Source code for ot.sliced

"""
Sliced OT Distances

"""

# Author: Adrien Corenflos <adrien.corenflos@aalto.fi>
#         Nicolas Courty   <ncourty@irisa.fr>
#         Rémi Flamary <remi.flamary@polytechnique.edu>
#
# License: MIT License

import numpy as np
from .backend import get_backend, NumpyBackend
from .utils import list_to_array, get_coordinate_circle
from .lp import (
    wasserstein_circle,
    semidiscrete_wasserstein2_unif_circle,
    linear_circular_ot,
)


[docs] def get_random_projections(d, n_projections, seed=None, backend=None, type_as=None): r""" Generates n_projections samples from the uniform on the unit sphere of dimension :math:`d-1`: :math:`\mathcal{U}(\mathcal{S}^{d-1})` Parameters ---------- d : int dimension of the space n_projections : int number of samples requested seed: int or RandomState, optional Seed used for numpy random number generator backend: Backend to use for random generation Returns ------- out: ndarray, shape (d, n_projections) The uniform unit vectors on the sphere Examples -------- >>> n_projections = 100 >>> d = 5 >>> projs = get_random_projections(d, n_projections) >>> np.allclose(np.sum(np.square(projs), 0), 1.) # doctest: +NORMALIZE_WHITESPACE True """ if backend is None: nx = NumpyBackend() else: nx = backend if isinstance(seed, np.random.RandomState) and str(nx) == "numpy": projections = seed.randn(d, n_projections) else: if seed is not None: nx.seed(seed) projections = nx.randn(d, n_projections, type_as=type_as) projections = projections / nx.sqrt(nx.sum(projections**2, 0, keepdims=True)) return projections
[docs] def sliced_wasserstein_distance( X_s, X_t, a=None, b=None, n_projections=50, p=2, projections=None, seed=None, log=False, ): r""" Computes a Monte-Carlo approximation of the p-Sliced Wasserstein distance .. math:: \mathcal{SWD}_p(\mu, \nu) = \underset{\theta \sim \mathcal{U}(\mathbb{S}^{d-1})}{\mathbb{E}}\left(\mathcal{W}_p^p(\theta_\# \mu, \theta_\# \nu)\right)^{\frac{1}{p}} where : - :math:`\theta_\# \mu` stands for the pushforwards of the projection :math:`X \in \mathbb{R}^d \mapsto \langle \theta, X \rangle` Parameters ---------- X_s : ndarray, shape (n_samples_a, dim) samples in the source domain X_t : ndarray, shape (n_samples_b, dim) samples in the target domain a : ndarray, shape (n_samples_a,), optional samples weights in the source domain b : ndarray, shape (n_samples_b,), optional samples weights in the target domain n_projections : int, optional Number of projections used for the Monte-Carlo approximation p: float, optional Power p used for computing the sliced Wasserstein projections: shape (dim, n_projections), optional Projection matrix (n_projections and seed are not used in this case) seed: int or RandomState or None, optional Seed used for random number generator log: bool, optional if True, sliced_wasserstein_distance returns the projections used and their associated EMD. Returns ------- cost: float Sliced Wasserstein Cost log : dict, optional log dictionary return only if log==True in parameters Examples -------- >>> n_samples_a = 20 >>> X = np.random.normal(0., 1., (n_samples_a, 5)) >>> sliced_wasserstein_distance(X, X, seed=0) # doctest: +NORMALIZE_WHITESPACE 0.0 References ---------- .. [31] Bonneel, Nicolas, et al. "Sliced and radon wasserstein barycenters of measures." Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45 """ from .lp import wasserstein_1d X_s, X_t = list_to_array(X_s, X_t) if a is not None and b is not None and projections is None: nx = get_backend(X_s, X_t, a, b) elif a is not None and b is not None and projections is not None: nx = get_backend(X_s, X_t, a, b, projections) elif a is None and b is None and projections is not None: nx = get_backend(X_s, X_t, projections) else: nx = get_backend(X_s, X_t) n = X_s.shape[0] m = X_t.shape[0] if X_s.shape[1] != X_t.shape[1]: raise ValueError( "X_s and X_t must have the same number of dimensions {} and {} respectively given".format( X_s.shape[1], X_t.shape[1] ) ) if a is None: a = nx.full(n, 1 / n, type_as=X_s) if b is None: b = nx.full(m, 1 / m, type_as=X_s) d = X_s.shape[1] if projections is None: projections = get_random_projections( d, n_projections, seed, backend=nx, type_as=X_s ) else: n_projections = projections.shape[1] X_s_projections = nx.dot(X_s, projections) X_t_projections = nx.dot(X_t, projections) projected_emd = wasserstein_1d(X_s_projections, X_t_projections, a, b, p=p) res = (nx.sum(projected_emd) / n_projections) ** (1.0 / p) if log: return res, {"projections": projections, "projected_emds": projected_emd} return res
[docs] def max_sliced_wasserstein_distance( X_s, X_t, a=None, b=None, n_projections=50, p=2, projections=None, seed=None, log=False, ): r""" Computes a Monte-Carlo approximation of the max p-Sliced Wasserstein distance .. math:: \mathcal{Max-SWD}_p(\mu, \nu) = \underset{\theta _in \mathcal{U}(\mathbb{S}^{d-1})}{\max} [\mathcal{W}_p^p(\theta_\# \mu, \theta_\# \nu)]^{\frac{1}{p}} where : - :math:`\theta_\# \mu` stands for the pushforwards of the projection :math:`\mathbb{R}^d \ni X \mapsto \langle \theta, X \rangle` Parameters ---------- X_s : ndarray, shape (n_samples_a, dim) samples in the source domain X_t : ndarray, shape (n_samples_b, dim) samples in the target domain a : ndarray, shape (n_samples_a,), optional samples weights in the source domain b : ndarray, shape (n_samples_b,), optional samples weights in the target domain n_projections : int, optional Number of projections used for the Monte-Carlo approximation p: float, optional = Power p used for computing the sliced Wasserstein projections: shape (dim, n_projections), optional Projection matrix (n_projections and seed are not used in this case) seed: int or RandomState or None, optional Seed used for random number generator log: bool, optional if True, sliced_wasserstein_distance returns the projections used and their associated EMD. Returns ------- cost: float Sliced Wasserstein Cost log : dict, optional log dictionary return only if log==True in parameters Examples -------- >>> n_samples_a = 20 >>> X = np.random.normal(0., 1., (n_samples_a, 5)) >>> sliced_wasserstein_distance(X, X, seed=0) # doctest: +NORMALIZE_WHITESPACE 0.0 References ---------- .. [35] Deshpande, I., Hu, Y. T., Sun, R., Pyrros, A., Siddiqui, N., Koyejo, S., ... & Schwing, A. G. (2019). Max-sliced wasserstein distance and its use for gans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10648-10656). """ from .lp import wasserstein_1d X_s, X_t = list_to_array(X_s, X_t) if a is not None and b is not None and projections is None: nx = get_backend(X_s, X_t, a, b) elif a is not None and b is not None and projections is not None: nx = get_backend(X_s, X_t, a, b, projections) elif a is None and b is None and projections is not None: nx = get_backend(X_s, X_t, projections) else: nx = get_backend(X_s, X_t) n = X_s.shape[0] m = X_t.shape[0] if X_s.shape[1] != X_t.shape[1]: raise ValueError( "X_s and X_t must have the same number of dimensions {} and {} respectively given".format( X_s.shape[1], X_t.shape[1] ) ) if a is None: a = nx.full(n, 1 / n, type_as=X_s) if b is None: b = nx.full(m, 1 / m, type_as=X_s) d = X_s.shape[1] if projections is None: projections = get_random_projections( d, n_projections, seed, backend=nx, type_as=X_s ) X_s_projections = nx.dot(X_s, projections) X_t_projections = nx.dot(X_t, projections) projected_emd = wasserstein_1d(X_s_projections, X_t_projections, a, b, p=p) res = nx.max(projected_emd) ** (1.0 / p) if log: return res, {"projections": projections, "projected_emds": projected_emd} return res
