf. This may cause restructuring of the affected part of the tree.
Definition 13 formally introduces the activity instance tree, which es-
sentially is a set of activity instances for a particular activity. Each
activity instance is represented by a set of event instances. Hence,
the activity instance tree clusters together those event instances that
belong to the same activity instance.

Definition 13 (Activity instance tree). ÂTai = {ÂCa1 , . . . , ÂCaj } is an
activity instance tree for the activity instances of activity a ∈ A in trace
ti ∈ L, with i ∈ 1..|L|. The index j ∈ N symbols the number of activity
instances of activity a in trace ti. ÂCak = {ê1, . . . , êl}, with k ∈ 1..j and
l ∈ N, is a set of event instances belonging to the activity instance âk.
ÂCak is also referred to as an activity instance cluster. The set of all activity
instance clusters is referred to as ÂC. �

There is one activity instance tree ÂTai for each activity a ∈ A in
each trace ti, capturing all activity instances of a in trace ti ∈ L. Al-
gorithm 2 specifies the construction of activity instance trees in more
detail. Algorithm 2 takes the transformed event log L ′ from the previ-
ous phase and iterates over all traces in the log. For each trace, the ac-
tivity instance trees for all activities are initialized as empty sets (see
line 4). We then iterate over all event instances in a given trace. For
each event instance ê, we check whether the corresponding activity
instance tree is still empty or not. The corresponding activity instance
tree can be easily identified over the event class, because the previous
phase already assigned the activity names as event classes. If the activ-
ity instance tree for the event instance at hand is still empty, the event
instance is simply added as a member of a new set, i.e., a new activ-
ity instance cluster. In case there are already activity instance clusters
in the activity instance tree, the algorithm determines the best host
cluster for the event instance. The best host cluster for a new event is
the cluster of event instances that contains the event instance with the
minimal distance to ê. This distance between two event instances can
be expressed by a distance function dist : Ê× Ê → R. The distance
function can use different attributes of the event instances or other
information contained in the event log to calculate a distance. For

3.3 phases of the base approach 75

Algorithmus 2 : Clustering events to activity instances.
1: cluster(Log L ′

2: for all ti ∈ L ′ do
3: for all a ∈ A do
4: Set ÂTai = ∅
5: end for
6: for all ê ∈ ti do
7: a = #class(ê)
8: if ÂTai == ∅ then
9: ÂC1 = {ê}

10: ÂTai =
{
ÂC1

}
11: else
12: distancemin =∞
13: for all ÂCj ∈ ÂTai do
14: for all êk ∈ ÂCj do
15: if dist(ê, êk) < dmin then
16: ÂChost = ÂCj
17: distancemin = dist(ê, êk)
18: end if
19: end for
20: end for
21: instanceBorderFound = false

22: for all êk ∈ ÂCj do
23: if checkInstanceBorder(ê, êk) == true then
24: instanceBorderFound = true

25: break
26: end if
27: end for
28: if instanceBorderFound == false then
29: ÂChost = ÂChost ∪ {ê}
30: else
31: ÂC|ÂTai |+1

= {ê}

32: ÂTai = ÂTai ∪
{
ÂC|ÂTai |+1

}
33: restructure(ÂTai)

34: end if
35: end if
36: end for
37: for all a ∈ A do
38: for all ÂCj ∈ ÂTai do
39: merge(ÂCj)

40: end for
41: end for
42: end for

76 base approach

example it may use the timestamps, the number of event instances in
between, the calculated distance between other event attributes or a
combination of these. In case we can exclude concurrent executions
of the same activity and do not include specific event attributes, the
best host will always be the last inserted event of the same activity as
events are sorted chronologically in the event log. This event can eas-
ily be identified using the order relation >ê. The last event instance
in an activity instance cluster ÂCaj is the event instance êl ∈ ÂCaj for
which holds ∀ êm ∈ ÂCaj : êm 6= êl =⇒ êl >

ê êm.
For now, we only explained how to find the cluster to which an

event instance may be assigned, but we did not explain when a new
cluster is created. One activity instance tree may contain multiple ac-
tivity instance clusters, as there might be multiple activity instances
for one activity in a process instance, i.e., in a loop. Figure 28 depicts
different results for the activity instance clustering of event instance
for which the type–level mapping is already given. In Figure 28a
all event instances that are assigned to an activity on type level are
clustered into a single activity instance. The clustering in Figure 28b
yields always clusters of size two, i.e., two activity instances for both
activities b and c. In Figure 28c the event instances of activity b

are clustered to one activity instance while there are two activity in-
stances for activity c. Although the clustering in Figure 28c seems to
be the one that is most likely correct, we cannot tell if it is. As stated in
Requirement R9, the execution may be nonconforming to the process
model. If this is the case, also the clusterings in Figure 28a and Fig-
ure 28b may be the correct mappings. In order to specify the correct
clustering, additional knowledge needs to be encoded. We need to
define the border between events belonging to two or more instances
of the same activity. We therefore introduce the notion of instance
border conditions.

Definition 14 (Instance border condition, extended event class to ac-
tivity life cycle mapping). An instance border condition defines whether
an event instance belongs to an activity instance cluster ÂCai or if it belongs
to another activity instance cluster ÂCai+1. It is defined as a boolean func-
tion bc : Ê× Ê → {true, false}. The set of all border conditions is BC.
Each tuple in LTEM is extended by a border condition function such that
LTEM∗ ⊆ LTEM× BC. An event instance êj cannot belong to an activity
instance cluster ÂCai , if it holds ∃ êk ∈ ÂCai ,bc(êj, êk) = true for any
activity instance border condition bc that is part of a matching tuple in
LTEM∗. �

Definition 14 introduces the notion of activity instance borders.
Each tuple in LTEM is extended with an instance border condition,
building the extended event to activity life cycle mapping LTEM∗.
Note that this is a manual step that needs to be performed by an ana-
lyst. Yet, from our practical experience it is often sufficient to globally

3.3 phases of the base approach 77

a
c

b1

a1

c1
p

k1 l1 n1 o1 p1 q1 r1 s1

start compl

suspendstart complresume

start exec

r2 s2

P

t

Ev
en

t
in

st
an

ce
s

A
ct

iv
it

y
in

st
an

ce
s

w
it

h
 li

fe
 c

yc
le

tr

an
si

ti
o

n
in

st
an

ce
s

A
ct

iv
it

y
cl

as
se

s

b

time

exec compl

(a)

a
c

b1

a1

c1

c2

p

k1 l1 n1 o1 p1 q1 r1 s1

start compl

complstart

complstart

start compl

start compl

r2 s2

P

t

Ev
en

t
in

st
an

ce
s

A
ct

iv
it

y
in

st
an

ce
s

w
it

h
 li

fe
 c

yc
le

tr

an
si

ti
o

n
in

st
an

ce
s

A
ct

iv
it

y
cl

as
se

s

b

time

b2

(b)

a
c

b1

a1

c1

c2

p

k1 l1 n1 o1 p1 q1 r1 s1

start compl

suspendstart complresume

start compl

start compl

r2 s2

P

t

Ev
en

t
in

st
an

ce
s

A
ct

iv
it

y
in

st
an

ce
s

w
it

h
 li

fe
 c

yc
le

tr

an
si

ti
o

n
in

st
an

ce
s

A
ct

iv
it

y
cl

as
se

s

b

time

(c)

Figure 28: Different results for clustering activity instances.

78 base approach

define one instance border condition that is used in all mapping tu-
ples. Thus, this step does not necessarily require a large amount of
manual effort.

Instance border definitions relate to two levels: intra and inter activ-
ity structure. Concerning the intra activity structure, we have to decide
whether there are loops in activities on the sub–activity or life cycle
level or not. In case the sub–activity or life cycle level is unknown,
an analyst has to make an assumption about looping behavior on
sub–activity or life cycle level. The inter activity level refers to loops
and repetition on activity level. While the process model might not
contain loops on inter activity level, this does not imply that there are
no loops on the inter activity level in the execution if the execution is
not strictly bound to the process model. In case we assume that there
are no loops on intra activity level, any repetition needs to be lifted
to the activity level. That is, an activity instance border is marked by
the repetition of source events from the same event class, i.e., the rep-
etition of a source event class signals that a new activity instance has
started. Thus, for example two protocol events could indicate rework
and therefore two instances of the corresponding activity.

Using recurring source event classes as instance border definition
works only if there are no loops in the assumed sub–activity model.
If there are loops on the intra and inter activity level, multiple event
instances from the same event class might belong to one activity in-
stance. A typical example for this is a loop over the order items in an
order list where different activities like “Choose supplier” have to be
performed for each order item and are modeled on activity level. The
activity “Choose supplier” might contain different sub–activities that
have to be executed for each supplier, like, e.g., “Check prices”. Thus,
we have a loop on activity level and a loop on sub–activity level. In
order to find the correct instance borders, we need to extend the in-
stance border definition to also use different business objects, e.g., the
order line, as instance border markings. Thus, instance borders can be
defined over any attributes attached to an event.

If necessary attributes are not available or if it is not possible to
make statements about the assumed sub–activity or life cycle model,
we need to use heuristics in order to be able to identify different activ-
ity instances. Similar to the approaches of Li et al. [75] and Günther
et al. [57, 59], a first heuristic for an instance border can be defined
based on a threshold for the maximum distance between two events
that belong to one activity instance. While previous works only fo-
cus on a very narrow and short distance based on the number of
events in between two events, we extend this definition using also
the time perspective, i.e., defining how long the time frame between
two event instances of the same activity instance can be. For example
one might limit the time distance between two event instances of the
same activity instance, e.g., two edit events for a protocol belong to

3.3 phases of the base approach 79

different activity instances if there are more than 24 hours between
them. Using a maximal number of events that are allowed to occur
between two events of the same activity instance still makes sense as
a heuristic from our practical experience. Yet, it needs to be specified
by the user and should also allow larger distances when there are
many events assigned to single activities and concurrency cannot be
precluded. In a similar manner, another heuristic can be built on the
assumption of a maximum number of event instances that belong
to one activity instance. Here, a domain expert has to estimate how
many sub–activities or life cycle transitions are approximately exe-
cuted per activity instance. This is simple, if we can exclude loops
on sub–activity level, but might be difficult otherwise. In the former
case, one would limit the maximum number of event instances to the
number of assigned event classes for an activity.
Having defined the instance border conditions, Algorithm 2 uses
these definitions when inserting a new event instance into an exist-
ing activity instance cluster. For all events that belong to the same
activity instance as the host event, the algorithm checks that these
do not fulfill any border condition in combination with the event that
has to be inserted into the cluster (see line 21-27 of Algorithm 2). Note
that in this step we only check if an instance border exists. We do not
yet know where this border is if a border is found. The new activity
instance might already have started before the event is observed that
signals an instance border. If no instance border is found, the event
instance is added to the host set. When an activity instance border is
found, a new set is created for the additional activity instance and the
event instance ê is added to this set. As said before, we do not know
whether the current event instance is the start of a new event instance.
It can be the case that the other event instances that have been previ-
ously assigned to another activity instance, may actually also belong
to the newly created activity instance, e.g., if their distance is closer to
ê than to any of the other event instances. Therefore, a goodness mea-
sure g is introduced which enables us to make relative comparisons
between different cluster possibilities.

Definition 15 (Goodness measure). A goodness measure is a function
g : ÂT → R, which calculates the goodness as a real number for an activity
instance tree. It is defined as follows:

g
(
ÂTai

)
=


∑

(êm,ên)∈ÂCa1×ÂCa1 ,
êm 6=ên

dist (êm, ên) if ÂTai =
{
ÂCa1

}
∑k=|ÂTai |

k=1 g
(
ÂCak

)
otherwise.

�

The function g takes an activity instance tree and sums up the good-
ness values for all contained activity instance clusters. The goodness
value of a particular activity instance cluster is calculated by sum-
ming up the distances between all pairs of events in the cluster. Note

80 base approach

that the goodness function can of course be varied. For example, if
only the time and number of events that occur between two events, it
is enough to calculate the distances between adjacent event instances.
Using the goodness value one can compare different clustering re-
sults with each other and choose the best. Smaller values for g signal
better clusters as the events within the cluster are closer to each other.

The algorithm starts by adding the new event under a new activity
instance. Next, event after event are moved from the host activity
instance to the new activity instance. At each point in this iteration
the goodness measures for the two activity instances and the root are
calculated. It is checked that no instance border condition is fulfilled
between any two events of an activity instance. Otherwise the cluster
combination is discarded. If we exclude concurrent executions of the
same activity, it is sufficient to move event after event from the host
cluster to the new cluster starting with the last inserted event and
ending before the event is moved which fulfills the border condition.
Otherwise, all combinations have to be tested which leads to exponen-
tial effort (O(2

n

2)). In the end, the clustering with the lowest goodness
value is chosen as the optimal cluster and gives us the border between
the two activity instances.

We will explain the basic algorithm using an example. Figure 29

shows an example event sequence. The mapping LTEM for this exam-
ple is defined so that every event class xi maps to an activity x and
every event class yi maps to an activity y. Looking at the instance
border conditions, we define that there are no loops on sub–activity
or life cycle level. We further define that there are no loops and no
parallel executions of instances of the same activity.

Institut für Wirtschaftsinformatik

Institute of Information Systems

X1 X2 Y1X3 X4Y2 Y3 Y4 X5 X1

Figure 29: Event sequence example.

Figure 30 shows the clustering steps for activity x. Events are added
to the cluster as long as they do not fulfill the defined border condi-
tions. When adding the second instance of event x1, it is recognized
that there is already an instance of x1 in the current cluster. Thus, a
border condition is fulfilled and a new cluster for a new instance has
to be created (Figure 30 (2)).

Looking at the clustering example in Figure 30, the insertion of the
second x1 at first results in two clusters with gC1 = 8 and gC2 = 0.
Next, the algorithm moves event after event from the first cluster to
the second cluster until he finds the optimal solution. In the example,
the optimal result with gC = 4 contains the two clusters as shown in
Figure 29 (4).

Having the activity instance clusters for each activity, we can as-
sign the life cycle transitions to those event instances that have been

3.4 summary 81

g=8

X1 X2 X3 X4 X5

g=8

g=8 g=0

X1 X2 X3 X4 X5 X1

g=8

g=7 g=1

X1 X2 X3 X4 X1X5

g=4

g=2 g=2

X1 X2 X3 X1X4 X5

(1) (2)

(3) (4)

Figure 30: Clustering events of activity X to activity instances using tree
structures.

mapped to the placeholder transition φ. If the first event instance in
an activity instance cluster ÂCaj is assigned to the placeholder tran-
sition φ, it is mapped to the start transition. The first event instance
êl ∈ ÂCaj is identified by checking that ∀ êm ∈ ÂCaj : êm 6= êl =⇒
êm >ê êl. In a similar fashion, the last activity instance of an activity
instance cluster is mapped to the complete transition. Any other event
instance that is mapped to the placeholder transition φ is assigned
to the introduced execute life cycle transition. These event instances
can then be easily removed, if they are not required for the intended
analysis.

In case the event log needs to be preprocessed for an analysis tech-
nique that requires a one-to-one mapping between event instances
and activity instances (Requirement R1), the user can decide whether
only the first or the last event instance of an activity instance cluster
should be kept. All other event instances are deleted in that case.

In order to address the requirement of hierarchical mappings to
support zoom-in functionalities in process discovery techniques (Re-
quirement R8), it is furthermore possible to save each activity instance
tree as a separate event log that is linked to each of its activity in-
stances in the original event log. Therefore, each activity instance
clustered is saved as a trace of the corresponding activity instance
event log. The source attribute of each event instance is used as its
event class. Using multiple mappings LTEM, hierarchies with arbi-
trary numbers of levels can be built by iteratively applying the base
approach.

3.4 summary

This chapter laid the groundwork of this entire thesis by formalizing
the matching problem and by defining the required concepts neces-

82 base approach

sary for the mapping of activities and events. All of the previously
defined requirements were taken into account for the formalization
and the subsequent derivation of the base approach. Coming from the
formalization of the mapping, the four phases of the base approach
are introduced. For each phase the inputs and outputs are defined.

The approach starts by mapping activities and events on the type
level in the first phase. Event classes are mapped to their correspond-
ing activities. Additionally, event classes can be assigned to activity
life cycle transitions. However, the assignment of start and complete
transitions does not need to be specified manually. Next, context-
dependent mappings are created to be able to match events that stem
from shared functionalities. Having the context–sensitive mapping
definitions, the third phase transforms the log event log by renaming
the event instances with their corresponding activity label. The result-
ing event log is further processed in the last phase by clustering event
instances that belong to the same activity into activity instances. For
this purpose, the concept of activity instance borders is introduced
in order to distinguish between events of different activity instances
stemming from a designed loop or from unwanted rework. A tree-
based incremental clustering algorithm with a flexible distance mea-
sure is used for the clustering of event instances to activity instances.
Finally, the start and complete life cycle transitions are automatically
derived and the log is transformed so that all event instances are re-
lated to their corresponding instances of activity life cycle transitions.

4
A P P R O A C H B A S E D O N L O G R E P L AY

This chapter introduces a semiautomatic approach for the mapping of events to
given activities in a process model based on the building of a constraint satisfaction

problem from replaying the log on the model. We will refer to the approach
described in this chapter as the replay approach. The work presented in this chapter

has been published in [9]. The replay approach builds on the base approach, which
has been introduced in Chapter 3, and provides a semiautomatic means for the

matching of events and activities on type level. This step is a purely manual
activity in the base approach. We start by listing the assumptions of the approach
and the requirements it fulfills in Section 4.1. The subsequent sections introduce

the concepts that distinguish the replay approach from the base approach.

4.1 requirements and assumptions

In order to automate the matching of events and activities on type
level using a log replay technique, we have to make additional as-
sumptions to the ones stated for the base approach. In contrast to
the base approach, the approach presented in this chapter demands
a process model as Petri net that fulfills the following assumptions:
It has to have an initial and, at least, one final marking. Furthermore,
the Petri net has to be bounded and every labelled transition has to be
part of at least one sound firing sequence. This assumption is similar
to the relaxed soundness defined by Dehnert and Rittgen [35], but
does not require the Petri net to be a workflow net.

The replay approach requires the type–level relation of activities
and events (AE) to be a one-to-one relation. Moreover, also the in-
stance level relation ÂÊ needs to be a one-to-one relation. Strictly
speaking, the event log has to be on the same abstraction level as the
process model. Thus, the replay approach fulfills Requirement R1 (1:1
matching to activities) but does not fulfill Requirement R2 (Different
abstraction levels), Requirement R4 (Shared functionalities), and Re-
quirement R8 (Hierarchical matching).

Regarding the life cycle of activities, we assume that all activity life
cycles only have two states and one complete transition between them.
Events in the event log refer to this complete transition and thus, no
further specific mapping has to be done. Hence, Requirement R7 is
fulfilled by the replay approach as a consequence of this assumption.
Additional events, which do not belong to any activity, need to be
filtered out before and activities that are not recorded need to be
removed from the model or declared silent. Hence, Requirement R6

83

84 approach based on log replay

and Requirement R5 are not handled by the approach presented in
this chapter.

The recorded execution in the event log has to be mainly conform-
ing to the given process model. That is, the majority of traces in the
event log need to fully conform to the process model. We thereby do
not exclude non-conforming behavior in the event log and thus, still
fulfill Requirement R9. Yet, we need to put this extended assumption
on the conformance of complete traces into place in order to make
the replay approach work. From our practical experience, it is often
possible to reach higher levels of conformance by filtering the event
log for the most frequently occurring trace variants. When such a
filtering is applied, one has to ensure that all event classes are still
contained in the filtered event log.

4.2 overview of the replay approach

As explained before, the replay approach introduces a semiautomatic
way to match events and activities on type level. Figure 31 depicts the
main steps of the replay approach. The replay approach builds on the
base approach and, therefore, uses the same procedure as the base
approach (see Figure 27). The difference lies in the implementation of
the first step, the matching of activities and events on type level. The
replay approach introduces three sub–activities:

1. Reduce potential set of event–activity mappings,

2. Select correct mapping, and

3. Assign life cycle transitions.

Match activity life cycle transitions and events on type level

Reduce potential

mappings

Transform

event log

Mapped

event log

L

(ÂÊ)

Event class to activity

life cycle mapping

LTEM

Event log

L

Process model

P

Select correct

mapping

Potential activity

event class relations

AE

Assign life cycle

transitions

Activity event

class relations

AE

Figure 31: Steps for matching of events and activities using the replay ap-
proach.

4.3 reduction of potential event–activity mappings 85

The first sub–activity, “Reduce potential mappings”, is an automated
step that builds and solves a constraint satisfaction problem to re-
duce the number of possible mappings between activities and events.
The result of this step is a set of potential activity event relations
(AE ′). During the second sub–activity, “Select correct mapping”, the
analyst is guided to select the correct mapping from the derived po-
tential mapping, resulting in the activity event relation AE. In the last
sub–activity of the type–level matching of events and activities, the
“complete” life cycle transitions are automatically assigned to each
tuple in AE, leading to the relation LTE. The further steps are iden-
tical to the steps described in the base approach. Yet, the clustering
of event instances to activity instances is not necessary in the one-
to-one setting. Thus, the final event log is already achieved by the
activity “Transform event log”.

The main differences to the base approach lie in the first two sub–
activities of the matching of activities and events on type level, i.e., in
“Reduce potential mappings” and “Select correct mapping”. We will
elaborate on these two steps in the following sections.

4.3 reduction of potential event–activity mappings

The first step of our approach deals with the definition of a constraint
satisfaction problem (CSP) that is used to restrain the possible map-
pings of events and activities. We refer to 2.2 for the definition of a
CSP. To build the CSP, first, the activities and event classes need to
be mapped to the set of variables and their domains. The bijective
function var : E→ X assigns each event label to a variable with the
natural numbers 1..|A| as domain. The activities are projected onto
natural numbers by the bijective function val : A → 1..|A|, which
assigns each activity a natural number in the range from 1 to the
number of activities.

Table 17 and Table 18 show the mapping var and the mapping val
respectively for the order process example given in Section 2.3.1.

Table 17: Mapping var for the
order process.

Event class
e ∈ E

Variable
var(e) ∈ X

O_CHK x1

O_RCO x2

O_PRC x3

I_SM x4

P_SP x5

P_NOT x6

O_ARC x7

Table 18: Mapping val for the
order process.

Activity
a ∈A

Value
val(a) ∈ 1..|A|

Check order 1

Change order 2

Process order 3

Send invoice 4

Ship Products 5

Send notification 6

Archive order 7

86 approach based on log replay

Because we are looking at a one-to-one relationship between events
and activities, we can specify a constraint capturing that no two activ-
ities can be mapped to the same event label. This constraint is defined
as c1 ≡ ∀ (xi, xj) ∈ X2 : i 6= j =⇒ xi 6= xj. It is available in most
constraint solvers as the allDifferent constraint. With the variables, do-
mains, and the allDifferent constraint defined, the solutions to the CSP
reflect all possible mappings between events and activities, i.e., for
n activities and event classes there are n! solutions. For the example
given in Table 5 and Table 6 in Section 2.3.1 these are 7! = 5040 possi-
ble mappings. In the following, we present an approach to tackle this
complexity by combining the information available in the log with
the knowledge of the process model structure.

To generate more constraints and thus be able to reduce the num-
ber of possible mappings, the next step of the first phase is the re-
play of the event log in the process model. Because the event log
can contain multiple traces that encode the same ordering of events,
the log is preprocessed to extract all unique variants of traces. The
tuple V = 〈v,

1v2, . . . , vk〉 contains all variants vi ∈ L, i ∈ 1..k and
the tuple W = 〈w1,w2, . . . ,wk〉 holds the number of occurrences for
each variant, e.g., the variant v1 is contained w1 times in the log L
(see also Section 2.1.8). As the example log in Table 5 only contains
unique traces, vi refers to trace ti, and wi = 1 for any i ∈ 1..k in the
following examples.

As the relation between events and activities is unknown at this
stage, the replay of one trace variant vi is essentially a mapping of
each trace variant vi to all possible execution sequences that have the
same length as vi. Therefore, we define the relation vpi ⊆ V × P̂ such
that vpi = {(vi, p̂j) | vi ∈ V , p̂j ∈ P̂, |vi| = |p̂j|}.

The relation vpi describes possible mappings between sequences of
event labels and sequences of activities. In fact, we are interested in
limiting the number of possible mappings to those that result in the
highest number of traces with valid execution sequences, i.e., in the
mapping that yields the maximal conformance when replaying the log
with the mapped events.1 Each tuple in vpi reflects a replay of a trace
variant in the model. For easier explanation of the procedure, let us
first assume that all traces in the log conform to the model. First, a
constraint csti,j is created for each tuple (vi, p̂j) ∈ vpi. The constraint
csti,j reflects a mapping of event classes to activities by assigning each
event class to the activity at the same position in the sequence. Hence,
csti,j has the form

∧
k∈1..|vi| var(ak) = val(ek). Note that there can

be several paths in the model that have the same length as the trace
variant. In case of conforming execution, we need to ensure that for
each trace variant vi one of these constraints holds, i.e., that one of
the defined mappings allows a valid replay of the trace variant in

1 Conformance of event logs to process models can for example be measured using
the approach introduced by Rozinat and Aalst in [100].

4.3 reduction of potential event–activity mappings 87

the model. Therefore, a constraint csti is formulated for each trace
variant. The constraint csti has the form

∨
csti,j, ∀ j : ∃ (vi, p̂j) ∈ vpi.

Consider the variant v1 = 〈 O_CHK, O_PRC, I_SM, P_SP, O_ARC 〉.
There are two execution sequences in the model that have the same
length as v1. These are p̂1 = 〈 Check order, Process order, Send in-
voice, Ship products, Archive order 〉 and p̂2 = 〈 Check order, Process
order, Ship products, Send invoice, Archive order 〉. Hence, we first
create the two constraints c1,1 : x1 = 1 ∧ x3 = 3 ∧ x4 = 4 ∧ x5 =

5∧ x7 = 7 and c1,2 : x1 = 1∧ x3 = 3∧ x5 = 4∧ x4 = 5∧ x7 = 7.
Given the two constraints c1,1 and c1,2, the constraint c1 : c1,1 ∨ c1,2

is derived. By adding the constraint c1 to the CSP, we already fix
the mappings of “Check order”, “Ship products” and “Archive or-
der” and thereby limit the possible mappings from 7! = 5040 to
(7− 3)! = 24. Once the constraint c2 for trace variant v2 has been built
in the same manner and added to the constraint satisfaction problem,
the number of solutions satisfying both constraints is reduced to a
single one, which is the mapping as specified in Table 6.
Yet, adding the constraint c3 for trace variant v3 results in a CSP that
has no solution. This is due to the fact that v3 is not conforming to the
model. The CSP tries to satisfy all constraints and thus requires every
trace variant to conform to the model. Therefore, to handle noncon-
forming traces, the CSP is reformulated as an optimization problem.
The optimal solution to the problem is a mapping in which the maxi-
mum number of traces conforms to the model. It is important to note
that we assume that there is a sufficient number of conforming traces
in the log to be able to retrieve a correct mapping.

The constraint csti, which has been built for each trace variant, is
therefore used to define a boolean variable validVarianti for each
trace variant as follows:

validVarianti =

1 csti = true

0 otherwise.

The variable validVarianti reflects whether trace variant vi repre-
sents a valid execution sequence with the chosen mapping. Having
defined the variable validVarianti for each trace variant, a new vari-
able validTraces ∈ 0..|L| is introduced that sums up all valid traces
by multiplying the valid variants with the number of traces sharing
the corresponding behavior:

validTraces =

|V |∑
i=1

validVarianti ·wi.

The variable validTraces is set as the optimization goal that should
be maximized when solving the CSP. This way, the CSP for the exam-
ple can be solved with validVariant1 = 1, validVariant2 = 1 and
validVariant3 = 0, yielding validTraces = 2. The optimal solution

88 approach based on log replay

is again the correct mapping as shown in Table 6. Hence, the approach
is able to deal with nonconforming traces in the log as requested by
Requirement R9. Furthermore, this shows that it is not necessary to
have a complete log containing all possible behavior in order to con-
struct an unambiguous mapping. Note, however, that there are cases
where it is not possible to reduce the number of solutions to a single
solution. In the next section we discuss these cases and clarify how
they can be handled.

4.4 selection of the correct type–level mapping

The previous section introduced the approach for an automated type–
level matching of event classes and activities. Still, there are cases for
which no unambiguous mapping can be automatically derived. Basi-
cally, this is due to two common control flow constructs: choice and
concurrency. Figure 32a and Figure 32c depict the simplest forms of
these two constructs. While it is impossible to unambiguously derive
a mapping for activities a and b in these two cases, it is possible
for the cases depicted in Figure 32b and Figure 32d. This is due to
the fact that for case (a) and case (c) the branches are equivalent in
their behavior, while they are not in case (b) and case (d). For case (b)
there are two possible trace variants. Yet, a single trace is enough to
unambiguously determine a mapping between corresponding events
in a log and the activities in the model if we assume that the available
event classes are known. To give an example, we only need a trace
with the two events corresponding to activities b and c, or a trace
with the event corresponding to activity a. Regarding case (d), there
are three possible trace variants. Still, two different traces are enough
to unambiguously distinguish the activities from each other, because
activity a is the only activity that can be first and last. Note that to
reach an unambiguous mapping it is required to see at least one trace
in which activity a was executed before, and another trace where it
was executed after the parallel activities b and c. If this information is
not contained in the log for any reason, a certain ambiguity remains
in the automatically derived mapping.

Summing up, there are two main sources for ambiguities in the
mapping. First, choices and parallel branches with identical behav-
ior in the branches cause ambiguities. In this case, the number of
the undistinguishable branches combinatorially increases the poten-
tial mappings. The second source for ambiguities is behavior that is
possible in the model but not contained in the event log.

Ambiguous mappings, i.e., cases in which the CSP has multiple
solutions, cannot be automatically resolved and require a domain
expert to decide the mapping for the concerned events and activi-
ties. Nonetheless, this decision can be supported by the mapping ap-
proach. To aid the analyst with the disambiguation of multiple poten-

4.4 selection of the correct type–level mapping 89

a

b

(a)

a

b c

(b)

a

b

(c)

a

b c

(d)

Figure 32: Control flow patterns for choice and concurrency with different
impact on potential mappings.

tial mappings, we introduce a questioning approach. Our questioning
approach is inspired by the work of La Rosa et al. [99], in which the
user is guided through the configuration of a process model using a
questionnaire. One event class and its activities that are potentially
matching are presented to the analyst at one time. Once the analyst
decides which of the candidate activities belongs to the event class,
this mapping is converted into a new constraint that is added to
the CSP. Consecutively, the CSP is solved again. In case there are
still multiple solutions, the analyst is asked to make another decision
for a different event label. This procedure is repeated until the CSP
yields a single solution. Figure 33 shows the explained procedure for
resolving ambiguous mappings in the light of the overall mapping ap-
proach. The goal is to pose as few questions to the analyst as possible.

Resolve ambiguity

Build and
solve CSP

Determine event
label with

max activities

Let analyst decide
mapping for
event label

Insert new
constraint
into CSP

Transform
event log

1

Number of
solutions?

Figure 33: Detailed flow of the matching approach based on log replay.

To achieve this goal, we look into all solutions and choose the event
label that is assigned to the maximal number of different activities.
To illustrate this principle, consider the example trace t1 = 〈k̂, l̂, m̂〉.
The events of which should be matched to the activities in the model
in Figure 32d. Building and solving the CSP for this example leads to
three solutions: S = {〈x1 = 1, x2 = 2, x3 = 3〉, 〈x1 = 2, x2 = 1, x3 = 3〉,
〈x1 = 2, x2 = 3, x3 = 1〉}. The value 1, which corresponds to activity a

90 approach based on log replay

in this case, is assigned to all three variables, which correspond to the
event classes “k”, “l” and “m”. Opposed to this, the other two values
are only assigned to a subset of the three variables. By deciding the
matching event for activity a, the CSP contains only one solution.
Deciding the matching for any of the other two event labels results in
a CSP with two possible solutions.

4.5 summary

In this chapter, we have introduced the replay approach, which builds
on the base approach and adds a semiautomated approach for the
type–level mapping. The presented approach replays the event log on
the process model to constructs constraints that can be inserted into a
constraint satisfaction problem to model the matching of events and
activities on type level. In order to facilitate the replay, the approach
relies on the assumption that both event log and process model are on
the same abstraction level. The requirements Requirement R2 (Differ-
ent abstraction levels), Requirement R4 (Shared functionalities), and
Requirement R8 (Hierarchical matching) can therefore not be fulfilled.
These shortcomings are traded in for automated support in the type–
level mapping, which has been completely manual in the base ap-
proach. Since only one-to-one mappings between activities and events
are supported, the step for defining context–sensitive mappings and
the final clustering to activity instances can be omitted in the replay
approach.

The basic rationale behind the replay approach is that once an
event log is mapped to a process model, the traces in the event log
shall be valid execution sequences of the process model. In order to
handle nonconforming executions that are recorded in an event log
(Requirement R9), the developed constraint satisfaction problem is
transformed into an optimization problem that returns the mapping
or mappings where the maximum number of traces are valid exe-
cution sequences of the process model. A questioning approach is
introduced to guide the analyst through multiple potential mappings
when the solution of the optimization problem does not provide a
unique mapping. The questioning approach is designed to minimize
the number of questions an analyst has to answer.

5
A P P R O A C H E S B A S E D O N B E H AV I O R A L
R E L AT I O N S

This section introduces two approaches that build on behavioral relations to
provide a semiautomated means to retrieve the type–level relations between

activities in events. Namely, these approaches leverage behavioral profiles and
Declare rules for the type–level matching. The approaches are based on our work

published in [11] and [10]. Again, the approaches based on behavioral relations
build on the base approach and require further assumptions on the input data.

