
Refactoring JavaScript

Turning Bad Code into Good Code
Evan Burchard

Refactoring JavaScript
by Evan Burchard

Copyright © 2017 Evan Burchard. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472.
O’Reilly books may be purchased for educational, business, or sales promotion-
al use. Online editions are also available for most titles (http://oreilly.com/
safari). For more information, contact our corporate/institutional sales depart-
ment: 800-998-9938 or corporate@oreilly.com.

• Editors: Nan Barber and Allyson MacDonald
• Production Editor: Kristen Brown
• Copyeditor: Rachel Monaghan
• Proofreader: Rachel Head
• Indexer: Ellen Troutman-Zaig
• Interior Designer: David Futato
• Cover Designer: Karen Montgomery
• Illustrator: Rebecca Demarest

• March 2017: First Edition

Revision History for the First Edition

• 2017-03-10: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491964927 for release
details.
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Refactoring
JavaScript, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.
While the publisher and the author have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the pub-
lisher and the author disclaim all responsibility for errors or omissions, includ-
ing without limitation responsibility for damages resulting from the use of or re-
liance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work con-
tains or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof com-
plies with such licenses and/or rights.
978-1-491-96492-7
[LSI]

http://oreilly.com/safari
http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491964927

For Jade, again and always.

Table of Contents

Foreword xiii
Preface xv

CHAPTER 1: What Is Refactoring? 1

How Can You Guarantee Behavior Doesn’t Change? 1

Why Don’t We Care About Details of Implementation? 3

Why Don’t We Care About Unspecified and Untested Behavior? 4

Why Don’t We Care About Performance? 5

What Is the Point of Refactoring if Behavior Doesn’t Change? 7

Balancing Quality and Getting Things Done 7

What Is Quality and How Does It Relate to Refactoring? 7

Refactoring as Exploration 10

What Is and Isn’t Refactoring 11

Wrapping Up 11

CHAPTER 2: Which JavaScript Are You Using? 13

Versions and Specifications 14

Platforms and Implementations 15

Precompiled Languages 17

Frameworks 18

Libraries 19

What JavaScript Do You Need? 20

What JavaScript Are We Using? 20

v

Wrapping Up 21

CHAPTER 3: Testing 23

The Many Whys of Testing 25

The Many Ways of Testing 27

Manual Testing 28

Documented Manual Testing 28

Approval Tests 29

End-to-End Tests 31

Unit Tests 32

Nonfunctional Testing 34

Other Test Types of Interest 35

Tools and Processes 35

Processes for Quality 36

Tools for Quality 42

Wrapping Up 46

CHAPTER 4: Testing in Action 47

New Code from Scratch 49

New Code from Scratch with TDD 57

Untested Code and Characterization Tests 77

Debugging and Regression Tests 83

Wrapping Up 92

CHAPTER 5: Basic Refactoring Goals 93

Function Bulk 96

Inputs 100

Outputs 108

Side Effects 112

Context Part 1: The Implicit Input 115

this in Strict Mode 116

Context Part 2: Privacy 124

Is There Privacy in JavaScript? 140

Table of Contents

vi

Wrapping Up 142

CHAPTER 6: Refactoring Simple Structures 143

The Code 145

Our Strategy for Confidence 148

Renaming Things 151

Useless Code 155

Dead Code 155

Speculative Code and Comments 156

Whitespace 157

Do-Nothing Code 158

Debugging/Logging Statements 162

Variables 162

Magic Numbers 163

Long Lines: Part 1 (Variables) 164

Inlining Function Calls 165

Introducing a Variable 167

Variable Hoisting 169

Strings 173

Concatenating, Magic, and Template Strings 173

Regex Basics for Handling Strings 174

Long Lines: Part 2 (Strings) 175

Working with Arrays: Loops, forEach, map 177

Long Lines: Part 3 (Arrays) 178

Which Loop to Choose? 180

Better Than Loops 183

Wrapping Up 185

CHAPTER 7: Refactoring Functions and Objects 187

The Code (Improved) 187

Array and Object Alternatives 190

Array Alternative: Sets 191

Array Alternative: Objects 191

Object Alternative: Maps 194

Table of Contents

vii

Array Alternative: Bit Fields 198

Testing What We Have 199

Our Setup Test 201

Characterization Tests for classify 203

Testing the welcomeMessage 205

Testing for labelProbabilities 206

Extracting Functions 207

Getting Away from Procedural Code 207

Extracting and Naming Anonymous Functions 213

Function Calls and Function Literals 215

Streamlining the API with One Global Object 216

Extracting the classifier Object 220

Inlining the setup Function 221

Extracting the songList Object 222

Handling the Remaining Global Variables 223

Making Data Independent from the Program 224

Scoping Declarations: var, let, and const 225

Bringing classify into the classifier 226

Untangling Coupled Values 239

Objects with Duplicate Information 245

Bringing the Other Functions and Variables into classifier 246

Shorthand Syntax: Arrow, Object Function, and Object 253

Getting New Objects with Constructor Functions 262

Constructor Functions Versus Factory Functions 265

A class for Our Classifier 270

Choosing Our API 273

Time for a Little Privacy? 275

Adapting the Classifier to a New Problem Domain 278

Wrapping Up 281

CHAPTER 8: Refactoring Within a Hierarchy 283

About “CRUD Apps” and Frameworks 283

Let’s Build a Hierarchy 284

Let’s Wreck Our Hierarchy 293

Table of Contents

viii

Constructor Functions 293

Object Literals 297

Factory Functions 299

Evaluating Your Options for Hierarchies 301

Inheritance and Architecture 302

Why Do Some People Hate Classes? 303

What About Multiple Inheritance? 304

Which Interfaces Do You Want? 307

Has-A Relationships 309

Inheritance Antipatterns 310

Hyperextension 311

Goat and Cabbage Raised by a Wolf 314

Wrapping Up 319

CHAPTER 9: Refactoring to OOP Patterns 321

Template Method 322

A Functional Variant 325

Strategy 326

State 329

null Object 336

Wrapper (Decorator and Adapter) 345

Facade 353

Wrapping Up 356

CHAPTER 10: Asynchronous Refactoring 359

Why Async? 359

Fixing the Pyramid of Doom 362

Extracting Functions into a Containing Object 362

Testing Our Asynchronous Program 365

Additional Testing Considerations 368

Callbacks and Testing 371

Basic CPS and IoC 371

Callback Style Testing 373

Promises 377

Table of Contents

ix

The Basic Promise Interface 377

Creating and Using Promises 378

Testing Promises 381

Wrapping Up 383

CHAPTER 11: Functional Refactoring 385

The Restrictions and Benefits of Functional Programming 386

Restrictions 386

Benefits 388

The Future (Maybe) of Functional Programming 393

The Basics 393

Avoiding Destructive Actions, Mutation, and Reassignment 393

Don’t return null 404

Referential Transparency and Avoiding State 405

Handling Randomness 409

Keeping the Impure at Bay 409

Advanced Basics 412

Currying and Partial Application (with Ramda) 412

Function Composition 416

Types: The Bare Minimum 420

Burritos 423

Introducing Sanctuary 425

The null Object Pattern, Revisited! 427

Functional Refactoring with Maybe 433

Functional Refactoring with Either 436

Learning and Using Burritos 439

Moving from OOP to FP 441

Return of the Naive Bayes Classifier 441

Rewrites 445

Wrapping Up 446

CHAPTER 12: Conclusion 449

Further Reading and Resources 451

Table of Contents

x

Index 457

Table of Contents

xi

Foreword

I still remember reading Martin Fowler’s book Refactoring: Improving the Design
of Existing Code when it came out in 1999. It was a revelation: I had never before
seen code being considered to be something malleable. Programmers tend to
have the urge to rewrite code bases from scratch, but this book argued that it is
possible to evolve and clean up existing code via small, principled, and compa-
ratively safe steps. While doing so, tests provide an additional safety net and
enable you to move forward with confidence. One piece of advice from the
book will always stick with me—whenever you code, always keep two kinds of
activity completely separate: implementing new functionality and refactoring
existing code. If you do that, you’ll avoid doing too many things at the same
time and will produce less bugs.

Refactoring JavaScript takes the ideas of refactoring and applies them to the
world of JavaScript. JavaScript’s dynamic nature means that you need different
techniques compared to more static languages such as Java. In Java, you have
static typing. And inheritance and polymorphism are used quite often. For Java-
Script, you often rely on static checking tools (such as ESLint and Flow) and can
adapt objects flexibly according to your needs. Functional programming techni-
ques are also more popular. Additionally, tests play an even more important
role, but they also tend to be more lightweight. With all of these issues and
more (e.g., asynchronous code), this book has you covered!

Happy reading!
—Axel Rauschmayer

—November 2016

xiii

Preface

Welcome to Refactoring JavaScript. Throughout this book, we’ll be looking at
ways to write better JavaScript, drawing inspiration from classical refactoring
techniques while exploring various styles of coding.

Why This Book Exists

Like it or not, JavaScript is not going away. No matter what framework or
“compiles-to-JS” language or library you use, bugs and performance concerns
will always be an issue if the underlying quality of your JavaScript is poor. Re-
writes, including porting to the framework of the month, are terribly expensive
and unpredictable. The bugs won’t magically go away, and can happily repro-
duce themselves in a new context. To complicate things further, features will
get dropped, at least temporarily.

This book provides clear guidance on how best to avoid these pathological
approaches to writing JavaScript. Bad code doesn’t have to stay that way. And
making it better doesn’t have to be intimidating or unreasonably expensive.

Who This Book Is For

This book is meant for programmers who have some experience writing bad
code, and an interest in writing better code. It’s for those writing JavaScript on
the frontend or the backend. It’s for those writing JavaScript by choice as well
as those who are “stuck with it” due to JavaScript’s monopoly of the browser
platform.