[docs] def get_projections_sphere(d, n_projections, seed=None, backend=None, type_as=None): r""" Generates n_projections samples from the uniform distribution on the Stiefel manifold of dimension :math:`d\times 2`: :math:`\mathbb{V}_{d,2}=\{X \in \mathbb{R}^{d\times 2}, X^TX=I_2\}` Parameters ---------- d : int dimension of the space n_projections : int number of samples requested seed: int or RandomState, optional Seed used for numpy random number generator backend: Backend to use for random generation type_as: optional Type to use for random generation Returns ------- out: ndarray, shape (n_projections, d, 2) Examples -------- >>> n_projections = 100 >>> d = 5 >>> projs = get_projections_sphere(d, n_projections) >>> np.allclose(np.einsum("nij, nik -> njk", projs, projs), np.eye(2)) # doctest: +NORMALIZE_WHITESPACE True """ if backend is None: nx = NumpyBackend() else: nx = backend if isinstance(seed, np.random.RandomState) and str(nx) == "numpy": Z = seed.randn(n_projections, d, 2) else: if seed is not None: nx.seed(seed) Z = nx.randn(n_projections, d, 2, type_as=type_as) projections, _ = nx.qr(Z) return projections
[docs] def projection_sphere_to_circle( x, n_projections=50, projections=None, seed=None, backend=None ): r""" Projection of :math:`x\in S^{d-1}` on circles using coordinates on [0,1[. To get the projection on the circle, we use the following formula: .. math:: P^U(x) = \frac{U^Tx}{\|U^Tx\|_2} where :math:`U` is a random matrix sampled from the uniform distribution on the Stiefel manifold of dimension :math:`d\times 2`: :math:`\mathbb{V}_{d,2}=\{X \in \mathbb{R}^{d\times 2}, X^TX=I_2\}` and :math:`x` is a point on the sphere. Then, we apply the function get_coordinate_circle to get the coordinates on :math:`[0,1[`. Parameters ---------- x : ndarray, shape (n_samples, dim) samples on the sphere n_projections : int, optional Number of projections used for the Monte-Carlo approximation projections: shape (n_projections, dim, 2), optional Projection matrix (n_projections and seed are not used in this case) seed: int or RandomState or None, optional Seed used for random number generator backend: Backend to use for random generation Returns ------- Xp_coords: ndarray, shape (n_projections, n_samples) Coordinates of the projections on the circle """ if backend is None: nx = get_backend(x) else: nx = backend n, d = x.shape if projections is None: projections = get_projections_sphere( d, n_projections, seed=seed, backend=nx, type_as=x ) # Projection on S^1 # Projection on plane Xp = nx.einsum("ikj, lk -> ilj", projections, x) # Projection on sphere Xp = Xp / nx.sqrt(nx.sum(Xp**2, -1, keepdims=True)) # Get coordinates on [0,1[ Xp_coords = nx.reshape( get_coordinate_circle(nx.reshape(Xp, (-1, 2))), (n_projections, n) ) return Xp_coords, projections
[docs] def sliced_wasserstein_sphere( X_s, X_t, a=None, b=None, n_projections=50, p=2, projections=None, seed=None, log=False, ): r""" Compute the spherical sliced-Wasserstein discrepancy. .. math:: SSW_p(\mu,\nu) = \left(\int_{\mathbb{V}_{d,2}} W_p^p(P^U_\#\mu, P^U_\#\nu)\ \mathrm{d}\sigma(U)\right)^{\frac{1}{p}} where: - :math:`P^U_\# \mu` stands for the pushforwards of the projection :math:`\forall x\in S^{d-1},\ P^U(x) = \frac{U^Tx}{\|U^Tx\|_2}` The function runs on backend but tensorflow and jax are not supported. Parameters ---------- X_s: ndarray, shape (n_samples_a, dim) Samples in the source domain X_t: ndarray, shape (n_samples_b, dim) Samples in the target domain a : ndarray, shape (n_samples_a,), optional samples weights in the source domain b : ndarray, shape (n_samples_b,), optional samples weights in the target domain n_projections : int, optional Number of projections used for the Monte-Carlo approximation p: float, optional (default=2) Power p used for computing the spherical sliced Wasserstein projections: shape (n_projections, dim, 2), optional Projection matrix (n_projections and seed are not used in this case) seed: int or RandomState or None, optional Seed used for random number generator log: bool, optional if True, sliced_wasserstein_sphere returns the projections used and their associated EMD. Returns ------- cost: float Spherical Sliced Wasserstein Cost log: dict, optional log dictionary return only if log==True in parameters Examples -------- >>> n_samples_a = 20 >>> X = np.random.normal(0., 1., (n_samples_a, 5)) >>> X = X / np.sqrt(np.sum(X**2, -1, keepdims=True)) >>> sliced_wasserstein_sphere(X, X, seed=0) # doctest: +NORMALIZE_WHITESPACE 0.0 References ---------- .. [46] Bonet, C., Berg, P., Courty, N., Septier, F., Drumetz, L., & Pham, M. T. (2023). Spherical sliced-wasserstein. International Conference on Learning Representations. """ d = X_s.shape[-1] if a is not None and b is not None: nx = get_backend(X_s, X_t, a, b) else: nx = get_backend(X_s, X_t) if X_s.shape[1] != X_t.shape[1]: raise ValueError( "X_s and X_t must have the same number of dimensions {} and {} respectively given".format( X_s.shape[1], X_t.shape[1] ) ) if nx.any(nx.abs(nx.sum(X_s**2, axis=-1) - 1) > 10 ** (-4)): raise ValueError("X_s is not on the sphere.") if nx.any(nx.abs(nx.sum(X_t**2, axis=-1) - 1) > 10 ** (-4)): raise ValueError("X_t is not on the sphere.") if projections is None: projections = get_projections_sphere( d, n_projections, seed=seed, backend=nx, type_as=X_s ) Xps_coords, _ = projection_sphere_to_circle( X_s, n_projections=n_projections, projections=projections, seed=seed, backend=nx ) Xpt_coords, _ = projection_sphere_to_circle( X_t, n_projections=n_projections, projections=projections, seed=seed, backend=nx ) projected_emd = wasserstein_circle( Xps_coords.T, Xpt_coords.T, u_weights=a, v_weights=b, p=p ) res = nx.mean(projected_emd) ** (1 / p) if log: return res, {"projections": projections, "projected_emds": projected_emd} return res
[docs] def sliced_wasserstein_sphere_unif( X_s, a=None, n_projections=50, projections=None, seed=None, log=False ): r"""Compute the 2-spherical sliced wasserstein w.r.t. a uniform distribution. .. math:: SSW_2(\mu_n, \nu) where - :math:`\mu_n=\sum_{i=1}^n \alpha_i \delta_{x_i}` - :math:`\nu=\mathrm{Unif}(S^{d-1})` Parameters ---------- X_s: ndarray, shape (n_samples_a, dim) Samples in the source domain a : ndarray, shape (n_samples_a,), optional samples weights in the source domain n_projections : int, optional Number of projections used for the Monte-Carlo approximation projections: shape (n_projections, dim, 2), optional Projection matrix (n_projections and seed are not used in this case) seed: int or RandomState or None, optional Seed used for random number generator log: bool, optional if True, sliced_wasserstein_distance returns the projections used and their associated EMD. Returns ------- cost: float Spherical Sliced Wasserstein Cost log: dict, optional log dictionary return only if log==True in parameters Examples --------- >>> np.random.seed(42) >>> x0 = np.random.randn(500,3) >>> x0 = x0 / np.sqrt(np.sum(x0**2, -1, keepdims=True)) >>> ssw = sliced_wasserstein_sphere_unif(x0, seed=42) >>> np.allclose(sliced_wasserstein_sphere_unif(x0, seed=42), 0.01734, atol=1e-3) True References: ----------- .. [46] Bonet, C., Berg, P., Courty, N., Septier, F., Drumetz, L., & Pham, M. T. (2023). Spherical sliced-wasserstein. International Conference on Learning Representations. """ d = X_s.shape[-1] if a is not None: nx = get_backend(X_s, a) else: nx = get_backend(X_s) if nx.any(nx.abs(nx.sum(X_s**2, axis=-1) - 1) > 10 ** (-4)): raise ValueError("X_s is not on the sphere.") if projections is None: projections = get_projections_sphere( d, n_projections, seed=seed, backend=nx, type_as=X_s ) Xps_coords, _ = projection_sphere_to_circle( X_s, n_projections=n_projections, projections=projections, seed=seed, backend=nx ) projected_emd = semidiscrete_wasserstein2_unif_circle(Xps_coords.T, u_weights=a) res = nx.mean(projected_emd) ** (1 / 2) if log: return res, {"projections": projections, "projected_emds": projected_emd} return res