These assumptions are laid out in Section 5.1, together with the requirements that
the approaches fulfill. Section 5.2 provides the general framework for the

approaches based on behavioral relations. Section 5.3 and Section 5.4 introduce
means to derive constraints using behavioral profiles and Declare rules respectively.

In Section 5.5, we elaborate on specific cases where some constraints need
relaxation. Section 5.6 and Section 5.7 explain the options for solving the derived
constraint satisfaction problem and how the analyst is guided through the results.

5.1 requirements and assumptions

In the same manner as for the replay approach, the approaches based
on behavioral relations demand further assumptions on the input
data than those declared for the base approach. Again, we assume
a bounded Petri net with an initial and at least one final marking to
be present. All transitions representing activities have to be part of at
least one sound firing sequence. In contrast to the replay approach,
the type–level relation of activities and events (AE) does not need
to be a one-to-one relation. The approaches based on behavioral rela-
tions are able to handle event logs that are on a lower abstraction level
than the provided process model. The type–level relation of activities
and events (AE) is therefore a one-to-many relation. Thus, the ap-
proaches presented in this chapter do not only fulfill Requirement R1

(1:1 matching to activities), but also Requirement R2 (Different ab-
straction levels). Using the same techniques as introduced in the base
approach, also Requirement R8 (Hierarchical matching) can be ful-
filled. As only one-to-many relations are handled, Requirement R4

(Shared functionalities) cannot be served, because it requests the han-
dling of many-to-one or even many-to-many relations. While many-
to-one relations could be handled using a simple modification of the
general approach, they are not considered as event logs are typically
either on the same abstraction level or on a lower abstraction level,
leading to either one-to-one, one-to-many or many-to-many relations.

91

92 approaches based on behavioral relations

In order to fulfill Requirement R7 (1:1 matching to life cycle transi-
tions), the same approach is used as in the base approach. The user
may define the mappings of specific life cycle transitions, while start
and complete transitions are automatically assigned by the activity
instance clustering algorithm.

As for the replay approach, Requirement R5 and Requirement R6

cannot be handled. Therefore, additional events need to be filtered
out before and activities that are not recorded need to be removed
from the model or declared silent.

Concerning Requirement R9, i.e., nonconforming execution, the as-
sumption taken for the replay approach can be relaxed when using
behavioral relations. The approaches based on behavioral relations
do not require complete traces to be conforming. They can poten-
tially also handle event logs where not a single trace completely con-
forms to the process model. Yet, the approach works best if there is no
systematic misbehavior in the log, meaning that the relation of two
events is systematically different to the relation of their corresponding
activities. Take for instance two activities a1 and a2 that are in strict
order to each other (a2 a1). If the activity to event relations on type
level are {(a1, e1), (a2, e2)} ⊆ AE, e1 and e2 should also be in strict
order, i.e., e2 e1, in the majority of traces where both events occur.
A certain amount of misbehavior can be easily handled making the
approach robust to nonsystematic nonconforming behavior. Using an
optimization problem in a similar way as in the replay approach, this
assumption can be further relaxed to also allow some relations in
the event log to be systematically different than the corresponding
relations in the process model. Yet, it comes with the price of per-
formance degradation. As being said before, the conformance of an
event log to a process model can often be improved by concentrating
on the most frequent trace variants. Yet, it needs to be ensured that all
event classes are contained in the event log used for the approaches
described in this chapter.

5.2 general approach based on behavioral relations

In a similar manner to the replay approach introduced in Chapter 4,
the approaches based on behavioral relations detail the matching of
activities and events on type level in a semiautomatic fashion. Fig-
ure 34 shows the steps taken by the approaches that use behavioral
relations.

There are three main differences in the general steps with regard to
the replay approach. First, the activity “Assign life cycle transitions”
is not automated due to the fact that the approaches based on be-
havioral relations deal with one-to-many relations between activities
and events. Because of this, we cannot assign the activity life cycle
transitions automatically, as also other life cycle transitions such as

5.2 general approach based on behavioral relations 93

Match activity life cycle transitions and events on type level

Reduce potential

mappings

Cluster event

instances to activity

instances

Mapped

event log

L

(ÂÊ)

Transform

event log

Preprocessed

event log

L

(ÊA)

Event class to activity

life cycle mapping

LTEM

Event log

L

Extended event to activity

life cycle relation

LTEM*

Process model

P

Select correct

mapping

Potential activity

event class relations

AE

Assign life cycle

transitions

Activity event

class relations

AE

Figure 34: Steps for matching of events and activities using behavioral rela-
tions.

start and complete might be involved. These have to be assigned by
an analyst in the same way as in the base approach (see Section 3.3.1).

The second main difference to the replay approach is that, as in the
base approach, there is a final activity to cluster the event instances to
activity instances. Again, this is due to the handling of one-to-many
relations between activities and events.

The third and most profound difference is the actual realization of
the reduction of potential mappings. We first start, in the same man-
ner as the replay approach, with the definition of variables and their
domains. The bijective functions var : E→ X and val : A→ 1..|A| are
defined equally to those from the replay approach. Since the approach
based on behavioral relations support one-to-many relations, the ex-
ample event log L2 of the order process given in Table 7 is used. The
corresponding mapping that contains the one-to-many relations of
the event classes from L2 to the activities of the order process is given
in Table 8. The variables for the different event classes are defined

Table 19: Mapping var for the order process with multiple events per activ-
ity.

Event e ∈ E O
_C

H
K

_S

O
_R

C
_S

A

O
_R

C
_S

B

O
_R

C
_E

O
_P

R
_S

O
_P

R
_E

I_
SM

_E

P_
SP

_E

P_
N

O
T_

E

O
_A

R
C

_S

O
_A

R
C

_E

Variable var(e) ∈ X x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

in Table 19. The domains of the variables are the integer–mapped
activities of the order process that have been already provided in the
previous chapter in Table 18. Having the variables and their respec-
tive domains, the solutions to the CSP reflect all possible mappings
between events and activities, i.e., for n activities and m events there
are potentially nm solutions. For the used example of the order pro-
cess these are 711 = 1, 977, 326, 743 possible mappings. Yet, this also
includes solutions where not all activities are assigned to an event
or solutions where all events are mapped to one single activity. As

94 approaches based on behavioral relations

these solutions are not desired, we first restrict the set of solutions to
those that assign each activity to at least one event. Note that we as-
sume that the execution of each activity in the process model is being
logged by the supporting IT system. Thus, those activities that are not
recorded, are not considered in the processing. We assume that each
event in the given log relates to exactly one activity in the process
model, whereas one activity can relate to multiple events. Thus, we
are using the NVALUE constraint, available in many constraint problem
solvers (cf. [53]). This constraint ensures that each value in the domain
of the variables is assigned at least once. Still, the complexity of the
matching problem remains very high. In the following, we present
an approach to tackle this complexity issue by combining the infor-
mation available in the log with knowledge on the process model
structure.

To be able to reduce the number of possible mappings, the fol-
lowing sections introduce two different approaches to generate con-
straints based on behavioral relations. Section 5.3 starts by introduc-
ing basic constraints using the notion of behavioral profiles intro-
duced in Section 2.1.5. The subsequent section, Section 5.4, builds on
the very same ideas, but uses more expressive Declare rules, which
we presented in Section 2.1.6. For better comparison of the two ap-
proaches, both make use of the MINERful implementation by Di Ci-
ccio et al. [38] to derive Declare rules from the event log. For the
behavioral profile approach, we define a mapping from Declare rules
to behavioral relations.

When discovering Declare rules from event logs, these rules can be
associated with a reliability metric, namely support [78, 36]. Support
is a normalized value ranging from 0 to 1 which measures to what
extent traces are conforming to a rule. A support of 0 stands for a
rule that is always violated. Conversely, a value of 1 indicates that a
rule always holds true. In this thesis, we use the definition of support
provided by Di Ciccio and Mecella [36]. According to their definition,
the analysis of a trace t1 = 〈b, a, c, b, a, b, b, c〉, e.g., leads to a sup-
port of 1 for Participation(a), 0 for NotCoExistence(a, b), and 0.75 for
Precedence(a, b), as 3 b’s out of 4 are preceded by an occurrence of a.
Considering an event log that consists of t1 and t2 = 〈c, c, a, c, b〉, the
support of Participation(a) and NotCoExistence(a, b) remains equal to
1 and 0, respectively, whereas the support of Precedence(a, b) is 0.8 (4
b’s out of 5 are preceded by an occurrence of a). For further details of
the computation of the support value, we refer to [36].

Having discovered all rules from an event log, all discovered rules
having a support lower than a given minimal threshold β are pruned.
From our experience, a minimal support of β = 0.9 has turned out
to be the most effective choice. Experimental findings reported in the
use cases of [37] confirm this assumption. Yet, the value of β can be re-
defined by an analyst if needed. Using the same derivation technique

5.3 deriving constraints from behavioral profiles 95

and support calculation for both, the approach based on behavioral
profiles and the approach based on Declare rules, eases the compara-
bility.

5.3 deriving constraints from behavioral profiles

The previous section explained how the CSP is set up with variables,
their domain, and a first constraint ensuring that each value in the
domain of the variables is assigned at least once. Coming from this
setup, this section shows how to derive further constraints based on
behavioral profiles. The work presented in this section is based on
our publication [11].

To be able to reduce the number of possible mappings, we look at
the behavioral relations between pairs of activities as introduced by
behavioral profiles. In a behavioral profile, two activities can be either
in strict order, exclusive to each other, or interleaving. Furthermore,
the occurrence of one activity may imply the occurrence of another
activity, i.e., two activities can be in a co–occurrence relation. Looking
at event classes, the same can be said. Weidlich et al. [138] provide an
efficient method to calculate behavioral profiles for process models
that we used for the implementation of our approach. Yet, for event
logs they only provide limited facilities to derive behavioral relations.
Therefore, we make use of the MINERful algorithm by Di Ciccio and
Mecella [38] to derive declarative rules for pairs of event classes and
map these to the mentioned behavioral relations by Weidlich et al.
(see Section 2.1.6 for an overview and explanations of the used declar-
ative rules). This procedure also provides better comparability to the
approach based on Declare rules that are presented in Section 5.4.

Two event classes k and l are in strict order relation, denoted as
k l, if there is no trace where an event instance of class k oc-
curs after an event instance of class l. This is expressed by the rule
NotSuccession(l, k) derived by the MINERful algorithm. If the two
event classes k and l are exclusive to each other, this is represented
by the declarative rule NotCoExistence(k, l). Having these two con-
straints, we can directly conclude the interleaving relation by stating
that a pair of event classes (k, l) is in interleaving relation, if neither
NotSuccession(l, k) nor NotSuccession(k, l) nor NotCoExistence(k, l) hold
with a support higher than the minimum support β. With the De-
clare rule CoExistence(k, l), we can discover whether two event classes
always imply each other. That is, whether they are in a bi-directional
co–occurrence relation, i.e., k� l∧ l� k.

Having the behavioral profiles from both the model and the event
log, we can define a number of constraints to reduce the number
of possible solutions of the CSP. These constraints are introduced in
the following propositional formulas. For each formula, e1, e2 ∈ E

96 approaches based on behavioral relations

denote two different event classes, i.e., e1 6= e2. In the same manner,
a1, a2 ∈ A denote two different activities, i.e., a1 6= a2.

e1 + e2 ∧ Map (e1) = a1 ∧Map (e2) = a2 =⇒ a1 + a2 (2)

e1 e2 ∧Map (e1) = a1 ∧Map (e2) = a2 =⇒ a1 a2 (3)

e1 || e2 ∧ Map (e1) = a1 ∧Map (e2) = a2 =⇒ a1 ||a2 (4)

The general idea behind formula (2), (3), and (4) is that if two
event classes are mapped to two different activities, then these two
activities have to be in the same type of behavioral order relation.
Formula (2) states that when two event classes are exclusive to each
other, they can only be mapped to two different activities that are
also exclusive to each other. Note that this does not exclude that both
event classes are mapped to the same activity. Formula (3) and (4)
work analogously for event classes in strict order and for interleaving
event classes. The behavioral profile relations (+, , ||) are exclusive
to each other. Hence, only one of the three constraints (2), (3), and (4)
is applicable for a particular pair of event classes.

Besides these three basic relations, the causal behavioral profile
furthermore contains the co–occurrence relation. For event classes in
strict order or interleaving event classes, the constraint expressed in
formula (5) may additionally hold.

e1 � e2 ∧ e2 � e1∧ Map (e1) = a1 ∧Map (e2) = a2

=⇒ a1 � a2 ∧ a2 � a1
(5)

Formula (5) states that if two events that are in a bi–directional
co–occurrence relation are mapped to two different activities, these
two activities also have to be in a bi-directional co–occurrence rela-
tion. Note that we are using a bi-directional co–occurrence constraint.
Both events / activities in a bi-directional co-existence relation always
imply each other. From now on we will refer to such a bi-directional
relation, if we talk about co-existence relations or co-existence con-
straints.

Check
order

Change
order

Process
order

Send
invoice

Ship
products

Archive
order

Send
notification

Figure 35: Order process with a loop from end to beginning.

A special case are larger loops in a process model. As stated by
Armes-Cervantes et al. [3], behavioral profiles face problems with

5.4 deriving constraints from declarative constraints 97

larger loops. Consider the slightly changed process model of the or-
der process depicted in Figure 35. Directly before the order can be
archived there may be a complete repetition of the process. Thus, all
activities besides “Archive order” are in a loop and thus, in interleav-
ing order to each other when looking at the behavioral profile. In this
case one can make no differentiation between these activities over the
behavioral profile and the proposed constraints would not reduce the
number of potential mapping significantly. In order to overcome this
problem of large loops, we include the direct follower relation, also
known as alpha relation or chain succession, where two activities or
events directly follow each other in the model or log respectively. We
denote a direct follower relation between two events (or activities re-
spectively) as e1 � e2, if and only if there is a trace t = 〈ê1, ê2, . . . ên〉
and i ∈ {1, . . . ,n− 1} such that ti = e1 and ti+1 = e2 [118, p. 130f].
In order to retrieve the direct follower relations from the event log we
employ the two Declare rules ChainPrecedence and ChainSuccession.
Formula (6) introduces the corresponding constraint, defining that a
pair of event classes that are in direct follower relation can only be
mapped to a pair of two different activities if they are also in a direct
follower relation.

e1 � e2 ∧Map (e1) = a1 ∧Map (e2) = a2 =⇒ a1 � a2 (6)

5.4 deriving constraints from declarative constraints

The last section presented the approach to build constraints using
behavioral profiles derived from a process model and from a corre-
sponding event log. The approach that we introduce in this section
builds on the same idea of comparing behavioral relations. One of
the major problems when using behavioral profiles for matching are
loops, as explained in Section 5.3. We explained how to overcome
this problem by using the direct follower relation. Still, they do not
fix the information loss regarding short loops of length one. Take for
example the short loop between the two activities “Check order” and
“Change order” in the order process. In the behavioral profile these
two activities are interleaving. Using the direct follower relation does
not help either, as both can directly follow each other.

Building in the general idea of the behavioral profile approach, this
section introduces an approach that uses more expressive declarative
rules as constraints and thereby omits the use of the direct follower
relation. Furthermore, the approach is extended to also make use of
rules defined over single activities or events respectively. The work
presented in this section is based on our publication [10].
In order to reduce the number of possible mappings between activi-
ties and events on type level, we look at Declare rules describing the
behavior of event logs and process models as defined in Section 2.1.5.

98 approaches based on behavioral relations

The techniques described in [38] are utilized to derive the described
rules from event logs. In order to infer Declare rules from process
models, we build upon the following assumption: if an event log is
given, such that at least one trace is recorded for each legal path in
the process model, then the Declare rules that are discovered out of
such a log reflect the behavior of the original process model.1

Hence, we can generate an event log from the process model using
the simulation technique described in [98], and thereafter apply the
discovery algorithm of [38] to derive the Declare rules. We denote the
set of all Declare rules inferred from the event log as BL, and the set
of Declare rules discovered from the process model as BP.

In Section 2.1.6 we already classified the introduced Declare rules
into three different categories, namely existence rules CE, relation
rules CR and ordering rules C→R . We make use of this categorization
by handling all rules that are classified as ordering rules (C→R) as a
single rule, giving an ordering between activities / events in a simi-
lar way as the strict order relation. Therefore, only the ordering rule
with the highest support is kept for each pair of events / activities.
Section 2.1.6 elaborated on the fact that particular ordering rules sub-
sume other ordering rules. As a consequence, there may be multiple
ordering rules for a pair of activities / events, of which all rules obtain
the highest support. One of those rules scoring maximum support is
chosen arbitrarily, because we are abstracting from the specifics of
the rules and only consider the fact of ordering. In the following, we
use C→R (e1, e2) to refer to the chosen ordering relation for a pair of
event classes (e1, e2) with the highest support. Similarly, C→R (a1,a2)
is used for a pair of activities. In contrast to the behavioral profile
approach, the use of all available ordering rules in Declare allow to
find an ordering relations also for short loops of length one. Due to
the use of the Precedence and ChainPrecedence rules, the relation
C→R (Check order, Change order) is found for the order process exam-
ple.

Note that, in contrast to the behavioral profile, declare rules do
not capture interleaving semantics explicitly. In declarative languages
all activities can be interleaving if not explicitly stated otherwise by
a specific rule. Therefore, a set of interleaving events / activities
I ⊆ (A×A) ∪ (E× E) is introduced. In case there is no ordering rule
with a support above β for a given pair of events / activities, we add
the pair to the set of interleaving events / activities.

Having the Declare rules from both the model and the event log as
well as the set of interleaving pairs of events / activities, constraints
to reduce the number of possible solutions of the CSP can be defined.
Starting with the ordering rules, formula (7) provides the correspond-

1 Without loss of generality, loops can be unraveled and treated as an optional path
that is traversable multiple times.

5.4 deriving constraints from declarative constraints 99

ing constraint for rules in C→R . If two event classes are in an ordering
relation and mapped to two different activities, these activities also
have to be in an ordering relation enforcing the same order direction.
Note that in formula (7) as well as in all upcoming formulas e1, e2 ∈ E
denote two different event classes, i.e., e1 6= e2. In the same manner,
a1, a2 ∈ A denote two different activities, i.e., a1 6= a2.

C→R (e1, e2)∧Map (e1) = a1 ∧Map (e2) = a2 =⇒ C→R (a1,a2)
(7)

Following the general pattern of constraints defined for the ap-
proach based on behavioral profiles, formula (8) adds the constraint
for pairs of event classes that are exclusive to each other and thus,
result in a rule of the type NotCoExistence. Again, such a pair of
event classes can only be mapped to a pair of exclusive activities or
to the same activity.

NotCoExistence(e1, e2) ∧Map (e1) = a1 ∧Map (e2) = a2

=⇒ NotCoExistence(a1,a2)
(8)

Regarding the pairs of events that are not exclusive and for which
no ordering rule exceeds the minimum support β, formula (9) en-
sures that if a pair of interleaving events is mapped to a pair of activ-
ities, these activities are also in interleaving order.

(e1, e2) ∈ I∧Map (e1) = a1∧Map (e2) = a2 =⇒ (a1,a2) ∈ I (9)

The category of relation rules (CR) further entails the CoExistence
rule, i.e., the negation of the NotCoExistence rule. If two event classes
that are co-existing are matched to two different activities, these ac-
tivities should also be co-existing, as defined in formula (10).

CoExistence(e1, e2) ∧Map (e1) = a1 ∧Map (e2) = a2

=⇒ CoExistence(a1,a2)
(10)

For now, the derived constraints from Declare rules capture almost
the same behavior than those derived from behavioral profiles. Yet,
there is huge difference when considering loops. Recall the order
process example in Figure 35 where a loop was added returning
from the end of the process to the begin. In the behavioral profile
all pairs of activities within this loop are in interleaving order. In con-
trast to this, activities that have originally been in strict order before
the introduction of the loop are either part of an AlternatePrecedence,
AlternateSuccession, ChainPrecedence or ChainSuccession rule when tak-
ing Declare rules into account. Thus, these pairs still fall into the cate-
gory of ordering rules. For the approach based on behavioral profiles,

100 approaches based on behavioral relations

we had to introduce the direct follower relations to regain an order-
ing relation between those pairs. Yet, the direct following relation is
not able to capture distinguishable behavior for short loops of length
one, as seen in the order example for activities “Check order” and
“Change order”. Here, both activities can directly follow each other.
The Declare approach is able to make a distinction between the behav-
iors of the two activities by using the Precedence rule. Furthermore,
the direct follower relation also requires activities to directly follow
each other and thus, is stricter than the derived declarative rules. This
may lead to problems when nonconforming logs come into play.
Besides the already used Declare rules, there are further Declare rules
that can be leveraged to build constraints reducing the number of
possible solutions. That is, the Declare approach also makes use of
the rules classified as existence rules (CE). The constraint introduced
in formula (11) ensures that events for which an Init rule exists, are
only mapped to activities for which an Init rule exists. Formula (12)
and (13) work in the same manner for End and Participation rules.

Init(e1)∧Map (e1) = a1 =⇒ Init(a1) (11)

End(e1)∧Map (e1) = a1 =⇒ End(a1) (12)

Participation(e1)∧Map (e1) = a1 =⇒ Participation(a1) (13)

Having the constraint definitions in the propositional formulas 7-
13, a constraint ci, i ∈ 1..|BL| is added to the CSP for each Declare
rule derived from the event log. Coming to an example, consider the
rule Init(O_CHK_S), which is derived from the event log. In the set of
inferred Declare rules from the process model there is only one Init
rule, namely Init(Check order). Using the mappings defined in Table 19

and Table 18, the corresponding constraint c1 ≡ x1 = 1 is derived and
inserted into the CSP.

5.5 constraints for special cases

Looking at real life event logs, the constraints defined in the previous
sections may be too strict in some cases due to the fact that not all
behavior of a process is observed equally often. To this end, interleav-
ing relations, co–occurrence relations can play a special role for both the
behavioral profile approach and the Declare approach. Additionally,
mandatory events, which are only used in the Declare approach, de-
serve special attention.

First of all, interleaving relations might not always be reflected in
the execution. Consider for instance in the order process example
of Section 2.3.1. The event classes I_SM and P_NOT_E are in strict
order because P_NOT_E always occurs directly before I_SM. Yet, their
corresponding activities “Send invoice” and “Send notification” are
in interleaving order in the process model. Such a situation is still
coherent with respect to the model. Therefore, formula (14) and (15)

5.5 constraints for special cases 101

introduce a different handling of event classes that are in an ordering
relation for the behavioral profile approach and the Declare approach
respectively.

e1 e2 ∧Map (e1) = a1 ∧Map (e2) = a2

=⇒ (a1 a2)∨ (a1 ||a2)
(14)

C→R (e1, e2)∧Map (e1) = a1 ∧Map (e2) = a2
=⇒ C→R (a1,a2)∨ (a1,a2) ∈ I

(15)

If two event classes in an order relation are mapped to two different
activities, these activities have to be either also in strict order (an or-
dering relation) or in interleaving order. As the two newly introduced
constraints allow for more matchings than their base counterparts for-
mula (3) and formula (7) with respect to the strict order relations in
the process model, they are called relaxed strict order constraints. We
specifically introduce this as a different notion to give the analyst the
choice to use the relaxed strict order constraint or the base strict order
constraint. The reason for this choice is that the relaxed strict order
constraint may introduce quite a number of potential matches that
are not wanted because every pair of event classes in strict order that
actually maps to a pair of activities in strict order can now also map
to all pairs of interleaving activities. If it is known that events belong-
ing to interleaving activities are also seen in all possible orderings
equally often, one should not use the relaxed strict order constraint,
but rather the constraint defined in formula (3) or formula (7).

In a similar way as for interleaving relations, constraints stemming
from co–occurrence relations suffer from the fact that some behavior is
seen more often than other behavior. Taking again the order example,
consider that the event P_NOT_E, which belongs to the optional ac-
tivity “Send notification”, is seen in more than 90 % of the traces. If
the minimum threshold β is lower or equal to the relative observa-
tions of P_NOT_E, co–occurrence relations with all events that also
occur more often in a trace than the threshold are derived. That is,
there is for example a co–occurrence relation for P_NOT_E and I_SM,
which belongs to the mandatory activity “Send invoice”. Yet, in the
model, the two activities “Send notification” and “Send invoice” are
not in a co–occurrence relation since the former activity is optional.
Hence, cases where optional activities are executed almost always,
lead to problems with co–occurrence constraints as they disallow the
correct mapping. In order to tackle this problem, a relaxed constraint
definition for co–occurrence constraints is introduced in formula (16).

102 approaches based on behavioral relations

e1 � e2 ∧Map (e1) = a1 ∧Map (e2) = a2

=⇒ ! (a1 + a2)
(16)

CoExistence(e1, e2)∧Map (e1) = a1 ∧Map (e2) = a2
=⇒ !NotCoExistence(a1,a2)

(17)

The relaxed co–occurrence constraints defined in formula (16) and
formula (17) forbid two events that are found to be in a co–occurrence
relation to be mapped to two activities that are exclusive to each other.
Thereby, the basic co–occurrence constraint is relaxed as we do not
require the two matching activities to be in a co–occurrence relation.
This allows to handle cases where optional activities are executed
overly frequent, while still making use of the co–occurrence relations
for the pruning of unwanted mappings.
Looking at mandatory events and activities, we face a similar prob-
lem as with co–occurrence relation. Consider again the case where
the event P_NOT_E, which belongs to the optional activity “Send
notification”, is seen in more than 90 % of the traces of the order
process event log. In this setting a Participation rule is discovered
for P_NOT_E and formula (13) leads to the exclusion of the correct
mapping. In order to avoid this, formula (13) can be replaced by the
following alternative constraint.

!Participation(e1)∧Map (e1) = a1 =⇒ !Participation(a1) (18)

Formula (18) states that if there is no Participation rule found for
an event, it can only be mapped to an activity for which there is also
no Participation rule found in the model. Again, we let the analyst
decide whether to use formula (13) or formula (18). In the remainder
of this thesis we will refer to formula (18) as alternative participation
constraint.

5.6 solving the constraint satisfaction problem

Having generated all constraints using either declarative rules or be-
havioral profiles, the constraint satisfaction problem can already be
solved to derive all potential relations between activities and event
classes. In contrast to the replay approach, it is not necessary to built
an optimization problem in order to deal with noise. Noise is handled
already by accepting behavioral relations and declarative rules with
a support less than 1.0. Note that this excludes cases where behav-
ioral relations in the event log do not conform to those in the model
with a given minimum support. In order to also allow cases where
some Declare rules are more often violated than not, there are two
ways: (1) constructing an optimization problem and (2) excluding noise-
sensitive constraints. It is also possible to combine (1) and (2). Note

5.7 selection of the correct type–level mapping 103

that both are optional steps that should only be taken if necessary, as
they both have certain disadvantages. The solution of an optimization
problem with all optimal solutions is typically computationally very
expensive. The exclusion of certain constraints increases the number
of possible solutions, making the computation harder and resulting
in a higher number of potential mappings that have to be sorted out.
In the following we explain both options.

The (1) construction of an optimization problem is done in a similar
fashion as for the replay approach. A boolean variable validCsti is
introduced. It is meant to state whether the corresponding constraint
ci is satisfied or not, and is defined as follows:

validCsti =

1 ci = true

0 otherwise.

The CSP is then turned into an optimization problem that maxi-
mizes the number of fulfilled constraints weighted by their support,
supporti. Note that there is no support value calculated for interleav-
ing relations, as these are only the result of the absence of an ordering
or exclusive relation with at least minimal support. Therefore, there is
no weight for interleaving relations, i.e., the support is always 1. Vari-
able validCstScore, which is used as optimization goal, is defined as
follows:

validCstScore =

|E×E|∑
i=1

validCsti · supporti.

The optimization problem is then solved retrieving all optimal solu-
tions.

Turning to (2) the exclusion of certain constraints, we observed in our
validation and evaluation with synthetic and real life event logs, that
the interleaving constraints are especially sensitive towards noise. The
noise-sensitivity of interleaving constraints is due to the fact that each
strict order relations turns into an interleaving relation when it is
violated too often to be seen as a strict order relation. Therefore, we
make the interleaving constraints optional and let the analyst decide
whether to use them or not. The interleaving constraints should only
be left out if a log is known to be noisy, as the exclusion of constraints
typically increases the number of potential solutions.

5.7 selection of the correct type–level mapping

Similar to the replay approach, there can be multiple solutions to
the CSP created using behavioral relations. Yet, due to the support
of one-to-many relations, there are more patterns that cause a result
with multiple solutions. Typically, it is not known how many different

104 approaches based on behavioral relations

a b

Figure 36: Sequence of activities.

event classes are recorded for each activity, especially in IT systems
that are not process-aware. Thus, even a simple sequence of activities
as depicted in Figure 36 results in multiple possible solutions. Con-
sider the trace t1 = 〈k̂, l̂, m̂, n̂〉 and the simple sequence of activities a
and b shown in Figure 36. When matching t1 and the sequence model,
the corresponding CSP returns three solutions. In all three solutions
k is matched to a, and n is matched to b. For l and m it cannot be
said whether they belong to a or bwithout further knowledge. It may
be that both belong to activity a, or both belong to b, or l belongs to
a and m belongs to b. The only mapping that can be excluded, is that
l belongs to b and m belongs to a at the same time.

If we want to match t1 to the model with two concurrent activi-
ties shown in Figure 32c, actually every combination of mappings is
possible, besides those where all events are mapped to only one of
the activities. That is 42 − 2 = 14 different possible mappings for the
four event classes and the two concurrent activities. For the matching
with two exclusive activities, depicted in Figure 32a, we add the trace
t2 = 〈p,q, r, s〉. In this case, the CSP returns two solutions: Either k, l,
m,n belong to activity a and the rest to b, or the other way around.
The approach to deal with multiple solutions of the CSP is the same
as the one presented in Figure 33 for the replay approach. The analyst
is presented the event class that has the most potentially matching
activities. For this event class, the analyst has to choose from the pos-
sible matching activities. Afterwards, the defined match is inserted
as a new constraint into the CSP, which is consecutively solved again.
The procedure is repeated until there is only a single solution for the
CSP.

5.8 summary

In this chapter two approaches for the semiautomatic matching of ac-
tivities and events on type level have been proposed, namely, the be-
havioral profile approach and the Declare approach. Similar to the re-
play approach both approaches build on the base approach and refine
the type–level matching by constructing a constraint satisfaction prob-
lem. The rationale behind the approaches is that the behavioral rela-
tions of event pairs in an event log reflect the behavioral relations of
their corresponding activity pairs in the process model. While this is
similar to the underlying rationale of the replay approach, the behav-
ioral relations allow for more flexibility in the mapping. That is, also
one-to-many relations between activities and events can be covered

5.8 summary 105

both on type and on instance level. With this, Requirement R2 (Differ-
ent abstraction levels) and Requirement R8 (Hierarchical matching)
can be fulfilled by the approaches introduced in this chapter.

In order to build the necessary constraints, the behavioral relations
are derived from the event log as well as from the process model.
For the constraint definition the approaches rely on the assumption
that there is either a one-to-one or a one-to-many relation between
activities and events on type level. Hence, many-to-many relations are
not supported and Requirement R4 (Shared functionalities) cannot be
fulfilled.

Due to the fact that event logs may not always contain all possi-
ble execution sequences and dominant orderings or overly frequent
executions of optional activities may occur, the event log may entail
different behavioral relations than the process model for some activi-
ties. These behavioral relations of the event log are not in conflict to
those in the process model and therefore require special attention. We
therefore introduce relaxed and alternative constraints to account for
these special properties of event logs.

Nonconforming behavior (Requirement R9) in the event log is han-
dled by one of two means. First, behavioral relations are discovered
from the event log using a support metric for which a minimum
threshold is defined. This support metric reflects how often a derived
behavioral relation is violated. By setting the threshold below a value
of 1.0, also relations that are sometimes violated are discovered. The
second means for handling nonconforming behavior is the transfor-
mation of the constraint satisfaction problem into an optimization
problem. The optimization goal is to maximize the number of con-
forming behavioral relations in the mapped event log.

6
A P P R O A C H B A S E D O N L A B E L A N A LY S I S

This chapter leverages label analysis to provide another semiautomated approach
for the type–level matching. The work presented in this chapter has been published

in [6] and [8]. The label analysis approach is grounded on the base approach and
requires additional assumptions on the input data. These assumptions are

described in Section 6.1. Section 6.2 provides an overview of the label analysis
approach and the subsequent section details those steps and concepts that are

different from the base approach.

6.1 requirements and assumptions

In line with the assumptions for the base approach, the label analysis
approach requires an event log L in the form described in Section 2.1.8
as well as a set of activities A. Again, we assume that the set of activi-
ties is contained in a process model as defined in Definition 1, but we
do not assume any specified order relation between activities. In con-
trast to the approaches presented before, the label analysis approach
demands all events and activities to carry natural text labels. In addi-
tion to an event log and a set of activities, the label analysis approach
is able to leverage additional activity descriptions, if available. These
activity descriptions may stem, for example, from work instructions,
which can be frequently found in industry. While such descriptions
improve the matching algorithm, they are not mandatory.

Hence, the label analysis approach has mainly the same assump-
tions as the base approach, but adds the need for natural language
labels for both events and activities. Therefore, the label analysis ap-
proach is also designed to fulfill all requirements listed in Section 2.4.