If you’re an absolute beginner, you might want to write some bad code for a
couple of months first. If you’re not interested in writing better code, you might
not have the patience for this book. If neither of those situations describes you,
we’re good to go.

Interestingly enough, there are numerous efforts working to make Java-
Script better, while at the same time others aim to make it obsolete. The num-
ber of ways to write good and bad JavaScript continues to expand. Frameworks

xv

can go a long way toward handling complexity, but programmers constrained
by frameworks will be limited. If you find that you (or your codebase) are strug-
gling to work outside of a framework (or at some of the more confusing edges
of it), this book should give you new ideas for how to approach your work.

If you have trouble testing, debugging, or having confidence in your code-
base, this book should be helpful.

Most of us don’t work on perfect codebases, especially in JavaScript, where
engineers might primarily use Ruby, Python, Java, and so on. What this book
does is help you identify what specific parts of a codebase are bad, while pro-
viding a multitude of options for improvement.

How To Use This Book

Chapters 1–5 describe the interplay between JavaScript, refactoring, quality,
confidence, and testing. In many books, it is common to tack on testing at the
end. In this book, for the types of code we are exploring, this wouldn’t be ap-
propriate. Testing is essential for confidence. Confidence is essential to refac-
toring. Refactoring is essential to quality, which is the goal:

testing -> confidence -> refactoring -> quality

JavaScript (and its ecosystem) happens to provide the space in which that
transformation takes place, so these opening chapters necessarily include an
exploration of the language itself. If you’re completely comfortable with the
transformation just described, you might want to skim or skip these chapters.
Although that is not recommended, it is your book, so you can use it however
you want. If you think it’s best used as a doorstop or to start a fire for warmth or
a sacrifice of some sort, go for it. If you do find an unconventional use for the
book, email me a picture or video. I’m at http://evanburchard.com/contact or
@evanburchard on Twitter and GitHub.

CAN I BURN OR DOORSTOPIFY DIGITAL COPIES TOO?

Unfortunately, no. However, since this book is under a Creative Commons
license, you’re free to share links to the HTML version and any other files
available at http://refactoringjs.com, for example.

After Chapter 5, things get harder, especially if you skipped 1–5. There’s
more code to write and follow along with. In Chapters 6 and 7, we go through
refactoring functions and objects, and we don’t shy away from some of the
more complicated bits of JavaScript. Generally, the goal of these chapters is to
provide options for improving code without radically changing the interface.

xvi

Preface

http://evanburchard.com/contact
http://refactoringjs.com

Through applying techniques found in these two chapters, you’ll be able to turn
a mess of a codebase into one that has a decent baseline of quality.

Chapter 8 expands our view of architecture to those that include (or avoid)
hierarchies.

Chapters 9, 10, and 11 are dedicated to specific topics (design patterns,
asynchronous programming, and functional programming, respectively) that
can take your code beyond that baseline, but necessarily involve more aggres-
sive changes. With the design patterns in Chapter 9, we recognize ways to ex-
tend and draw from JavaScript’s object-oriented side, and cover the historical
connection between refactoring and object-oriented programming (OOP). In
Chapter 10, we deal with the reality that many JavaScript codebases have
more than one thing to do at once. In Chapter 11, we take a tour of functional
programming through a couple of libraries that provide useful interfaces that
go beyond those that our standard Array functions (forEach, map, reduce,
etc.) give us.

In some sense, those last three chapters in particular break away from our
initial goal of refactoring by changing the implementation details without
changing the interface. On the other hand, these interfaces are both useful and
sometimes unavoidable. We may easily find ourselves wanting to write code
that is necessarily asynchronous for performance reasons. Or we could find our-
selves “stuck” in a codebase that has much invested in good or bad attempts at
OOP or functional programming (FP). So, either through choice or code we in-
herit, these are parts of JavaScript that we should pay attention to and be able
to improve upon. If you adopt a completely different paradigm to a codebase, it
is unlikely that you’ll be “refactoring” in the sense that we mean throughout
most of the book.

If we want to be rigid about it, these chapters still refactor within their para-
digms (OOP to better OOP, async to better async, and FP to better FP), and if we
wish to think in the broadest terms about the execution of our program (e.g.,
“running node myprogram.js” as input and “being satisfied with how it ran”
as output), then we can be refactoring even while jumping from paradigm to
paradigm. I encourage you to first work with smaller, incremental changes that
are easy to test and be confident in.

To quote William Opdyke’s original thesis on refactoring:

This definition of semantic equivalence allows changes throughout the program, as long as

this mapping of input to output values remains the same. Imagine that a circle is drawn

around the parts of a program affected by a refactoring. The behavior as viewed from outside

the circle does not change. For some refactorings, the circle surrounds most or all of the pro-

gram. For example, if a variable is referenced throughout a program, the refactoring that

changes its name will affect much of the program. For other refactorings, the circle covers a

much smaller area;

xvii

Preface

1 William Opdyke, “Refactoring Object-Oriented Frameworks” (PhD thesis, University of Illi-
nois at Urbana-Champaign, 1992), 40.

for example, only part of one function body is effected when a particular function call con-

tained in it is inline expanded. In both cases, the key idea is that the results (including side

effects) of operations invoked and references made from outside the circle do not change, as

viewed from outside the circle.1

Although we’re free to draw “the circle” as large as we’d like, it’s very com-
mon for the term refactoring to get thrown around as though it simply meant
“changing code.” As we discuss in Chapter 1, it does not. That is easier to see
on a small scale, like the ones that we spend the most pages on. Think of Chap-
ters 8, 9, and 10 first presenting as architectural options, and second possibili-
ties for creating better code (safely and incrementally) within those options. As
an example, if someone says something about “refactoring to use asynchro-
nous code” it is likely too broad of a problem to execute in a safe and incremen-
tal way. But if you want to think of Chapter 9 as giving you the power to do so, I
can’t stop you. It’s your book now. You can draw the circle as big as you want.

If you find any of the tools or concepts confusing, you will probably find the
appendix helpful. If you are looking for code samples and other information,
visit the book’s website (http://refactoringjs.com). You can also find an HTML
version of the book there if you prefer to read that way.

So in summary, use this book to learn about:

• Refactoring
• Testing
• JavaScript
• Refactoring and testing JavaScript
• A few JavaScript paradigms
• Refactoring and testing within those JavaScript paradigms

Alternatively (under adult supervision, of course), the paper version of the
book can be set on fire and used for:

• Warmth
• Protest
• Ritual tech book sacrifices

The digital files from http://refactoringjs.com can get passed around in ac-
cordance with the Creative Commons license restrictions.

If you have any problems, questions, complaints, or compliments, feel free
to reach out to me through my website (http://evanburchard.com/contact).

xviii

Preface

http://refactoringjs.com
http://refactoringjs.com
http://evanburchard.com/contact

Some Words in This Book

App, Application, Program

Some words in this book are imprecise. App, application, program, and website
are interchangeable much of the time. In case there is any confusion, this book
describes general principles for improving the quality of JavaScript, so none of
those terms should be taken too literally. Maybe your code is a library or frame-
work? In any case, the techniques in this book should apply just fine.

Inclusivity Through Words and Diagrams

Some words in this book may not feel inclusive to everyone. I tried to balance
the use of he and she, which I realize isn’t everyone’s ideal. Although I’d prefer
to use the singular they, that’s not within publisher guidelines at the moment.

Additionally, I am realizing (too late) that my reliance on diagrams, especial-
ly those in Chapter 5, may do a terrible disservice to readers with a visual im-
pairment. If you feel like you’ve missed out on any content for this reason,
please feel free to reach out to me with any questions.

Users

There’s also one word in this book I really hate, and that’s users. It’s imprecise
and also creates some distance between the creators (developers/designers)
and consumers (users). More precise and charitable words are often specific to
the problem domain, or else we’re stuck with terms like “people” or “people
who use the program/website.” If there is no more specific term than person or
user (even including customer), it might be a hint that the business model is
based purely on selling people as data, but that’s another discussion.

The point is that the term user is used in this book to convey a familiar con-
cept: a person who uses the program/website. Also, there are not yet magnani-
mous and accurate terms to supplant the related terms of user experience (UX)
or user interface (UI). Rather than explaining this in several places or using non-
standard or specific terms for frequently abstract concepts, I chose to save the
effort and just talk about it here.

In any case, I fully endorse the following quote (and its implications) by “the
Leonardo da Vinci of Data,” Edward Tufte:

There are only two industries that refer to their customers as users: illegal drugs, and soft-

ware houses.

xix

Preface

There is a movement called “ethical design” that hopefully will help the in-
dustry shed this term (and the inconsiderate practices that stem from it) at
some point.

Third-Party Libraries and Communities

Although I tried very hard to present the best tools to demonstrate the funda-
mentals of refactoring and testing in JavaScript, there may be times where you
find that a particular tool isn’t working for you. The great news here is that
JavaScript has a rich ecosystem of options. I have a preference for tools that are
simple, flexible, and atomic, but you may feel differently. Large frameworks in
particular are not explored in this text, as they tend to come with their own eco-
systems of other tools (often themselves quite active and varied). I would abso-
lutely recommend a framework when you’re starting out, but they are most
useful when combined with facility in the underlying language, which I believe
this book will teach you very well.

Additionally, every tool, framework, and library will come with some com-
munity and history. Just as I don’t believe in any one true way for tooling, I also
don’t endorse the community behind any given third-party code or project.
Many projects will come with a code of conduct that will let you know if partici-
pating in them will be an enjoyable use of your time.