[docs] def linear_sliced_wasserstein_sphere( X_s, X_t=None, a=None, b=None, n_projections=50, projections=None, seed=None, log=False, ): r"""Computes the linear spherical sliced wasserstein distance from :ref:`[79] <references-lssot>`. General loss returned: .. math:: \mathrm{LSSOT}_2(\mu, \nu) = \left(\int_{\mathbb{V}_{d,2}} \mathrm{LCOT}_2^2(P^U_\#\mu, P^U_\#\nu)\ \mathrm{d}\sigma(U)\right)^{\frac12}, where :math:`\mu,\nu\in\mathcal{P}(S^{d-1})` are two probability measures on the sphere, :math:`\mathrm{LCOT}_2` is the linear circular optimal transport distance, and :math:`P^U_\# \mu` stands for the pushforwards of the projection :math:`\forall x\in S^{d-1},\ P^U(x) = \frac{U^Tx}{\|U^Tx\|_2}`. Parameters ---------- X_s: ndarray, shape (n_samples_a, dim) Samples in the source domain X_t: ndarray, shape (n_samples_b, dim), optional Samples in the target domain. If None, computes the distance against the uniform distribution on the sphere. a : ndarray, shape (n_samples_a,), optional samples weights in the source domain b : ndarray, shape (n_samples_b,), optional samples weights in the target domain n_projections : int, optional Number of projections used for the Monte-Carlo approximation projections: shape (n_projections, dim, 2), optional Projection matrix (n_projections and seed are not used in this case) seed: int or RandomState or None, optional Seed used for random number generator log: bool, optional if True, linear_sliced_wasserstein_sphere returns the projections used and their associated LCOT. Returns ------- cost: float Linear Spherical Sliced Wasserstein Cost log: dict, optional log dictionary return only if log==True in parameters Examples --------- >>> n_samples_a = 20 >>> X = np.random.normal(0., 1., (n_samples_a, 5)) >>> X = X / np.sqrt(np.sum(X**2, -1, keepdims=True)) >>> linear_sliced_wasserstein_sphere(X, X, seed=0) # doctest: +NORMALIZE_WHITESPACE 0.0 .. _references-lssot: References ---------- .. [79] Liu, X., Bai, Y., Martín, R. D., Shi, K., Shahbazi, A., Landman, B. A., Chang, C., & Kolouri, S. (2025). Linear Spherical Sliced Optimal Transport: A Fast Metric for Comparing Spherical Data. International Conference on Learning Representations. """ d = X_s.shape[-1] if a is not None and b is not None: nx = get_backend(X_s, X_t, a, b) else: nx = get_backend(X_s, X_t) if X_s.shape[1] != X_t.shape[1]: raise ValueError( "X_s and X_t must have the same number of dimensions {} and {} respectively given".format( X_s.shape[1], X_t.shape[1] ) ) if nx.any(nx.abs(nx.sum(X_s**2, axis=-1) - 1) > 10 ** (-4)): raise ValueError("X_s is not on the sphere.") if nx.any(nx.abs(nx.sum(X_t**2, axis=-1) - 1) > 10 ** (-4)): raise ValueError("X_t is not on the sphere.") if projections is None: projections = get_projections_sphere( d, n_projections, seed=seed, backend=nx, type_as=X_s ) Xps_coords, _ = projection_sphere_to_circle( X_s, n_projections=n_projections, projections=projections, seed=seed, backend=nx ) if X_t is not None: Xpt_coords, _ = projection_sphere_to_circle( X_t, n_projections=n_projections, projections=projections, seed=seed, backend=nx, ) projected_lcot = linear_circular_ot( Xps_coords.T, Xpt_coords.T, u_weights=a, v_weights=b ) res = nx.mean(projected_lcot) ** (1 / 2) if log: return res, {"projections": projections, "projected_emds": projected_lcot} return res