6.2 overview of the approach based on label analysis

Like the replay approach and the approach based on behavioral re-
lations, the label analysis approach builds on the base approach and
provides a semiautomatic means to match activities and events on
type level. Figure 37 shows the steps that are taken by the label anal-
ysis approach. In the first step the process model activities are an-
notated with more details from textual descriptions, if available. The
second step computes potential relations between events and activi-
ties on type level using the provided annotations. These automatically
derived relations have to be refined by a domain expert as input for
the next step. Having derived the activity to event class mapping AE,

107

108 approach based on label analysis

the procedure continues with the exact same steps defined for the
base approach in Section 3.3. The relations to activity life cycle tran-
sitions are specified by the analyst and context–dependent mappings
are defined where necessary. Using the context–dependent mappings,
the log is transformed to reflect the activity to event class mapping. Fi-
nally, the event instances, which are already mapped to activities, are
clustered to activity instances. The next sections elaborate on the two

Match activity life cycle transitions and events on type level

Annotate process

model activities

Define context-

sensitive mappings

Cluster event

instances to activity

instances

Mapped

event log

L

(ÂÊ)

Transform

event log

Preprocessed

event log

L

(ÊA)

Event class to activity

life cycle mapping

LTEM

Event log

L

Event class to activity

life cycle relation

LTE

Extended event class To

activity life cycle relation

LTEM*

Process model

P

Match activities and

events on type level

based on common

business objects

Annotated

process model

APBO

Assign life cycle

transitions

Activity event

class relations

AE

Process description

desc(P)

Figure 37: Steps for matching events and activities using label analysis.

newly introduced steps for the annotation of the process model and
the consecutive matching of activities and events on type level using
common business objects derived from the labels and annotations.

6.3 annotation of process model activities

A major challenge in the matching of activities and events is the di-
verging level of abstraction, as stated in Requirement R2. In order to
bridge the different abstraction layers, we utilize annotations. These
annotations serve the purpose of enriching the coarse–granular activ-
ities of the process model with detailed information that helps to link
to events. In modern business process modeling tools, activities can
be connected with more detailed textual descriptions, such that the
annotation of the activities is readily available. Often, instructions can
also be found in tabular form consisting of columns for the activity
name and the detailed description, as in our incident process exam-
ple in Table 9. In the following, we assume that such a description is
available or can be directly linked to an activity.

In order to effectively use the activity descriptions for the matching
of event classes and activity types, we have to pre–process the descrip-
tions. As events represent some kind of change to an object, we are
especially interested in the objects contained in the activity descrip-
tions. Therefore, the Stanford Part-of-Speech (POS) tagger [63, 112]
is used to filter out these objects. The POS tagger parses natural text
and assigns each word to its part of speech, e.g., verb, noun, article,
adjective, etc. From these categories we only take into account words

6.4 matching activities and events based on common business objects 109

that are nouns or words for which no real category can be found by
the POS tagger. The latter are most often abbreviations as, e.g., “CI”
or foreign words. Furthermore, all numbers are filtered out. The goal
is to extract potential business objects. The set of all potential business
objects is denoted as PBO. PBOa ⊂ PBO is the set of potential busi-
ness objects pboi ∈ PBOa that unites all potential business objects
for an activity a ∈ A. These objects are extracted from all activity
description ad ∈ desc(a). Additionally, the labels of the activities are
processed in the same way to extract further potential business ob-
jects. The activities are annotated with the derived objects for further
processing in the next phase of the approach. The result of this phase
is an activity annotation relation APBO ⊆ A× PBO.

Table 20: Potential business objects derived for the incident process exam-
ple.

Activity Potential business objects

Incident logging logging, member, level, details, group, incident

Incident classification details, classification

Initial diagnosis diagnosis, knowledge, level, supporter, configuration, item,
base, problem, CI

Functional escalation escalation, level, knowledge, supporter, ticket, route, base,
team, security, group, solution, incident

Investigation and diagnosis level, supporter, configuration, item, diagnosis, group,
investigation, solution, incident, CI

Security incident handling security, handling, incident, system, level, issue, IT, attack,
security, group, solution, actions, database

Resolution and recovery resolution, recovery, knowledge, base, customer, solution,
incident

Incident closure closure, configuration, item, documentation, incident, CI

This relation is a many-to-many relation, i.e., one activity can be
linked to multiple potential business objects, and one potential busi-
ness object can be associated with multiple different activities. Note
that the annotation is not mandatory for each activity. Yet, it presum-
ably improves the automated matching result because the textual de-
scriptions are likely to be closer to the abstraction level of the event
log than the activities in the process model as we show in our evalu-
ation in Section 8.4.

6.4 matching activities and events based on common

business objects

Having annotated the activities with their potential business objects,
the next step deals with the derivation of the activity to event classes
relation AE. To this end, we inspect each combination of event class
and activity name as well as each combination of event class and
activity description for potential correspondences.

110 approach based on label analysis

Algorithmus 3 : Derive potential event–activity relation.
1: checkRelation(EventLog L, ProcessModel P, ProcessDescription

desc(P))
2: Set AE := ∅
3: Set APBO := ∅
4: Set EPBO := ∅

{Annotate activities with potential business objects}
5: for all a ∈ A do
6: Set PBOa := PBOa ∪ extractNouns(a)
7: for all ad ∈ desc(a) do
8: Set PBOa := extractNouns(ad)

9: end for
10: APBO := APBO∪ {(a,pbo) | pbo ∈ PBOa}
11: end for

{Annotate event classes with potential business objects}
12: for all e ∈ E do
13: Set PBOe := extractNouns(e)
14: EPBO := EPBO∪ {(e,pbo) | pbo ∈ PBOe}
15: end for

{Check matches on business object level}
16: for all (e,pboe) ∈ EPBO do
17: for all (a,pboa) ∈ APBO do
18: if checkBusinessObjectMatch(pboa,pboe) then
19: AE := AE∪ {(e,a)}
20: end if
21: end for
22: end for
23: return AE

Algorithm 3 details the general procedure. The algorithm takes an
event log, a process model and a process description. First, we de-
rive the sets of potential business objects for activities and events.
The function extractNouns uses the Stanford POS tagger to return all
potential business objects as explained above. In order to check for
potential correspondences, we also derive the objects from the event
classes in the same manner, yielding the relation EPBO ⊆ E× PBO
(line 12–15). Each tuple in APBO is compared to each tuple in EPBO
by comparing the business objects (line 16-22). As we aim for a high
recall, we do not only make simple string comparisons in order to
check the relatedness of two business objects. Rather, we employ nat-
ural language processing techniques as we explain in the following.

Since we evaluate our approach in a context using the German
language, we need to pay special attention to this language. Nonethe-
less, the basic techniques are also available for many other languages.
Looking at the German language we face two potential challenges:
word form variance and compound words. German is a morpho-
logical complex language having a high variance in word forms ex-
pressed by many cases and inflections (cf. [65]). Looking at nouns,

6.4 matching activities and events based on common business objects 111

for example the word “Buch” (book) transforms to “Bücher” in the
plural form or to “des Buches” for the genitive case. Regarding com-
pound words, in German these are single words created by concate-
nating several words to a new word, e.g., “Fach|gruppe” (professional
group).

In order to address these two challenges, two techniques from the
natural language processing (NLP) area have been proven beneficial:
stemming and word decomposition [21]. Stemming refers to the re-
duction of derived word forms to a common stem, e.g., “Grupp” for
“Gruppe” and “Gruppen”. In the implementation of our approach we
use the stemming functionality of the Apache Lucene project1. For the
decomposition of compound words, we use a language independent,
lexicon-based approach developed by Abels and Hahn [1]. It gener-
ates possible splittings of words and checks whether the generated
parts are covered in a lexicon. In our approach we use JWordSplitter,
an open source implementation of this approach with an integrated
German lexicon2.

Algorithmus 4 : Check for business object matches.
1: checkBusinessObjectMatch(pbo1, pbo2)
2: if eventObject = textObject then
3: return true
4: else
5: Set wordParts1 := decompose(pbo1)

6: Set wordParts2 := decompose(pbo2)

7: for all wp1 ∈ wordParts1 do
8: for all wp2 ∈ wordParts2 do
9: if stem(wp1) = stem(wp2) then

10: return true
11: end if
12: end for
13: end for
14: end if
15: return false

Algorithm 4 illustrates the procedure to check for a relation be-
tween two business objects. First, we conduct a simple string match
(line 2) and second, we decompose the business objects into their
smallest semantic components and compare these with one another
(line 5-14). The comparison of decomposed word parts is done by
comparing the word stems. In this way we are able to relate words
such as “Fachgruppe” (professional group) and “Skillgruppen” (skill
groups).
The result of the described steps is an automatically provided list of
potential activity to event class relations on type level (AE) that can
be refined by a domain expert. Refining in this case means that the ex-

1 See http://lucene.apache.org.
2 See http://www.danielnaber.de/jwordsplitter/.

http://lucene.apache.org
http://www.danielnaber.de/jwordsplitter/

112 approach based on label analysis

pert has to identify and remove incorrect relations and add relations
that are missing.

Table 21: Potential type–level relation of activities and event classes of the
incident example.

Activity Event classes

Incident logging Group, Details

Incident classification Details, Classification

Initial diagnosis CI

Functional escalation Group, Solution

Investigation and diagnosis Group, Solution, CI

Security incident handling Group, Solution

Resolution and recovery Solution

Incident closure CI

The potential type–level relation of activities and event classes for
the incident process example is shown in Table 21. The correct match-
ing event classes are highlighted in italics. All other found relations
need to be identified and removed by the analyst. Furthermore, it can
be seen that not all relations were found. The relation of the event
class “Status” to the closure of the incident and the relation from the
event class “CI” to the activity “Security incident handling” need to
be added manually.

6.5 summary

This chapter introduced the third approach to integrate a semiauto-
matic means to match events and activities on type level into the base
approach. In contrast to the previously proposed approaches, the la-
bel analysis approach does not depend on behavior but leverages
semantics from the labels of events and activities for the matching. In
order to bridge the gap between the mostly higher abstraction level
of the process model towards the lower abstraction level of the event
log, the process model activities are annotated with descriptions from
work instructions which are typically on an intermediate abstraction
level. The label analysis approach leverages natural language process-
ing techniques in order to extract the business objects from event and
activity labels as well as from the annotated descriptions. Further-
more, stemming and word decomposition are applied to overcome
matching challenges imposed by morphological complexity of a lan-
guage. The focus here lies on the German language. Nonetheless, the
employed techniques are also available for most other languages.

Since the label analysis approach does not rely on behavior, it
is resilient to noise by its design and therefore fully supports Re-
quirement R9 (Nonconforming execution). Furthermore, there are no
constraints towards the cardinality of the relation between activities

6.5 summary 113

and events. Thus, the label analysis approach also supports Require-
ment R2 (Different abstraction levels) and Requirement R4 (Shared
functionalities), which have not been supported by the previously
introduced type–level matching approaches.

7
I N T E G R AT E D A P P R O A C H

So far, different matching approaches based on behavior and an approach based on
label analysis have been introduced to provide a higher level of automation for the

matching of activities and events. In this chapter, we propose means to integrate
different type–level matching approaches. Grounded on the base approach, we

elaborate on additional assumptions in Section 7.1, where we furthermore clarify
the fulfilled requirements. In Section 7.2, a general concept of combining different

approaches is provided. Based on this, Section 7.3 uses the integration of the
Declare approach (see Chapter 5) and the label analysis approach (see Chapter 6) as

an example that forms an integrated approach of behavioral analysis and label
analysis. The idea of the integrated approach is to facilitate integration for any type

of matching facility that allows for the matching of events and activities on type
level. The goal of this integration is to further reduce manual work for the

matching of activities and events on type level.

7.1 requirements and assumptions

The integrated approach combines two approaches for the matching
of event classes and activities under the general line of the base ap-
proach. As a consequence, the assumptions made for the integrated
approach unite the assumptions made for these combined approaches.
Wherever one of the approaches imposes stronger assumptions on
the inputs, these assumptions have to be taken for the integrated ap-
proach. In line with this, the weakest approach in use also dictates
the requirements that can be fulfilled.

Thus, looking at the exemplary combination of the Declare and the
label analysis approach, the integrated approach requires an event log
and a Petri net for which all events and activities use natural language
labels. Furthermore, the Petri net needs to be bounded and an initial
and at least one final marking have to be defined. All transitions that
represent activities have to be part of at least one sound firing se-
quence. While the event log must contain at least one event for each
activity in the process model, it must not contain event classes that
belong to no or to multiple activities. That is, the integrated approach
for the combination of Declare and label analysis approach does not
support missing events (Requirement R5), additional events (Require-
ment R6) and shared functionalities (Requirement R4). Nonetheless,
one-to-one and one-to-many relations are handled (Requirement R7,
Requirement R1, and Requirement R2). As the Declare approach is
used in the exemplary integrated approach, we have to assume that

115

116 integrated approach

there are no additional events, which cannot be mapped to any activ-
ity. That is, Requirement R6 cannot be handled directly by the inte-
grated approach. For the use of the Declare approach, the execution
recorded in the given event log needs to conform to the provided
process model such that all Declare rules present in the model can be
rediscovered from the event log with a support higher than a given
minimal threshold.

Regarding requirements that are not directly bound to the input
data, the integrated approach delivers the same fulfillment level as
the base approach. For example hierarchical mappings can be ob-
tained with multiple iterations of the approach. Requirement R8 can,
hence, be fulfilled using the integrated approach.

7.2 generalized integration of multiple type–level match-
ing approaches

The integrated approach aims at combining different approaches for
the matching of events and activities on type level. Similar to the spe-
cialized type–level matching approaches that have been introduced
in this thesis, the integrated approach grounds on the base approach
and provides automation for the type–level matching.

Figure 38 depicts the general procedure of the integrated approach.
The integrated approach uses the very same four steps as the base
approach. Of these four steps, only the implementation of the match-
ing of activity life cycle transitions and events on type level differs
from the base approach. First of all, the type–level matching takes
additional data as input, besides the event log and the process model.
Such additional data can for example contain process descriptions,
which are used by the label analysis approach.

Match activity life cycle transitions and events on type level

Create base relation

of event classes and

activities

Cluster event

instances to activity

instances

Mapped

event log

L

(ÂÊ)

Transform

event log

Preprocessed

event log

L

(ÊA)

Event class to activity

life cycle mapping

LTEM

Event log

L

Extended event class to

activity life cycle relation

LTEM*

Process model

P

Select correct

mapping

Potential activity

event class relations

AE

Assign life cycle

transitions

Activity event

class relations

AE

Create filter relation

of event classes and

activities

Potential activity

event class relations

AE

Additional data

addData

Define context-

sensitive mappings

Event class to activity

life cycle relation

LTE

Figure 38: Integrated approach for the matching of events and activities.

The main procedural difference to the previously introduced type-
matching approaches is that we are concurrently generating two sets

7.2 generalized integration of multiple type–level matching approaches 117

of potential activity to event class relations (Æ ′ and Æ ′′). The genera-
tion of two sets originates from the insight that different approaches
for the type–level matching vary in terms of coverage with respect
to a final mapping. That is, for some approaches the set of potential
activity to event class relations may not include all relations required
for the final mapping. Looking at the type–level matching approaches
introduced in this thesis, it can be seen that the behavioral match-
ing approaches are designed to always include the complete final
relations of activities and event classes in their potential activity to
event class relation. This is due the fact that the approach based on
behavior start from all possible relations and prune these relations
by eliminating impossible combinations. If the assumptions made by
these approaches are fulfilled, the correct relation is always included
in the set of potential relations. For the label analysis approach, this
cannot be said. The label analysis approach starts with an empty set
and adds those relations that can be found over the matching of ex-
tracted business objects. It may happen that not all relations of event
classes and activities can be found, as we also show in our evaluation
in Section 8.4.

Based on this insight, we part type–level matching approaches into
those that are able to always include the correct and complete type–
level relation, and those that cannot. Note that “always” here refers
to “always under the given assumptions”. The first set of type–level
matching approaches can be used to produce the base relation (Æ ′) of
activities and event classes while the latter can deliver a filter relation
(Æ ′′).

As depicted in Figure 38, both potential activity to event class re-
lations serve as input for the selection of the correct mapping. We
extend the questionnaire-driven selection approach used for the ap-
proaches based on behavioral relations, by using the relation AE ′′

as a filter when presenting the activities between which the analyst
has to choose. In case an event class e is mapped to multiple activi-
ties over all relations contained in the base relation AE ′, the analyst
has to inspect which of these multiple activities are correct mappings.
Having both relation AE ′ and AE ′′, the analyst will only be presented
the activities that have a mapping to event class e in both relations.
We denote the set of activities potentially mapped to event class e
in the base relation as A ′e = {a ′e |∃ (a ′e, e) ∈ AE ′}. Similarly, the de-
rived activities for e contained in the filter relation are denoted as
A ′′e = {a ′′e |∃ (a ′′e , e) ∈ AE ′′}. The set of presented activities for event
class e is defined as A∗e = A ′e ∩A ′′e . Depending on whether all of the
integrated type–level matching approaches support shared function-
alities, the analyst can select one or more matching activities from the
presented set.

118 integrated approach

Due to the fact that the relation AE ′′ may not contain the correct
mapping, it can happen that also A∗e does not contain the correct
matching activities for event class e. Therefore, the analyst can in-
dicate that there are missing matches. Consequently, a new set of
activities is presented from which set the analyst can complete their
choice. This second set of activities is defined as A∗∗e = A ′e \A

′′
e and

contains only those activities found in a relation to event class e in
A ′e. As it holds that A ′e = A∗e ∪A∗∗e , the correct activities have to be
contained in the two presented sets. By splitting the set of activities
that an analyst has to inspect, the selection step is made easier as less
information has to be processed at the same time.

Having derived the activity event class relations Æ, the analyst
needs to assign activity life cycle transitions to the relations in Æ.
From here the procedure continues in the same manner as for the
base approach. The analyst needs to define context–sensitive map-
pings for those event classes that stem from shared functionalities.
This completes the event class to activity life cycle mapping, with
which the event log is subsequently transformed. Finally, the analyst
has to provide the required instance border conditions for the cluster-
ing of activity instances.

7.3 integrating the declare and the label analysis ap-
proach for the type–level matching

This section exemplarily describes the integrated approach for the
combination of the Declare and the label analysis approach. As ex-
plained in the previous section, the integrated approach also builds
on the base approach and provides a semiautomatic means to match
activities and events on type level. When combining the Declare and
the label analysis approach, we have to take all assumptions of both
approaches into account, as discussed in Section 7.1. For overlapping
assumptions that refer to the same aspect, the stronger assumption
needs to be considered. Therefore, the integration of these two ap-
proaches cannot handle shared functionalities and the step “Define
context–sensitive mappings” becomes superfluous and is removed in
the same way as for the Declare approach itself.

Figure 39 depicts the detailed steps of the type–level matching of
activities and events on type level. The processing in the integrated
approach starts with a parallel split where the upper branch corre-
sponds to the reduction of potential mappings as described in Sec-
tion 5.4. A constraint satisfaction problem based on Declare rules de-
rived from process model and event log is built and solved to achieve
this reduction. The lower branch corresponds to the matching of event
classes and activities based on common business objects derived us-
ing the label analysis techniques provided in Chapter 6. The result of

7.3 integrating the declare and the label analysis approach 119

Reduce potential

mappings

Event log

L

Event class to activity

life cycle mapping

LTEM

Process model

P

Select correct

mapping

Potential activity

event class relations

AE

Assign life cycle

transitions

Activity event

class relations

AE

Annotate process

model activities

Match activities and

events on type level

based on common

business objects

Annotated

process model

APBO

Potential activity

event class relations

AE

Process description

desc(P)

Figure 39: Integrated approach to match activity life cycle transitions and
events on type level.

the two branches are the two different activity event relations, AE ′

and AE ′′.
From the design of the label analysis approach it is known that

the provided set of potential activity to event class relations does not
necessarily include all pairs of activities and event classes required to
build the final relation AE. This will also be later seen in the evalua-
tion, where the calculated recall of discovered type–level relations is
lower than one. Hence, a filtering of AE ′′ will never lead to a com-
plete mapping. In contrast, the relation AE ′ derived by the Declare
approach always entails the correct mapping, if all assumptions are
met. Thus, AE ′ is used as the base relation for the selection while AE ′′

is set as the filtering relation. Due to the fact that we cannot consider
shared functionalities, the analyst has to select exactly one activity for
each event class presented in the subsequent selection phase.

Having the final relation AE the integrated approach continues in
the same way as the described in the previous section. The analyst
has to provide the mapping to specific life cycle transitions, resulting
in the relation LTE. As we do not allow shared functionalities, there
is no need to create context–sensitive mappings and the event log
can be directly transformed using the event class to activity life cycle
mapping LTEM. Finally, the user needs to provide activity instance
border definitions that are then used to do the clustering of activity
instances.

To provide an example for the integration of the Declare and the
label analysis approach, we provide a few modifications to our inci-
dent process example. Consider the slightly modified event log of the
incident process in Table 23. The event log has been adapted in such
a way that the Declare approach can be applied. To achieve this, the
events of the classes “Group” and “CI” have been changed by adding

120 integrated approach

further context information to their name attribute, thereby creating
new event classes, such as “Group – 1st level first” or “Group – 2nd
level”. With this change, shared functionalities, which cannot be han-
dled by the Declare approach, were removed. In total, the new event
log comprises twelve event classes. Moreover, some changes in the or-
dering of the events have been made in order to fulfill the minimum
conformance assumption made by the Declare approach.

With the process model from Figure 14, the activity descriptions
from Table 9, and the event log from Table 23, the integration of
the Declare approach and the label analysis approach can be demon-
strated. The type–level matching of the Declare approach returns 40

different solutions to the created CSP, i.e., 40 different potential map-
pings. Table 22 shows the event classes and their derived potential
activities in the order in which the Declare approach determines the
questioning. In total, five questions need to be asked to arrive at the
final mapping. The second column of Table 22 entails the potential
activities derived by the Declare approach. That is, column one and
two capture the base relation AE ′. The filtering relation AE ′′ derived
by the label analysis approach is very similar to the relation shown
in Table 21 in the previous chapter. Only the event classes “Group”
and “CI” need to be replaced by their new modified versions. Using
this filtering relation, the third column of Table 21 is derived. For the
event classes “Group – 1st level first” and “CI – 1st level solved” the
use of the filtering relation results in a reduction of potential activities
that are shown to the analyst. Instead of two activities for each event
class, the analyst only has to check whether the one shown activity
is the correct one. In both cases, the correct activity is offered so that
the analyst can quickly decide. Having answered the questions for
the five event classes, the correct mapping is derived.

Table 22: Event classes in question with potential activities derived by the
Declare approach and reduced potential activities shown in the
integrated approach with label analysis.

Event class Potential activities
(Declare)

Reduced potential
activities

Group – 1st level first Incident classification,
Incident logging

Incident logging

Group – Security Investigation and diagnosis,
Security incident handling

Investigation and diagnosis,
Security incident handling

Group – 1st level Investigation and diagnosis,
Functional escalation

Investigation and diagnosis,
Functional escalation

CI – 1st level solved Resolution and recovery,
Incident closure

Incident closure

Details Incident classification,
Incident logging

Incident classification,
Incident logging

7.3 integrating the declare and the label analysis approach 121

Table 23: Conforming example log for the incident process without shared
functionalities.

Variant Event class Value Role Activity

t1 Group - 1st level first 1st-SAP 1st level Incident logging

t1 Details SAP is offline 1st level Incident logging

t1 Details SAP R3 is offline 1st level Incident logging

t1 Classification SAP 1st level Incident classification

t1 Solution Cleared cache 1st level Resolution and recovery

t1 Status Closed 1st level Incident closure

t2 Group - 1st level first 1st-Intra 1st level Incident logging

t2 Details Password forgotten 1st level Incident logging

t2 Classification Password 1st level Incident classification

t2 CI - 1st level US1234 1st level Initial diagnosis

t2 Solution Password reset 1st level Resolution and recovery

t2 Status Closed 1st level Incident closure

t3 Group - 1st level first 1st-Mail 1st level Incident logging

t3 Details Cannot send mails 1st level Incident logging

t3 Classification Mail 1st level Incident classification

t3 CI - 1st level Outlook Client 1st level Initial diagnosis

t3 CI - 1st level Outlook Server 1 1st level Initial diagnosis

t3 Group - 1st level 2nd-Mail 1st level Functional escalation

t3 CI - 2nd level Outlook Server 2 2nd level Investigation and diagnosis

t3 Group - 2nd level 1st-Mail 2nd level Investigation and diagnosis

t3 Solution Change client settings 1st level Resolution and recovery

t3 CI - 1st level solved Outlook Client 1st level Incident closure

t3 Status Closed 1st level Incident closure

t4 Group - 1st level first 1st-generic 1st level Incident logging

t4 Details Virus found 1st level Incident logging

t4 Classification Virus 1st level Incident classification

t4 CI - 1st level Notebook 325 1st level Initial diagnosis

t4 Group - 1st level Security 1st level Functional escalation

t4 CI - Security Station 133 Security Security incident handling

t4 CI - Security Win-LP231 Security Security incident handling

t4 Group - Security 1st-generic Security Security incident handling

t4 Solution Virus removal 1st level Resolution and recovery

t4 CI - 1st level solved Win-LP232 1st level Incident closure

t4 Status Closed 1st level Incident closure

t5 Group - 1st level first 1st-monitor 1st level Incident logging

t5 Details Disk space shortage 1st level Incident logging

t5 Classification Backup 1st level Incident classification

t5 CI - 1st level Backup Server 1 1st level Initial diagnosis

t5 CI - 1st level HD 142 1st level Initial diagnosis

t5 Solution Changed broken HD 1st level Resolution and recovery

t5 CI - 1st level solved HD 157 1st level Incident closure

t5 Status Closed 1st level Incident closure

t6 Details High network traffic 1st level Incident logging

t6 Group - 1st level first 1st-monitor 1st level Incident logging

t6 Solution Short peak. No action 1st level Resolution and recovery

t6 Status Closed 1st level Incident closure

122 integrated approach

7.4 summary

Within this chapter, we proposed a means for the integration of dif-
ferent type–level matching approaches. Once more, the introduced
approach is grounded on the base approach and details the concrete
implementation of the type–level matching. We put forward a generic
way of integrating two different type–level matching approaches and
exemplify the generic approach by the integration of the Declare ap-
proach and the label analysis approach. The integration relies on the
characteristic of matching completeness and divides the type–level
approaches into two categories: approaches that always contain the
complete correct mapping, and those that may only contain parts
of the mapping. By “always” we refer to “always under the stated
assumptions of the approach”.

The integrated approach adopts the questioning phase known from
the behavioral approaches and leverages the resulting type–level re-
lations from two different approaches for this phase. An approach
that is designed to always deliver the complete mapping — such as
the behavioral approaches — can be to construct a base type–level
relation of activities and events. Approaches of the second category
can be used to derive a filtering relation that overlays the base relation
in order to present only those relations covered by both approaches.
Thereby it is possible to present fewer potential activities to the an-
alyst when it is necessary to make a manual decision for a certain
event class. Nonetheless, the integrated approach does not restrict the
resulting type–level relation to the intersection of the two integrated
approaches. It still allows to view all found event–activity relations
from the base relation in case the intersection does not contain all
correct mappings. With this, the integrated approach remains flexible
while still easing the type–level matching once more.

Part III

E VA L U AT I O N A N D C O N C L U S I O N

8
E VA L U AT I O N

Having introduced the different approaches for the mapping of activities and
events, this chapter focuses on the implementation, validation and evaluation of the

defined concepts. Section 8.1 starts by giving an overview of the implemented
ProM plug–ins. These plug–ins are then used in the subsequent sections to

validate and evaluate the different approaches. In Section 8.2, we report on the
results of two case studies in which we evaluated the base approach with real life

data. A validation of the behavioral approaches is performed with synthetically
created event logs from a large set of industry process models in Section 8.3.

Sections 8.4 and 8.5 provide the evaluation of the label analysis approach and the
integrated approach with case studies. For the evaluation of the integrated

approach the Declare and the behavioral profile approach have been combined with
the label analysis approach. Section 8.6 concludes this chapter with a comparison

of the introduced approaches.

8.1 implementation

For the purpose of evaluation, we implemented the introduced ap-
proach for the matching of events and activities in the ProM frame-
work1. ProM is an extensible open-source framework for process min-
ing [130]. It has become very popular in the research field of process
mining for the implementation and evaluation of various process min-
ing techniques. The implementation of our work is using version six
of the ProM framework. Version six has been introduced in [133] and
provides a plug–in architecture where functionality and graphical
user interface are clearly separated. Plug–ins can be grouped into
packages, which can be easily installed using a package manager.
Version six of ProM has been the first process mining tool that uses
the eXtensible Event Stream (XES) format for event logs. The XML-
based format XES addresses the large variety of available log infor-
mation and introduces a standard for storing and exchanging event
logs [133]. XES is also supported by other popular process mining
tools like Disco2. In version six of ProM, the concept of an object pool
has been introduced [133]. Plug–ins can use objects from this pool as
input and create new objects that are given back into this pool.

All plug–ins that have been developed for the evaluation of the
concepts introduced in this thesis can be found in the publicly avail-

1 See http://processmining.org/prom/start.
2 See http://fluxicon.com/disco.

125

http://processmining.org/prom/start
http://fluxicon.com/disco

126 evaluation

Type-level matching plug-in

Behavioral matching plug-in

Label-based matching plug-in

Instance-level matching plug-in

Object pool

Petri nets

Process
descriptions

Event Logs

Mappings

Figure 40: FMC Block diagram of the implemented ProM plug–ins with
inputs and outputs.

able ProM package “Event2ActivityMatcher” 3. Figure 40 depicts a
FMC Block diagram 4 that gives an overview of the ProM plug–ins
implemented for this thesis. The mandatory inputs for the type–level
mapping plug–in are an event log and a Petri net. Optionally, a pro-
cess description, which can be used by the label analysis approach,
may be provided. In ProM this results in two different plug–in vari-
ants as shown in Figure 41. On the left side the required inputs are
listed. The first variant uses all three inputs while the second one
requires only an event log and a Petri net.

Figure 41: ProM action screen showing the type–level mapping plug–in.

The type–level plug–in provides the choice to use one of the be-
havioral approaches, the label analysis approach, or the integrated
approach, which is a combination of both. Both the label analysis and
the behavioral approaches are implemented as separate plug–ins to
make them independently usable. The type–level plug–in provides
a configuration screen to choose between the different mapping ap-

3 The source code is available in the subversion repository at https://svn.win.tue.
nl/repos/prom/Packages/Event2ActivityMatcher.

4 Fundamental Modeling Concepts (FMC) is a modeling notation where Block dia-
grams are used to illustrate compositional structures as a composition of collaborat-
ing system components. For an introduction into FMC see [68].

https://svn.win.tue.nl/repos/prom/Packages/Event2ActivityMatcher
https://svn.win.tue.nl/repos/prom/Packages/Event2ActivityMatcher

8.1 implementation 127

proaches and provides the capabilities for their integration (see Fig-
ure 42).

Figure 42: Configuration screen for the type–level mapping plug–in.

For each of the approaches, another configuration screen allows
the user to choose between the different settings that have been ex-
plained in this thesis. Figure 43 exemplarily depicts the configuration
screen for the Declare approach. In this configuration screen one can
choose whether to use relaxed strict order constraints, alternative par-
ticipation constraints, and interleaving relations. Furthermore, it is
possible to decide if an optimization problem shall be constructed or
not. While there are many implementations of constraint satisfaction
problem solvers, the Java library CHOCO5 [64] has been used for
all CSP implementations required by the behavioral matching plug–
in. CHOCO has been chosen because it can be easily integrated into
Java applications and because it proved to be among the fastest CSP
solvers in recent competitions like MiniZinc6.

The specific matching plug–ins return the potential event–activity
relations, which are used by the type–level mapping plug–in to guide
the user to the correct event–activity mapping. This guidance is pro-
vided using the explained questionnaire-driven approach. Figure 44

shows the screen where the analyst is asked to choose the correct
activity for an event class.

Once the potential mappings are reduced to one, the type–level
mapping plug–in produces an object of the type “EventsToActivi-

5 See http://www.emn.fr/z-info/choco-solver/.
6 See http://www.minizinc.org/challenge2014/results2014.html and http://www.

minizinc.org/challenge2013/results2013.html.

http://www.emn.fr/z-info/choco-solver/
http://www.minizinc.org/challenge2014/results2014.html
http://www.minizinc.org/challenge2013/results2013.html
http://www.minizinc.org/challenge2013/results2013.html

128 evaluation

Figure 43: Configuration screen for the behavioral profile approach.

Figure 44: Choosing the correct activity for an event in the ProM plug–in.

8.1 implementation 129

Figure 45: Screenshot of mapping in ProM.

tiesMapping” (short “Mapping”) that is returned to the object pool
of ProM and can be subsequently used by the instance-level mapping
plug–in, as illustrated in Figure 40. The object of type “EventsToAc-
tivitiesMapping” created by the type–level mapping plug–in contains
only the activity event relation AE. Thus, the user needs to provide
the required mappings to life cycle transitions and context conditions
if necessary. This additional information can be added in the view
interface of the “EventsToActivitiesMapping” object. Figure 45 shows
a screenshot of an excerpt of a mapping in this view. The view allows
for adding, editing and removing mapping definitions containing at-
tribute and context conditions. The mappings can be stored into and
loaded from XML files. An example of the XML representation is
shown in Figure 46. Here, also the instance border conditions can be
specified for each mapping.