API, Interface, Implementation, “Client Code”

This gets a little murky, but one thing I wish I could highlight more is the hierar-
chy not in terms of objects, but in the interface of a well-designed codebase.
When code is a simple script, we expect it to run top to bottom, as a procedure.
As a codebase matures (through design, not butchery mixed with entropy), we
expect it to develop in three main layers (although this is obviously extended in
more complex codebases).

The first layer—the code behind the scenes, deeper in the codebase—is re-
ferred to in this book as the implementation. For refactoring, the most impor-
tant distinction is between the implementation and the next layer. This second
layer can be called the interface or API and describes the “public” functions and
objects that one should expect to interact with if a codebase is used as a mod-
ule. The third layer of consequence is sometimes called the client code or call-
ing code. It refers to the code that is written to interact with the interface layer.
This is the code that people using a module would write, as well as the testing
code that we will write to test the interface layer.

xx

Preface

BASICS OF ARCHITECTURE

Throughout this book, we’re creating programs that start out very un-
structured, and our main thrust (regardless of a paradigm like OOP or FP)
is to make divisions between these three layers. This is what allows code
to be testable and portable. If you’re mostly reliant on frameworks that
provide their own organization, this process might be unfamiliar.

Inputs (Nonlocal and Free Variables)

Throughout the book (especially in Chapter 5), we distinguish between three
types of inputs:

• Explicit inputs (the parameters passed into a function)

• Implicit inputs (the this that refers to the containing context object,
function, or class)

• Nonlocal inputs (the values used within a function or object that are de-
fined elsewhere)

There are two things of note here. First, local variables (or constants) created
within the scope of a function are not considered “inputs” for the sake of dia-
gramming or otherwise. Second, although the term nonlocal input is used as a
precise term in this text, free variable is a more common name. However, it is a
bit imprecise given that nonlocal inputs may be constants rather than vari-
ables. Similarly, some use the term bound variables to refer to what we call ex-
plicit inputs and, to some degree, implicit inputs as well.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Also used on occasion for emphasis and contrast.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, envi-
ronment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xxi

Preface

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for down-
load at https://refactoringjs.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation.
You do not need to contact us for permission unless you’re reproducing a signif-
icant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distribut-
ing a CD-ROM of examples from O’Reilly books does require permission. An-
swering a question by citing this book and quoting example code does not re-
quire permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually in-
cludes the title, author, publisher, and ISBN. For example: “Refactoring Java-
Script by Evan Burchard (O’Reilly). Copyright 2017 O’Reilly Media,
978-1-491-96492-7.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

Tools used within the code of this book can be found in the appendix, along
with resources for further information on topics covered. For reference, the
tools used in this book along with their versions are:

• node 6.7.0
• npm 3.10.3
• wish 0.1.2
• mocha 3.2.0
• deep-equal 1.0.1
• testdouble 1.10.0
• tape 4.6.3

xxii

Preface

https://refactoringjs.com
mailto:permissions@oreilly.com

• lodash 4.17.2
• assert 1.4.1
• underscore 1.8.3
• ramda 0.22.1
• sanctuary 0.11.1

Later versions are unlikely to cause problems, but earlier ones might. At low-
er versions, node in particular is known to not fully support the code in this
book.

O’Reilly Safari

Safari (formerly Safari Books Online) is a membership-based training
and reference platform for enterprise, government, educators, and indi-
viduals.

Members have access to thousands of books, training videos, Learning
Paths, interactive tutorials, and curated playlists from over 250 publishers, in-
cluding O’Reilly Media, Harvard Business Review, Prentice Hall Professional,
Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Rid-
ers, McGraw-Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

• O’Reilly Media, Inc.
• 1005 Gravenstein Highway North
• Sebastopol, CA 95472
• 800-998-9938 (in the United States or Canada)
• 707-829-0515 (international or local)
• 707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at http://bit.ly/refactoring-
js_1e.

To comment or ask technical questions about this book, send email to book-
questions@oreilly.com.

xxiii

Preface

http://oreilly.com/safari
http://www.oreilly.com/safari
http://bit.ly/refactoring-js_1e
http://bit.ly/refactoring-js_1e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

xxiv

Preface

http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Thanks to my family for their support in making this book happen: Mom, Dad,
Amy, Scott, Gretchen, Max, and Jade.

Special thanks to the people who helped kick everything off: Zeke Templin,
Steve Souders, Mary Treseler, Simon St. Laurent, and Tyler Ortman.

And to those who gave technical inspiration and feedback: Jacob Barss-
Bailey, Matt Blake, Charles Baakel, Stefano De Vuono, and Ryan Duchin.

And the rest of the O’Reilly staff that helped along the way: Annalis Clint, Ne-
na Caviness, Michelle Gilliland, Rita Scordamalgia, Josh Garstka, Kristen Brown,
Rebecca Demarest, Rachel Monaghan, Shiny Kalapurakkel, and especially my
editors, Nan Barber and Ally MacDonald.

And to my technical reviewers: Steve Suering, Shelley Powers, Chris Deely,
Darrell Heath, and Jade Applegate.

And to those whose work I found useful and inspirational: William F. Opdyke,
Martin Fowler, Kent Beck, John Brant, Erich Gamma, Richard Helm, Ralph John-
son, John Vlissides, Douglas Crockford, Tony Hoare, Alexis Deveria, Addy Osma-
ni, Robert Nystrom, Brian Lonsdorf, Reginald Braithwaite, Miran Lipovaca, Kyle
Simpson, Tom Stuart, Michael Fogus, David Chambers, Michael Hurley, Scott
Sauyet, Yehuda Katz, Jay Fields, Shane Harvie, Russ Olsen, Joshua Kerievsky,
James Halliday, TJ Holowaychuk, Justin Searls, Eric Elliot, Jake Archibald, Ar-
nau Sanchez, Alex Chaffee, Eric Hodel, Sean Hussey, Brian Cardarella, Foy Sa-
vas, and Katrina Owen, and Bryan Liles.

A special thanks to Dr. Axel Rauschmayer for his amazing work interpreting
specs for us mere mortals, as well as providing the foreword to this book.

PSST...HEY, READER!

I know it looks like just a big list of names, but the people in this section
are all really awesome. The resources in the appendix are less important
than this list. A lot of these people made that stuff. And searching their
names will let you know about their new stuff, which is probably better
than their old stuff. Look these people up.

And thanks in general to all the people at TC39 and MDN.
And to my dog for taking me on walks, even when I was right in the middle of

something.
Also, to you. Thanks for supporting my work. Hit me up if you need anything.

xxv

Preface

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

What Is Refactoring? 1

Refactoring is not changing code.
Okay, yes, it is, but there’s more to it. Refactoring is a type of changing code,

but has one major constraint that makes “changing code” an imprecise way to
describe it: you don’t change the behavior of the code. Two immediate ques-
tions should come to mind:

• How do you guarantee that behavior does not change?
• What is the point of changing the code if the behavior doesn’t change?

In the rest of the chapter, we will pursue the answers to these questions.
We’re not going to go through the full history of JavaScript, as that’s covered
extensively on the web already.

How Can You Guarantee Behavior Doesn’t
Change?

Unqualified, the answer to that question is that it is incredibly hard. Fortunate-
ly, many types of behavior are not our primary concern when refactoring. We’ll
cover these next:

• Details of implementation
• Unspecified and untested behavior
• Performance

The shorter answer, for us, is using tests and version control.
Another approach, supported by William Opdyke, whose thesis (http://

www.ai.univ-paris8.fr/~lysop/opdyke-thesis.pdf) is the foundational work on re-
factoring, stresses using automated tools that are responsible for changing the
code as well as guaranteeing safety before doing so. Professional coders might
find that removing the human element limits the types of changes that can be
made, as the number of changes that can be guaranteed as “safe” is confined
to the functionality of the tools.

1

http://www.ai.univ-paris8.fr/~lysop/opdyke-thesis.pdf

Writing tools to encompass the whole refactoring catalog proposed by Mar-
tin Fowler in his seminal book, Refactoring: Improving the Design of Existing
Code (Addison-Wesley), would prove extremely difficult. And in JavaScript, a
dynamic, multiparadigmatic language with an ecosystem teeming with variants
(see Chapter 2), these tools are bound to lag behind a refactorer’s imagination
even more so.

Fowler’s approach pulls away from automation, while at the same time
stressing the “mechanics” of the refactoring: steps of altering code that mini-
mize unsafe states.

If we relied on an “Opdykian,” automated approach for this book, the tooling
would hold us back significantly. And we’re straying from Fowler’s emphasis on
mechanics (step-by-step processes) as well. The reason is that, as we move to-
ward confidence in our code through a given refactoring, if it is backed up by
tests, verifying the success of our changes should be straightforward. And when
we fail to execute a refactoring properly, version control (we’ll be using Git)
should give us an easy way to simply “roll back” to the state of the code before-
hand.

WARNING! USE VERSION CONTROL!

Any form of “changing code” carries significant risk to your codebase if
you cannot easily revert it to a previous, safe version. If you don’t have
versioned backups of the codebase that you plan on refactoring, put this
book down and don’t pick it up again until you have your code under ver-
sion control.

If you’re not using version control already, you probably want to use Git
(http://git-scm.com/), and you probably want to back your work up on
GitHub (http://github.com).

Admittedly, the approach of this book might seem reactive and cavalier in
comparison to the earlier paths of automation and mechanics. However, the
process—the “red” (failure state of a test), “green” (passing state of a test), “re-
factor” cycle, with an eye on rolling back quickly if things go wrong—employed
in this book is based upon how quality-focused teams operate with tools that
are popular among them. Perhaps later, automated refactoring will catch up
with Fowler’s extensive catalog of refactorings, as well as all that are presented
in this book, but I wouldn’t count on it happening soon.