INC_EventMapping-V12.xml

<?xml version="1.0" encoding="UTF-8"?>
<EventMappings>

<GlobalAttribute>
<eventName>Change of group</eventName>
<attributeName>VALUE</attributeName>
<globalAttributeName>Group</globalAttributeName>

</GlobalAttribute>
<InstanceBorder>

<className>SourceEventLoopDifferentResource</className>
</InstanceBorder>

<EventMapping id="remove_different">
<activity>

<name>###REMOVE_TASK###</name>
</activity>
<eventName>Start of monitoring</eventName>
<eventName>End of monitoring</eventName>

</EventMapping>
<EventMapping id="createIN_1">

<activity>
<name>Classify incident (INC.1.4)</name>

</activity>
<eventName>Open INC</eventName>

</EventMapping>

<EventMapping id="classstruct_2">
<activity>

<name>Classify incident (INC.1.4)</name>
</activity>
<eventName>Classification</eventName>
<metaDataCondition>

<name>Group</name>
<value>UHD</value>
<type>contains</type>

</metaDataCondition>
<description>Current group is 1st level</description>

</EventMapping>

<EventMapping id="classstruct_4">
<activity>

<name>Check classification (INC.6.13)</name>
</activity>
<eventName>Classification</eventName>
<eventCondition location="AfterEvent"><![CDATA[

!((<>(activity == "Change of Group") \/ <>(source == "Open Ticket")));
]]></eventCondition>
<description>Ticket is not routed afterwards</description>

</EventMapping>

<EventMapping>
<activity><name>Check content (INC.1.3.2)</name></activity>
<eventName>Details</eventName>
<InstanceBorder>

<className>SourceEventLoopDifferentResource</className>
</InstanceBorder>
<metaDataCondition>

<name>Group</name>
<value>UHD</value>
<type>contains</type>

</metaDataCondition>
<eventCondition location="BeforeEvent"><![CDATA[

<>(activity == "Change of Group");
]]></eventCondition>

</EventMapping>

<EventMapping id="classstruct_4">
<activity>

<name>###CLOSEST_ACTIVITY###</name>
<transaction>suspend</transaction>
<InstanceBorder>

<className>NoInstanceBorder</className>
</InstanceBorder>

</activity>
<eventName>Status</eventName>
<metaDataCondition>

<name>VALUE</name>
<value>WAITINTERNALLY</value>

Page 1

Figure 46: Excerpt of the mapping definitions in XML.

Once all required conditions have been specified in the object of
type “EventsToActivitiesMapping”, the instance-level mapping plug–
in takes the event log and the mapping definitions and produces a

130 evaluation

new event log where all event instances are mapped to their corre-
sponding activity instances.

Besides the graphical ProM user interface for the plug–ins, we fur-
thermore developed a standalone command line application7. This
application serves the purpose of simulating user interaction and au-
tomatic execution of experiments on a cluster. The command line in-
terface gives further options, such as defining a maximum duration
for the solving of a CSP and the minimum support threshold β. A
complete list of options can be obtained using the “–help” flag of the
command line application.

8.2 evaluation of the base approach

Having described the implementation in the previous section, this
section describes the evaluation of the base approach.

8.2.1 Evaluation Goals and Setup

As stated in Section 3.3, the base approach is designed to address all
requirements described in Section 2.4. The goal of the evaluation is to
verify that all requirements can be met. To demonstrate this, we con-
ducted two industry case studies at a large German IT outsourcing
company. For these case studies the base approach has been applied
to two processes: the incident management and the change process.

Breaking down the overall goal of verifying that the outlined re-
quirements can be met in real life case studies, we define the fol-
lowing sub-goals. To this end, we want to assess the feasibility and
correctness of the application of our different concepts that relate to
the defined requirements. With feasibility we refer to the possibility
to actually formulate all required mappings with the introduced con-
cepts of this thesis. The correctness is assessed by domain experts
who inspect the actual results and check whether individual events
have been mapped correctly. Thus, a gold standard mapping is cre-
ated by manually checking the results of the base approach.

For the evaluation, all four steps of the base approach are carried
out to map the events from the extracted event logs to their corre-
sponding activity life cycle transitions found in the process models.
The base approach generates two different event logs: First, an inter-
mediate event log L ′, which contains the relation of event instances
to activity life cycle transitions LTÊ. Second, the final event log L ′′

is constructed by clustering the event instances to activity instances
yielding the relation of activity life cycle transition instances to event

7 The source code of the command line application can be downloaded
from the subversion repository at https://svn.bpt.hpi.uni-potsdam.de/svn/

EventActivityMatching-Evaluation/.

https://svn.bpt.hpi.uni-potsdam.de/svn/EventActivityMatching-Evaluation/
https://svn.bpt.hpi.uni-potsdam.de/svn/EventActivityMatching-Evaluation/

8.2 evaluation of the base approach 131

instance, L̂T Ê. We will first report the results for the derivation of
L ′. Here, the focus lies on assessing the feasibility and correctness
of applying the concepts related to requirements R2 (Different ab-
straction levels), R4 (Shared functionalities), R5 (Missing events), and
R6 (Additional events). Coming from the transformed event log L ′,
we turn to the creation of the final event log L ′′ by describing the
clustering of event instances to activity instances. The focus, here, lies
on the evaluation of the feasibility and correctness of the application
of the defined concepts relating to requirements R1 (1:1 matching to
activities), R3 (Loops and parallelism), R7 (1:1 matching to life cy-
cle transitions), R8 (Hierarchical matching), and R9 (Nonconforming
execution). To highlight the importance of a correct mapping, we fur-
thermore evaluate the impact of different activity instance clustering
settings on performance and conformance results.

As mentioned before, the incident management and the change
management process of a large German IT outsourcing company
are used in the conducted case study. Both processes are well doc-
umented with process models and work instructions and both pro-
cesses are supported by the integrated ticketing software of IBM Tivoli
Service Request Manager8 and IBM Tivoli Change and Configuration
Management Database9. The process model for the incident manage-
ment process has 41 activities and the corresponding event log con-
tains about 17,000 cases, 39 event classes and a total of about 550,000

event instances for a selected month. For the change process, the
model contains 63 activities and the event log about 2,000 cases, 55

event classes and about 125,000 event instances. For both processes a
number of traces were extracted from the original event logs to allow
manual checking of the results by the responsible process managers.
For the extract event logs, the variants with the highest number of
traces were taken, while trying to ensure to keep most of the event
classes. This resulted in a log with 401 traces for the incident man-
agement process and a log with 17 cases for the change management
process.

Note that the activity life cycles for the activities of the two pro-
cesses are not modeled and are therefore unknown. Still, it is possible
for a domain expert to assign different event classes to different life
cycle transitions of the simplified general activity life cycle model
presented in Figure 7 in Section 2.1.7. The next section reports the
results for the different steps and relates them to the requirements.

8 See http://www-03.ibm.com/software/products/en/servicerequestmanager.
9 See http://www-01.ibm.com/software/tivoli/products/ccmdb/features.html.

http://www-03.ibm.com/software/products/en/servicerequestmanager
http://www-01.ibm.com/software/tivoli/products/ccmdb/features.html

132 evaluation

8.2.2 Results for the Matching of Event Instances to Activity Life Cycle
Transitions

Starting with the first step of the base approach, the process man-
agers of the two processes mapped all event classes to life cycle tran-
sitions of their corresponding activities. This essentially resulted in
a mapping of event classes to activities, as almost all event classes
where assigned to the placeholder transition φ. For both processes,
only one event class was mapped to the suspend transition of its cor-
responding activities. For the incident management process, 28 out
of 33 event classes have been mapped to 23 activities. Hence, five
event classes could not be mapped to any activity and will have to
be removed from the event log by assigning the removal placeholder.
Since the incident process model contains 41 activities, there are 18

activities for which no event class could be assigned. Thus, these ac-
tivities are turned into silent transitions for any further analysis like,
e.g., conformance analysis. For the change process, 39 of the 42 event
classes have been mapped to 31 out of the 63 activities. Thus, three
event classes have to be removed and 20 activities are turned silent. In
total, 113 relations between event classes and activity life cycle transi-
tions (φ and suspend) have been derived for the change process and
56 relations for the incident process. In addition to these relations,
for both processes event classes have been identified that potentially
map to every activity (seven for the incident process and eight for
the change process). For these event classes a mapping to the place
holder CLOSEST_ACTIVITY have been added.

The results of the first step show, that we can handle missing events
by identifying unmapped activities and turning them into silent tran-
sitions for further analysis, thereby fulfilling Requirement R5 (Miss-
ing events).
The next step in the base approach is to define context–sensitive map-
pings for those event classes that have been mapped to multiple activ-
ities, i.e., represent shared functionalities. In order to evaluate the dis-
ambiguation of shared functionalities requested by Requirement R4,
the context conditions have been provided by the domain experts.
During the first step, 20 shared functionalities have been identified for
the incident management process. The change process contained 22

event classes that reflect shared functionalities. Out of these 22 event
classes, eight have been mapped to the CLOSEST_ACTIVITY place-
holder and therefore, do not need to be considered in this step. From
the remaining 14 event classes, some belong to more than ten differ-
ent activities. One example for such a shared functionality used by
many activities is the communication protocol. The correspondence
for these e-mails can be distinguished using attribute conditions over
their headers. In total, there are 72 mappings that use attribute con-
ditions for the change process. Another 42 mappings use a mixture

8.2 evaluation of the base approach 133

of attribute conditions and event context conditions. For the incident
management process 39 attribute conditions and 11 event context con-
ditions have been defined. These conditions again address 14 shared
activities, which are very similar to those from the change process, as
the underlying IT system is the same.

After defining the context–sensitive mappings to map event in-
stances to activity life cycle transitions, there are still some event
instances left that are not covered by any conditional mapping. As
requested by Requirement R6 these event instances need to be re-
moved. For those cases, conditional mappings to the placeholder RE-
MOVE_EVENT have been defined (four for the change and three for
the incident process).
With the defined context–sensitive mappings at hand, the third step
of the base approach, the transformation of the event log, has been
carried out. Table 24 lays out some basic statistics for the event log
transformation for the incident management process. Coming from
33 event classes with 11,875 instances in the extracted event log of the
incident process, the resulting event log of step three (L ′Inc) contains
11,375 event instances with 45 different event classes. The number
of event classes increased due to the presence of shared functional-
ities and the mapping to two different life cycle transitions (φ and
suspend). Note that an event class in this case is defined over the
combination of the event name, i.e. the activity name, and the life
cycle transition. Even though the number of event classes increased,
the number of different trace variants decreased in the transformed
event log. Furthermore, the number of event instances decreased as
a result of the conditional and unconditional removals of events that
could not be correlated with the process model.

The results for the change process are shown in Table 25. Here,
a decrease from 42 to 36 in the number of event classes occurred.
While the mapping for the change process contains the same number
of shared functionalities and the same number of life cycle transitions,
the decrease of event classes can be explained with the fact that for
the change process there are more activities that are related to a larger
number of event classes. Similar to the results of the incident process,
the number of event instances decreased. Yet, for the change process,
the number of trace variants remains stable.

The transformed event logs have been presented to the process
managers and checked for correctness with respect to the mapping of
event instances to activity life cycle transitions. While for the change
process, a complete check was easily manageable, the transformed
incident process log was only checked partially. The process manager
was given one trace for each of the trace variants, i.e., 170 traces. For
both processes, the checking returned no errors and we can thereby
conclude the effectiveness of the base approach with respect to R2

134 evaluation

Table 24: Event log statistics for the incident process.

Complete
month
LIncFull

Extract
Raw
LInc

Extract
Mapped to
LT

L ′Inc(LTÊ)

Extract
Mapped to
L̂T

L ′′Inc(L̂TÊ)

Extract
Mapped to
Â

L ′′Inc(ÂÊ)

Event Classes 36 33 42 62 22

Cases 12,723 401 401 401 401

Variants 12,461 309 170 119 104

Event Instances 392,086 11,875 11,369 7,559 4,676

Life cycle transitions – – 2 3 1

(Different abstraction levels), R4 (Shared functionalities), R5 (Missing
events), and R6 (Additional events).

Table 25: Event log statistics for the change process.

Complete
month
LChgFull

Extract
Raw
LChg

Extract
Mapped to
LT

L ′Chg(LTÊ)

Extract
Mapped to
L̂T

L ′′Chg(L̂TÊ)

Extract
Mapped to
Â

L ′′Chg(ÂÊ)

Event Classes 55 42 36 60 31

Cases 2,005 17 17 17 17

Variants 1,947 15 15 12 12

Event Instances 125,337 1,151 853 415 253

Life cycle transitions – – 2 3 1

8.2.3 Results for the Activity Instance Clustering

Having successfully evaluated the result of the first three steps, we
turn to the final phase that automatically clusters the assigned event
instances to activity instances. Here, we want to show that the base
approach is able to fulfill requirements R1 (1:1 matching to activities),
R3 (Loops and parallelism), R7 (1:1 matching to life cycle transitions),
R8 (Hierarchical matching), and R9 (Nonconforming execution).

To this end, the domain experts first had to specify the correct in-
stance borders. That is, they had to identify potential loops on inter
and intra activity level. Both processes are supported by a form based
web interface that allows for saving most of the fields edited by the
user at any time. That means the user can enter text in a field, click
the save button, enter more text, press save again, and so forth. For
each saving, events are created. This means that for most event classes
a sequence of events of the same event class is not truly a repetition
on activity level. However, in case two different users edit a field, this
must be considered as repetition establishing a new activity instance
border. As this is the case for most of the event classes in the two
processes, this instance border is defined for almost all mapping tu-

8.2 evaluation of the base approach 135

ples. Nevertheless, there are event classes where event repetition by
different resources does not signal an activity repetition. Examples
for this are status or progress events. Within one activity instance the
status of the process instance might be set several times to waiting
and back to working. Here, loops on the sub–activity level should
not be lifted to activity level and thus, is has been declared that for
these event classes no activity instance border exists.
For the assessment of Requirement R1 (1:1 matching to activities) and
Requirement R7 (1:1 matching to life cycle transitions), the defined
instance borders were used to generate two different final event logs
for each of the two processes. For the process mining techniques that
require a one-to-one mapping between events and activities on both
type and instance level (R1), only the last event instance of each activ-
ity instance cluster was kept. This resulted in the event logs L ′′Inc(ÂÊ)

and L ′′Chg(ÂÊ), for which Table 24 and Table 25 show general statis-
tics. The event log for the incident process contains about 40 % of the
event instances from the extracted raw event log and the number of
variants has been reduced to one third. In contrast to that, the num-
ber of variants in the transformed event log for the change process is
reduced by only 20 % while the number of events decreased to 22 %
of the original number of events in the raw extract. Again, this is due
to the fact that single activities in the change process are related to a
higher number of event classes.

Turning to process mining techniques that require the mapping of
events to activity life cycle transitions (R7), the two event logs L ′Inc and
L ′Chg were transformed a second time. This time, all event instances
mapped to a specific life cycle transition (i.e., the suspend transition)
of an activity were kept. Furthermore, if mapped to the φ transition,
the first and last event instances of each activity instance cluster were
kept and assigned to the start and complete transition of the corre-
sponding activity. This resulted in the two event logs L ′′Inc(L̂T Ê) and
L ′′Chg(L̂T Ê). Due to the additional events for start and complete transi-
tions, both event logs see an increase in the number of event classes,
as displayed in Table 24 and Table 25 (62 event classes for the inci-
dent process and 60 event classes for change process). Nonetheless,
the number of event instances and thereby also the number of trace
variants decreases for both cases. This is due to the fact that there
are many event instances that can neither be related to the life cycle
transitions start or complete nor to the suspend transition.

All four event logs (L ′′Inc(ÂÊ), L
′′
Chg(ÂÊ), L

′′
Inc(L̂T Ê), and L ′′Chg(L̂T Ê))

were checked for correctness of the mappings by the process man-
agers. Again, for the incident process one trace per variant has been
checked while the change process logs could be checked completely.
All logs were approved to be correctly clustered.

136 evaluation

For the purpose of demonstrating that Requirement R8 (Hierarchi-
cal matching) can be fulfilled, we also created the sublogs for each
activity as explained in Section 3.3.4. For the event logs L ′′Inc(ÂÊ) and
L ′′Chg(ÂÊ), all event instances of each activity instance cluster were
saved into the corresponding activity sublog. The event classes of the
original source events (from LInc and LChg) were assigned to those
event instances. This allows to zoom-in on an activity and see the ac-
tual model of the raw events as produced by the IT system. Figure 47

shows the mined model from the sublog of the documentation ac-
tivity of the incident management process. Here, the process analyst
can gain further technical insides. The analyst may for instance detect
that there is repetition of work on sub–activity level in some of the
cases and that the summary field is not being updated for all of the
cases.

366 2

5

4

1

391

372

Details changed
399

Summary changed
380

Status changed
9

New communication protocol added
3

Figure 47: Mined subprocess model for the documentation activity of the
incident management process (translated to English).

In order to show that the base approach is able to deal with noncon-
forming event logs as requested by Requirement R9, we assessed the
conformance of the event logs L ′′Inc(ÂÊ) and L ′′Chg(ÂÊ) to prove that
these are indeed not completely conforming to the designed models.
The conformance to the designed process model has been measured
using the constraint–relative behavioral profile conformance metric
as defined in [138]. The incident management process returned a con-
formance metric of 63,79 % and the change management process has
a conformance of 83,78 %. This shows that both processes contain
nonconforming behavior. Yet, this does not impact the base approach.

For the evaluation of Requirement R3 (Loops and parallelism), we
compare the clustering results for different activity instance border

8.2 evaluation of the base approach 137

definitions. Figure 48 shows the correct assignment of events to ac-
tivity instances according to different definitions of activity instance
borders. The very left bars show the results for the instance bor-
ders defined by the domain experts that were manually checked and
found to be overall correct. The next best alternative to these manu-
ally defined instance borders is to define no activity instance borders
at all, which means that event instances assigned to the same activity
type are always clustered into one activity instance. This configura-
tion yields around 90 % correctly assigned event instances for both
cases. The explanation for this is that, on the one hand, the activities
that are seen to be non-repeatable account for a large share of the
event instances. On the other hand, it can be seen that there is not
much repetition on activity level. Figure 48 also shows the results
for the heuristic instance border that defines a maximal distance be-
tween two event instances belonging to the same activity instance.
We have chosen the two configurations of a maximal distance of 1

and 2 as these are used by other abstraction approaches like in [59]
and [75]. A distance of 1 means that there must not be any event
of another activity in between two event instances belonging to the
same activity instance, i.e. no concurrency. This configuration yields
a fraction of around three quarters of correct event instance for the in-
cident process, but only half of the event instances could be correctly
assigned for the event log of the change process. The distance of 2

allows for one event instance in between and yields slightly better re-
sults. These results show that the handling of concurrency and loops
needs attention and it shows that our approach is able to handle both,
as requested by Requirement R3 (Loops and parallelism).

100,00%	

90,71%	

73,37%	

86,39%	

93,42%	

51,22%	

66,03%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

GoldStandard	
 No	
 instance	

borders	

Max.	

distance=1	

Max.	

distance=2	

Incident	

Change	

Figure 48: Fraction of correctly clustered event instances for different in-
stance borders.

Finally, we investigated the influence of different instance border
definitions on conformance and performance analysis in order to
inspect how important a correct mapping is with regard to these
analyses. We analyzed the constraint–relative behavioral profile con-
formance metric of the final event logs (L ′′Inc(ÂÊ) and L ′′Chg(ÂÊ)) to
the corresponding process model for the same definitions of activ-

138 evaluation

ity instance borders as used before. The results of this analysis are
presented in Figure 49. While the results for the incident process
show only little variance, the conformance metric gives a maximal
difference of around eight percentage points between the lowest and
highest result for the change process. Thus, a considerable influence
of the correct activity instance clustering on conformance checking
can be observed.

63,79%	
 65,52%	
 62,24%	
 62,82%	

83,78%	
 85,37%	

77,75%	
 78,82%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

GoldStandard	
 No	
 instance	

borders	

Max.	

distance=1	

Max.	

distance=2	

Incident	

Change	

Figure 49: Conformance results for different instance border definitions.

12	

4	
 2	

18	

47	

43	

0	

12	

24	

36	

48	

60	

No	
 instance	

borders	

Max.	
 distance=1	
 Max.	
 distance=2	

Di
ffe

re
nc
e	

of
	
 a
ve
ra
ge
	
 a
c.
vi
ty
	
 d
ur
a.

on
	

to
	
 g
ol
d	

st
an

da
rd
	
 in
	
 h
ou

rs
	

Incident	

Change	

Figure 50: Differences in activity performance results for different instance
borders in comparison to the gold standard.

Looking at performance analysis, the duration for each activity
instance has been measured as the difference between its start and
complete event. Figure 50 shows the difference of the average activity
instance duration of the abstractions with the selected instance border
definitions with respect to the gold standard. Here, the impact is even
more striking with a maximum of almost two days of difference to
the gold standard in the average duration. Moreover, a clear differ-
ence between the two processes can be seen. Again, differences are
less high in the incident process. More interesting is that it can be
clearly seen that for performance analysis there is a different ranking
in the goodness of the different instance border definitions when com-
paring the results of the two processes. For the incident process the
maximum distance between events yields the best result. In the per-

8.2 evaluation of the base approach 139

formance analysis of the change activities, no instance border turns
out to be closer to the gold standard results in average. This shows
how sensible these analyses are towards the right clustering.

8.2.4 Summary and Discussion

In this section, we provided an evaluation of the base approach by
conducting two case studies with different processes from the ITIL
context. Coming from the nine defined requirements, we assessed the
feasibility and correctness of the different concepts introduced by the
base approach. To this end, we could show that all nine requirements
can be fulfilled in these real life scenarios. The produced results have
been manually checked by domain experts and found to be correct.

Our work also adds an important perspective to the discussion of
how quantitative results from conformance checking have to be inter-
preted. It has been emphasized in prior research that different def-
initions of conformance measurement yields significantly different
values for the same process and log [54]. The fact that conformance
measurement is also strongly influenced by the way how events are
mapped and clustered to activity instances has received less attention
so far. Our evaluation shows that different strategies of clustering
events can yield strikingly different results (85 % versus 77 % for the
change process). This finding emphasizes the importance of provid-
ing accurate techniques for matching events and activities.

Moreover, a correct abstraction will also benefit performance anal-
ysis on activity level, as the correct clustering of event instances is
important to identify start and end of an activity to calculate the dura-
tion. Last but not least, process discovery also profits from a correctly
abstracted event log. First, mined process models can be better un-
derstand by domain experts if they are on the abstraction level that is
typically used in a company or department. Second, the introduced
abstraction approach also allows for more advanced process discov-
ery with the possibility to zoom into the different abstraction levels.

There are also limitations of the base approach. The accurate map-
ping of events to activity instances requires manual work. Our ap-
proach provides systematic support for automating a considerable
share of this task. However, there is still a significant share of manual
work required in order to encode missing domain knowledge into the
required mapping definitions. This involves the definition of context
conditions, event–activity relations, and instance border definitions.
Still, these provide more accurate conformance and performance re-
sults as compared to techniques that cluster events without taking
external knowledge into account as we have shown in our evaluation.

140 evaluation

Looking at the generalizability of the base approach, we are confi-
dent that it can be used in any application scenario. Although our
evaluation only looks at two specific cases, the approach itself is
generic. Yet, the mappings are always domain specific, which means
that you cannot simply transfer the mappings from one process to
the next, but always need to create mappings that fit to the process
and supporting application at hand. Nevertheless, more case stud-
ies should be performed in future research to provide a more stable
ground for the evaluation of our concepts.

8.3 evaluation of the behavioral approaches

Building on the previously evaluated base approach, all behavioral
approaches implement a semiautomatic means to retrieve the relation
Æ, i.e., the type–level relation of activities and event classes. As the
other parts of the approaches have been covered by the evaluation of
the base approach in Section 8.2, this section only concentrates on the
evaluation of the subtask of matching activity life cycle transitions to
events on type level.

8.3.1 Evaluation Goals

The goal of the evaluation is to assess (1) the effectiveness and (2) the
efficiency of the behavioral approaches. By effectiveness the ability to
derive the correct mapping is meant. With efficiency, we refer to the
necessary effort in terms of manual work. Furthermore, (3) the robust-
ness towards noise and (4) the performance of the approaches shall be
evaluated.

In order to measure (1) the effectiveness of the approaches, we eval-
uate whether the correct mapping can be retrieved within a reason-
able time frame. Looking at (2), the efficiency, we quantify the manual
work by counting the questions an analyst has to answer in order to
arrive at the final mapping. The robustness towards noise (3) is eval-
uated by generating five different event logs for each process model
with increasing levels of noise. For each process model, one event log
with 1000 traces is simulated using the simulation technique provided
by [98]. These noise-free event logs serve as a base to generate noisy
event logs by randomly applying different noise patterns to a fraction
of the traces. The noise patterns refer to shuffling, duplicating and
removing of events. In this way, we produce four additional event
logs for each process. One where noise is introduced into 25 % of the
traces, and three more with 50 %, 75 %, and 100 % of noisy traces.

8.3 evaluation of the behavioral approaches 141

8.3.2 Evaluation Setup

The set of business processes used for the evaluation of our work
on matching approaches based on behavior stems from the BIT pro-
cess library, Release 2009, which has been analyzed by Fahland et al.
in [51] and is openly available to academic research. The process
model collection contains models of financial services, telecommu-
nications, and other domains. The models are real life process mod-
els that have been anonymized to make them available for research.
With hundreds of different processes, the library is well suited for the
evaluation of our approaches based on log replay and behavioral rela-
tions. As the library only contains models but no event logs, we will
simulate event logs using the simulation technique described in [98].
The used simulation technique assumes bounded Petri nets with an
initial and a reachable final state and hence, imposes less restrictions
on the process models than the behavioral approaches introduced in
this thesis.

For the preparation and selection of the process models, the first
step is to transform the models into Petri nets. During this trans-
formation any disconnected activities are removed from the models.
Having the connected Petri nets, further model checking is conducted
to ensure only those models are kept that fulfill all assumptions made
by our approaches. LoLA (a Low Level Petri Net Analyzer)10 is used
as a well-known model checker for Petri nets. The LoLA project,
which exists since 1998, has been actively developed and was used
in many case studies [147]. LoLA uses CTL* formulas to define and
verify properties of a Petri net. CTL* combines LTL, which has been
introduced in Section 2.1.6, and computation tree logic (CTL).

As required, all process models of the BIT process library have an
initial state, i.e., an initial marking. The used simulation technique fur-
thermore requires at least one reachable final state that is identified
by a marking where all tokens are in places that do not have an outgo-
ing transition. To filter out those models that do not have a final state,
we derived the set of potential end places, i.e., PLend = {pl|pl ∈ PL,
|pl • | = 0}. For each Petri net, we check whether a state can be reached
where there are only tokens on potential end places and no tokens on
other places. This is done using LoLA and the following formula:

♦

 ∨
plend∈PLend

plend > 0∧
∧

pli∈PL\PLend

pli = 0

 .

Both the simulation of process models and the generation of behav-
ioral profiles require the Petri net at hand to be bounded. Bounded-
ness of a Petri net can be checked with LoLA by proving that every
place of the net is bounded. For a place pl this is done using the

10 See http://service-technology.org/lola/.

http://service-technology.org/lola/

142 evaluation

formula AGpl < oo. AG expresses that the formula has to globally
hold on all paths, and pl < oo stands for a boundary of arbitrary to-
kens on place pl. Note that we do not explicitly check for deadlocks
other than the final state. Yet, all simulated event logs are checked to
include events for all transitions. That is, we require each transition
to be on an executable path from initial state to final state. Traces that
do not end in a final state, because of a deadlock or a livelock, are
excluded from the event log.

The BIT process library is separated into five groups of process
models: A, B1, B2, B3, and C. Of these groups, B1, B2, and B3 contain
different versions of the same models created at different points in
time, with B3 entailing the latest versions [51]. Therefore, we only use
the process models from groups A, B3, and C. In the further process
of our evaluation we will not distinguish between these three groups.

Finally, we also removed all process models that only contain a
single activity as matching is trivial for this case. After applying all
of the described filtering steps, 442 models remain and are used for
the evaluation of our behavioral approaches.

With respect to Requirement R1 (1:1 matching to activities) and Re-
quirement R2 (Different abstraction levels), the evaluation of the be-
havioral approaches is divided into two parts, one for each of the two
requirements. For each of the two parts, different event logs have to
be generated. The event logs for the one-to-one matching were gener-
ated by simulating the process models using the techniques provided
by Rogge-Solti [98].

In order to evaluate the handling of different abstraction levels,
event logs were generated by simulating the process activities’ en-
actment through event generators. Such event generators simulate a
simple activity life cycle model containing a start and a complete life
cycle transition. We chose three different event patterns that can be
mapped to such a life cycle model based on the process instantiation
patterns introduced by Decker and Mendling in [34]. Figure 51 de-
picts the different chosen patterns. Figure 51a shows a simple model
with one start and one end transition, demonstrating a typical pat-
tern found in many systems. For each activity assigned to this event
model, a start and an end transition are generated for each execution
of that activity. The second event model, depicted in Figure 51b, gen-
erates for each execution either an event “Start1” or an event “Start2”
and always an end event. Thus, there are two alternative starts for
such an activity, e.g., it could be started by an incoming mail or by a
telephone call. The event model presented in Figure 51c also has two
different start transitions, but in contrast to the model in Figure 51b,
both start events always occur with no restriction on their order. For
the simulation of the process models, each activity is randomly as-
signed to one of these three event models, or it is left as is, generat-

8.3 evaluation of the behavioral approaches 143

ing only a single event. Again, all generated event logs contain 1,000

traces and are limited to 1,000 events per trace as a stop condition for
process models containing loops.Start_End

Start End

(a) Sequence of start and end
event

2AlternativeStarts_End

End

Start2

Start1

(b) Two alternative start,
one end event

End

Start2

Start1

(c) Two concurrent start, one end event

Figure 51: Different event models used to generate events.

All experiments were conducted in a cluster environment where
each matching experiment was assigned six gigabytes of main mem-
ory and four CPU cores with 2.93 GHz. This reflects the processing
power of a typical desktop machine these days. For each experiment a
timeout of ten minutes had been set, after which the experiment was
terminated if the constraint satisfaction problem was not yet solved.

8.3.3 Results for the One-to-one Matching of Activities and Events

8.3.3.1 Replay Approach

Starting with Requirement R1 (1:1 matching to activities), we first
focus on (1) the effectiveness of the replay approach. To this end, we
inspect the number of correctly matched cases. We distinguish be-
tween three categories: “correctly solved”, “constraint conflict”, and
“resource shortage”. The latter category points to the cases where the
constraint satisfaction problem could not be solved because of a lack
of main memory or too long execution time. The category “constraint
conflict” summarizes the cases where too many incorrect constraints
exclude the correct mapping from the solution space. Hence, the ap-
proach does not prove to be effective for these combinations of pro-
cess model and noise level in the execution log.

From Figure 52 one can see that the mapping for 93 % of the pro-
cesses with noise-free logs can be solved correctly, while the remain-
ing 7 % cannot be mapped due to resource shortage. When every
fourth trace in the event logs contains noise (25 %), the replay ap-
proach runs into resource shortage a bit more often and fails due to
constraint conflicts in one case. This leads to an effectiveness rate of
92 % for this noise level. With increasing noise, the percentage of un-
solved cases increases slightly to 9 % for 50 % noisy traces and to 11 %

144 evaluation

0%

25%

50%

75%

100%

0 25 50 75 100
Percentage of noise

P
er

ce
nt

ag
e

of
 p

ro
ce

ss
es

Mapping solution
solved correctly
constraint conflict
resource shortage

Figure 52: Replay approach: Solved and unsolved matchings.

for event logs with 75 % of traces with noise. Yet, the fraction of un-
solved or incorrectly solved mappings is still rather low for mappings
of event logs with a noise level below 100 %, yielding a good effec-
tiveness of 89–93 % of correctly solved mappings. For the event logs
where all traces contain noise, this cannot be said. Figure 52 depicts
that the vast majority (83 %) of cases cannot be solved correctly for a
noise level of 100 %. Here, the main reasons are conflicting constraints
caused by the high noise level in the event logs.

2−5

6−10

11−15

16−20

21−25

0 50 100 150 200
Number of event logs

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Solution category
solved correctly
resource shortage

Figure 53: Replay approach: Solved and unsolved matchings by number of
event classes.

Figure 53 looks at the efficiency of the replay approach from an-
other angle by inspecting the influence of the number of event classes
that are contained in an event log. We therefore build five categories.
For small numbers of up to five event classes per log the replay ap-
proach is able to solve 97 % of the matchings without running into
resource shortage. For the event logs with six to ten event logs the
percentage of unsolved matchings increases to 5,5 %, leading to an
effectiveness rate of 94.5 %. In the next category of event logs with
eleven to fifteen event classes the effectiveness drops further down
to 75 %. When mapping event logs with 16 to 20 event classes, the
replay approach is only effective in two thirds of the cases. The last
category holds only one event log that entails 21 event classes and can
be correctly matched. Yet, it is hard to draw conclusions for these last
two categories as there are only nine event logs for these categories.
Nevertheless, the trend becomes obvious. With a higher number of
event classes the replay approach is more likely to run into resource

8.3 evaluation of the behavioral approaches 145

shortage. Albeit, it is still successful for the event log with the highest
amount of event classes.

A closer inspection of the process models from the failed match-
ings revealed that a high degree of concurrency is another factor that
may lead to resource shortage. In some of the models all activities are
concurrent. For these cases the replay approach could not be of help
even if the CSP could be solved with the available resources.

With reference to the evaluation of (2) efficiency, we measured the
number of questions that had to be asked in order to arrive at the final
mapping. When the mapping is performed completely manually, the
number of questions is equal to the number of event classes minus
one, as one has to specify the corresponding activity for each event
class until there is only one event class and one activity left for which
the mapping is clear. Taking this into account, Figure 54 shows how

0

25

50

75

100

0% 25% 50% 75% 100%
Percentage of processes

P
er

ce
nt

ag
e

of
 n

oi
se

Number of questions
per event class

No manual effort
Low manual effort
Medium manual effort
High manual effort
Complete manual effort

Figure 54: Replay approach: Number of questions per event class for each
noise level.

many questions needed to be asked per event class for the different
levels of noise in the event logs when using the replay approach. This
relation is calculated as q

|E|−1 , where q is the number of questions
and E the set of event classes in the given log. Note that we subtract
one from the number of event classes, as it is not necessary to ask any
question if there is only one event class left. The results are clustered
into five groups. The first group includes the cases where no manual
effort was required (“No manual effort”). These cases account for
65 % of all mappings for event logs with a noise level below 100 %.
The second category is “low manual effort”, which is defined by the
interval (0, 0.25]. This category includes all cases where we only had
to ask questions for less than every fourth event class. We consider
this as low effort. It can be seen that 14–15 % of the cases with a noise
level below 100 % fall into this category. Another 11–13 % of these
cases account for the category of “medium manual effort”, which we
define by the interval (0.25, 0.5]. Here, at most for half of the event
classes we need to ask a question. Next come the cases with “high
manual effort”, for which we needed to ask a question for more than
every second event class but not for all, i.e., the interval (0.5, 1). With
4–5 % of the cases with 75 % or less noisy traces, this fraction is
rather small. Finally, there is a fraction of 9–12 % of all tested event

146 evaluation

logs where not all cases contain noise, for which the approach did not
help. Here, a question needed to be asked for every but the last event
class (“Complete manual effort”). In total, 90–93 % of all cases that
contain at most a fraction of 75 % of noise-free traces can be handled
with at most medium effort. Moreover, almost two third of all cases
with a noise level below 75 % can be handled fully automatically
without asking any question.

●●●●●●●● ●●●●●● ●● ● ●● ●●●● ●●●●●●● ●●● ●● ●●● ● ●● ●●● ●●●

●●

●●

2−5

6−10

11−15

16−20

21−25

0 2 4 6
Number of questions

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Figure 55: Replay approach: Number of questions depending on the num-
ber of event classes for correctly matched event logs without
noise.

Figure 55 gives another view on the number of questions per event
class. Here, we inspected all event logs without noise and divided
the event logs by their number of event classes into five categories.
It can be seen that for event logs with two to five event classes, the
approach typically does not need to pose any question. For all other
cases we do not need to ask any question for a quarter of the pro-
cesses and 50 % of all matchings could be solved with at most one
question. The highest number of questions that had to be asked is
six questions. Interestingly, one can see that the number of questions
does not increase with the number of event classes.

While evaluating (1) the effectiveness and (2) the efficiency, we al-
ready included the results for the different levels of noise in order
to assess (3) the robustness towards noise. Summing these results up,
it can be seen in Figure 52 that the approach is very robust towards
noise for all tested levels below 100 % of noisy traces. Only for event
logs where all traces contain noise, the approach does not work in the
majority of cases.

Looking at the (4) performance of the replay approach, Figure 56 de-
picts the duration of the matching with respect to the number of event
classes involved. When measuring the performance, we consider only
cases that have been correctly solved, as the complete time for un-
solved matchings is unknown due to the set timeout. The duration
includes the setup of the CSP as well as the complete simulated ques-
tioning. Hence, the duration shown in Figure 56 potentially includes
multiple solution runs of the constraint satisfaction problem solver.
It can be seen that the duration of the matching drastically increases

8.3 evaluation of the behavioral approaches 147

2−5

6−10

11−15

16−20

21−25

0.9 1.2 1.5
Duration in seconds

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Figure 56: Replay approach: Duration of the matching depending on the
number of event classes for event logs without noise (without
outliers).

with growing numbers of involved event classes. Still, even for event
logs with 16–25 event classes, the complete matching takes less than
1.2 seconds. For event log with the largest number of event classes,
the matching is completed in 1.4 seconds. The overall maximum lies
at 18.9 seconds for an event log in the category of 11–15 event classes.

0

25

50

75

100

1 2 3 4
Duration in seconds

N
oi

se
 le

ve
l

Figure 57: Replay approach: Duration of the matching depending on the
noise level of the event log (without outliers).

Figure 57 inspects the performance of the replay approach with
respect to the inserted noise in the event logs. It can be seen that
the durations of the matching increases with increasing noise level.
While we do not see quite a drastic difference between the medians
of the different noise levels as for the categories of event classes, a
significant decline in performance from no noise to some noise can
be seen. Even for event logs where all traces contain noise, 75 % of
the matchings can be solved in less than 2.25 seconds. We believe that
this is reasonably fast since the matching is a one-time undertaking
that is hardly time-critical.

8.3.3.2 Behavioral Profile Approach

Turning to the behavioral profile approach, we start with the defini-
tion of different configurations for the approach. We define a basic
configuration that uses none of the optional constraints and no re-
laxed constraints. Hence, the basic configuration uses no constraints
for interleaving or direct follower relations, no relaxed strict order

148 evaluation

and no relaxed co–occurrence. Next, we define five different config-
urations that are all based on the basic setting. The direct followers
configuration adds the constraints derived from direct follower con-
straints. Constraints stemming from interleaving relations are added
in the interleaving configuration. The relaxed co–occurrence and relaxed
strict order configurations use the relaxed definition of the respective
constraints. The last configuration is a combination of the already de-
fined configurations but leaves out the interleaving constraints. Hence,
it is called all but interleaving.

Basic

Direct followers

Interleaving

Relaxed co−occurrence

Relaxed strict order

All but interleaving

0 500 1000 1500 2000 2210
Number of correctly matched event logs

Noise level
0
25
50
75
100

Figure 58: Behavioral profile approach: Number of correctly solved match-
ings in one-to-one setting for different noise levels.

Assessing (1) the effectiveness, Figure 58 depicts the number of cor-
rectly solved matchings for the six different configurations for each
noise level. First of all, it can be seen that for almost all of the config-
urations the mapping is correctly solved for around 2000 event logs.
That is, 90–94 % of all mappings are solved correctly for these con-
figurations. Only the interleaving configuration has major problems
and solves only around 47 % correctly. When breaking the results
down to the different noise levels of the event logs, it can be seen that
the interleaving configuration has severe problems when dealing with
noise levels above 25 % of noisy traces per log. In contrast, all other
configurations are rather stable towards noise.

Looking only at event logs without noise, the relaxed strict order and
the all but interleaving configuration score highest with 96 % correctly
solved mappings. All other configurations only reach 91 % in effec-
tiveness for noise-free event logs.

Basic

Direct followers

Interleaving

Relaxed co−occurrence

Relaxed strict order

All but interleaving

0 250 500 750 1000 1250
Number of not correctly matched event logs

Cause of failure
Order constraints
Interleaving constraints
Co−occurrence constraints
Resource shortage

Figure 59: Behavioral profile approach: Number of not correctly matched
event logs (all noise levels).

8.3 evaluation of the behavioral approaches 149

Figure 59 sheds light on the reasons for not correctly solved map-
pings. We therefore drill down to the specific types of constraints
that were pushed into the constraint satisfaction problem. Looking
at the interleaving configuration, it can be seen that for more than
a thousand event logs, wrong constraints were derived from discov-
ered interleaving relations. As known from Figure 58, the interleaving
configuration has problems with noisy logs. Figure 60 depicts how
the number of constraint conflicts evolves for the interleaving configu-
ration with increasing noise. It can be seen that only the constraints
stemming from interleaving relations fuel the increase in conflicting
constraints. There are no incorrect interleaving constraints for logs
without noise and only few matchings suffer from misleading inter-
leaving constraints when 25 % of all traces are noisy. With half of the
traces containing noise, there is a huge increase in matchings with in-
correct interleaving constraints. Already 300 out of 442 (68 %) event
logs cannot be matched anymore due to interleaving constraints. At
noise level 100, 377 of all 442 matchings (85 %) contain wrong in-
terleaving constraints. In contrast to this, the conflicting order con-
straints decrease with higher noise levels. The reason for this is that
with increasing noise, less order relations reach the minimum support
and therefore less order constraints are created. These relations that
are not seen as order relations anymore, are then seen as interleaving
relations and result in constraint conflicts.

0

25

50

75

100

0 100 200 300 400
Number of not correctly matched event logs

N
oi

se
 le

ve
l

Constraint type
Order constraints
Interleaving constraints
Co−occurrence constraints

Figure 60: Behavioral profile approach: Number of matchings with wrong
constraints by noise level for the setting with interleaving con-
straints.

The second main reason for conflicting constraints for the behav-
ioral profile approach are interleaving activities for which their corre-
sponding events show a dominant ordering. For all but the top two
configurations, around 5 % of the matchings cannot be solved cor-
rectly due to wrong constraints stemming from strict order relations.
These wrong constraints can be resolved by employing the relaxed
mapping for strict order relations. Hence, the relaxed strict order and
all but interleaving constraints do not contain any incorrect order con-
straints.

In a similar way as the order constraints, also the co–occurrence
constraints suffer from dominant behavior in the event log. Here, the

150 evaluation

root cause lies in optional activities that are executed in a dominant
fashion, i.e., are present in almost all cases. In the simulated data this
happened only for the event logs of one process and is resolved by
using relaxed co–occurrence constraints.

Turning the CSP into an optimization problem does not help to
overcome constraint conflicts in most of the cases because all of the
processes with constraint conflict result in a resource shortage when
using an optimization problem. As for the replay approach, resource
shortage relates to timeouts and memory shortage. The solution of
the optimization problem requires often too high computational ef-
forts. Therefore, we will focus on the results obtained without using
an optimization problem.

Even without using an optimization problem, Figure 59 reveals that
there are cases that cannot be solved due to resource shortage. It can
be seen that the number of cases with resource shortage decreases
when additional constraints from interleaving or direct follower re-
lations come into play. On the contrary, the number of cases with
resource shortage increases when constraints are relaxed. While not
using or relaxing certain constraints removes conflicts that prevent
the correct mapping, it comes at the price of higher computational
effort as the search space grows. If a process can be solved or not
with a certain configuration heavily depends on the structure of the
process and on the characteristics of the event log. As for the replay
approach, processes with a high degree of concurrency often lead to
resource shortage.

2−5

6−10

11−15

16−20

21−25

0 50 100 150 200
Number of event logs

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Solution category
solved correctly
constraint conflict
resource shortage

Figure 61: Behavioral profile approach with relaxed strict order constraints:
Solution categories by number of event classes for event logs
without noise.

Figure 61 provides another perspective on the effectiveness by relat-
ing the number of correctly matched and not correctly matched event
logs to the number of event classes in the event log. Here, we focus
on those event logs without noise for the configuration with relaxed
strict order constraints, which scored best in terms of effectiveness.
It can be seen that event logs with up to five event classes can al-
ways be solved correctly. For event logs with six to ten event classes
a small fraction of 2 % cannot be solved due to resource shortage.
This fraction increases and peaks for event logs with eleven to fifteen

8.3 evaluation of the behavioral approaches 151

event classes. For these event logs about one fifth of the matchings
terminate due to resource shortage. In the next bigger category al-
ready one third of the mappings cannot be constructed because the
approach takes too long or runs out of memory. The one event log
with 21 event classes that is contained in the last category can be
correctly solved. This proves again that, while the number of event
classes does have some effect on effectiveness, it cannot be said that
one can clearly predict from the number of event classes whether a
mapping will run into resource shortage or not.

Summing up the results for (1) effectiveness, we could show that
the behavioral profile approach performs very good with 91–96 % of
correctly solved mappings for most of the configurations when event
logs are noise–free. Over all noise levels, still, 90–94 % of the event
logs can be solved correctly. Thereby, the behavioral profiles approach
almost always slightly outperforms the replay approach in terms of
effectiveness.

●
●

●

●

●

2

3

4

5

0 25 50 75 100
Noise level

M
ea

n
nu

m
be

r
of

 q
ue

st
io

ns

Configuration
● Basic

Direct followers
Interleaving
Relaxed co−occurrence
Relaxed strict order
All but interleaving

Figure 62: Behavioral profile approach: Mean number of questions for each
configuration.

In order to assess (2) the efficiency of the behavioral profile approach,
we measured the mean number of questions that had to be asked for
each configuration for each noise level, as depicted in Figure 62. For
noise levels zero and 25 %, the data shows that all configurations
result in a similar mean number of questions ranging from 1.4 for all
but interleaving to 1.78 for the basic configuration. For all noise levels
above 25 %, the number of questions increases for all configurations.
Still, almost all configurations behave very similarly with a steady
increase of one question on average. Only the interleaving configura-
tion requires significantly more questions. From the results of (1) the
effectiveness, it is known that the interleaving configuration is not able
to solve many mappings for event logs with noise levels above 25 %.
For those cases the maximum number of questions, i.e., one question
for each event class, has to be asked.

Figure 63 provides deeper insights into the distribution of the re-
quired questions by providing the corresponding box plots for each
noise level. Focusing first on the box plots for the event logs that do
not contain any noise, it can be seen that the direct follower and the all
but interleaving configurations differ from all other configurations by

152 evaluation

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●●●●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

Basic Direct followers Interleaving

Relaxed co−occurrence Relaxed strict order All but interleaving
0

5

10

15

20

0

5

10

15

20

0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0

N
um

be
r

of
 q

ue
st

io
ns

Figure 63: Behavioral profile approach: Boxplots showing the number of
required questions for each noise level for each configuration.

yielding a median number of questions of zero. That is, no questions
have to be asked for half of these cases, while all other configura-
tions require up to one question for half of the event logs without
noise. This is due to the fact that the direct follower relations enable
meaningful constraints for processes with large loops. Therefore, both
configurations require less questions for these types of processes.

In order to test statistical significance of these results, we employ
statistical tests. As the number of questions do not follow a normal
distribution, the Mann-Whitney test is used [146, p.139f]. The tests
show that there is a significant difference (p-value < 0.05) for all other
configurations and the direct follower relation. Yet, there is no signifi-
cant difference between the all but interleaving configuration and any
other configuration. Hence, the all but interleaving configuration lies
in the middle between the direct follower configuration and all other
configurations, having no significant difference to either of both sides.
This is explained by the fact that although the all but interleaving con-
figuration uses direct follower relations, it also uses the relaxed con-
straints for co–occurrence and strict order, which in some cases lead
to more questions.

0

25

50

75

100

0% 25% 50% 75% 100%
Percentage of processes

P
er

ce
nt

ag
e

of
 n

oi
se

Number of questions
per event class

No manual effort
Low manual effort
Medium manual effort
High manual effort
Complete manual effort

Figure 64: Behavioral profile approach with direct follower relations: Num-
ber of questions per event class for each noise level.

8.3 evaluation of the behavioral approaches 153

As the direct follower configuration showed the best overall perfor-
mance in terms of efficiency, we focus on the results of this config-
uration for further investigations. Figure 64 presents the number of
required questions in relation to the number of event classes for the
direct follower configuration. For the event logs where less than every
second trace contains noise, the behavioral profile approach with di-
rect follower relations is able to handle 55 % of these cases completely
automatically without asking any question. This is significantly less
than the replay approach could handle without questions (65 %). For
15–17 % of the cases with a noise level below 50 %, the behavioral pro-
file approach required low effort by the analyst (up to one question
for every fourth event class). Another 10–11 % could be handled with
medium effort (up to one question for every second event class). In
total, the behavioral profile approach is able to provide the matching
for 80-83 % of the cases with less than 50 % noisy traces with at
most medium effort. Again, this is 10 percentage points less than the
replay approach could handle with medium effort (90–93 %). What
is more, Figure 64 reveals that the behavioral profile approach with
direct follower constraints is more often not helpful as it has to pose
one question for each event class for 13–14 % of the event logs with
less than 50 % of noisy traces. Interestingly, this number is lower for
event logs with 25 % of noisy traces than for event logs without any
noise. This is due to the fact that the number of conflicting order
constraints decreases with increasing noise levels as seen in Figure 60

for the interleaving configuration. Therefore, more mappings can be
solved and the approach can be of help to the analyst.

●●●● ●●●●●●●●●● ●● ●●

● ●

2−5

6−10

11−15

16−20

21−25

0 2 4 6 8
Number of questions

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Figure 65: Behavioral profile approach with direct follower relations: Num-
ber of questions per event class for correctly matched event logs
without noise.

Figure 65 depicts the box plot view of the number of questions per
event class category for the behavioral profile approach with relaxed
mapping for strict order relations. In the same way as in Figure 55 for
the replay approach, the plot only contains event logs without noise.
Event logs with very few event classes (2–5) can be solved completely
without questions in half of the cases, whereas the fraction of auto-
matically solved mappings was three quarter for the replay approach.
Equally to the replay approach, half of the event logs with more than
five event classes can be solved with only one question and three

154 evaluation

quarters can be solved with at most two questions. Yet, the maximum
number of questions increased from six for the replay approach to
eight. Overall, the behavioral profile approach with direct follower
constraints performs almost equally efficient as the replay approach
but is less efficient for some of the event logs especially with a low
number of event classes present in the logs.

Beyond efficiency, Figure 64 informs about (3) the robustness towards
noise of the behavioral profile approach with direct followers. When
comparing these results to those of the replay approach, it becomes
obvious that the behavioral profile approach is less stable towards
noise. Looking at event logs with 50 % and more noisy traces, the
overall picture of required questions per event class drastically de-
clines, as Figure 64 reveals. Already with a noise level of 50 %, the
number of processes that can be handled without any question sig-
nificantly drops down from 55 % to 8 %. This number further declines
to 3 % for a noise level of 75 %. When all traces contain noise, the be-
havioral profiles approach can handle only 10 cases without asking
any question. The number of cases with high or complete manual
effort increase almost with the same rate with which the number of
cases with no manual effort decreases. When half the traces in the
event logs contain noise, the behavioral profile approach poses one
question for each event class in 36 % of the cases. This number in-
creases to 45 % for a noise level of 75 % and to 55 % when all traces
are noisy. Nevertheless, the behavioral profiles approach outperforms
the replay approach for event logs where every trace contains noncon-
forming behavior. While the replay approach is only helpful for 14 %
of those cases, the behavioral profile approach with direct follower
constraints eases matching for 45 % of those event logs.

2−5

6−10

11−15

16−20

21−25

50 100 150
Duration in seconds

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Figure 66: Behavioral profile approach with relaxed mapping for strict or-
der relations: Duration of the matching depending on the num-
ber of event classes (without outliers).

With respect to (4) performance, Figure 66 provides the runtime of
the matching with direct follower relations. It can be seen that already
for event logs with up to 5 event classes the mapping takes up to 10

seconds for half of the cases and 20 seconds at maximum. Here, the

8.3 evaluation of the behavioral approaches 155

replay approach always requires less than a second. One can also see
that there is an even higher difference in performance with increasing
number of event classes as we saw for the replay approach. For 50 %
of the event logs with 16–25 event classes, the matching takes up to
one minute. The maximum duration lies at 2.5 minutes.

0

25

50

75

100

10 20 30
Duration in seconds

N
oi

se
 le

ve
l

Figure 67: Behavioral profile approach with direct follower relations: Du-
ration of the matching depending on the noise level (without
outliers).

Figure 67 shows the performance of the behavioral profile approach
with respect to the different levels of noise in the event logs. In con-
trast to the replay approach, no significant difference between noise-
free and noisy logs is detected. Thus, for the cases that can be cor-
rectly solved, the performance of the behavioral profile approach re-
mains stable even with increasing noise. While the replay approach
is significantly faster, we believe the behavioral profile approach is
still fast enough, as the matching on type level is only a one-time
endeavor.

8.3.3.3 Declare Approach

From the results of the behavioral profile approach, we now turn
to the Declare approach. Similar to the behavioral profile approach,
we start with a basic setting that does not include constraints from
interleaving relations and does not use the relaxed mapping for strict
order and co–occurrence relations. Building on this configuration, al-
most the same configurations are defined as for the behavioral profile
approach. Nonetheless, there are some differences in the configura-
tions for the Declare approach. First, there is no direct follower con-
figuration for the Declare approach, because direct follower relations
are only indirectly used by the Declare approach in the basic ordering
relations. Second, there is an additional configuration that builds on
the basic configuration and uses the alternative participation constraint.
The all but interleaving configuration again uses all introduced relaxed
constraints, i.e. relaxed strict order and relaxed co–occurrence. Fur-
thermore, it does not use interleaving constraints and it sticks to the
base participation constraint for mandatory events and activities.

Starting with (1) the effectiveness of the Declare approach, Figure 68

shows the number of correctly matched event logs for each of the six

156 evaluation

Basic

Alternative participation

Interleaving

Relaxed co−occurrence

Relaxed strict order

All but interleaving

0 500 1000 1500 2000 2210
Number of correctly matched event logs

Noise level
0
25
50
75
100

Figure 68: Declare approach: Number of correctly solved matchings in one-
to-one setting for different noise levels.

configurations and for each noise level. While the results depicted in
Figure 68 look similar to those previously shown for the behavioral
profile approach, small differences can be identified. In all configu-
rations, except for the interleaving and alternative participation config-
uration, the Declare configuration is able to solve about one to three
percentage points more mappings correctly. This results in an overall
effectiveness rate of 93–95 % for these configurations. The newly in-
troduced configuration alternative participation seems to have similar
problems with noise levels above 25 % as the interleaving configura-
tion. Yet, it does perform better on all three levels above 25 % of noisy
traces in each log. Overall, about 1500 event logs are mapped correctly
using the alternative participation configuration, which is about 68 % of
all event logs. Focusing on the effectiveness for noise-free event logs
both the relaxed strict order and the all but interleaving configuration
match 97 % of all event logs correctly on type level, with the former
configuration being a bit ahead when it comes to the total counts. All
other configurations yield a share of 93 % correct mappings for event
logs without noise.

Basic

Alternative participation

Interleaving

Relaxed co−occurrence

Relaxed strict order

All but interleaving

0 400 800 1200
Number of not correctly matched event logs

Cause of failure
Order constraints
Interleaving constraints
Co−occurrence constraints
Participation constraints
Resource shortage

Figure 69: Declare approach: Number of not correctly matched event logs
(all noise levels).

In Figure 69, we inspect the root causes for not correctly matched
event logs by enumerating failed matchings with wrong constraints
or resource shortage. Starting with the latter, the same pattern for
resource shortage that has been identified for the behavioral profile
approach can be seen for the Declare approach. Adding constraints
that lead to no solution speeds up the matching and thus, results in

8.3 evaluation of the behavioral approaches 157

fewer cases of resource shortage. This is the case for the interleaving
and for the alternative participation configuration. Relaxing order con-
straints, in contrast, enlarges the search space and leads to resource
shortage more often, as seen for relaxed strict order and all but inter-
leaving, which contains the former. The relaxation of co–occurrence
constraints does not increase the cases with resource shortage. This
shows that the impact of ordering constraints is higher than the im-
pact of co–occurrence constraints in the Declare approach. Overall,
it can be that there are fewer cases of resource shortage for the De-
clare approach than for the behavioral profile approach. This can be
accounted for by the additional constraints that the Declare approach
introduces and that are not present in the behavioral profile approach,
namely, those constraints coming from existence rules. Nevertheless,
processes with high concurrency still tend to fail due to resource
shortage.

0

25

50

75

100

0 50 100 150 200
Number of not correctly matched event logs

N
oi

se
 le

ve
l

Constraint type
Order constraints
Co−occurrence constraints
Participation constraints

Figure 70: Declare approach: Number of matchings with wrong constraints
by noise level for the setting with alternative participation con-
straints.

Turning to the inspection of incorrect constraints, we see a bit more
than 4 % of the cases that do not use the relaxed strict order constraint
failing due to wrong order constraints. This is similar to the results
of the behavioral profile approach. Again, there is also one process
for which the event logs cannot be mapped due to an incorrect co–
occurrence constraint, which is a result of the dominant occurrence of
the event belonging to an optional activity. For the declare approach,
this also leads to an incorrect participation constraint for all config-
urations that use the base participation constraint. Yet, in contrast
to the relaxed co–occurrence constraint, the alternative participation
constraint leads to a steep increase in constraints that exclude the
correct mapping. Figure 70 inspects how the number of wrong con-
straints evolve with increasing noise levels for the alternative participa-
tion configuration. As for the behavioral profile approach, we see a de-
creasing amount of incorrect order constraints with increasing noise
because many order relations drop out with a too low support. The
co–occurrence constraints are again not influenced by noise. In con-
trast to this, the wrong alternative participation constraints heavily
increase with additional noise. With no noise, there are no incorrect

158 evaluation

alternative participation constraints. For a noise level of 25 %, there
are few matchings that fail due to wrong participation constraints.
Yet, with half of the traces containing noise, 36 % (158 of 442) of all
matchings fail due to misleading alternative participation constraints.
This number rises to 50 % (221 of 442) for event logs where all traces
contain noise. The reason for this steep increase is that events belong-
ing to mandatory activities are too often skipped in event logs with
high noise. Therefore, these events are seen as not mandatory and
are incorrectly used for the matching by the alternative participation
constraint, which basically enforces the matching of optional events
to optional activities.

Constraints based on interleaving relations show similar effects for
the Declare approach than those effects we saw for the behavioral
profile approach. For no noise level and the lowest noise level, there
is no difference in the effectiveness results. With higher noise levels,
constraints from interleaving relations create constraint conflicts for
the majority of cases.

2−5

6−10

11−15

16−20

21−25

0 50 100 150 200
Number of event logs

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Solution category
solved correctly
constraint conflict
resource shortage

Figure 71: Declare approach with relaxed strict order constraints: Solution
categories by number of event classes for event logs without
noise.

Looking at the effectiveness of the Declare approach from the num-
ber of event classes that are contained in the matched event logs, Fig-
ure 71 presents the results for the configuration with relaxed strict
order constraints, which scored best in the overall effectiveness pro-
vided by Figure 68. As for the previously discussed approaches, we
focus on the event logs without noise to limit further side–effects. In
contrast to the replay and the behavioral profile approach, the De-
clare approach is able to successfully provide the mapping for all
event logs with up to five event classes. Thereby it is on par with
the replay approach for this category. For the next two categories the
effectiveness rates are 96.6 % and 88.5 %. When matching event logs
with 16 to 20 event classes, the Declare approach with relaxed strict
order constraints solves six out of eight matching problems. Again,
the event log with 21 event classes is also mapped correctly. Over-
all, the Declare approach with the relaxed strict order configuration
outperforms both the replay and the behavioral profile approach on

8.3 evaluation of the behavioral approaches 159

effectiveness for event logs without noise.

●
●

●

●

●

1

2

3

4

5

0 25 50 75 100
Noise level

M
ea

n
nu

m
be

r
of

 q
ue

st
io

ns

Configuration
● Basic

Alternative participation
Interleaving
Relaxed co−occurrence
Relaxed strict order
All but interleaving

Figure 72: Declare approach: Mean number of questions for each configura-
tion.

With Figure 72, the focus is changed to (2) the efficiency of the De-
clare approach. Again, the figure appears to be almost identical to
the one seen for the behavioral profile approach. Yet, there are some
differences. First, there are now two outliers when it comes to the re-
quired questions for event logs with a noise level above 25 %. Besides
the interleaving configuration, also the alternative participation config-
uration requires significantly more questions on higher noise levels
than the other configurations. This is in line with the previously dis-
cussed results for the effectiveness. As both configurations fail in a
large set of matchings with higher noise, these cases decrease the
mean efficiency as one needs to ask the maximum number of ques-
tions when no solution can be found. The mean number of questions
for noise levels zero and 25 is slightly above one question, ranging
from 1.18 for all but interleaving to 1.32. For all but the two outlier con-
figurations, the mean number of questions increases roughly by one
for each subsequent noise level. For the interleaving and alternative par-
ticipation configuration, the mean number of questions goes directly
up to about four questions for a noise level of 50 %. From 50 % to
75 % of noisy traces the slop of the curve is the same as for the other
configurations, i.e., an increase of one question on average. From 75 %
to 100 % there is only a very slight increase to 4.5 / 5 questions on
average. Comparing these numbers to those of the behavioral profile
approach reveals that the Declare approach performs slightly more
efficiently. Applying the Mann-Whitney test to the overall numbers
of questions for both approaches shows that this difference is also
statistically significant.

Having compared the number of questions from the Declare ap-
proach with those of the behavioral approach, we want to see whether
there are further differences between the different configurations of
the Declare approach. Figure 73 depicts the box plots of the number
of questions for each noise level for every selected configuration of
the Declare approach. It can be seen that the distributions on noise
levels zero and 25 are almost identical. The Mann-Whitney test also
does not return any statistical significant difference between the con-

160 evaluation

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●

●●

●

●●●

●●●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●

●●

●

●●●

●●●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●●●

●●

●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●

●●

●

●●●

●●●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●

●●●

●●●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●●

●●●●●●●●●●

●●●

●

●●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●●

●●●●●●●●●●

●●●

●

●●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●●●●●

●

●●●●●

●●

●

●

●●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●●●●●

●

●●●●●

●●

●

●

●●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

Basic Alternative participation Interleaving

Relaxed co−occurrence Relaxed strict order All but interleaving
0

5

10

15

20

0

5

10

15

20

0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0

N
um

be
r

of
 q

ue
st

io
ns

Figure 73: Declare approach: Boxplots showing the number of required
questions for each noise level for each configuration.

figurations for these two noise levels. Looking at the higher noise
levels, a clear difference can be seen again between the interleaving
and alternative participation configuration and all others, as expected
from Figure 72. Between the two outlier configurations one can see
that the alternative participation configuration performs slightly better
for a noise level of 50 %. Yet, this difference does not proove to be
statistically significant when testing the difference with the Mann-
Whitney test. For the other four configurations, a similar pattern can
be observed when comparing these to each other. For noise level 50,
the basic and relaxed co–occurrence configuration do not show any dif-
ference to each other in the box plots. Equally, the relaxed strict order
and all but interleaving configuration show an almost identical distri-
bution. While the former group has a lower median of one question,
the second group, which uses the relaxed strict order constraints, has
a higher median of two questions. Also the 0.75 quartile of the first
group is one question lower than that of the second group. In gen-
eral, such a difference is expected as the relaxation of the strict order
constraint increases the search space for those processes that have
interleaving behavior in the model. Therefore, more questions need
to be asked for those models. Yet, the overall difference between these
two groups is not statistically significant. This can be explained by the
fact, that the relaxed strict order constraint yields a slightly higher ef-
fectiveness that normalizes the effect. For noise levels above 50 % both
groups perform almost identically and no difference can be seen in
the box plots in Figure 73.

As none of the configurations shows a statistically significant ad-
vantage over all others, we will use the basic configuration for our
further analysis. Figure 74 depicts the number of required questions
relative to the number of event classes for the basic configuration. The

8.3 evaluation of the behavioral approaches 161

0

25

50

75

100

0% 25% 50% 75% 100%
Percentage of processes

P
er

ce
nt

ag
e

of
 n

oi
se

Number of questions
per event class

No manual effort
Low manual effort
Medium manual effort
High manual effort
Complete manual effort

Figure 74: Declare approach – basic configuration: Number of questions
per event class for each noise level in one-to-one setting.

share of mappings that could be performed completely automatically
is 62 % of all cases with a noise level below 50 %. This is seven per-
centage points more than for the behavioral profile approach with
direct followers and only 3 percentage points less than for the re-
play approach (65 %). For 14–15 % of all cases with less than 50 %
noisy traces the Declare approach required a question for at most
every fourth event class (low manual effort). Another 10 % of the
cases with a noise level below 50 % could be matched with medium
manual effort, i.e., with at most one question for every second event
class. Summing this up, 86–87 % of all cases with a noise level below
50 % could be solved with at most medium effort using the Declare
approach with its basic configuration. In this regard, the results of
the Declare approach lie in the middle between the behavioral profile
approach with 80-83 % and the replay approach, which handles 90-
93 % of the event logs with a noise level below 50 % with at most
medium manual effort. Looking at the share of event logs for which
a complete manual mapping is required, the Declare approach again
performs better than the behavioral profile approach and similar to
the replay approach. In that, it leaves 9-10 % of all event logs with
less than 50 % noisy traces completely to the analyst.

●●●●●●●● ●●●●●● ●● ● ●● ●●●● ●●●●● ●●● ●● ●●● ● ●● ●●● ●●●

●

2−5

6−10

11−15

16−20

21−25

0 2 4 6
Number of questions

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Figure 75: Declare approach – basic configuration: Number of questions
per event class for correctly matched event logs without noise in
one-to-one setting .

Changing the perspective of the analysis to the number of event
classes contained in an event log, Figure 75 shows the previously de-
fined four groups of event class categories and the corresponding box
plots for the required number of questions. For event logs with up to
five event classes, the Declare approach runs fully automatically for

162 evaluation

almost all cases. This is almost identical to the replay approach and
thus, far better than the behavioral profile approach, which has to
pose up to two questions for a quarter of these event logs. For the
category of six to ten event classes, the Declare approach even out-
performs the replay approach by handling half of the cases without
a question. Only for the category with 16–20 event classes, the replay
approach slightly outperforms the Declare approach.

With respect to (3) the robustness towards noise, Figures 70–75 already
provide insights on how effectiveness and efficiency of the Declare
approach change with increasing noise in the event logs. Regarding
the effectiveness, Figure 68 revealed that all configurations except for
the interleaving and alternative participation configuration are very ro-
bust towards noise. For the two exceptional configurations, we still
see a good robustness for the low noise level of 25 % noisy traces.
Yet, both rapidly decrease in effectiveness with growing noise, the
alternative participation configuration a little less than the interleaving
configuration.