Our goal here is to get JavaScript developers out of the muck. Although it is
tempting to try to automate and mechanize that process, the most valuable
parts of the work of the giants (Opdyke, Fowler, Johnson, et al.) whose should-
ers this book humbly stands on is that they gave us a new mindset around mak-
ing code better and doing it safely.

CHAPTER 1: What Is Refactoring?

2

http://git-scm.com/
http://github.com

Why Don’t We Care About Details of Implementation?

Let’s say we have a simple function that multiplies numbers by 2:

function byTwo(number){
 return number * 2;
}

We could instead write a function that accomplishes the same goal in a
slightly different way:

function byTwo(number){
 return number << 1;
}

And either of these will work fine for many applications. Any tests that we
used for the byTwo function would basically just be a mapping between an in-
put number, and an output number that is twice the value. But most of the
time, we are more interested in the results, rather than whether the * or << op-
erator is used. We can think of this as an implementation detail. Although you
could think of implementation details like this as behavior, it is behavior that is
insignificant if all we care about is the input and output of a function.

If we happened to use the second version of byTwo for some reason, we
might find that it breaks when our number argument gets too large (try it with a
trillion: 1000000000000 << 1). Does this mean we suddenly care about this
implementation detail?

No. We care that our output is broken. This means that our test suite needs
to include more cases than we initially thought. And we can happily swap this
implementation out for one that satisfies all of our test cases; whether that is
return number * 2 or return number + number is not our main concern.

We changed the implementation details, but doubling our number is the be-
havior we care about. What we care about is also what we test (either manually
or in an automated way). Testing the specifics is not only unnecessary in many
cases, but it also will result in a codebase that we can’t refactor as freely.

TESTING JAVASCRIPT ITSELF

If you are testing extremely specific implementation details, you will at some point
no longer be testing your program, but rather the environment itself. We’ll go over
testing in detail later, but for now, you can run this either in a node console or by

saving it to a file and running node file_name.js. That said, it’s not critical to do so
at this point.

How Can You Guarantee Behavior Doesn’t Change?

3

Let’s say that you’re testing something like this:

assert = require('assert');
assert(2 + 2 === 4);

By the way, that first line will produce some scary-looking output if you’re in a node
console. Don’t worry about that, though; it’s just showing what loaded. Also, the

node console already has assert, so you can leave out the first line if you’re not

working from a .js file. All the second line reports is undefined, which might seem

weird. That’s normal. Try asserting something untrue like assert(3 === 2), and
you’ll see an error.

If you make assertions like these, you’re testing JavaScript itself: its numbers, + op-

erator, and === operator. Similarly, and more frequently, you might find yourself
testing libraries:

_ = require('underscore');
assert(.first([3, 2]) === 3);

This is testing to see if the underscore library behaves as expected. Testing low-
level implementation details like this is useful if you’re exploring a new library or
an unfamiliar part of JavaScript, but it’s generally enough to rely on the tests that
the packages themselves have (any good library will have its own tests). There are
two caveats to this, however. First, “sanity tests” are necessary to ensure that some
function or library has been made available to your environment, although those
tests need not stick around once you’ve stabilized your environment. Second, if
you’re writing tests to help yourself be confident in the code (more on this later),
then testing a library’s behavior is appropriate to demonstrate the code in action.

Why Don’t We Care About Unspecified and Untested Behavior?

The degree to which we specify and test our code is literally the effort that dem-
onstrates our care for its behavior. Not having a test, a manual procedure for
execution, or at least a description of how it should work means that the code is
basically unverifiable.

Let’s assume that the following code has no supporting tests, documenta-
tion, or business processes that are described through it:

function doesThings(args, callback){
 doesOtherThings(args);
 doesOtherOtherThings(args, callback);
 return 5;
};

CHAPTER 1: What Is Refactoring?

4

Do we care if the behavior changes? Actually, yes! This function could be
holding a lot of things together. Just because we can’t understand it doesn’t
make it less important. However, it does make it much more dangerous.

But in the context of refactoring, we don’t care if this behavior changes yet,
because we won’t be refactoring it. When we have any code that lacks tests (or
at least a documented way of executing it), we do not want to change this code.
We can’t refactor it, because we won’t be able to verify that the behavior doesn’t
change. Later in the book, we’ll cover creating “characterization tests” to deal
with untested code.

This situation isn’t confined to legacy code either. It’s also impossible to re-
factor new, untested code without tests, whether they are automated or man-
ual.

HOW CONVERSATIONS ABOUT REFACTORING SHOULD GO UNTIL
TESTS ARE WRITTEN

“I refactored login to take email address and username.”

“No, you didn’t.”

“I’m refactoring the code to ____”

“No, you aren’t.”

“Before we can add tests, we need to refactor.”

“No.”

“Refactoring th–”

“No.”

“Refa–”

“No.”

Why Don’t We Care About Performance?

As far as refactoring goes, we don’t initially care about performance. Like with
our doubling function a couple of sections back, we care about our inputs deliv-
ering expected outputs. Most of the time, we can lean on the tools given to us
and our first guess at an implementation will be good enough. The mantra here
is to “write for humans first.”

How Can You Guarantee Behavior Doesn’t Change?

5

Good enough for a first implementation means that we’re able to, in a rea-
sonable amount of time, determine that the inputs yield expected outputs. If
our implementation does not allow for that because it takes too long, then we
need to change the implementation. But by that time, we should have tests in
place to verify inputs and outputs. When we have tests in place, then we have
enough confidence to refactor our code and change the implementation. If we
don’t have those tests in place, we are putting behavior we really care about
(the inputs and outputs) at risk.

Although it is part of what is called nonfunctional testing, and generally not
the focus of refactoring, we can prioritize performance characteristics (and oth-
er “nonfunctional” aspects of the code like usability) by making them falsifia-
ble, just like the program’s correctness. In other words, we can test for perfor-
mance.

Performance is privileged among nonfunctional aspects of a codebase in
that it is relatively easy to elevate to a similar standard of correctness. By
“benchmarking” our code, we can create tests that fail when performance (e.g.,
of a function) is too slow, and pass when performance is acceptable. We do this
by making the running of the function (or other process) itself the “input,” and
designating the time (or other resource) taken as the “output.”

However, until the performance is under some verifiable testing structure of
this format, it would not be considered “behavior” that we are concerned about
changing or not changing. If we have functional tests in place, we can adjust
our implementations freely until we decide on some standard of performance.
At that point, our test suite grows to encompass performance characteristics.

So in the end, caring about performance (and other nonfunctional aspects)
is a secondary concern until we decide to create expectations and tests around
it.

JAVASCRIPT’S PARTICULAR DIFFICULTIES WITH PERFORMANCE

For some types of JavaScript (see Chapter 2), it will be completely impossible to ei-
ther change (unsafe) or refactor (safe) your code without changing performance.
Adding a few lines of frontend code that don’t get minimized will increase the time
for downloading and processing. The incredible amount of build tools, compilers,
and implementations might perform any number of tricks because of how you
structured your code.

These things might be important for your program, but just to be clear, refactor-
ing’s promise of “not changing behavior” must not apply to these situations. Subtle

CHAPTER 1: What Is Refactoring?

6

and difficult-to-control performance implications should be treated as a separate
concern.

What Is the Point of Refactoring if Behavior
Doesn’t Change?

The point is to improve quality while preserving behavior. This is not to say that
fixing bugs in broken code and creating new features (writing new code) are not
important. In fact, these two types of tasks are tied more closely to business ob-
jectives, and are likely to receive much more direct attention from project/
product managers than concerns about the quality of the codebase. However,
those actions are both about changing behavior and therefore are distinct from
refactoring.

We now have two more items to address. First, why is quality important, in
the context of “getting things done”? And second, what is quality, and how does
refactoring contribute to it?

Balancing Quality and Getting Things Done

It may seem as though everyone and every project operates on a simple spec-
trum between quality and getting things done. On the one end, you have a
“beautiful” codebase that doesn’t do anything of value. And on the other hand,
you have a codebase that tries to support many features, but is full of bugs and
half-completed ideas.

A metaphor that has gained popularity in the last 20 years is that of technical
debt. Describing things this way puts code into a pseudofinancial lingo that
noncoders can understand easily, and facilitates a more nuanced conversation
about how quickly tasks can and should be done.

The aforementioned spectrum of quality to speed is accurate to a degree. On
small projects, visible and addressable technical debt may be acceptable. As a
project grows, however, quality becomes increasingly important.

What Is Quality and How Does It Relate to Refactoring?

There have been countless efforts to determine what makes for quality code.
Some are determined by collections of principles:

• SOLID: Single responsibility, open/closed, Liskov substitution, interface
segregation, and dependency inversion

• DRY: Don’t repeat yourself

What Is the Point of Refactoring if Behavior Doesn’t Change?

7

• KISS: Keep it simple, stupid
• GRASP: General responsibility assignment software patterns
• YAGNI: Ya ain’t gonna need it

There are metrics like code/test coverage, complexity, numbers of argu-
ments, and length of a file. There are tools to monitor for syntax errors and style
guide violations. Some languages go as far as to eliminate the possibility of cer-
tain styles of code being written.

There is no one grand metric for quality. For the purposes of this book, quali-
ty code is code that works properly and is able to be extended easily. Flowing
from that, our tactical concerns are to write tests for code, and write code that
is easily testable. Here I not so humbly introduce the EVAN principles of code
quality:

• Extract functions and modules to simplify interfaces
• Verify code behavior through tests

CHAPTER 1: What Is Refactoring?

8

• Avoid impure functions when possible
• Name variables and functions well

Feel free to make up your own “principles of software quality” with your own
name.

HUMAN READABILITY AS QUALITY

“Human readability” is sometimes cited as the chief concern for quality, but this is
a fairly intractable metric. Humans come with varying experiences with and expo-
sure to concepts. New coders, or even seasoned ones in a new paradigm or code-
base, can struggle with abstractions, properly applied or not.

One could conclude from that line of thinking that only the simplest abstractions
can be a part of a high-quality codebase.

In practice, teams find a balance between avoiding using esoteric and confusing
features, and making time to mentor junior members to understand well-applied
and sensible abstractions.

In the context of refactoring, quality is the goal.
Because you solve such a wide range of problems in software and have so

many tools at your disposal, your first guess is rarely optimal. To demand of
yourself only to write the best solutions (and never revisit them) is completely
impractical.

With refactoring, you write your best guess for the code and the test (al-
though not in that order if you’re doing test-driven development, or TDD; see
Chapter 4). Then, your tests ensure that as you change the details of the code,
the overall behavior (inputs and outputs of the test, aka the interface) remains
the same. With the freedom that provides, you can change your code, ap-
proaching whatever version of quality (possibly including performance and oth-
er nonfunctional characteristics) and whatever forms of abstraction you see fit.
Aside from the benefit of being able to improve your code gradually, one signifi-
cant additional perk of practicing refactoring is that you will learn to be less
wrong the first time around: not by insisting on it up front, but by having experi-
ence with transforming bad code into good code.

So we use refactoring to safely change code (but not behavior), in order to
improve quality. You may rightfully be wondering what this looks like in action.
This is what is covered in the rest of the book; however, we have a few chapters
of background to get through before that promise can be delivered upon.

What Is the Point of Refactoring if Behavior Doesn’t Change?

9

Chapter 2 provides background on JavaScript itself. Chapters 3 and 4 give a
justification for tests, followed by an actionable approach for testing, derived
from natural inclinations to write code confidently and iterate quickly, rather
than a dogmatic insistence on testing simply being understood as something
unquestionably good and proper. Chapter 5 explores quality in depth, aided by
function visualizations called Trellus diagrams, which you can learn more about
at trell.us.

In Chapters 6 and 7, we look at general refactoring techniques. Following
that, we look at refactoring object-oriented code with hierarchies in Chapter 8
and patterns in Chapter 9. Then we finish with asynchronous refactoring
(Chapter 10), and refactoring through functional programming (Chapter 11).

Nailing down what exactly quality is can be tough in a language as broad as
JavaScript, but with the range of skills covered in these chapters, you should be
left with a ton of options.

Refactoring as Exploration

Although for most of this book we commit to refactoring as a process for im-
proving code, it is not the only purpose. Refactoring also helps build confidence
in coding generally, as well as familiarity with what you are working on.

Constraints have their place, and in many ways a lack of them is what makes
JavaScript so difficult to learn and work with. But at the same time, reverence
breeds unnecessary constraints. I saw Ben Folds perform once, and he ended
the show by throwing his chair at the piano. Who would attack the traditionally
revered (and expensive) piano? Someone in control. Someone more important
than his tools.

You’re more important than your code. Break it. Delete it all. Change every-
thing you want. Folds had the money for a new piano. You have version control.
What happens between you and your editor is no one else’s business, and
you’re working in the cheapest, most flexible, and most durable medium of all
time.

By all means, refactor your code to improve it when it suits you. My guess is
that will happen frequently. But if you want to delete something you don’t like,
or just want to break it or tear it apart to see how it works, go for it. You will
learn a lot by writing tests and moving in small steps, but that’s not always the
easiest or most fun and liberating path to exploration.

CHAPTER 1: What Is Refactoring?

10

http://trell.us

What Is and Isn’t Refactoring

Before we leave off, let’s once again distinguish between refactoring and other
lookalike processes. Here is a list of things that are not refactoring. Instead,
they create new code and features:

• Adding square root functionality to a calculator application
• Creating an app/program from scratch
• Rebuilding an existing app/program in a new framework
• Adding a new package to an application or program
• Addressing a user by first and last name instead of first name
• Localizing
• Optimizing performance
• Converting code to use a different interface (e.g., synchronous to asyn-

chronous or callbacks to promises)

And the list goes on. For existing code, any changes made to the interface
(aka behavior) should break tests. Otherwise, this indicates poor coverage.
However, changes to the underlying details of implementation should not break
tests.

Additionally, any code changes made without tests in place (or at least a
commitment to manually test the code) cannot be guaranteed to preserve be-
havior, and therefore are not refactoring, just changing code.

“REFACTORING” VS. “REFACTORING”

Initially for this book, we considered designating “refactoring,” as it is
colloquially used to mean “changing code,” by a lowercase r, and reserv-
ing the capitalized version for our more specific definition (confidently
restructuring code in a way that preserves behavior). Because this is
cumbersome and we never mean lowercase “refactoring” in the context
of this book, we decided not to use this distinction. However, when you
hear someone say “refactoring,” it is worth pausing to consider whether
they mean “Refactoring” or “refactoring” (i.e., restructuring or just
changing code).

Wrapping Up

Hopefully, this chapter has helped to reveal what refactoring is, or at least pro-
vide some examples of what it is not.

If we could define and achieve quality code through refactoring in JavaScript
in the abstract or by simply looking at inspiring source examples from other
languages (notably Java), our JavaScript codebases would not suffer from the

What Is and Isn’t Refactoring

11

“broken or new” dichotomy of today, where codebases are poorly maintained
until they are rewritten using tool A or framework B: a costly and risky ap-
proach.

Frameworks can’t save us from our quality issues. jQuery didn’t save us, and
neither will ESNext, Ramda, Sanctuary, Immutable.js, React, Elm, or whatever
comes next. Reducing and organizing code is useful, but through the rest of this
book, you will be developing a process to make improvements that don’t in-
volve a cycle of suffering with poor quality followed by investing an unknowa-
ble amount of time to rebuild it in the “Framework of the Month,” followed by
more suffering in that framework, followed by rebuilding, and so on.

CHAPTER 1: What Is Refactoring?

12

Which JavaScript Are You
Using? 2

This might seem like it has an easy answer. How varied can one language be?
Well, in JavaScript’s case, any of these can greatly impact your tooling and
workflows:

• Versions and specifications
• Platforms and implementations
• Precompiled languages
• Frameworks
• Libraries
• What JavaScript do you need?
• What JavaScript are we using?

These can represent not only different ways of doing things, but also a signif-
icant time investment to decide upon, learn to proficiency, and eventually write
fluently. Throughout this chapter, we will explore these complexities in order to
uncover what JavaScript we can write, and throughout the rest of the book,
we’ll get more specific about what JavaScript we should write.

Some of the choices involved in what JavaScript to use will be imposed by
the project, some by the framework, and some by your own personal tastes.

Developing coding style is one of the biggest challenges in any language. Be-
cause of the complexity and diversity of the JavaScript ecosystem, this can be
especially challenging in JavaScript. To become a well-rounded coder, some
people recommend learning a new programming language every year. But with
JavaScript, you might not even be able to learn every dialect in your whole life-
time. For a lot of languages “learning the language” means being competent
with core APIs, resources, and one or two popular extensions/libraries. Applying
that same standard to JavaScript leaves many contexts unexplored.

13

WHICH FRAMEWORK SHOULD I USE?

This is a perennial question posed by JavaScript developers, and a language-specific
form of probably the biggest question from new developers, “Which language
should I learn?” The framework treadmill can give programmers a sense that they
genuinely need to know everything. Job descriptions with inflated and even contra-
dictory requirements don’t help. When it comes to JavaScript, there are so many
frameworks, platforms, and ultimately distinct types of code you might write that
some form of this question comes up time and time again.

In the end, you can’t possibly learn everything. If you have a job or target job that
genuinely requires certain skills, spend your time on those first. If you don’t have a
particular job in mind, find friends and mentors at meetups and follow what they
do. Or, if you’re just concerned with learning something that’s interesting to you,
pick something that seems cool* and go as deep as you want, then move on, and at
some point consider getting very adept with a handful of these technologies.

You can apply this same process (filtering by job requirement, what your friends are
using, and what you think is cool) to languages, frameworks, testing libraries, or
musical instruments. In all of them, go deep occasionally, and, if you’ll pardon a bit
of crass advice, keep an eye on where the money is.

*“Seems cool” might sound vague, and it is. For me, that means finding the most

novel or mind-bending technology to me. I’m not likely to learn 14 variants of
something that solve the same problem. For others, cool means new and hip. To
other people it means popular or lucrative. If you don’t know what “seems cool”
means to you, solve that by taking shallow trips into a few possibilities rather than
spending too much time wondering which to choose.

Versions and Specifications

If you want to know where JavaScript is, and where it’s headed, you should fol-
low what’s going on with the ECMAScript specification (https://tc39.github.io/
ecma262/). Although features of JavaScript can bubble up from libraries and
specific implementations, if you are looking for the canonical source of features
that are likely to stick around, watch the ECMAScript specification.

Specifically (as of this writing), the committee responsible for tracking and
adopting new features into the spec is called TC39. Spec proposals go through a
multistaged process for adoption. You can track proposals in all five stages (0–
4) on GitHub (http://github.com/tc39/proposals).

CHAPTER 2: Which JavaScript Are You Using?

14

https://tc39.github.io/ecma262/
http://github.com/tc39/proposals

STRICT MODE

Because there are a variety of implementations (mostly browsers) in web
usage, and “breaking old websites” is generally seen as a bad thing, Java-
Script features are unlikely to be deprecated so much as fall out of favor.

Unfortunately, JavaScript contains certain features that cause unpredict-
ability, and others that hurt performance just by being made available.

There is a safer, faster, opt-in subset of JS that is available to developers
scoping files or functions with "use strict".