Concerning the efficiency, the Declare approach proves to be stable
only until a noise level of 25 %. Beyond this level of noise efficiency
drastically drops down. Once more, the Declare approach delivers
better results than the behavioral profile approach. For example, the
Declare approach is still able to handle 17 % of the event logs where
every second trace contains noise completely automatically. This is
almost 10 percentage points more than for the behavioral profile ap-
proach with direct follower relations. Overall, the Declare approach
is still helpful for 70 % of the event logs with 50 % noise and out of
these it handles 76 % with at most medium effort. With three quar-
ters of the event logs containing noise, efficiency drops again and gets
closer to the results of the behavioral profile approach. Still, even with
all traces containing noise, the Declare approach outperforms the be-
havioral profile approach and thereby also outperforms the replay
approach for those cases with noise in every trace.

2−5

6−10

11−15

16−20

21−25

50 100 150
Duration in seconds

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Figure 76: Declare approach – basic configuration: Duration of the match-
ing depending on the number of event classes in one-to-one
setting without noise (without outliers).

8.3 evaluation of the behavioral approaches 163

Turning to (4) the performance of the Declare approach, Figure 76

depicts how long the matching takes depending on the number of
event classes in the event log. For the group with the fewest event
classes, the basic setting of the Declare approach requires less than
about ten seconds for half of the matchings. The 0.75 quantile lies
at 13 seconds. This is equal to the behavioral profile approach with
direct follower relations. Similarly, the durations for the two middle
groups are almost equal to those of the behavioral profile approach
with direct follower relations. Overall, the Declare approach is slightly
faster than the behavioral profile approach, but no significant differ-
ence can be found. In the end, these results are far away from those
of the replay approach, which also handled the event logs with up to
20 event classes in at most 3 seconds, where both the Declare and the
behavioral profile approach take more than 2 minutes.

Figure 77 inspects the performance of the Declare approach with
respect to the different noise levels. From this perspective, almost no
differences can be found between the Declare approach and the be-
havioral profile approach. The Declare approach shows slightly better
values, yet, there is no significant difference.

0

25

50

75

100

10 20 30
Duration in seconds

N
oi

se
 le

ve
l

Figure 77: Declare approach – basic configuration: Duration of the match-
ing depending on the noise level in one-to-one setting (without
outliers).

Summing up the result for the one-to-one matching, it can be said
that the replay approach shows the best performance on all of the
four criteria. The Declare approach follows on that and the behavioral
profile approach delivered the worst results. Yet, all three approach
show very good effectiveness and efficiency for event logs without
noise and with little noise. Only the replay approach stays completely
stable up to a noise level of 75 %. Nevertheless, it is outperformed by
both the Declare and the behavioral profile approach for event logs
where every trace contains noise.

8.3.4 Results for the One-to-many Matching of Activities and Events

Having evaluated the three approaches that are based on behavior
with respect to Requirement R1 (1:1 matching to activities), we now

164 evaluation

inspect the fulfillment of Requirement R2 (Different abstraction lev-
els). The replay approach is not able to handle one-to-many relations
of activities and events. Therefore, this section only inspects the be-
havioral profile approach and the Declare approach.

8.3.4.1 Behavioral Profile Approach

Starting with the behavioral profile approach, Figure 78 provides the
results for the measurement of (1) the effectiveness. While the overall
pattern looks very similar to the one seen for the one-to-one setting,
there is a striking difference in the overall number of event logs that
can be matched correctly. For the one-to-many setting the maximum
number of correctly matched event logs over all noise levels is 1520,
which is 69 % of all 2210 event logs. This is 27 percentage points
less than what could be handled in the one-to-one setting. It can be
seen that effectiveness slightly decreases for all configurations with
increasing noise. Without noise, the most effective configuration is
the relaxed strict order configuration, which correctly maps 74 % of
all noise-free event logs. Again, over all noise levels, the configuration
with direct follower relations scores best and the configuration with
interleaving relations scores worst, handling only 42 % of all event
logs with decreasing effectiveness on higher noise levels.

Basic

Direct followers

Interleaving

Relaxed co−occurrence

Relaxed strict order

All but interleaving

0 500 1000 1500 2000 2210
Number of correctly matched event logs

Noise level
0
25
50
75
100

Figure 78: Behavioral profile approach: Number of correctly solved match-
ings in one-to-many setting for different noise levels.

The root cause analysis for not correctly solved matchings reveals
that the majority of those cases fail due to resource shortage. Apart
from that, Figure 79 reflects the same problems with order constraints
and interleaving constraints as we have seen for the one-to-one set-
ting. Nonetheless, there again is a compelling difference in the order
of magnitude. For the one-to-one setting 114 of the matchings failed
due to wrong order constraints if these were not relaxed. In the one-
to-many setting this number more than doubles, reaching 278 event
logs that cannot be matched due to misleading order constraints. This
is explained by the increased number of event classes in the event logs
which potentiate potential errors. When there are multiple events for
each activity of a pair of two interleaving activities, it is more likely
that we do not see all ordering combinations of these events equally

8.3 evaluation of the behavioral approaches 165

often. This potentially leads to a dominant ordering between some
of these events, which dominant ordering then results in a conflict-
ing strict order constraint. A similar pattern can be seen for the con-
straints stemming from interleaving relations. Nonetheless, the effect
is not as strong as for the strict order relations. In the one-to-many
setting there are only 14 % more conflicting constraints derived from
interleaving relations than in the one-to-one setting.

Basic

Direct followers

Interleaving

Relaxed co−occurrence

Relaxed strict order

All but interleaving

0 500 1000
Number of not correctly matched event logs

Cause of failure
Order constraints
Interleaving constraints
Co−occurrence constraints
Resource shortage

Figure 79: Behavioral profile approach: Number of not correctly matched
event logs in the one-to-many setting (all noise levels).

Looking at the developments of conflicting constraints with increas-
ing noise, Figure 80 reveals again the same general patterns as seen
in the one-to-one setting. The number of incorrect order constraints
decreases with increasing noise while the number of interleaving con-
straints grows with more noise in the event logs.

0

25

50

75

100

0 100 200 300 400
Number of not correctly matched event logs

N
oi

se
 le

ve
l

Constraint type
Order constraints
Interleaving constraints
Co−occurrence constraints

Figure 80: Behavioral profile approach: Number of wrong constraints by
type and noise level for the setting with interleaving constraints
in the one-to-many setting.

Switching the perspective to the amount of event classes contained
in the event logs, Figure 81 lays out how many event logs fall into
the different categories and how many of those could be solved or
not using the relaxed constraint for strict order relations. While there
are now far less event logs with at most five event classes than in
the one-to-one setting, these can still all be solved correctly. In the
category of six to ten event classes, which is now the largest category,
96 % of all event logs could be solved correctly, which is a little bit
less than in the one-to-one setting. The remaining four percent fail
due to resource shortage. The share of not solved matchings due to
resource shortage rapidly increases to about 25 % for the category of

166 evaluation

eleven to fifteen event classes and to 64 % for the next larger category.
That is, when there are 16–20 event classes in the event logs, almost
two third of the matching cannot be done due to resource shortage.
For event logs with more than 20 event classes only one event log
can be mapped. Hence, it can clearly be seen that there is a very
strong negative relation of the number of event classes and number
of mappings that can be correctly solved.

2−5

6−10

11−15

16−20

21−25

26−30

36−40

0 50 100 150
Number of event logs

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Solution category
solved correctly
constraint conflict
resource shortage

Figure 81: Behavioral profile approach with relaxed strict order constraints:
Solution categories by number of event classes for event logs
without noise in the one-to-many setting.

With that, we come to (2) the efficiency of the behavioral profile ap-
proach in the one-to-many setting. Figure 82 provides us with in-
sights on the mean number of questions for each tested configuration
for all noise levels. First of all, one can see that there are in general
bigger differences between the configurations than in the one-to-one
setting. Moreover, one can see that the interleaving configuration is no
longer a very strong negative outlier. For event logs with no or only
little noise, the opposite is true: The interleaving configuration per-
forms best for these event logs. Still, for event logs with 75 % or more
noisy traces, the interleaving configuration needs to ask significantly
more questions than all other configurations.

Looking at the ranges in which the average number of questions
lies, it can be observed that these are significantly higher than those
for the one-to-one setting, which one would expect. For event logs
with little or no noise the mean number of questions ranges from 7 to
8.6. This number raises to 8.2 and 9.1 for event logs with 50 % noisy
traces and peaks with 10.5 to 11.4 when all event logs contain noise.

● ●

●

●

●

7

8

9

10

11

0 25 50 75 100
Noise level

M
ea

n
nu

m
be

r
of

 q
ue

st
io

ns

Configuration
● Basic

Direct followers
Interleaving
Relaxed co−occurrence
Relaxed strict order
All but interleaving

Figure 82: Behavioral profile approach: Mean number of questions for each
configuration.

8.3 evaluation of the behavioral approaches 167

Figure 83 drills down to the distributions of the number of ques-
tions by showing the corresponding box plots. It can be seen that the
median of the direct followers and the interleaving configuration is –
with five questions – one lower than that of all other configurations
for event logs with no or few noise. This is due to the fact that these
two configurations impose the strictest constraints onto the mapping.
Nonetheless, only for the interleaving configuration a statistical sig-
nificant difference can be proved using the Mann-Whitney test. The
difference from the interleaving configuration to all others can also
be proved statistically significant for noise levels above 50 %, albeit,
this time in a negative sense. Calculating the mean number of ques-
tions over all noise levels, the direct followers configuration scores best.
We will therefore continue our more detailed investigation with this
configuration.

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Basic Direct followers Interleaving

Relaxed co−occurrence Relaxed strict order All but interleaving
0

10

20

30

0

10

20

30

0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0

N
um

be
r

of
 q

ue
st

io
ns

Figure 83: Behavioral profile approach: Boxplots showing the number of
required questions for each noise level for each configuration.

Using Figure 84 we analyze the efficiency of the behavioral profile
approach by relating the number of questions to the number of event
classes, as we did before for the one-to-one setting. What stands out
is that there is almost no event log that can be processed completely
automatically. Only one event log can be matched completely auto-
matically with no or little noise. With at most medium manual effort
39–40 % of the event logs with noise level zero and 25 can be matched.
Again, the small noise level helps in getting rid of incorrect order rela-
tions and therefore the approach performs better for these event logs
than for logs that are noise-free. Overall, it can be observed that the
approach is helpful for 69–72 % of the event logs with no or few noise
insertions, which again is significantly less than the 86–87 % that we
achieved in the one-to-one setting.

Next, we bring the focus again to the influence of the number of
event classes. In contrast to the results for the one-to-one setting, Fig-

168 evaluation

0

25

50

75

100

0% 25% 50% 75% 100%
Percentage of processes

P
er

ce
nt

ag
e

of
 n

oi
se

Number of questions
per event class

No manual effort
Low manual effort
Medium manual effort
High manual effort
Complete manual effort

Figure 84: Behavioral profile approach with direct follower relations: Num-
ber of questions per event class for each noise level.

ure 85 shows that the number of questions increases within the first
three categories and than stagnates or rather decreases for higher
categories of event classes. As we only include matchings that were
solved correctly, the categories with more than 25 event classes are
not shown. For event logs with two to five event classes, the behav-
ioral profile approach with direct follower relations matches 75 % of
these logs with at most two questions. For six to ten event classes, at
most five questions are required for 75 % of the matchings. Half of
the event logs with more than eleven event classes can be matched
by asking at most six questions. Summing up, one can again see that
the number of questions does not linearly increase with the number
of event classes.

●● ●●●●●●

●●

●●●

●●

2−5

6−10

11−15

16−20

21−25

0 5 10 15
Number of questions

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Figure 85: Behavioral profile approach with direct follower relations: Num-
ber of questions per event class for correctly matched event logs
without noise.

Coming to (3) the robustness towards noise, we can again use the
insights already provided during the analysis of effectiveness and
efficiency. From Figure 84 it can be seen that there is a slight increase
in the number of matchings for which the approach is useful when
there is a small amount of noise in the event logs compared to when
no noise is present. From the noise level of 50 % upwards, this num-
ber constantly decreases until there is only a share of 21 % for which
the behavioral profile approach helps the analyst. Overall, this devel-
opment is very similar to that observed in the one-to-one setting, yet,
on a much lower order of magnitude and with steeper decrease of
effectiveness and efficiency with higher noise levels.

8.3 evaluation of the behavioral approaches 169

0

25

50

75

100

10 20 30
Duration in seconds

N
oi

se
 le

ve
l

Figure 86: Behavioral profile approach with direct follower relations: Dura-
tion of the matching depending on the noise level in the one-to-
many setting (without outliers).

For the analysis of (4) performance, the durations for solved match-
ings using the direct followers configuration are plotted against the dif-
ferent noise levels in Figure 86. Similarly to the observations made in
the one-to-one setting, there is no substantial influence of the amount
of noise on the performance of the type–level matching. Also the over-
all ranges in which the duration lies are very similar to those of the
one-to-one setting.

Figure 87 provides the view on the dependency between perfor-
mance and the number of event classes in the event logs. Once more, a
similar pattern can be observed as for the one-to-one matchings. The
duration increases exponentially with the number of event classes.
Surprisingly, the performance is very similar as in the one-to-one set-
ting and appears to be even slightly better. Yet, this is due to the fact
that there are overall less matchings that could be solved. In the end,
we still believe that the performance with at most about 2 minutes, is
good enough as the type–level matching is a one time undertaking.

2−5

6−10

11−15

16−20

21−25

20 40 60
Duration in seconds

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Figure 87: Behavioral profile approach with relaxed mapping for direct
follower relations: Duration of the matching depending on the
number of event classes in the one-to-many setting (without
outliers).

8.3.4.2 Declare Approach

Turning to the Declare approach for the matching of activities and
events in a one-to-many relation, Figure 88 starts the inspection of (1)
the effectiveness. First of all, one can observe that the overall effective-

170 evaluation

ness ranges on similar levels as for the behavioral profile approach
and thus, on far lower levels than in the one-to-one setting. Neverthe-
less, the Declare approach brings about slightly better numbers than
the behavioral profile approach. Yet, this time the two approaches
are very close. In the overall effectiveness over all noise levels the
Declare approach with its basic configuration reaches 70 % correctly
matched event logs, whereas the behavioral profile approach man-
aged to correctly map 69 % with its best configurations. Without any
noise the Declare approach reaches 74 % with basic settings and 76 %
when employing the relaxed strict order constraints. Here, the maxi-
mum effectiveness of the behavioral profile approach is 74 %. Hence,
the Declare approach performs slightly better, but the differences are
rather small.

Basic

Alternative participation

Interleaving

Relaxed co−occurrence

Relaxed strict order

All but interleaving

0 500 1000 1500 2000 2210
Number of correctly matched event logs

Noise level
0
25
50
75
100

Figure 88: Declare approach: Number of correctly solved matchings in one-
to-many setting for different noise levels.

In the analysis of causes for the failed matchings the results look
very similar to those of the behavioral profile approach, as depicted
in Figure 89. Again, the main cause is resource shortage for most of
the configurations. Only for the alternative participation and the inter-
leaving configuration, the number of conflicting constraints outweighs
the resource shortage. Both configurations again show decreasing ef-
fectiveness with increasing noise due to the growing number of con-
flicting constraints.

Since the results for the influence of the number of contained event
classes is also almost identical to the behavioral profile approach, we
leave out the concrete results. For completeness, Section A in the ap-
pendix includes Figure 96, which entails the results. Summing up,
it can be seen that the behavioral profile approach and the Declare
approach deliver very similar results in terms of effectiveness. Still,
the Declare approach performs slightly better.

The (2) efficiency of the Declare approach is also almost identical
to the behavioral profile approach. For no or only little noise, the
interleaving configuration proved to be most efficient, as depicted in
Figure 90. Nevertheless, when the event logs become more noisy, the
interleaving configuration again turns out to be worst. The basic con-
figuration delivers the best results for these more noisy event logs
and is therefore overall the most efficient configuration. Once more,

8.3 evaluation of the behavioral approaches 171

Basic

Alternative participation

Interleaving

Relaxed co−occurrence

Relaxed strict order

All but interleaving

0 500 1000
Number of not correctly matched event logs

Cause of failure
Order constraints
Interleaving constraints
Co−occurrence constraints
Participation constraints
Resource shortage

Figure 89: Declare approach: Number of not correctly matched event logs
in the one-to-many setting (all noise levels).

there is no significant difference between configurations of the De-
clare approach and those of the behavioral profile approach and we
therefore leave out the further detailed analysis and refer the reader
to Section A for the result figures.

●
●

●

●

●

7

8

9

10

11

0 25 50 75 100
Noise level

M
ea

n
nu

m
be

r
of

 q
ue

st
io

ns

Configuration
● Basic

Alternative participation
Interleaving
Relaxed co−occurrence
Relaxed strict order
All but interleaving

Figure 90: Declare approach: Mean number of questions for each configura-
tion in the one-to-many setting.

With respect to (3) the robustness towards noise, the findings for effec-
tiveness and efficiency are repeated. That is, overall, both approaches
perform almost identical. Yet, the Declare approach shows a slight
advantage over the behavioral profile approach in the overall effec-
tiveness.

For (4) the results of the Declare approach are once more almost
identical to those of the behavioral profile approach and we will there-
fore not discuss them further. For completeness, the analysis figures
can be found in Section A in the appendix.

8.3.5 Summary and Discussion

This section provided an extensive validation of the three different
mapping approaches that leverage behavioral knowledge. For the
purpose of validation, two sets of event logs have been generated
from the BIT process library, which contains hundreds of real life
process models from industry. The first set contained event logs for
which the events are in a one-to-one relationship to their correspond-
ing activities on type level. For the second set of event logs, event
generators were employed in order to simulate activity life cycles
that result in a one-to-many relations between activities and events

172 evaluation

on type level. Each of the two sets contained five event logs with
different noise levels for each process model. For both approaches
based on behavioral relations different configurations were tested and
compared to each other. In line with the goal of the validation four
measures were assessed: (1) effectiveness, (2) efficiency, (3) robustness
towards noise, and (4) performance. Table 26 provides a summary of
the main results for corresponding measures.

Table 26: Results for behavioral approaches.

Replay BP Declare

Share of correctly matched
event logs (in %)

1:1 1:1 1:N 1:1 1:N

Total 76 94 69 95 70

No noise 93 96 74 97 76

Stable until noise level 75 100 100 100 100

At most medium effort

No noise 93 80 39 86 38

Stable until noise level 75 25 25 25 25

Completely automatic

No noise 65 55 0 62 1

Stable until noise level 75 25 100 25 25

Avg. duration (in sec)

No noise 44 20 23 19 23

Stable until noise level 0 100 100 100 100

Starting with the results for the one-to-one setting, the Declare ap-
proach with relaxed strict order constraints outperformed the other
approaches in (1) effectiveness with 97 % correctly mapped event logs
when no noise was contained. The behavioral profile approach with
relaxed strict order and the replay approach showed – with effective-
ness values of 96 % and 93 % – also very good results for these event
logs. For all approaches these values slightly decrease with growing
noise in the event logs. While the approaches based on behavioral
relations are still able to solve 88–89 % of the CSPs for the matching
of event logs where all traces contain noise, the replay approach sees
a dramatic decrease in effectiveness for these logs and maps only 17 %
correctly due to incorrect constraints. With respect to (3) robustness
towards noise, one can say that the approaches based on behavioral
relations show rather stable effectiveness values for all noise levels,
whereas the replay approach is only robust towards noise until a
noise level of 75 % noisy traces in the event logs.

8.3 evaluation of the behavioral approaches 173

Resource shortage turned out to be the main reason of failure for
the top performing configurations of the Declare approach and the
behavioral profile approach. The investigation of the other configura-
tions furthermore revealed that strict order relations are most likely
to lead to conflicting constraints when the process model contains
interleaving activities. Yet, these conflicting constraints decrease with
increasing noise because they do not reach the required minimum
support. On the contrary, conflicting constraints from interleaving
relations and wrong alternative participation constraints heavily in-
crease when more and more traces contain noise. This is due to the
fact that with increasing noise more event classes that were previously
in an ordering relation or mandatory do not reach the minimum sup-
port anymore. Therefore, they are incorrectly seen as interleaving or
optional events.

Looking at (1) the effectiveness in the one-to-many setting, only the
approach based on behavioral relations are able to perform the match-
ings, as a replay is no longer possible. The Declare approach is slightly
better as the approach based on behavioral profiles and when it comes
to effectiveness in the one-to-many setting. Nevertheless, only 74–
76 % of all event logs without noise can be solved and only 69–70 %
over all noise levels. Regarding (3) the robustness towards noise, again a
slight decrease in effectiveness is observed with increasing noise. Still,
the results are rather stable and there’s no steep decrease for any of
the noise levels. The big loss in effectiveness in comparison to the
one-to-one setting stems from the increased complexity of the corre-
sponding CSPs, which complexity leads to a high rate of matchings
that run out of time or memory. Despite the fact that the results are
worse compared to the one-to-one matching, most of the event logs
can still be correctly matched.

The (2) efficiency has been measured by quantifying the manual
work that still has to be done by the analyst in form of questions that
need to be answered. In the one-to-one setting, the replay approach
is significantly more efficient than the other approaches by mapping
93 % of all noise-free event logs with at most medium manual effort.
The Declare approach follows with 86 % and the behavioral profile
approach comes in last with 80 % correctly matched noise-free event
logs with at most medium manual effort. Almost two third of the
noise-free event logs are matched completely automatically by the
replay approach. Here, the Declare approach comes closer with 62 %
and the behavioral profile approach matches 55 % of all noise-free
logs without manual interaction. Overall, these values are all very
good and show that all the approaches significantly reduce the man-
ual work.

With respect to (3) robustness towards noise, the replay approach is
also way out in front of the other approaches as the efficiency remains

174 evaluation

stable for all noise levels up to the noise level of 75 %. The other
approaches see a drastic decrease in efficiency for event logs with
50 % or more noisy traces. The replay approach is ahead of the other
approaches due to the fact that most of the noisy traces are simply
not considered for the creation of the CSP as they cannot be replayed
on the model.

In line with the effectiveness results, the efficiency results for the
one-to-many setting are orders of magnitude worse than those for the
one-to-one setting and both the Declare and the behavioral profile
approach perform almost equally. Only 38–39 % of the noise free
event logs can be solved with at most medium effort and almost no
matching is solved automatically. Only the Declare approach is able
to map at least one percent of the noise-free event logs without man-
ual interaction. Nonetheless, the results still show that the approach
significantly reduces manual work for almost 40 % of the noise-free
event logs.

For (3) the robustness towards noise, the results are similar to the one-
to-one setting. The efficiency of the approaches based on behavioral
relations drops significantly for event logs with 50 % or more noisy
traces. Still, this doesn’t mean that the approaches are not helpful at
all for higher noise levels.

Finally, we measured (4) the performance of the approaches. To this
end, the Declare approach shows the best values with on average 19–
20 seconds for both the one-to-one and the one-to-many setting. The
behavioral profile approach is slightly slower, but almost as fast as
the Declare approach. The replay approach comes in last by taking
more than double the time of the Declare approach for noise-free
event logs with a one-to-one relation of their entailed event classes
to the activities of the corresponding event log. Overall, the average
performance of the approaches seems to be acceptable for the one-
time undertaking of the type–level matching.

In the light of our experimental results, the behavioral approaches
turned out to be promising, especially with regards to resilience to-
wards moderate noise levels. In a one-to-one setting the approaches
require in most of the cases no or only little manual intervention.
In one-to-many scenarios where the event logs are on a more fine
granular level than the process model, a large share of matchings can
be done with moderate manual effort. Still, there are some processes
that could not be handled, mainly due to massive parallelism and re-
sulting memory shortage. Future work should investigate how these
processes can be handled or, at least, automatically discovered. Poten-
tial research directions may look into using heuristics such as relative
positions of events and activities. The Triple-S approach introduced in
[24], for example, uses relative positions of process model fragments

8.3 evaluation of the behavioral approaches 175

as part of a means towards process model matching. Such heuristics
may be used for the matching to furthermore reduce the search space
or even to limit the domains of single variables in the CSP before
actually starting to solve the problem. Reducing the search space by
minimizing variable domains on the one hand and by introducing fur-
ther constraints stemming from heuristics on the other hand, could
drastically improve performance and allow to handle larger processes.
Moreover, further constraints that are not related to control–flow may
be derived from event log and model. For example, role information
may be used to build constraints that allow mappings only from
events produced by a resource that belongs to the same role as in-
dicated for the target activity in the process model. When a process
is supported by multiple IT systems and the process model activities
are annotated with this information, new constraints can be derived
to map only events from specific systems to corresponding activities
that are annotated to be executed by these systems. Moreover, deci-
sion rules that are annotated to control–flow gateways could be used
to create further constraints. Therefore, rules specified, for example,
using the Decision Model and Notation (DMN)11 standard, could be
used to detect which path in the process model a certain trace must
have taken. Consider the case where a decision table informs whether
an order needs to be pre-paid before shipping or can be paid later
when the goods are received. In a very simple version this may only
depend on the invoice total. When the invoice total is also given as
an attribute to the trace or an event in a trace, it can be deducted if an
optional activity like “Check prepayment” has been executed. From
this knowledge one may furthermore restrict the possible activities
that can be matched to the events present in a given trace.

Automatically discovering matchings that cannot be handled to in-
form the analyst before trying to match, would also be very helpful.
To give an example, event logs from processes in which all activities
are mandatory and concurrent to each other should not be tried to
match with a behavioral approach. The behavioral approaches would
not be of any help even if they are able to solve the CSP.

In a similar way, future research needs to analyze how we can pre-
dict — based on a given event log and corresponding process model
— which of the behavioral approaches and which configuration shall
be used for the matching. Possible influence factors for this choice
may be the number of interleaving relations and the number of ac-
tivities in a loop. Potentially, also the size of model and event log in
terms of number of activities and number of event classes can be used.
Looking at such characteristics of event logs and models and at the
outcomes of the different approaches and configurations, a decision
tree may be built that informs about when to use which configuration
or approach in order to arrive at a correct mapping with minimal

11 See [84] and [33] for more information on DMN.

176 evaluation

manual effort.

Finally, research needs to be carried out to investigate how the ap-
proach can be extended to support many-to-many relations. That is,
cases in which a single event class can be related to multiple activities
– e.g. events representing shared functionalities – and single activities
are represented by multiple different event classes. In the many-to-
many case, the already very large search space for the matching prob-
lem grows drastically and other techniques might be necessary to
handle this. As a start, event logs containing shared functionalities
could be handled with the approach presented in this paper using
preprocessing that essentially removes such events. If applicable, the
label analysis approach presented in this thesis could be used for the
detection of shared functionalities.

8.4 evaluation of the label analysis approach

8.4.1 Evaluation Goals and Setting

Similar to the behavioral approaches, the label analysis approach
builds on the base approach and provides semiautomatic means for
the mapping of events and activities on type level. Therefore, this sec-
tion only focuses on the evaluation of the type–level matching. Again,
the goal is to evaluate (1) the effectiveness to find the correct result and
(2) the efficiency in terms of manual work. In contrast to the behavioral
approaches, the effectiveness is not a binary choice between finding
the right mapping or not finding the right mapping. The label anal-
ysis approach may also identify only parts of the mapping. To cope
with this fact, we rely on the recall metric to measure effectiveness and
on the precision metric for the efficiency [4]. The recall is calculated by
dividing the number of found correct matches by the number of all
matches that should have been found. Precision describes the share
of correct matches of all identified matches.

Note that an evaluation of the robustness towards nonconforming
behavior, which we conducted for the behavioral approaches, is not
necessary for the label analysis approach. This is due to the fact that
the label analysis approach does not rely on the behavior at all and
thus, is not influenced by nonconforming behavior.
For the evaluation of the label analysis approach, we extended the
two case studies presented in Section 8.2 by employing the label
analysis approach for the type–level matching. For both the incident
management and the change management process, detailed work in-
structions were available and could be used for the matching.

The BIT process library, which we used in the evaluation for the
behavioral approaches, is not suited for the evaluation of our label
analysis approach presented in Chapter 6. This is due to the fact that

8.4 evaluation of the label analysis approach 177

the BIT process library is anonymized and does not contain any labels
using natural language.

8.4.2 Results

First, we had to link the process model activities with the correspond-
ing work instructions for both processes. The work instructions have
been provided in word format in tabular form as it is illustrated
in Figure 91. The tables have been converted to CSV files (comma-
separated values) and imported into the ProM framework using the
dedicated import plug–in described in Section 8.1. Next, the activi-
ties in the process model were automatically matched with the work
instructions over the given IDs that are also exemplified in Figure 91.

Ini$al'diagnosis'
(INC.3)'

…'

Incident'closure'
(INC.6)'

Model
reference

Task Description

… … …

7.

INC.3.1

Select
configuration
item

Choose the affected
configuration item (CI)
from the CMDB

8.

INC.3.2

Determine
affected person

Determine the affected
person . If multiple
persons are affected by
the incident…

… … …

12.

INC.6.3

Assess and
improve
documentation

Check whether the
correct configuration
item (CI) has been
chosen and select the
correct CI if necessary…

…'

Case Event Time
INC12345 … …
INC12345 Select CI ...
INC12345 Affected person ...
INC12345 … …
INC12345 Select CI ...
INC12345

Figure 91: Link between process model activities, work instructions and
events.

An overview of the number of annotated activities and used activ-
ity descriptions is given in Table 27. Although the process model for
the incident process is smaller, a larger amount of textual description
with a total of 238 activity descriptions is available. This is due to
the documentation of sub–activities that are not part of the process
model. The matching algorithm annotated 31 process model activi-
ties with 64 descriptions for the incident process. Yet, not all process
model activities could be annotated due to missing descriptions. This
already provided valuable information for the process manager. For
the change process, a smaller set of documenting descriptions was
available containing at most one description per activity. Neverthe-
less, there were only three activities for which there was no descrip-
tion.

Table 27: Process model annotations with activity descriptions.

Available
activity
descriptions

Model
activities

Annotated
activities

Used
descriptions

Incident 238 41 31 64

Change 89 63 60 60

178 evaluation

Having connected the descriptions to their corresponding activities
in the process model, the part-of-speech tagging facilities provided by
the Stanford POS tagger was used to automatically extract the poten-
tial business objects from the activity descriptions. Once the process
model activities were annotated with the potential business object
stemming from the work instructions, we turned to the second step
of the label analysis approach. In this step, the ProM plug–in also
extracted the potential business objects from the event classes and au-
tomatically matched events and activities on type level as described
in Section 6.4.

In order to assess (1) the effectiveness of the label analysis ap-
proach, we measure the recall as the number of correctly matched
event–activity pairs divided by all manually matched event–activity
pairs. From Figure 92 it can be seen that a high recall of 70 % and
86 % is achieved. Figure 93 shows the number of correctly identi-
fied event–activity relations. We distinguish between the two types
of provenance for a match: the activity name and the description.
For both processes, it can be seen that the external knowledge, i.e.,
the description, accounts for a significantly higher share of correctly
identified event–activity relations.

Looking at (2) the efficiency of the label analysis approach, we mea-
sure the precision as the number of correctly matched event–activity
pairs divided by all matched pairs. While the recall is satisfying, Fig-
ure 92 shows that precision is in a lower range. For the incident
process, the precision of 28.62 % is mainly caused by matches that
are based on the additional activity descriptions. Here, we achieve a
precision of 26.48 % while the precision of matches on the activity
names is high with 64.29 %. The precision for the change process is
with 42.58 % substantially higher than the precision for the incident
process. Here, the difference between the precision for matches on ac-
tivity names and matches on the annotated description texts is small.
However, description matches account for most of the overall recall,
which yields with 70 % and 86.09 % a good result from a practical
perspective.

70,00%	

28,62%	

64,29%	

26,48%	

86,09%	

42,58%	
 48,48%	
 42,36%	

0%	

20%	

40%	

60%	

80%	

100%	

Recall	
 Overall	

Precision	

Ac<vity	
 Name	

Match	
 Precision	

Descrip<on	

Match	
 Precision	

Incident	
 Change	

Figure 92: Recall and precision for auto-
mated matching.

16	

380	

9	

68	

0	

100	

200	

300	

400	

Ac,vity	
 name	
 Descrip,on	

Incident	
 Change	

Figure 93: Correct
matches by
provenance.

8.4 evaluation of the label analysis approach 179

We also investigated why certain event–activity relations were not
found. It turned out that the main reason is that the sub–activities
represented by the events where not documented in the work instruc-
tions. Some of these are simply missed out and need to be updated
in the description. Here, the approach helped in identifying gaps
in the documentation. The other fraction of the undocumented re-
lations are steps that are automatically executed by the system and
are therefore missing in the documentation. Future research might
investigate in how far such relations can be retrieved from existing
software documentations. Beside the undocumented relations, there
are two other minor reasons why relations could not be found. First,
some relations can only be found by interpreting event attributes. For
example there is an event class “Kommunikationsprotokoll” (commu-
nication protocol), which contains all events for sent e-mail messages.
Looking at the subjects of these messages, which are most often stan-
dardized, one could derive further relations. We also encountered
one case where the relation could have been established using a verb
instead of a business object. However, we did not include verbs in
our approach as their inclusion leads to a drastic increase in false
positives. Finally, we encountered some mappings that could have
been found using synonym relations. However, these synonyms are
of a domain-specific nature and not covered in general-purpose tools
like WordNet.

8.4.3 Summary and Discussion

In this section, the label analysis approach has been evaluated re-
garding (1) effectiveness and (2) efficiency. We therefore employed the
metrics of recall and precision on the matching of our two case studies
from ITIL processes of a large German outsourcing company. The pro-
cess models of the change management and the incident management
were annotated with descriptions stemming from work instructions.

Concerning (1) effectiveness, the label analysis approach yielded a
recall of 70 % for the incident process and 86 % for the change pro-
cess. These are satisfying results from a practical perspective since the
majority of relations could be derived automatically using label anal-
ysis. Our analysis revealed that for both processes the recall heavily
profited from the additional descriptions with which we annotated
the activities.