It is generally seen as good practice to use strict mode. Some frameworks
and precompiled languages include it as part of the build/compilation
process. Additionally, the bodies of class expressions and declarations
include "use strict" by default.

That said, following the ECMAScript specs has two major downsides. First,
the raw documentation can be intimidating in both size and emphasis. It is gen-
erally written for those creating browsers rather than applications or websites.
In other words, for most of us mere mortals, it is overkill. Some exposure to it is
useful, however, for those who either enjoy describing the features in a more
accessible way through blog posts, or prefer not having to rely on said blog
posts as their source of truth.

The second downside is that even when a spec proposal is finalized (stage
4), there is no guarantee that your target implementations (i.e., node or your
target browsers) have made the functionality described available. The spec is
far from hypothetical, however, as the specs are influenced by implementers
(e.g., browser vendors), and in many cases a particular implementation may
have a feature in place before it is even finalized in the spec.

If you are interested in features that a spec makes available but that are not
yet supported by your chosen implementation, three words you’ll want to know
are shims, polyfills, and transpilers. Searching “how do I support <whatever fea-
ture> in <some platform>” (node, Firefox, Chrome, etc.), combined with these
terms, will likely give you the answer you’re looking for.

Platforms and Implementations

When node hit the scene, web developers experienced some combination of re-
lief and enthusiasm about the prospect of writing the same language on both
the backend and the frontend. Others lamented the fact that JavaScript was
the language to have such a prominent role.

This promise has seen mixed results. The JavaScript ecosystem has flourish-
ed with the backend pushing the frontend to be treated more like real code (or-
ganizationally and paradigmatically), while the pure mass of frontend develop-

Platforms and Implementations

15

ers available ensured that the backend platforms would always attract fresh
and curious contributors.

On the other hand, as of this writing, although attempts have been made,
full-stack JavaScript frameworks (sometimes called “isomorphic” for running
the same code in two places) have not been as popular among developers as
dedicated frontend and backend frameworks have been. Whereas within Ruby’s
Rails and Python’s Django there is a clear hub of framework activity, no “grand
unifying framework” has emerged in the vibrant but volatile JavaScript land-
scape.

In the browser, JavaScript code naturally gravitates toward the window base
object, interactions with the DOM, and other browser/device capabilities. On
the server side of a web app, data management and processing requests are
the fundamental concern. Even if the language on the frontend and backend
happens to be “the same,” the kinds of code written conform to the task at
hand, such that they are unlikely to follow similar patterns of code organiza-
tion.

While the ECMAScript spec determines what features are likely to be imple-
mented and supported, you can only use what is supported by your implemen-
tation (or libraries you bring in). What version of node or what version of the
browser you’re relying on is where the spec meets reality.

For tracking what features are natively available in browsers, caniuse.com
keeps an updated list of what is available with respect not only to JavaScript
APIs, but also to HTML and CSS. For considering both frontend and backend im-
plementations, you can find broader feature tracking in Kangax’s ECMAScript
compatibility tables (https://kangax.github.io/compat-table/es6/).

If you’re specifically interested in what new ECMA/TC39 proposals are imple-
mented on a given platform, you can filter that table to show proposals that
are not yet part of the current standard (https://kangax.github.io/compat-
table/esnext/).

Implementations of a programming language can be called runtimes or in-
stalls as well. Particular versions of JavaScript, especially when implementa-
tions exist in a browser, are sometimes referred to as JavaScript engines. As far
as versions, in addition to having traditional versioning numbers, the relation-
ship of the version with its release cycle makes it likely to see the words build or
release used to describe where it is in the process. You could see terms like
nightly build, weekly build, stable release, or long-term support release.

Experimental features (not from the ECMAScript spec), nonnormative fea-
tures (not specified by the spec), and gaps in the spec vary from browser to
browser and build to build. Some features that eventually ended up in a final-
ized spec existed in libraries or implementations for years prior. Other features
inside of implementations wither and deprecate when they are either replaced
or ignored by the ECMAScript spec and other implementers.

CHAPTER 2: Which JavaScript Are You Using?

16

http://caniuse.com
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/esnext/
https://kangax.github.io/compat-table/esnext/

Some places that JavaScript is popping up don’t fit neatly into the language
of “platform” or “implementation.” JavaScript can be used as the source lan-
guage for applications running on mobile devices, desktop operating systems,
and even microcontrollers.

Although these are all exciting avenues for the ecosystem, keeping track of
which JavaScript features are available in each context is, unfortunately, not a
trivial task.

Precompiled Languages

So far, we’ve seen that implementations, platforms, and each version of the
ECMAScript spec all have their own concept of what JavaScript is. So which
JavaScript should you write?

First, let’s take the simplest case of “compiled” versus “source” JavaScript: a
process called minification. A minifier will compress your code to reduce the size
of the file, while leaving the same meaning. In a browser context, this means a
smaller download for the website user, and consequently, a faster page load.

However, minification is far from the only use case for compiling JavaScript
into other JavaScript. One particularly successful project, Babel.js, began with
the purpose of allowing developers to make use of future features of JavaScript
by taking as input source code that would potentially not yet work in the target
implementation and then compiling it into older syntax with better adoption.

Other precompiled languages specifically target a feature set that may not
have anything to do with the ECMAScript spec, but still feels JavaScript-
inspired. Sweet.js allows developers to add new keywords and macros to Java-
Script. React as a whole is out of scope for this section, but the language often
used with it, JSX, is also a precompiled language that reads like a mixture of
JavaScript and HTML. As evidence of Babel’s expansion, both Sweet.js and JSX
are compiled into JavaScript using it.

One interesting effect of the love/hate relationship that many developers
have with JavaScript is that it has led to an explosion of libraries, some with a
compilation step that defines them as precompiled languages. These aim to
treat JavaScript as a “compilation target.”

In a rage against curly braces and a (former) lack of classes, CoffeeScript
gained popularity as a way to write (preferable to some) code that compiled in-
to JavaScript. Many other precompilations take a similar approach: write code
the way you want to (using either a new or a preexisting language), and it will
be compiled into JavaScript. Although CoffeeScript has fallen out of favor, oth-
er precompiled languages are stepping up to fill in other perceived gaps (or just
lack of consistency) in JavaScript.

Precompiled Languages

17

It would be great to give an overview of all of the languages that compile in-
to JavaScript, but there are 337 of these documented on the CoffeeScript proj-
ect’s wiki (https://github.com/jashkenas/coffeescript/wiki/List-of-languages-
that-compile-to-JS) as of this writing. If you needed any more evidence of the
importance of JavaScript platforms, the distrust of the language itself, or the
complexity of JavaScript’s ecosystem, this is a good number to have in mind.

Frameworks

Let’s step back to the original question of the chapter: “which JavaScript are
you using?”

With our current knowledge of specifications, platforms, implementations,
and precompiled languages, we would be able to “choose a JavaScript” for a
website for whatever browsers we wanted to target by using supported fea-
tures. Or we could choose to build a program outside of the browser using
node. We could even use a precompiled language to backfill or extend the code
we want to write and avoid writing actual JavaScript altogether. But frame-
works provide for another possibility.

Frameworks can unify platforms and implementations as well as extend the
vocabulary of the JavaScript we’re using. And if you feel, for some reason, that
you don’t have quite enough decisions to make in order to determine which
JavaScript you’re using, frameworks are here to provide you with more choices
(please clap).

VANILLA.JS

A parodic JavaScript framework called Vanilla.js makes a case for using no frame-
work (“vanilla” is sometimes used as a synonym for “plain” or “unadorned”) at all.
As standards improve and implementations coalesce around common features, the
case seems to get stronger.

On the other hand, a lack of willingness to deprecate confusing, nonstandard, and

duplicated functionality (looking at you, prototype, __proto__, and Object.getProto-

typeOf) guarantees a fractured and sprawling feature set.

Perhaps something like "use strict" will allow for unification of implementations
(and obviation of frameworks) in the future, but I wouldn’t bet on it.

CHAPTER 2: Which JavaScript Are You Using?

18

https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS

The jQuery, Ember, React, Angular, and similar frameworks are basically
super-libraries. Many, such as Ember, handle code organization, packaging, dis-
tribution, and testing concerns. Some create new syntax for writing HTML, like
Angular. React even contains its own precompiled language (the JSX men-
tioned earlier), which will not run without compilation.

jQuery’s footprint is still keenly felt in many apps. Newcomers find the differ-
ence between JavaScript and jQuery to be significant enough in syntax and
purpose that they still ask which they should learn. This is an evergreen ques-
tion that any framework (frontend or backend) will face.

The line between frameworks and libraries is a little murky, but whenever
you see this question about a library, that indicates (in addition to a bit of con-
fusion on the part of the questioner) that you are dealing with a framework in
that it does not resemble JavaScript enough to be recognizable to the beginner.

The term framework is incredibly overloaded. Some frameworks that deal
specifically with simplifying and unifying browser interactions, like jQuery, use
the term JavaScript framework, whereas you might see things like Ember re-
ferred to as web frameworks or app frameworks. App/web frameworks tend to
come with their own build/compile step, an app server, a base app structure,
and a test runner.

To confuse things further, virtually any library can attach the word frame-
work to itself (e.g., “testing framework”) and appear more important. On the
other hand, Electron, which allows desktop OS apps to be built using HTML,
CSS, and JavaScript, also uses the word framework, whereas in the taxonomy of
this chapter, it is closer to a platform unto itself.

Libraries

Regardless of what they call themselves, libraries are generally distinguished
from frameworks in that they tend to have a more specialized purpose and be
smaller (or at least humbler). As of this writing, Underscore.js calls itself a “li-
brary that provides a whole mess of useful functional programming helpers.”

Which JavaScript are you writing?
So far, you have the choice to target specific platforms and implementa-

tions. Additionally, you can decide to use “frameworks,” which may simplify
processes, unify implementations, enable "use strict", and introduce a
build/compile step that may include a precompiled language before the Java-
Script is generated.

All that libraries tend to add to this is some combination of more features
and possible deprecation of others (à la "use strict").

Libraries

19

What JavaScript Do You Need?

It’s a tough question. Here are four things to try.

1. Follow the hype.
Honestly, if you’re unsure, following the hype is the best thing you can do.
Choose popular frameworks. Choose popular libraries. Target the most
popular platforms and implementations that make sense for your appli-
cations and programs. Having a big community means they will also like-
ly have a decent amount of documentation and example code.

2. Try something obscure.
After you’re done exploring the most popular options, look for a frame-
work that is unique and helps you think about things in a different way.
Look for similarities and differences in the more popular version you
tried.

3. Use every tool possible.
See how bloated and complicated you can make your testing process by
introducing every library you can.

4. Go minimalist.
See how far you can get with Vanilla.js on a given implementation. After
you gain some experience with tooling, it can be refreshing to start fresh,
bringing in tools only when they justify themselves. This process is cov-
ered when we gradually introduce a testing framework in Chapter 4.

What JavaScript Are We Using?

With so many options for JavaScript, it might seem impossible to choose any
given form for this book. Here’s how we’re handling that:

• No frameworks (except for a few mentions).
• No compilation/transpilation/minifying steps.
• Most code is runnable without a browser, using standard node core pack-

ages.
• A few libraries are brought in for testing (mocha, tape, testdouble, wish).
• Two more are used for functional programming (Ramda, Sanctuary).

As far as style goes, this book is meant to prepare you to adapt and improve
upon codebases of varying styles and quality. We’ll explore procedural pro-
gramming, OOP, and functional programming.

CHAPTER 2: Which JavaScript Are You Using?

20

You will see a lot of bad code before improvements are applied. But the code
after might not be optimal, or in your preferred style (or even mine), either. We
take safe, small steps, and in order to demonstrate a wide variety of techniques,
we can’t take every code snippet all the way to perfection from its first form.

You’ll find the same situation in legacy codebases, and overall, the amount
of bad code likely outnumbers the good, both in size and in variations. Through
this book, we move incrementally to make things better. There is a temptation
when looking at a legacy codebase to think, “This is garbage. We need to throw
it all away and use this framework/style/whatever.” But there you’re probably
describing a rewrite, which is an ambitious (read “expensive and risky”) pro-
cess. In the styles and changes presented in this book, sometimes we move
from bad to okay, and other times from good to better. But through this
breadth, we will be exploring a range of options for you to apply to your own
work.

Wrapping Up

As we covered in this chapter, your options for how to use JavaScript are in-
credibly broad. This situation may change in the future, but I wouldn’t bet too
heavily on any one true JavaScript. The ecosystem is so varied that you can ex-
plore completely different ways of coding and still stay somewhat close to
home. Although the fact that “knowing JavaScript” is something of a moving
target has its frustrations, it also means that the outlook is great for finding new
interests and work within JavaScript(s).

Wrapping Up

21

Testing 3

Let’s start with what’s wrong with testing.
“Writing tests takes too long. We’re moving too fast for that.”
“It’s extra code to maintain.”
“That’s what QA is for.”
“It doesn’t catch enough errors.”
“It doesn’t catch the important errors.”
“This is just a little script/simple change. It doesn’t need a test.”
“But the code works.”
“The boss/client is paying for features, not tests.”
“No one else on the team cares and will break the test suite and I’ll be trying

to be Commissioner Gordon in a Gotham gone mad.”

ABOUT THAT LAST QUOTE...

This one is actually a lot harder. Here, testing isn’t the problem. This dynamic sug-
gests a small and/or inexperienced team with a lack of leadership. Changes to this
outlook on testing and quality could evolve over time (slowly, as in one person at a
time), or be mandated from above (unlikely without new leadership).

Unfortunately, if you’re in a team full of “cowboys”—coders who just push code,
ignoring quality and testing—the most likely outcomes are frustration and unpre-
dictable breakages (and unpredictable hours).

“Leave this toxic team immediately” is not the only solution, as there may be other
benefits and constraints in your situation. But projects that have some focus on
quality typically offer more stability (less turnover), better compensation, and more
learning opportunities.

Of all the possible strawman quotes listed, this one stands out as one where the fix
is not simply to “recognize and enjoy the benefits of testing after becoming com-

fortable with it.” But if the engineering culture actively discourages testing, it is ac-
tively discouraging quality. It’s harder to change culture than your own personal

23

outlook and experience with testing. If you’re not in a leadership role, your personal
development is best served by avoiding or leaving these projects.

At first glance, “The boss/client is paying for features, not tests” may also look like
a cultural problem. However, it’s unlikely that this is actually enforced at a code
level. If you’re efficient at writing tests, only the shortest professional engage-
ments would move faster without having a test suite in place. In these cases, it’s
best to use your judgment to write quality software. No reasonable boss or client

would refuse any verification that the software works correctly. If you can automate
the process efficiently, your professional standard of quality should include writing
tests. If you can’t do that efficiently due to your lack of skill with testing tools, you
can’t help but give in to lower standards until you can gain experience. First, recog-
nize that when you do manual checks, you are testing; you’re just not automating
your tests. That should be sufficient motivation.

All this is to say that the solution to your internal resistance to testing is to get
more comfortable with testing as you develop your standard of quality. External re-
sistance, if strong enough, is resistance to quality and professional development.
This book should help you overcome the internal resistance. The external resistance
is all about networking and experience in choosing projects.

If you have these opinions, you’re certainly not alone, and on a given project
you might even be right. There are real difficulties with writing tests. One thing
to keep in mind, though, is that when things are frustrating, beneficial as they
might be, some coders may feel a sense of “cognitive dissonance,” which can
escalate a need to gather more evidence as to why testing is useless/costly/not
your job. Here, you’re acting like Aesop’s fox who, after grasping for grapes and
failing, consoles itself by saying that they must have been sour anyway. If en-
suring software quality through testing is hard, then it must not be important,
right?

That might be a helpful adaptation for dealing with regrets and disappoint-
ments in life that are outside of your control, but without recognizing the bene-
fits of testing, you’re closed off to a completely different way of writing code.
The grapes aren’t sour, and unlike the fox, you can find a ladder to reach them.

The main purpose of testing is to have confidence in your code. This confi-
dence cannot be born in a vacuum. It’s forged in the skepticism developed from
seeing code that errs and resists change. As we’ll see in “Debugging and Re-
gression Tests”, confidence is the best indicator of what and how to test. The
biggest reason to learn testing is to develop your senses of confidence and
skepticism when looking at a codebase. If that sounds a bit abstract, don’t wor-
ry. More concrete reasons for testing are coming up in the next section.

First, a quick note on some terms we’ll be using:

CHAPTER 3: Testing

24

Coverage (also code coverage or test coverage)
This is a measurement, most usefully a percentage, of the lines of code that
are covered by tests.

High-level and low-level
Just like ordinary code, tests can be broad (high-level) or more involved in
details (low-level). These are general terms, but for the two most important
types of tests we’ll cover, high-level will generally correspond to “end-to-end
tests,” whereas low-level will correspond to “unit tests.”

Complexity
This is a measurement of the pathways through the code. It tends to be
more casually and generally referred to as complexity, rather than its ances-
tor cyclomatic complexity.

Confidence
This is, ultimately, why we test. Full test coverage gives us confidence that
the whole codebase behaves as we intended. There are some caveats to this,
covered by “Nonfunctional Testing” and “Test-driven development”.

Exercised
A line of code is said to be exercised if it is run by the test suite. If a line is
exercised, then it has coverage.

Technical debt
This is the situation where a lack of confidence and trust (via complexity and
a lack of test coverage) in the codebase results in more guesswork and slow-
er development overall.

Feedback loop
This is the gap between writing code and knowing if it is correct. A “tight” or
“small” feedback loop (versus a “loose” or “long” one) is good, because you
know right away when your code is functioning as expected.

Mocking and stubbing
These are both ways of avoiding directly exercising a function, by replacing it
with a dummy version. The difference between the two is that mocking cre-
ates an assertion (pass/fail part of a test), whereas stubbing does not.

The Many Whys of Testing

1. You’re already doing it!
Well, this is a bit of an assumption, but if you run your code in the console
or open up an HTML file in the browser to verify behavior, you are testing

The Many Whys of Testing

25

already, albeit in a slow and error-prone way. Automated testing is just
making that process repeatable. See “Manual Testing” for an example.

2. Refactoring is impossible without it.
Refactoring, as discussed in Chapter 1, is completely impossible without
guaranteeing behavior, which, in turn, is impossible without testing. We
want to refactor and improve code quality, right?

3. It makes working with a team easier.
If your coworker writes some broken code, the test suite should let you
both know that there’s a potential problem.

4. Tests are ideal for demonstrating (not documenting) functionality.
Making and maintaining documentation is a whole different discussion.
But assuming you don’t have documentation in place, tests can demon-
strate the behavior you want out of your code. Exclusively relying on tests
to document the code (especially for an externally facing interface) is not
a great idea, but it’s a step up from having only the source code as a refer-
ence.

5. You’re not just verifying the behavior of your code.
Not every software library you use will have the same policy on updates
and versioning. You could unintentionally upgrade to a bad or conflicting
version, and without testing, you wouldn’t realize it had broken your
code. Not only that, but when you bring a new library in or use a new part
of it, do you want to exclusively rely on the tests the library has in place
for itself? What if you modify that library? Can you still trust just its de-
veloper’s tests then?