The precision, with which we measured (2) efficiency, turned out to
be not as good as the recall. Overall, the label analysis approach re-
sulted in a precision of about 29 % for the incident process and 43 %
for the change process. A deeper analysis brought to light that the
additional descriptions are mainly responsible for the poor precision
results. Looking at the activity labels only, we obtain precision results
of 48 % and 64 %. Hence, the additional descriptions proved to be

180 evaluation

good and bad at the same time. While the recall significantly profits
from these descriptions, the precision is negatively influenced by too
many false positives stemming from annotated descriptions.

While the evaluation shows that our approach works good in de-
tecting the relations and gives a satisfying recall for the found event–
activity relations, the low precision still leaves the user with a certain
amount of wrong relations that need to be sorted out. Here further
research is needed to increase precision and to develop methods to
make the sorting out more efficient, e.g., by guiding the user in some
way. One means of guidance could be the ranking of the results. A
ranking could be used to filter out only the most relevant matchings
and to present the results in a sorted list where the analyst is likely
to find the correct matches within the upper part of the list. Thereby,
the analyst may not be required to go through all found relations.

Another way to improve the recall could be to exclude certain
words from the matching that potentially lead to many false posi-
tives. To this end, metrics such as term frequency–inverse document
frequency (tf-idf) may be used. The tf-idf metric sets the frequency
of a term in a document in relation to its inverse frequency in all
documents [79, p. 177ff]. In our context, a document refers to a label
or a description and a term is a business object. Terms with a low
tf-idf score are likely to be very common words that should rather
not be used for matching. Hence, common words can be identified
and excluded from the matching, potentially leading to fewer false
positives.

Although the recall of the label analysis approach is already quite
good, there is still room for improvement. Our analysis revealed that
for some events and activities the extraction and use of verbs from
the labels and descriptions would improve the recall. Especially in
the light of low precision, the use of verbs needs further research. A
potential research direction may look into the use of ontologies such
as WordNet in order to derive the degree of specialization of a verb.
Leopold et al. investigate in [72] different strategies that are partially
based on WordNet to derive the granularity of a process model. Sim-
ilarly, Klinkemüller et al. [67] use label specificity as indicator for the
matching of process model elements. Such strategies could also serve
as a basis for pruning in the context of the label–based matching.
Analyzing the degree of verb specialization with respect to correct
matchings and false positives may lead to valuable insights for the
employment of verbs in the matching.

Furthermore, general purpose ontologies such as WordNet as well
as domain-specific ontologies may be leveraged to use synonyms to
further increase the recall. Again, the degree of specialization should
be taken into account in the analysis of these additional sources.

8.5 evaluation of the integrated approach 181

8.5 evaluation of the integrated approach

8.5.1 Evaluation Goals and Setting

In this section, we evaluate the integrated approach for the matching
of events and activities, which uses a combination of the behavioral
approaches and the label analysis approach. Again, we only focus on
the type–level matching as the other parts of the approach have been
already evaluated in Section 8.2.

Similar to the course of the evaluation of the behavioral approaches
in section Section 8.3, this section evaluates (1) the effectiveness and
(2) the efficiency of the integrated approach. For the evaluation of
efficiency we will assess both the number of questions required as
well as the number of potential mapping activities for an event class.
Thereby, we investigate whether the integrated approach provides an
advantage over the independent use of a behavioral matching. Finally,
we will also report on (3) handling of noise and (4) performance. We
refer to the previous section for the definition of these metrics.

Due to the fact that the label analysis approach requires activity
and event labels in natural language, the BIT process library cannot
be used for this evaluation. The approaches based on behavior on
the other hand require a certain minimum conformance and do not
support shared functionalities. Therefore, the two real life case studies
that have been used for the evaluation of the base approach and the la-
bel analysis approach can also not directly be used. In order to enable
the integrated approach, we extract a sub-process of the change man-
agement process which was known to be very structured and there-
fore most likely to fulfill the conformance criteria. The extraction both
from the process model and event logs could be performed easily. In
the process model, the handling of standard changes is split from the
general processing very early by using an XOR gateway. Hence, it is
straightforward to remove all unnecessary activities from the process
model to arrive at a new model that only contains the handling of
standard changes. This process model contains seven activities. The
filtering of the event log data is also straightforward as standard
change cases were already marked by a trace attribute. Removing all
traces that do not contain the term “STANDARD CHANGE” in the
respective trace attribute from the change process event log, LChgFull,
leads to a new event log LStdChgFull. This event log contains 649 traces.
In order to clean the event log from shared functionalities, the pro-
cess owner manually identified them. Next the events with shared
activities have been either removed from the event log or a simple in-
termediate mapping has been defined that lifts the identifying event
attributes to the class name level. For example for the events of the sta-
tus event class, the process manager identified a few important status
changes that needed to be kept and defined simple mappings that

182 evaluation

lift the “value” attribute to the event class level by defining simply
mappings. For example, events of the class “Status changed” where
the attribute “value” equals to “waiting” have been mapped to a new
event class “Status changed waiting” using the mapping techniques
of the base approach.

With the goal of meeting the minimum conformance requirements
from the behavioral approaches, two more preprocessing steps were
performed. First, all incomplete traces were identified and removed.
The identification of complete traces could easily be performed by
checking if an event of the class “Status changed closed” occurred.
Second, we filtered out those variants that included only one case and
only kept those with at least two traces. This resulted in a new event
log, LStdChg, which contains 364 traces with 5,194 event instances of
14 different event classes. With this event log we performed the type–
level matching using the integrated approach and evaluated the afore-
mentioned metrics. The next section will report the results from the
matching.

8.5.2 Results

The first steps in the integrated approach are formed by the concur-
rent creation of the two potential activity event class relations. From
these two relations, the one created by the selected behavioral ap-
proach is used as base relation, while the other one produced by the
label analysis approach is used as filter relation.

Starting with the results for (1) the effectiveness of the integrated
approach, we concentrate on the creation of the base relation because
this relation is the critical element. If and only if this relation contains
the correct mapping, the approach can effectively solve the matching.
We therefore assess which configuration of the behavioral approaches
is able to solve the matching correctly. In order to do this, the process
manager provided a manual mapping that serves as gold standard
against which we check, whether the derived type level mapping is
correct or not. If it is not correct, we determine the constraints that are
conflicting with the gold standard mapping. As the replay approach
does not support one-to-many relations and the event log contains
14 event classes for seven activities in the process model, we can only
use the Declare and the behavioral profile approach for the type–level
matching to generate the base relation for the integrated approach.

Figures 94 and 95 provide the number of incorrect constraints for
each of the previously selected configurations. Two configurations of
the behavioral profile approach do not contain any wrong constraints
and are therefore able to solve the CSP. All other configurations of the
behavioral profile approach fail due to twelve incorrect co–occurrence
constraints. The reason for this is that there is one optional activity in
the standard change process model for which event instances of one

8.5 evaluation of the integrated approach 183

of the corresponding event classes are almost always present. This
event class represents the final measuring of time taken and belongs
to an optional quality assurance activity. As this time measurement is
performed in almost every case, co–occurrence relations are derived
with all event classes for which we also almost always see their event
instances. That is, event instances belonging to mandatory activities.
Nonetheless, these co–occurrence relations do not exist in the process
model since the quality assurance activity is optional and therefore is
not part of any co–occurrence relation.

All but interleaving

Basic

Direct followers

Interleaving

Relaxed co−occurrence

Relaxed strict order

0 1 2 3 4 5 6 7 8 9 10 11 12
Number of incorrect constraints

Constraint type
Co−occurrence constraints

Figure 94: Behavioral profile approach: Number of incorrect constraints by
type for the standard change mapping.

For the Declare approach the same incorrect co–occurrence con-
straints are derived. Additionally, this also leads to an incorrect par-
ticipation constraint as the time measurement event class is believed
to belong to a mandatory activity. While the alternative participation
constraint removes this incorrect constraint, it unfortunately produces
a different incorrect constraint, albeit, for a different event class. This
time a weakness of the alternative participation constraint is revealed.
The alternative participation constraint enforces that optional events
can only be mapped to optional activities. While this is perfectly fine
in a one-to-one setting, it does necessarily work for one-to-many rela-
tions between activities and events. In the latter setting there can be
optional events for a mandatory activity. Such cases lead to wrong
alternative participation constraints. For the standard change there is
an optional documentation field that can be filled during the manda-
tory documentation activity. The event class that reflects the editing
of this field leads to the incorrect alternative participation constraint.
Thus, none of the configurations of the Declare approach yield a cor-
rect mapping.

With the two configurations relaxed co–occurrence and all but inter-
leaving of the behavioral profile approach, the integrated approach
can be successfully applied. We will therefore proceed with these two
configurations and turn to the analysis of (2) the efficiency. Both con-
figurations lead to the same single question. The one event class for
which the analyst needs to decide the mapping activity can poten-

184 evaluation

All but interleaving

Alternative participation

Basic

Interleaving

Relaxed co−occurrence

Relaxed strict order

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of incorrect constraints

Constraint type
Co−occurrence constraints
Participation constraints

Figure 95: Declare approach: Number of incorrect constraints by type for
the standard change mapping.

tially belong to every activity. That is, the user is presented all seven
activities of the process model to choose from.

Yet, in the integrated approach, these seven activities are further-
more filtered using the potential activity event class relations derived
by the label analysis approach. This relation contains only two match-
ing activities for the event class in question. Due to the very good
recall of the label analysis approach, which is 86 % for the standard
change process, the correct activity is contained. Therefore, only two
activities need to be presented to the user, which is a substantial de-
crease from the seven activities that the independent behavioral pro-
file approach would have to present.

Finally, we turn to the inspection of (3) noise and (4) performance. As
we are looking at a real life event log from an IT system where the
designed process model is not enforced, it is very likely that the event
log contains some behavior that is not specified by the process model.
In order to inspect the amount of noise contained, we calculated the
constraint–relative behavioral profile conformance metric introduced
by Weidlich et al. [138]. For the preprocessed event log of the standard
change process an overall constraint–relative behavioral profile con-
formance of 91.87 is achieved. This proves that the filtered event log
still contains noise, which is successfully handled by the integrated
approach.

Regarding the performance of the integrated approach for type–
level matching, we measured the required time until the first question
is posed to the user. The behavioral profile approach took in both
configurations around 40 seconds to solve the initial CSP. A bit faster,
but quite similar, the label analysis approach took about 30 seconds to
deliver the potential activity event relations. As both run in parallel,
the waiting until the first user interaction has been 40 seconds. We
believe that this is still fast enough for the one time undertaking of
the type–level matching.

8.5 evaluation of the integrated approach 185

8.5.3 Summary and Discussion

This section provided an evaluation of the integrated approach using
a real life event log and its corresponding process model from the
standard change process. By integrating the approaches based on be-
havioral relations with the label analysis approach, we furthermore
evaluated both the behavioral profile and the Declare approach with
real life data.

Looking at the effectiveness, it turned out that the behavioral profile
approach with relaxed co–occurrence constraints is able to correctly
map the event classes of the given event log to the activities of the
standard change process model. The Declare approach, in contrast,
failed to provide the correct mapping due to a misleading participa-
tion constraint.

The (2) efficiency of the integrated approach has been tested using
the results from the behavioral profile approach and those of the la-
bel analysis approach. Only one question is required to perform the
mapping. While this question in the behavioral profile approach con-
tains seven different activities to choose from, the number of potential
activities can be drastically reduced when using the event–activity re-
lation provided by the label analysis as filtering relation. Finally, the
analyst has to choose between only two potential activities.

Again, we could show that the approaches are (3) robust towards
noise, since the given event log of the standard change log yields only
an overall constraint–relative behavioral profile conformance of 91.87.
The (4) performance of the type–level matching with the integrated
approach is measured by looking at the performance of the two inte-
grated approaches individually as both need to complete their calcu-
lations before the user interaction can be performed. With a duration
of 40 seconds for the slower behavioral profile approach, we believe
that the performance is at an acceptable level.

The evaluation of the integrated approach revealed that the partic-
ipation constraints may lead to conflicting results. Independent from
which variant of the participation constraint has been chosen — base
or alternative — one of the derived constraint stays in conflict with
the correct mapping. Hence, the participation constraint should be
made optional in future work. Then the impact of this optionality
should be evaluated on a large collection such as the BIT process
library.

Moreover, future work should investigate the integration of further
techniques to derive event-activity relations on type level, such as the
clustering approach derived by Li et al. in [75]. While such a cluster-
ing technique may not be sufficient as a base relation, it may be used
to derive a filtering relation. Besides investigating the integration of
other approaches, future research should also inspect how it is possi-

186 evaluation

ble to integrate more than two approaches and whether this proves
to be beneficial.

Multiple approaches — and thus, multiple perspectives — can be
of great help for the matching of different entities. Klinkmüller et al.
[67] introduce an iterative mixed–initiative approach that adapts the
matching of process model entities by leveraging the user’s feedback.
Future work should investigate if and how such an approach may be
adopted for the matching of events and activities.

While our evaluation shows promising results for the integrated ap-
proach, more case studies are required to fully evaluate the integrated
approach on real life data.

8.6 comparison of matching approaches

Having evaluated each of the different mapping approaches, this sec-
tion provides a final comparison based on the fulfillment of the nine
defined requirements. For those requirements where the approaches
differ in their implementation, we will furthermore elaborate on the
advantages and disadvantages of the different approaches.

Table 28 entails the comparison of the different introduced match-
ing approaches with respect to the fulfillment of the described re-
quirements from Section 2.4. A fulfilled requirement is marked with a
Xwhile a non-fulfilled requirement is indicated by a×. Requirements
that are generally met but impose further assumptions are marked
with a •. Overall, it can be seen that only the base approach and the
label analysis fulfill all requirements. The other approaches that rely
on comparing behavioral aspects are not able to handle shared func-
tionalities, missing events, or additional events. The replay approach
is also not able to handle hierarchical mappings since it only supports
one-to-one relations between activities and events.

Furthermore, the behavior based approaches make further assump-
tions for nonconforming event logs. That is, they all request a certain
minimal degree of conformance. For the replay approach the majority
of traces need to conform to the process model. For the approaches
based on behavioral relations, the used behavioral relations found in
the event log need to conform to those of the process model with at
least a defined minimum support. In our tests and experiments we
found 0.9 to be a good support value. Turning the constraint satisfac-
tion problems of the approaches based on behavioral relations into
optimization problems, looses this assumption, so that some of the
relations in the log may not conform. Yet, our validation and evalua-
tion showed that the optimization problems typically perform worse
due to their increased complexity.

Although the behavioral approaches do not fulfill all requirements,
they still provide substantial advantages over the base and the label
analysis approach when it comes to the required manual effort. Start-

8.6 comparison of matching approaches 187

Table 28: Comparison of requirement fulfillment for the different matching
approaches.

B
as

e
ap

pr
oa

ch
R

ep
la

y
ap

pr
oa

ch
B

eh
.r

el
.a

pp
ro

ac
he

s
La

be
l

an
al

ys
is

ap
pr

oa
ch

In
te

gr
at

ed
ap

pr
oa

ch

R1 (1:1 matching to activities) X X X X X

R2 (Different abstraction levels) X × X X X
R3 (Loops and parallelism) X X X X X

R4 (Shared functionalities) X × × X ×
R5 (Missing events) X × × X ×
R6 (Additional events) X × × X ×
R7 (1:1 matching to life cycle transitions) X X X X X

R8 (Hierarchical matching) X × X X X
R9 (Nonconforming execution) X • • X •

ing with Requirement R1 (1:1 matching to activities), we have shown
in the evaluation of the behavioral approaches that these are able to
significantly reduce the manual work of matching events and activ-
ities on type level. For the BIT process library, the replay approach
proved to be most efficient by handling more than 90 % of all event
logs where at most 75 % of the traces contain noise with at most
medium effort. Medium effort means that only for at most every sec-
ond event class the analyst needs to choose the correct activity. The
choice of the correct activity for an event class is furthermore eased
by showing only those activities that potentially lead to a correct map-
ping with respect to the built constraint satisfaction problem. What is
more, for those event logs with at most a noise level of 75 %, the re-
play approach handles almost two third of the matchings completely
automatically. Both the Declare approach and the approach based on
behavioral profiles cannot compete with the replay approach when
it comes to reducing manual work overall. Especially with increas-
ing noise these approaches show drastic decreases in their efficiency.
Nonetheless, there are certain processes that cannot be matched by
the replay approach, but are solved by the other approaches. Specifi-
cally when all traces in the event logs contain noise, the approaches
based on behavioral relations outperform the replay approach.

188 evaluation

The second requirement, R2 (Different abstraction levels), is not
fulfilled by the replay approach. The Declare approach and the ap-
proach based on behavioral profiles perform almost equally for event
logs that are on a lower abstraction level. Both manage to ease the
mapping for almost 40 % of the BIT event logs with no or little noise
and require at most medium effort for this share of matchings. In
the evaluation with the real life event log from the standard change
process, the behavioral profile approach is able to solve the matching
and requires only one question. When combined with the label anal-
ysis approach, this single question contains the choice between only
two activities. The Declare approach fails on this event log due to a
conflicting participation constraint.

The label analysis approach also reduces manual work when com-
pared to the base approach. In contrast to the behavioral approaches
it is completely robust towards noise since it does not consider any
behavioral aspects. Therefore, the label analysis approach could also
be applied to the other two real life case studies from the ITIL indus-
try. In these case studies the label analysis approach proved not only
to be beneficial for the mapping itself but also pointed the process
analysts to gaps in the process documentation.

For all other requirements that have not been discussed so far, all
approaches rely on the same techniques as the base approach and a
further comparison is not necessary. Summing up, we showed that all
of the approaches have their advantages and disadvantages based on
which requirements need to be fulfilled. In the one-to-one setting the
Replay approach proved to be best in reducing manual work when
not all traces contain noise. When all traces contain noise, the De-
clare approach should be considered. In the one-to-many setting, the
behavioral profile approach performed best when event logs contain
only little noise, especially, when being integrated with the label anal-
ysis approach. For more noisy event logs the label approach should
be considered in isolation when natural text labels are available.

9
C O N C L U S I O N

To conclude this thesis, we provide a summary of the results in Section 9.1.
Section 9.2 discusses the limitations of our work and outlines research directions

for future work.

9.1 summary of results

In this thesis, we introduced novel approaches for the preprocess-
ing of event logs for process mining analysis. Specifically, we tackled
the matching problem between activities from a process model and
events in an event log which is required especially for conformance
and performance analysis but also very beneficial for process discov-
ery. To this end, a novel approach has been introduced to perform
such a mapping and different means towards the automation of the
mapping have been proposed, validated and evaluated. In particular,
the results of this thesis can be summarized as follows.

• Requirements analysis. In order to provide a preprocessing for
process mining techniques, we first identified nine requirements
coming from literature as well as from the experiences in our
own case studies. In our literature review on related work, we
furthermore demonstrate that none of the currently available
mapping approaches is able to fulfill all these requirements.

• Formalization of the matching between events and activities. Coming
from the requirements analysis, a complete formalization of the
mapping problem is provided. To our best knowledge, this is
the first work to formalize the mapping of activities and events
in the required level of detail concerning all nine requirements.

• General approach for the matching of events and activities on type and
instance level. Based on the derived formalization, we come up
with our base approach for the mapping of activities and events.
The base approach is designed to fulfill all nine requirements
and operates on two levels: type and instance level. On the type
level, flexible concepts are provided to define context–sensitive
mappings that take attribute values as well as conditions for the
event context into account. These type–level mappings are man-
ually defined and then used to map events on the instance level
in an automated fashion. For the mapping on instance level, we
furthermore introduce the concept of activity instance borders,

189

190 conclusion

which are used to identify and separate different instances of an
activity from each other. These activity instance borders are em-
ployed by a tree-based incremental clustering algorithm for the
clustering of event instances to activity instances. In addition to
the activity instance border definitions, a flexible distance mea-
sure can be used for the clustering of activity instances. The
base approach has been evaluated in two industry case stud-
ies and proved to be a feasible mapping approach with correct
results. Our evaluation results furthermore highlight the impor-
tance of a correct mapping with respect to conformance and
performance results.

• Automated support of the type–level matching. Grounded on the
base approach, we introduce four innovative techniques to pro-
vide automation support for the type–level matching of activ-
ities and events. Three of these approaches utilize behavioral
aspects of event logs and process models to build a constraint
satisfaction problem (CSP) that narrows down potential map-
pings. Whenever a one-to-one mapping between events and ac-
tivities is given, our validation showed that the replay approach
proved to perform best when it comes to the reduction of man-
ual work. The replay approach handled almost two third of the
given event logs with up to 75 % noisy traces completely auto-
matically. In total, about 90 % of these logs were handled with
at most medium effort, which demonstrates a great reduction of
manual work. Only for very high levels of noise the Declare ap-
proach yields better efficiency results than the replay approach.
While the replay approach does not handle cases where event
log and process model are not on the same abstraction level,
the Declare and the behavioral profile approach do, with sim-
ilar performance for the matchings of the BIT process library.
Both approaches manage to create the mappings with at most
medium manual effort for almost 40 % of the event logs with
no or little noise. For higher noise levels, the approaches still
proved beneficial, yet, the manual work increases with increas-
ing noise. The usefulness of the behavioral profile approach has
also been demonstrated on a real life event log where 14 event
classes could be mapped to seven activities with only one ques-
tion. Finally, we introduced the label analysis approach, which
leverages natural language processing techniques and further
external knowledge from textual process documentations for
the matching. In contrast to the behavioral approaches, the la-
bel analysis approach is independent of the conformance of the
event log to the process model. The good performance of the
label analysis approach has been demonstrated in two industry
case studies.

9.2 limitations and future research 191

• Integrated approach. Finally, we provide a general approach for
the integration of different type–level matching techniques. The
integration leverages the results of two type–level matching ap-
proaches in order to reduce the amount of potential activities
between which an analyst has to choose when a manual deci-
sion is necessary for a particular event class. The evaluation on
a real life event log revealed that this can lead to drastic im-
provements. In that case the combination of behavioral profile
approach and label analysis led to a reduction from seven to
two activities, which is less than a third of the initial items to
choose between.

9.2 limitations and future research

While this thesis laid the groundwork for the matching of activities
and events, there are also limitations of our work that should be in-
vestigated and overcome in future work. This section summarizes the
limitations that have been found during our evaluation and gives an
outlook on potential research directions for future work.

Looking at the behavioral approaches, one of the current drawbacks is
that many-to-many relations are not yet supported. Combined with
different abstraction levels of event log and process model, shared
functionalities lead to a many-to-many relation between events and
activities. Due to this, the events of shared functionalities cannot be
handled easily. Future work should investigate how behavioral ap-
proaches, such as the Declare approach, can be extended to support
shared functionalities, i.e., cases in which a single event class can be
related to multiple activities. One way of tackling shared function-
alities in the behavioral approaches could be another preprocessing
step targeting at the discovery of shared functionalities. Once shared
activities are discovered, they can be removed in case they are not
necessary for the analysis. Otherwise, rules in the form of mappings
— as introduced in the base approach — can be used to make distinc-
tions for the events of a shared functionality. With these mappings a
preprocessing of the event log can be done before the actual matching
is carried out. This preprocessing is what we have already shown for
the standard change process in our evaluation in Section 8.5. More re-
search is required on how this could be standardized and supported
by automated techniques. Label analysis could potentially be used to
detect events that are likely to stem from shared functionalities.

Another way of handling shared functionalities is to restructure the
constraint satisfaction problem to support many-to-many relations.
While this could technically be done, it imposes different challenges
due to the fact that the already very large search space for the match-
ing problem grows drastically when many-to-many relations are pos-
sible. First, deriving all solutions to the CSP with reasonable resources

192 conclusion

becomes a lot harder. Second, more potential mappings lead to more
manual work where a process analyst has to sort out. New techniques
and constraints might be necessary to handle this.

Already when activities and events are in a one-to-one or one-to-
many relation, some of the event logs in our validation with the BIT
process library could not be solved with the given resources. Future
research needs to investigate how such cases can be handled. One
possibility is to find ways to minimize the search space before the
actual solving of the CSP. This can be done by limiting the domains
of the variables, i.e., by eliminating potential event–activity combi-
nations upfront. One way of doing this could be to use a positional
heuristic that, for example, only allows mappings between activities
that appear in the first half of the process model to events that always
appear in the first half of the traces. Once more, loops require special
attention for such a heuristic.

Moreover, further perspectives could be included in the creation
of a CSP. For example by including roles from the organizational
perspective. One could use the results of organizational mining or
existing knowledge about the roles that are assigned to the users of
an IT system to formulate further constraints. Such constraints could,
for example, allow only mappings between events and activities that
share the same executing role. When multiple IT systems are involved
in the execution of a process, the knowledge about which IT system
supports which activity and which event stems from which IT system
could be used to generate further constraints. Finally, also informa-
tion on how control–flow routing is done could be integrated to re-
trieve further constraints. To this end, DMN objects, such as decision
tables, could be leveraged to limit the number of activities to which
an event class can potentially map.

Regarding the label analysis approach, the precision turned out to
be a weak point. To this end, we propose to investigate metrics like tf-
idf in order to filter out common terms that lead to a high number of
matchings from which potentially many are false positives. Another
means towards handling the high number of resulting relations could
be the introduction of a ranking metric. Using a ranking, the analyst
could be provided only with those relations that are found to be most
relevant. Such an ordering could also directly be transferred to the
integrated approach.

Our evaluation also showed potential for the improvement of the
number of found event–activity relations for the label analysis ap-
proach. Here, the use of verbs and synonyms should be investigated
in future research. To this end, it is important to also keep a good bal-
ance of recall and precision as the increase of recall may come with
decrease of precision. One way of approaching this could be to look
at the different specialization levels of terms used for the matching

9.2 limitations and future research 193

and prioritize those that are more specific.

While this thesis already provides means towards a more auto-
mated matching, there are still two aspects left that need to be per-
formed completely manually: the creation of context conditions and
the assignment of activity instance border rules. Possibilities to sup-
port these tasks in an automated or semi–automated fashion should
be developed in future research. Classical methods from the data min-
ing field may be considered for the suggestions of context–sensitive
mappings. If an event class is identified as shared functionality, the
attribute data of its event instances may be used to apply classical
data mining techniques for classification. When the matching activi-
ties are known, k-means clustering could for example be applied to
separate the event instances into clusters where k equals the number
of activities to which the event class refers. Having these clusters, one
may derive mapping rules by looking for words or phrases that char-
acterize the instances of a single cluster. These rules can be presented
to the analyst for approval or modification.

Part IV

A P P E N D I X

A
R E S U LT S O F T H E D E C L A R E A P P R O A C H F O R T H E
O N E - T O - M A N Y M AT C H I N G

2−5

6−10

11−15

16−20

21−25

26−30

36−40

0 50 100 150
Number of event logs

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Solution category
solved correctly
constraint conflict
resource shortage

Figure 96: Declare approach with relaxed strict order constraints: Solution
categories by number of event classes for event logs without
noise in the one-to-many setting.

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Basic Alternative participation Interleaving

Relaxed co−occurrence Relaxed strict order All but interleaving
0

10

20

30

0

10

20

30

0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0

N
um

be
r

of
 q

ue
st

io
ns

Figure 97: Declare approach: Boxplots showing the number of required
questions for each noise level for each configuration in the one-
to-many setting.

197

198 results of the declare approach for the one-to-many matching

0

25

50

75

100

0% 25% 50% 75% 100%
Percentage of processes

P
er

ce
nt

ag
e

of
 n

oi
se

Number of questions
per event class

No manual effort
Low manual effort
Medium manual effort
High manual effort
Complete manual effort

Figure 98: Declare approach - basic configuration: Number of questions
per event class for each noise level in the one-to-many setting.

●●●●●

●●●

2−5

6−10

11−15

16−20

21−25

0 5 10 15 20
Number of questions

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Figure 99: Declare approach - basic configuration: Number of questions
per event class for event logs without noise in the one-to-many
setting.

2−5

6−10

11−15

16−20

21−25

25 50 75 100 125
Duration in seconds

N
um

be
r

of
 e

ve
nt

 c
la

ss
es

Figure 100: Declare approach - basic configuration: Duration of the one-
to-many matching depending on the noise level (without out-
liers).

0

25

50

75

100

10 20 30 40
Duration in seconds

N
oi

se
 le

ve
l

Figure 101: Declare approach - basic configuration: Duration of the match-
ing depending on the number of event classes (without out-
liers).

B I B L I O G R A P H Y

[1] Sven Abels and Axel Hahn. Pre-processing Text for Web Infor-
mation Retrieval Purposes by Splitting Compounds into their
Morphemes. In OSWIR, 2005.

[2] Krzysztof Apt. Principles of Constraint Programming. Cambridge
University Press, 2003. Cambridge Books Online.

[3] Abel Armas-Cervantes, Marlon Dumas, Luciano García-
Bañuelos, and Artem Polyvyanyy. On the suitability of gen-
eralized behavioral profiles for process model comparison. In
11th International Workshop on Web Services and Formal Methods
(WS-FM), 2014.

[4] R. A. Baeza-Yates and B.A. Ribeiro-Neto. Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

[5] Christel Baier and Joost-Pieter Katoen. Principles of model check-
ing. MIT Press, 2008.

[6] Thomas Baier and Jan Mendling. Bridging abstraction layers in
process mining by automated matching of events and activities.
In Business Process Management - 11th International Conference,
volume 8094 of Lecture Notes in Computer Science, pages 17–32.
Springer, 2013.

[7] Thomas Baier and Jan Mendling. Bridging abstraction layers
in process mining: Event to activity mapping. In Enterprise,
Business-Process and Information Systems Modeling - 14th Interna-
tional Conference, volume 147 of Lecture Notes in Business Infor-
mation Processing, pages 109–123. Springer, 2013.

[8] Thomas Baier, Jan Mendling, and Mathias Weske. Bridging ab-
straction layers in process mining. Information Systems, 46:123–
139, 2014.

[9] Thomas Baier, Andreas Rogge-Solti, Mathias Weske, and Jan
Mendling. Matching of events and activities - an approach
based on constraint satisfaction. In The Practice of Enterprise Mod-
eling - 7th IFIP WG 8.1 Working Conference, volume 197 of Lecture
Notes in Business Information Processing, pages 58–72. Springer,
2014.

[10] Thomas Baier, Claudio Di Ciccio, Jan Mendling, and Mathias
Weske. Matching of events and activities - an approach using
declarative modeling constraints. In Enterprise, Business-Process

199

200 bibliography

and Information Systems Modeling - 16th International Conference,
volume 214 of Lecture Notes in Business Information Processing,
pages 119–134. Springer, 2015.

[11] Thomas Baier, Andreas Rogge-Solti, Mathias Weske, and Jan
Mendling. Matching of events and activities - an approach
based on behavioral constraint satisfaction. In Proceedings of
the 30th Annual ACM Symposium on Applied Computing, pages
1225–1230. ACM, 2015.

[12] Seyed-Mehdi-Reza Beheshti, Boualem Benatallah, Hamid
R. Motahari Nezhad, and Sherif Sakr. A query language for
analyzing business processes execution. In BPM, pages 281–
297, 2011.

[13] Eike Best and Harro Wimmel. Structure theory of petri nets. T.
Petri Nets and Other Models of Concurrency, 7:162–224, 2013.

[14] Egon Börger and Bernhard Thalheim. Modeling workflows,
interaction patterns, web services and business processes: The
asm-based approach. In Abstract State Machines, B and Z, First
International Conference, ABZ 2008, London, UK, September 16-18,
2008. Proceedings, pages 24–38, 2008.

[15] R. P. Jagadeesh Chandra Bose and W. M. P. van der Aalst.
Abstractions in process mining: A taxonomy of patterns. In
BPM’2009, volume 5701 of LNCS, pages 159–175. Springer, 2009.

[16] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Pro-
cess diagnostics using trace alignment: Opportunities, issues,
and challenges. Inf. Syst., 37(2):117–141, 2012.

[17] R. P. Jagadeesh Chandra Bose, H. M. W. (Eric) Verbeek, and Wil
M. P. van der Aalst. Discovering hierarchical process models
using prom. volume 107 of LNBIP, pages 33–48. Springer, 2011.

[18] R. P. Jagadeesh Chandra Bose, Fabrizio Maria Maggi, and Wil
M. P. van der Aalst. Enhancing declare maps based on event
correlations. In BPM, pages 97–112, 2013.

[19] Melike Bozkaya, Joost Gabriels, and Jan Martijn E. M. van der
Werf. Process diagnostics: A method based on process mining.
In International Conference on Information, Process, and Knowledge
Management, eKNOW 2009, Cancun, Mexico, February 1-7, 2009,
pages 22–27, 2009.

[20] Moisés Castelo Branco, Javier Troya, Krzysztof Czarnecki,
Jochen Malte Küster, and Hagen Völzer. Matching business
process workflows across abstraction levels. In MoDELS, pages
626–641, 2012.

bibliography 201

[21] Martin Braschler and Bärbel Ripplinger. How Effective is Stem-
ming and Decompounding for German Text Retrieval? IR, 7

(3/4):291–316, September 2004.

[22] Carmen Bratosin, Natalia Sidorova, and Wil M. P. van der Aalst.
Distributed genetic process mining using sampling. In Parallel
Computing Technologies - 11th International Conference, PaCT 2011,
Kazan, Russia, September 19-23, 2011. Proceedings, pages 224–237,
2011.

[23] David Cannon and David Wheeldon. ITIL – Service Operation.
TSO, May 2007.

[24] Ugur Cayoglu, Remco M. Dijkman, Marlon Dumas, Peter
Fettke, Luciano García-Bañuelos, Philip Hake, Christopher
Klinkmüller, Henrik Leopold, André Ludwig, Peter Loos, Jan
Mendling, Andreas Oberweis, Andreas Schoknecht, Eitam
Sheetrit, Tom Thaler, Meike Ullrich, Ingo Weber, and Matthias
Weidlich. Report: The process model matching contest 2013. In
Business Process Management Workshops - BPM 2013 International
Workshops, Beijing, China, August 26, 2013, Revised Papers, pages
442–463, 2013.

[25] Claudio Di Ciccio, Massimo Mecella, and Jan Mendling. The
effect of noise on mined declarative constraints. unknown???,
2015.

[26] Diane J. Cook, Narayanan Chatapuram Krishnan, and Parisa
Rashidi. Activity discovery and activity recognition: A new
partnership. IEEE T. Cybernetics, 43(3):820–828, 2013.

[27] Ajantha Dahanayake, Richard J. Welke, and Gabriel Cavalheiro.
Improving the understanding of bam technology for real–time
decision support. Int. J. Bus. Inf. Syst., 7(1):1–26, December 2011.

[28] T.H. Davenport. Process Innovation: Reengineering Work Through
Information Technology. Harvard Business Review Press, 2013.

[29] Rob Davis and Eric Brabander. ARIS Design Platform - Getting
started with BPM. Springer, Berlin, 2007.

[30] H. de Beer. The LTL Checker Plugins: A Reference Manual.
Eindhoven University of Technology, Eindhoven, 2004.

[31] A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst,
and A. J. M. M. Weijters. Process mining: Extending the α-
algorithm to mine short loops. In Eindhoven University of Tech-
nology, Eindhoven, 2004.

[32] Ana Karla A. de Medeiros, A. J. M. M. Weijters, and Wil M. P.
van der Aalst. Genetic process mining: an experimental evalua-
tion. Data Min. Knowl. Discov., 14(2):245–304, 2007.

202 bibliography

[33] Tom Debevoise and James Taylor. The MicroGuide to Process Mod-
eling and Decision in BPMN/DMN. CreateSpace Independent
Publishing Platform, 2014.

[34] Gero Decker and Jan Mendling. Process instantiation. Data
Knowl. Eng., 68(9):777–792, 2009.

[35] Juliane Dehnert and Peter Rittgen. Relaxed soundness of busi-
ness processes. In KlausR. Dittrich, Andreas Geppert, and
MoiraC. Norrie, editors, Advanced Information Systems Engineer-
ing, volume 2068 of Lecture Notes in Computer Science, pages 157–
170. Springer Berlin Heidelberg, 2001.

[36] Claudio Di Ciccio and Massimo Mecella. A two-step fast algo-
rithm for the automated discovery of declarative workflows. In
CIDM, pages 135–142. IEEE, 2013.

[37] Claudio Di Ciccio and Massimo Mecella. Mining artful pro-
cesses from knowledge workers’ emails. IEEE Internet Comput-
ing, 17(5):10–20, 2013.

[38] Claudio Di Ciccio and Massimo Mecella. On the discovery of
declarative control flows for artful processes. ACM Trans. Man-
age. Inf. Syst., 5(4):24:1–24:37, 2015.

[39] R. M. Dijkman, M. Dumas, B. F. van Dongen, R. Käärik, and
J. Mendling. Similarity of Business Process Models: Metrics
and Evaluation. Information Systems, 36(2):498–516, 2011.

[40] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Se-
mantics and analysis of business process models in BPMN. In-
formation & Software Technology, 50(12):1281–1294, 2008.

[41] Remco M. Dijkman, Marlon Dumas, Luciano García-Bañuelos,
and Reina Käärik. Aligning business process models. In Pro-
ceedings of the 13th IEEE International Enterprise Distributed Object
Computing Conference, EDOC 2009, 1-4 September 2009, Auckland,
New Zealand, pages 45–53, 2009.

[42] Marlon Dumas, Wil M. P. van der Aalst, and A.H.M. ter Hofst-
ede. Process-Aware Information Systems. John Wiley & Sons, Inc.,
2005.

[43] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A.
Reijers. Fundamentals of Business Process Management. Springer,
2013.

[44] Robert Engel, Wil M. P. van der Aalst, Marco Zapletal, Chris-
tian Pichler, and Hannes Werthner. Mining inter-organizational
business process models from EDI messages: A case study from

bibliography 203

the automotive sector. In Advanced Information Systems Engineer-
ing - 24th International Conference, CAiSE 2012, Gdansk, Poland,
June 25-29, 2012. Proceedings, pages 222–237, 2012.

[45] Opher Etzion and Peter Niblett. Event Processing in Action. Man-
ning Publications Co., Greenwich, CT, USA, 1st edition, 2010.

[46] J. Euzenat and P. Shvaiko. Ontology Matching. Springer-Verlag,
2007.

[47] Dirk Fahland and Wil M. P. van der Aalst. Simplifying discov-
ered process models in a controlled manner. Inf. Syst., 38(4):
585–605, 2013.

[48] Dirk Fahland and Wil M. P. van der Aalst. Model repair - align-
ing process models to reality. Inf. Syst., 47:220–243, 2015.

[49] Dirk Fahland, Daniel Lübke, Jan Mendling, Hajo A. Reijers, Bar-
bara Weber, Matthias Weidlich, and Stefan Zugal. Declarative
versus imperative process modeling languages: The issue of un-
derstandability. In Enterprise, Business-Process and Information
Systems Modeling, 10th International Workshop, BPMDS 2009, and
14th International Conference, EMMSAD 2009, held at CAiSE 2009,
Amsterdam, The Netherlands, June 8-9, 2009. Proceedings, pages
353–366. 2009.

[50] Dirk Fahland, Jan Mendling, Hajo Reijers, Barbara Weber,
Matthias Weidlich, and Stefan Zugal. Declarative versus imper-
ative process modeling languages: The issue of maintainability.
In Business Process Management Workshops, pages 477–488, 2009.

[51] Dirk Fahland, Cédric Favre, Jana Koehler, Niels Lohmann, Ha-
gen Völzer, and Karsten Wolf. Analysis on demand: Instanta-
neous soundness checking of industrial business process mod-
els. Data & Knowledge Engineering, 70(5):448–466, 2011.

[52] Francesco Folino, Massimo Guarascio, and Luigi Pontieri. Min-
ing predictive process models out of low-level multidimen-
sional logs. In Advanced Information Systems Engineering - 26th
International Conference, CAiSE 2014, Thessaloniki, Greece, June 16-
20, 2014. Proceedings, pages 533–547, 2014.

[53] Eugene Freuder and Alan Mackworth. Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence,
chapter Constraint satisfaction: An emerging paradigm, pages
13–27. Elsevier, 2006.

[54] Kerstin Gerke, Jorge Cardoso, and Alexander Claus. Measuring
the compliance of processes with reference models. volume
5870 of LNCS, pages 76–93. Springer, 2009.

204 bibliography

[55] Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. Mining
taxonomies of process models. Data & Knowledge Engineering,
67(1):74–102, October 2008.

[56] The Object Management Group. Business Process
Modeling Notation (BPMN), version 2.0. available at:
http://www.omg.org/spec/BPMN/2.0/PDF, March 2011.
Version 2.0,.

[57] Christian W. Günther and Wil M. P. van der Aalst. Mining
activity clusters from low-level event logs. In BETA Working Pa-
per Series, volume WP 165. Eindhoven University of Technology,
2006.

[58] Christian W. Günther and Wil M. P. van der Aalst. Fuzzy min-
ing: adaptive process simplification based on multi-perspective
metrics. In BPM’2007, pages 328–343. Springer, 2007.

[59] Christian W. Günther, Anne Rozinat, and Wil M. P. van der
Aalst. Activity mining by global trace segmentation. In BPM
Workshops, pages 128–139, 2009.

[60] M. Hammer and J. Champy. Reengineering the Corporation: A
Manifesto for Business Revolution. Harper Business, 1993.

[61] Michael Hammer. What is business process management?
In Janvom Brocke and Michael Rosemann, editors, Handbook
on Business Process Management 1, International Handbooks on
Information Systems, pages 3–16. Springer Berlin Heidelberg,
2010.

[62] Nico Herzberg, Andreas Meyer, and Mathias Weske. An Event
Processing Platform for Business Process Management. In En-
terprise Distributed Object Computing Conference (EDOC), pages
107–116, Vancouver, 2013. IEEE.

[63] D. Jurafsky and J.H. Martin. Speech and language processing. Pren-
tice Hall, 2008.

[64] Narendra Jussien, Guillaume Rochart, and Xavier Lorca. Choco:
an open source java constraint programming library. In
CPAIOR’08 Workshop on Open-Source Software for Integer and Con-
traint Programming (OSSICP’08), pages 1–10, 2008.

[65] Kimmo Kettunen, Markus Sadeniemi, Tiina Lindh-Knuutila,
and Timo Honkela. Analysis of eu languages through text
compression. In FinTAL, volume 4139 of LNCS, pages 99–109.
Springer, 2006.

[66] Christopher Klinkmüller, Ingo Weber, Jan Mendling, Henrik
Leopold, and André Ludwig. Increasing recall of process model

bibliography 205

matching by improved activity label matching. In BPM, pages
211–218, 2013.

[67] Christopher Klinkmüller, Henrik Leopold, Ingo Weber, Jan
Mendling, and André Ludwig. Listen to me: Improving pro-
cess model matching through user feedback. In Business Process
Management - 12th International Conference, BPM 2014, Haifa, Is-
rael, September 7-11, 2014. Proceedings, pages 84–100, 2014.

[68] A. Knopfel, B. Grone, and P. Tabeling. Fundamental Modeling
Concepts: Effective Communication of IT Systems. Timely. practical.
reliable. Wiley, 2005.

[69] Matthias Kunze, Matthias Weidlich, and Mathias Weske. Be-
havioral similarity - a proper metric. In BPM, pages 166–181,
2011.

[70] Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst.
Discovering block-structured process models from incomplete
event logs. In Application and Theory of Petri Nets and Concurrency
- 35th International Conference, PETRI NETS 2014, Tunis, Tunisia,
June 23-27, 2014. Proceedings, pages 91–110, 2014.

[71] H. Leopold, M. Niepert, M. Weidlich, J. Mendling, R. Dijkman,
and H. Stuckenschmidt. Probabilistic optimization of semantic
process model matching. In BPM’2012, pages 319–334, 2012.

[72] Henrik Leopold, Fabian Pittke, and Jan Mendling. Towards
measuring process model granularity via natural language
analysis. In Business Process Management Workshops - BPM 2013
International Workshops, Beijing, China, August 26, 2013, Revised
Papers, pages 417–429, 2013.

[73] Henrik Leopold, Jan Mendling, Hajo A. Reijers, and Mar-
cello La Rosa. Simplifying process model abstraction: Tech-
niques for generating model names. Inf. Syst., 39:134–151, 2014.

[74] Jiafei Li, Dayou Liu, and Bo Yang. Process mining: Extend-
ing α-algorithm to mine duplicate tasks in process logs. In
KevinChen-Chuan Chang, Wei Wang, Lei Chen, ClarenceA. El-
lis, Ching-Hsien Hsu, AhChung Tsoi, and Haixun Wang, edi-
tors, Advances in Web and Network Technologies, and Information
Management, volume 4537 of Lecture Notes in Computer Science,
pages 396–407. Springer Berlin Heidelberg, 2007.

[75] Jiafei Li, RPJC Bose, and W. M. P. van der Aalst. Mining context-
dependent and interactive business process maps using exe-
cution patterns. In BPM’2010 Workshops, volume 66 of LNBIP,
pages 109–121. Springer, 2011.

206 bibliography

[76] Jiexun Li, HarryJiannan Wang, and Xue Bai. An intelligent
approach to data extraction and task identification for process
mining. Information Systems Frontiers, pages 1–14, 2015.

[77] Niels Lohmann, Eric Verbeek, and Remco M. Dijkman. Petri
net transformations for business processes - A survey. T. Petri
Nets and Other Models of Concurrency, 2:46–63, 2009.

[78] Fabrizio Maria Maggi, R. P. Jagadeesh Chandra Bose, and Wil
M. P. van der Aalst. Efficient discovery of understandable
declarative process models from event logs. In CAiSE, pages
270–285, 2012.

[79] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval. Cambridge Uni-
versity Press, New York, NY, USA, 2008.

[80] Ronny S Mans, MH Schonenberg, Minseok Song, Wil M. P.
van der Aalst, and Piet JM Bakker. Application of process mining
in healthcare–a case study in a dutch hospital. Springer, 2009.

[81] Tadao Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, 1989.

[82] Hamid R. Motahari Nezhad, Régis Saint-Paul, Fabio Casati, and
Boualem Benatallah. Event correlation for process discovery
from web service interaction logs. VLDB J., 20(3):417–444, 2011.

[83] Object Management Group (OMG). OMG Unified Modeling
Language (OMG UML): Superstructure, version 2.4.1. Available
at: http://www.omg.org/spec/UML/2.4.1/, August 2011. Ver-
sion 2.2, formal/2009-02-02, The Object Management Group.

[84] Object Management Group (OMG). Decision Model and Nota-
tion, November 2014.

[85] Ricardo Pérez-Castillo, Barbara Weber, Jakob Pinggera, Stefan
Zugal, Ignacio García Rodríguez de Guzmán, and Mario Piat-
tini. Generating event logs from non-process-aware systems
enabling business process mining. Enterprise IS, 5(3):301–335,
2011.

[86] Ricardo Pérez-Castillo, Barbara Weber, Ignacio García Ro-
dríguez de Guzmán, Mario Piattini, and Jakob Pinggera. As-
sessing event correlation in non-process-aware information sys-
tems. Software and System Modeling, 13(3):1117–1139, 2014.

[87] Maja Pesic. Constraint-Based Workfow Management Systems: Shift-
ing Control to Users. PhD thesis, Technische Universiteit Eind-
hoven, 2008.

http://www.omg.org/spec/UML/2.4.1/

bibliography 207

[88] Maja Pesic, M.H. Schonenberg, Natalia Sidorova, and Wil M. P.
van der Aalst. Constraint-based workflow models: Change
made easy. In OTM Conferences (1), pages 77–94, 2007.

[89] C.A. Petri. Fundamentals of a Theory of Asynchronous Infor-
mation Flow. In Proceedings of the Information Processing Congress
(IFIP Congress), August/September 1962.

[90] Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera, Jan
Mendling, and Hajo A. Reijers. Imperative versus declarative
process modeling languages: An empirical investigation. In
Business Process Management Workshops - BPM 2011 International
Workshops, Clermont-Ferrand, France, August 29, 2011, Revised Se-
lected Papers, Part I, pages 383–394, 2011.

[91] Amir Pnueli. The Temporal Logic of Programs. In Foundations
of Computer Science, pages 46–57, 1977.

[92] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. Pro-
cess Model Abstraction: A Slider Approach. In EDOC, pages
325–331. IEEE, 2008.

[93] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. On
application of structural decomposition for process model ab-
straction. In BPSC, pages 110–122, 2009.

[94] Artem Polyvyanyy, Matthias Weidlich, and Mathias Weske. Iso-
tactics as a foundation for alignment and abstraction of behav-
ioral models. In BPM, pages 335–351, 2012.

[95] Elham Ramezani, Dirk Fahland, and WilM.P. van der Aalst.
Where did i misbehave? diagnostic information in compliance
checking. In Alistair Barros, Avigdor Gal, and Ekkart Kindler,
editors, Business Process Management, volume 7481 of Lecture
Notes in Computer Science, pages 262–278. Springer Berlin Hei-
delberg, 2012.

[96] Hajo A. Reijers, Tijs Slaats, and Christian Stahl. Declarative
modeling: An academic dream or the future for bpm? In Pro-
ceedings of the 11th International Conference on Business Process
Management, BPM’13, pages 307–322, Berlin, Heidelberg, 2013.
Springer-Verlag.

[97] Wolfgang Reisig. Petri Nets: An Introduction. Springer-Verlag
New York, Inc., New York, NY, USA, 1985.

[98] Andreas Rogge-Solti and Mathias Weske. Prediction of remain-
ing service execution time using stochastic Petri nets with arbi-
trary firing delays. In Service-Oriented Computing, volume 8274

of LNCS, pages 389–403. Springer Berlin Heidelberg, 2013.

208 bibliography

[99] Marcello La Rosa, Johannes W. Lux, Stefan Seidel, Marlon Du-
mas, and Arthur H.M. ter Hofstede. Questionnaire-driven con-
figuration of reference process models. LNCS, pages 424–438,
2006.

[100] A. Rozinat and Wil M. P. van der Aalst. Conformance checking
of processes based on monitoring real behavior. Information
Systems, 33(1):64 – 95, 2008.

[101] Anne Rozinat and Wil M. P. van der Aalst. Decision mining
in prom. In Schahram Dustdar, José Luiz Fiadeiro, and Amit P.
Sheth, editors, Business Process Management, volume 4102 of Lec-
ture Notes in Computer Science, pages 420–425. Springer, 2006.

[102] Anne Rozinat, Ivo S. M. de Jong, Christian W. Günther, and Wil
M. P. van der Aalst. Process mining applied to the test process
of wafer scanners in ASML. IEEE Transactions on Systems, Man,
and Cybernetics, Part C, 39(4):474–479, 2009.

[103] Szabolcs Rozsnyai, Aleksander Slominski, and Geetika T.
Lakshmanan. Discovering event correlation rules for semi-
structured business processes. In DEBS, pages 75–86, 2011.

[104] Scheer, August-Wilhelm. ARIS - Modellierungsmethoden, Meta-
modelle, Anwendungen, 4th edition. Springer-Verlag, 2001.

[105] Robert M. Shapiro, Stephen A. White, Conrad Bock, Nathaniel
Palmer, Michael zur Muehlen, Marco Brambilla, and De-
nis Gagné et al. BPM 2.0 Handbook – Methods, Concepts,
Case Studies and Standards in Business Process Modeling Notation
(BPMN). Future Strategies Inc., 2nd edition edition, 2012.

[106] Sergey Smirnov, Hajo A. Reijers, and Mathias Weske. From fine-
grained to abstract process models: A semantic approach. Inf.
Syst., 37(8):784–797, 2012.

[107] Sergey Smirnov, Matthias Weidlich, and Jan Mendling. Busi-
ness process model abstraction based on synthesis from well-
structured behavioral profiles. Int. J. Cooperative Inf. Syst., 21(1):
55–83, 2012.

[108] H. Smith and P. Fingar. Business Process Management: The Third
Wave. Meghan-Kiffer Press, 2007.

[109] H. Stachowiak. Allgemeine Modelltheorie. Springer-Verlag, 1973.

[110] Mirko Steinle, Karl Aberer, Sarunas Girdzijauskas, and Chris-
tian Lovis. Mapping moving landscapes by mining mountains
of logs: Novel techniques for dependency model generation. In
VLDB, pages 1093–1102, 2006.

bibliography 209

[111] P. S. Thiagarajan and Klaus Voss. In praise of free choice nets.
In Advances in Petri Nets 1984, European Workshop on Applications
and Theory in Petri Nets, covers the last two years which include
the workshop 1983 in Toulouse and the workshop 1984 in Aarhus,
selected papers, pages 438–454, 1984.

[112] K. Toutanova and Ch. D. Manning. Enriching the Knowledge
Sources Used in a Maximum Entropy Part-of-Speech Tagger.
EMNLP, pages 63–70, 2000.

[113] W. M. P. van der Aalst and A. J. M. M. Weijters. Process mining:
a research agenda. Computers in Industry, 53, April 2004.

[114] Wil M. P. van der Aalst. Verification of workflow nets. In
ICATPN, volume 1248 of LNCS, pages 407–426. Springer, 1997.

[115] Wil M. P. van der Aalst. The application of petri nets to work-
flow management. Journal of Circuits, Systems, and Computers, 8

(1):21–66, 1998.

[116] Wil M. P. van der Aalst. Process-aware information systems:
Lessons to be learned from process mining. T. Petri Nets and
Other Models of Concurrency, 2:1–26, 2009.

[117] Wil M. P. van der Aalst. Process mining: Discovering and im-
proving spaghetti and lasagna processes. In Computational Intel-
ligence and Data Mining (CIDM), 2011 IEEE Symposium on. IEEE,
2011.

[118] Wil M. P. van der Aalst. Process Mining: Discovery, Conformance
and Enhancement of Business Processes. Springer, 1st edition, 2011.

[119] Wil M. P. van der Aalst and S. Jablonski. Dealing with workflow
change: identification of issues and solutions. International Jour-
nal of Computer Systems Science and Engineering, 15(5):267–276,
September 2000.

[120] Wil M. P. van der Aalst and Maja Pesic. DecSerFlow: Towards a
truly declarative service flow language. In WS-FM, pages 1–23,
2006.

[121] Wil M. P. van der Aalst and K. van Hee. Workflow Management:
Models, Methods, and Systems. Number 0262720469. The MIT
Press, 1 edition, 2002.

[122] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias
Weske. Business process management: A survey. In Business Pro-
cess Management, International Conference, BPM 2003, Eindhoven,
The Netherlands, June 26-27, 2003, Proceedings, pages 1–12, 2003.

210 bibliography

[123] Wil M. P. Van der Aalst, Ton Weijters, and Laura Maruster.
Workflow mining: Discovering process models from event logs.
IEEE Transactions on Knowledge and Data Engineering, 16(9):1128–
1142, 2004.

[124] Wil M. P. van der Aalst, H. T. de Beer, and Boudewijn F. van
Dongen. Process mining and verification of properties: An ap-
proach based on temporal logic. In OTM Conferences (1), volume
3760 of LNCS, pages 130–147. Springer, 2005.

[125] Wil M. P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F.
van Dongen, A.K. Alves de Medeiros, M. Song, and H.M.W.
Verbeek. Business process mining: An industrial application.
Information Systems, 32(5):713 – 732, 2007.

[126] Wil M. P. van der Aalst, M. Pesic, and H. Schonenberg. Declar-
ative workflows: Balancing between flexibility and support.
Computer Science - Research and Development, 23:99–113, 2009.
10.1007/s00450-009-0057-9.

[127] Wil M. P. van der Aalst, Arya Adriansyah, Ana Karla Alves
de Medeiros, Franco Arcieri, Thomas Baier, Tobias Blickle,
R. P. Jagadeesh Chandra Bose, Peter van den Brand, Ronald
Brandtjen, Joos C. A. M. Buijs, Andrea Burattin, Josep Car-
mona, Malú Castellanos, Jan Claes, Jonathan Cook, Nicola
Costantini, Francisco Curbera, Ernesto Damiani, Massimiliano
de Leoni, Pavlos Delias, Boudewijn F. van Dongen, Marlon Du-
mas, Schahram Dustdar, Dirk Fahland, Diogo R. Ferreira, Walid
Gaaloul, Frank van Geffen, Sukriti Goel, Christian W. Günther,
Antonella Guzzo, Paul Harmon, Arthur H. M. ter Hofstede,
John Hoogland, Jon Espen Ingvaldsen, Koki Kato, Rudolf Kuhn,
Akhil Kumar, Marcello La Rosa, Fabrizio Maria Maggi, Do-
nato Malerba, R. S. Mans, Alberto Manuel, Martin McCreesh,
Paola Mello, Jan Mendling, Marco Montali, Hamid R. Mota-
hari Nezhad, Michael zur Muehlen, Jorge Munoz-Gama, Luigi
Pontieri, Joel Ribeiro, Anne Rozinat, Hugo Seguel Pérez, Ri-
cardo Seguel Pérez, Marcos Sepúlveda, Jim Sinur, Pnina Sof-
fer, Minseok Song, Alessandro Sperduti, Giovanni Stilo, Casper
Stoel, Keith D. Swenson, Maurizio Talamo, Wei Tan, Chris
Turner, Jan Vanthienen, George Varvaressos, Eric Verbeek, Marc
Verdonk, Roberto Vigo, Jianmin Wang, Barbara Weber, Matthias
Weidlich, Ton Weijters, Lijie Wen, Michael Westergaard, and
Moe Thandar Wynn. Process mining manifesto. In Business Pro-
cess Management Workshops - BPM 2011 International Workshops,
Clermont-Ferrand, France, August 29, 2011, Revised Selected Papers,
Part I, pages 169–194, 2011.

[128] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn van
Dongen. Replaying history on process models for conformance

bibliography 211

checking and performance analysis. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery, 2(2):182–192, March
2012.

[129] Wil M. PP van der Aalst, Vladimir Rubin, HMW Verbeek,
Boudewijn F van Dongen, Ekkart Kindler, and Christian W
Günther. Process mining: a two-step approach to balance be-
tween underfitting and overfitting. Software & Systems Modeling,
9(1):87–111, 2010.

[130] Boudewijn F. van Dongen, Ana Karla Alves de Medeiros,
H.M.W. Verbeek, A.J.M.M. Weijters, and Wil M. P. van der
Aalst. The ProM Framework: A New Era in Process Mining
Tool Support. In Gianfranco Ciardo and Philippe Darondeau,
editors, ICATPN, volume 3536 of Lecture Notes in Computer Sci-
ence, pages 444–454. Springer, 2005.

[131] Boudewijn F. van Dongen, Remco M. Dijkman, and Jan
Mendling. Measuring similarity between business process mod-
els. In Janis A. Bubenko Jr., John Krogstie, Oscar Pastor, Barbara
Pernici, Colette Rolland, and Arne Sølvberg, editors, Seminal
Contributions to Information Systems Engineering, pages 405–419.
Springer, 2013.

[132] Maikel L. van Eck, Xixi Lu, Sander J. J. Leemans, and Wil M. P.
van der Aalst. PM ˆ2 : A process mining project methodology.
In Advanced Information Systems Engineering - 27th International
Conference, CAiSE 2015, Stockholm, Sweden, June 8-12, 2015, Pro-
ceedings, pages 297–313, 2015.

[133] H. M. W. Verbeek, Joos C. A. M. Buijs, B.F. van Dongen, and
W. M. P. van der Aalst. XES, XESame, and ProM 6. In Wil M. P.
van der Aalst, John Mylopoulos, Norman M. Sadeh, Michael J.
Shaw, Clemens Szyperski, Pnina Soffer, and Erik Proper, edi-
tors, Information Systems Evolution, volume 72 of LNBIP, pages
60–75. Springer Verlag, 2011.

[134] Hagen Völzer. A new semantics for the inclusive converging
gateway in safe processes. In Business Process Management - 8th
International Conference, BPM 2010, Hoboken, NJ, USA, September
13-16, 2010. Proceedings, pages 294–309, 2010.

[135] M. Weidlich, R. M. Dijkman, and J. Mendling. The ICoP Frame-
work: Identification of Correspondences between Process Mod-
els. In CAiSE 2010, volume 6051 of LNCS, pages 483–498.
Springer, 2010.

[136] Matthias Weidlich, Mathias Weske, and Jan Mendling. Change
propagation in process models using behavioural profiles. In

212 bibliography

2009 IEEE International Conference on Services Computing (SCC
2009), 21-25 September 2009, Bangalore, India, pages 33–40, 2009.

[137] Matthias Weidlich, Felix Elliger, and Mathias Weske. Gener-
alised computation of behavioural profiles based on petri-net
unfoldings. In Web Services and Formal Methods - 7th International
Workshop, WS-FM 2010, Hoboken, NJ, USA, September 16-17, 2010.
Revised Selected Papers, pages 101–115, 2010.

[138] Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, Jan
Mendling, and Mathias Weske. Process compliance analysis
based on behavioural profiles. Information Systems, 36(7):1009 –
1025, 2011.

[139] Matthias Weidlich, Artem Polyvyanyy, Jan Mendling, and
Mathias Weske. Causal behavioural profiles - efficient compu-
tation, applications, and evaluation. Fundam. Inform., 113(3-4):
399–435, 2011.

[140] Matthias Weidlich, Remco Dijkman, and Mathias Weske. Be-
haviour Equivalence and Compatibility of Business Process
Models with Complex Correspondences. ComJnl, 2012.

[141] Matthias Weidlich, Tomer Sagi, Henrik Leopold, Avigdor Gal,
and Jan Mendling. Making process model matching work. In
Business Process Management - 11th International Conference, BPM
2013, Proceedings, LNCS. Springer, 2013.

[142] A. J. M. M. Weijters and J. T. S. Ribeiro. Flexible heuristics miner
(fhm). In CIDM, pages 310–317. IEEE, 2011.

[143] Mathias Weske. Business Process Management - Concepts, Lan-
guages, Architectures, 2nd Edition. Springer, 2nd edition, 2012.

[144] Roel J. Wieringa. Design Science Methodology for Information Sys-
tems and Software Engineering. Springer-Verlag, 2014.

[145] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2nd edition,
2005.

[146] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson,
Björn Regnell, and Anders Wesslén. Experimentation in Software
Engineering. Springer-Verlag Berlin Heidelberg, 2012.

[147] Karsten Wolf. Generating petri net state spaces. In Petri Nets and
Other Models of Concurrency - ICATPN 2007, 28th International
Conference on Applications and Theory of Petri Nets and Other Mod-
els of Concurrency, ICATPN 2007, Siedlce, Poland, June 25-29, 2007,
Proceedings, pages 29–42, 2007.

bibliography 213

[148] Peter Y. H. Wong and Jeremy Gibbons. A process semantics for
BPMN. In Formal Methods and Software Engineering, 10th Inter-
national Conference on Formal Engineering Methods, ICFEM 2008,
Kitakyushu-City, Japan, October 27-31, 2008. Proceedings, pages
355–374, 2008.

D E C L A R AT I O N

I hereby confirm that I have authored this thesis independently and
without use of others than the indicated sources. All passages which
are literally or in general matter taken out of publications or other
sources are marked as such. I am aware of the examination regula-
tions and this thesis has not been previously submitted elsewhere.

Potsdam, Germany, August 2015

Thomas Baier

	Title
	Imprint

	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Background
	1 Introduction
	1.1 Research Objective
	1.2 Contributions
	1.3 Structure of the Thesis

	2 Preliminaries and Related Work
	2.1 Business Process Management
	2.1.1 BPM Life Cycle
	2.1.2 Business Process Modeling
	2.1.3 Business Process Model and Notation
	2.1.4 Petri Nets
	2.1.5 Behavioral Profiles
	2.1.6 Declare
	2.1.7 Process Execution
	2.1.8 Process Mining
	2.1.8.1 Overview of Process Mining Techniques
	2.1.8.2 Fundamental Concepts of Process Mining

	2.2 Constraint Satisfaction Problem Solving
	2.3 Illustrating Examples
	2.3.1 An Order Process
	2.3.2 An Incident Management Process

	2.4 Requirements
	2.5 Related Work
	2.5.1 Approaches Working on Event Logs
	2.5.2 Approaches Working on Process Models
	2.5.3 Summary of Related Work

	Approaches to Match Events and Activities
	3 Base Approach
	3.1 Requirements and Assumptions
	3.2 The Matching Problem Formalized
	3.3 Phases of the Base Approach
	3.3.1 Matching of Activities and Events on Type Level
	3.3.2 Definition of Context–sensitive Mappings
	3.3.3 Transformation of the Event Log
	3.3.4 Clustering of Event Instances to Activity Instances

	3.4 Summary

	4 Approach Based on Log Replay
	4.1 Requirements and Assumptions
	4.2 Overview of the Replay Approach
	4.3 Reduction of Potential Event–Activity Mappings
	4.4 Selection of the Correct Type–level Mapping
	4.5 Summary

	5 Approaches Based on Behavioral Relations
	5.1 Requirements and Assumptions
	5.2 General Approach Based on Behavioral Relations
	5.3 Deriving Constraints from Behavioral Profiles
	5.4 Deriving Constraints from Declarative Constraints
	5.5 Constraints for Special Cases
	5.6 Solving the Constraint Satisfaction Problem
	5.7 Selection of the Correct Type–level Mapping
	5.8 Summary

	6 Approach Based on Label Analysis
	6.1 Requirements and Assumptions
	6.2 Overview of the Approach Based on Label Analysis
	6.3 Annotation of Process Model Activities
	6.4 Matching Activities and Events Based on Common Business Objects
	6.5 Summary

	7 Integrated Approach
	7.1 Requirements and Assumptions
	7.2 Generalized Integration of Multiple Type–level Matching Approaches
	7.3 Integrating the Declare and the Label Analysis Approach
	7.4 Summary

	Evaluation and Conclusion
	8 Evaluation
	8.1 Implementation
	8.2 Evaluation of the Base Approach
	8.2.1 Evaluation Goals and Setup
	8.2.2 Results for the Matching of Event Instances to Activity Life Cycle Transitions
	8.2.3 Results for the Activity Instance Clustering
	8.2.4 Summary and Discussion

	8.3 Evaluation of the Behavioral Approaches
	8.3.1 Evaluation Goals
	8.3.2 Evaluation Setup
	8.3.3 Results for the One-to-one Matching of Activities and Events
	8.3.3.1 Replay Approach
	8.3.3.2 Behavioral Profile Approach
	8.3.3.3 Declare Approach

	8.3.4 Results for the One-to-many Matching of Activities and Events
	8.3.4.1 Behavioral Profile Approach
	8.3.4.2 Declare Approach

	8.3.5 Summary and Discussion

	8.4 Evaluation of the Label Analysis Approach
	8.4.1 Evaluation Goals and Setting
	8.4.2 Results
	8.4.3 Summary and Discussion

	8.5 Evaluation of the Integrated Approach
	8.5.1 Evaluation Goals and Setting
	8.5.2 Results
	8.5.3 Summary and Discussion

	8.6 Comparison of Matching Approaches

	9 Conclusion
	9.1 Summary of Results
	9.2 Limitations and Future Research

	Appendix
	A Results of the Declare Approach for the One-to-many Matching
	Bibliography
	Declaration