6. Tests are crucial for big upgrades.
You really want to start using the latest version of big framework/new
runtime. How can you upgrade responsibly and quickly? Just quickly? YO-
LO. Deploy it. It’s probably okay, right? Right? Probably not. Just respon-
sibly? Manually go through every possible code path and verify that ev-
erything does what it is supposed to, constructing necessary data objects
as you need them. For both speed and responsibility at the same time,
you need a test suite. There is no other way.

7. You’ll catch bugs early.
The earlier that bugs are caught in the development cycle, the easier they
are to fix. Before you write them is ideal. If the quality assurance (QA) or
product department finds a bug, that means more people committing
time to the fix. Once it hits customers, you’re talking about another pro-
duction cycle as well as potential loss of business or trust.

8. Tests help you smooth out development cycles and not “crunch.”

CHAPTER 3: Testing

26

Testing, refactoring, improving quality, and ultimately carrying a low
amount of technical debt will help to prevent times when you need to
move fast and “can’t help but break things.” That means long hours, de-
layed releases, and time away from whatever you enjoy outside of work.

9. 9. Your feedback loop will be tighter.
When you develop without tests, you’re increasing the amount of time
between development and verifying that your code is working. With tests
in place, your feedback loop can be reduced to a few seconds. Without
them, you’re stuck with either assuming the code works or manually test-
ing. If that takes five minutes every time (and gets longer as the program’s
complexity grows), how often will you do it? Odds are, the tighter your
feedback loop is, the more often you’ll verify that your code works, and
the more confident you can be in making further changes.

The Many Ways of Testing

In this section, we’ll look at methods of testing. One important thing to note is
that each testing method we are looking at has three stages: the setup, the as-
sertion, and the teardown.

The taxonomy of tests varies by organization, industry, language, frame-
work, and point in history. The categories here highlight the broader types that
are interesting to us in refactoring, but this list is not exhaustive. For instance,
there are many variations of manual testing, and what we are calling “end-to-
end” tests could be called integration tests, system tests, functional tests, or
something else depending on the context.

We are mostly interested in tests that aid us in refactoring—that is to say,
tests that protect and help to improve the quality of the software itself, rather
than the experience of using it.

We consider a codebase to have full coverage when every code path is exer-
cised by either unit tests, end-to-end tests, or ideally, both. It might seem overly
picky to insist that every line is covered, but generally the worse the code is, the
worse the coverage is, and vice versa. Practically speaking, 100% coverage is
very hard to accomplish for many reasons, especially when you’re writing Java-
Script and relying on external libraries. There are diminishing returns in confi-
dence gained through more coverage as you approach 100% (or even “five
nines”: 99.999%).

Testing is a tool to produce confidence. It is not the only tool. The original
author of a codebase or a problem domain expert can derive confidence from
other sources. Tests (along with code simplicity and, where appropriate, com-
ments) are special sources of confidence because they allow the confidence to
be transmitted along with the code. In any case, they are not the goal. Confi-

The Many Ways of Testing

27

dence is the goal. Tests are a practical way of creating specific types of confi-
dence in the code that can be transferred to other team members or the future
you.

For the sake of refactoring, end-to-end tests and unit tests are the most im-
portant of the types we’ll cover in this chapter.

Manual Testing

This was hinted at earlier in the chapter, but instinctively, everyone wants to
test their code. If you’re working on a web app, that likely means just loading
the page with the appropriate data objects in place and clicking around a bit.
Maybe you throw a console.log() statement in somewhere to ensure vari-
ables have the expected values. Whether you call it “monkey testing” or “man-
ual testing,” “making sure it works” or “QAing,” this testing strategy is useful for
exploration and debugging.

If you’re faced with an undertested codebase, it’s a good way to experiment.
This applies to the feature and debugging level of development as well. Some-
times, you just need to see what is happening. This is also a large component in
spiking, the process of research that is sometimes needed before a “red/green/
refactor” cycle can be entered.

Depending on which JavaScript you’re using (see Chapter 2), build/compiler
errors can also be caught during this step.

Documented Manual Testing

One step toward automation from manual testing is to develop a testing/QA
plan. The best manual tests are either temporary or well documented. Al-
though you want to move on to feature tests and unit tests as quickly as possi-
ble, sometimes the fastest way to get a section of code “covered” is by writing a
detailed set of steps to execute the relevant code paths. Although not automa-
ted, having a list (similar to what a QA team would have) can ensure that you
are exercising the code in all the ways you need to, and makes the process less
error prone by not relying on your memory. Also, it gives other members of your
team a chance to contribute to and execute the plan as a “checklist.” This is
handy to take some of the weight from a QA team, or fulfill that role if none ex-
ists.

If you find yourself lacking confidence in the code, with a big deploy looming
and a dysfunctional or incomplete test suite, this is your best option. Docu-
menting your code paths in text allows manual steps to be repeatable and dis-
tributed among team members.

CHAPTER 3: Testing

28

Even if coverage is good, a QA department or developers filling that role may
elect to manually run checks on a particular system if it is especially vital that it
does not break (sometimes called a smoke test) or contains complexity that is
resistant to automated testing.

Approval Tests

This method is a bit tricky, but may work for some projects and team configura-
tions. Sometimes, the outcome of code execution would be difficult to auto-
matically assert. For instance, let’s say that you have an image processing fea-
ture on a website for automatically cropping and resizing an avatar. Setup is no
problem: you simply feed it an image that you have on hand. But it could be
difficult to write a simple assertion that proves the cropping tool worked well.
Do you hardcode the bytes or pixels of the images for the desired input and out-
put? That would make the tests very brittle, as they would break with every
new image it crops. So do you skip testing altogether?

With an approval test, you automate the test setup and teardown, but the
assertion (or “approval”) is left to human input. This test suite keeps a record of
what output you have approved. When the test runs a second time, the same
output will “pass,” and the other tests (that are new or have different results
than the approved output) are added to the “unapproved” queue for human
observation. When a member of the queue is approved, the new version of the
output replaces or augments the memory of the old output (these can be files/
database entries on the development machine or on a staging server). If every-
thing is approved, then the code is assumed to be functioning correctly. If ev-
erything is not approved, the code gets the same treatment as it would for any
failing test: it gets fixed, hopefully with a few regression tests that reproduce
the specific conditions that caused the bug.

This process may work well when the output is something like an image, vid-
eo, or audio file, where it’s difficult to write an assertion based on programmati-
cally inspecting it. HTML may seem like a good fit for this type of testing, but
often, end-to-end tests or unit tests are more appropriate if assertions are
things like testing for text or an element on a page. Because you can use an
HTML parser, or even a regular expression parser (most of the time) for HTML/
CSS, that output is better tested through unit tests or end-to-end tests.

Just as manual tests are an organic process for testing as an individual, in
some ways, approval tests are a natural way to test in a group. In any situation
where a QA department, product owner, or designer is in a position to approve
something’s output, an ad hoc approval test system is in place. Depending on
the technical ability of the approver, he may be responsible for handling the
setup programmatically, through a documented manual test, or by asking the
developer for a demo.

The Many Ways of Testing

29

The weaknesses of the ad hoc approval test system are that setup may be
onerous for the approver, and that it may be difficult to remember what out-
puts were approved/rejected. This is not an insult toward the memory of any-
one involved. Even if they are singularly focused on this process, if the team us-
ing the process changes, the departing members take all their knowledge of the
old approvals with them.

But recognize that any attempt to framework-itize this process will produce
something that looks different to an approver than what she might be used to.
Keeping things simple for approvers probably means providing a list of URLs to
be reviewed in the queue.

For the developer, there are nontrivial annoyances in setting up the queue,
setting up each test, and providing some easy way for the approver to review.

Even though this process is popularly practiced by teams in an ad hoc way,
there has been little innovation in the seemingly likely space of “approval test
frameworks.” The questions raised by a system like this suggest some reasons
why:

• If development and approval are two distinct processes, where does the
canonical list of approved/unapproved tests/checklists live?

• Who is tasked with the “extra work” of translating product or design re-
quirements into these lists?

• Should the list of features be contained within the source code?
• Should approval test failures (after a manual check) be integrated tightly

enough to fail a test build?
• If so, how can you avoid slowing down testing cycles?
• If not, what is the feedback mechanism when someone rejects an appro-

val spec?
• Will there be a mismatch of expectations if developers see approval tests

passing as the completion of a task?
• What interaction, if any, should an approval test framework have with an

issue/feature/bug tracking system?

It can be difficult enough for a process to be adopted when it is confined to a
development team, but in the case of an approval test framework, everyone in-
volved has to understand and agree to the answers to the preceding questions.
Perhaps some Software as a Service product would be able to manage these
concerns, but the preferred interfaces across different teams are varied and
productized decisions about what types of processes to change with a tool like
this are unlikely to make everyone happy.

CHAPTER 3: Testing

30

RELATED: ACCEPTANCE TESTING

There have been attempts to formalize “acceptance testing,” which rigorously
mandates creation of specifications that correspond with user stories. If you are in-
terested in this type of testing, Cucumber.js would be a framework to investigate.

Although it seems appealing, and it specifies a lot of uncertainty about approval
tests, getting an internal cross-functional team or client on board may be more
challenging than expected.

In the worst (but fairly likely) case, developers end up writing another entire layer
of testing (rather than the client or “product owner”), but the client/product owner
still requires the same level of process flexibility that the tests are intended to
guard against.

Confusingly, some frameworks that are described as “acceptance test” frameworks
do not insist on “English-like” syntax and do not imply a complex process that
starts with a nondeveloper writing the spec in said English-like syntax. Instead,
they provide high-level APIs for events like clicking and logging in, but these are
clearly code, and not obscured by a layer of language that is converted into code.

These high-level APIs are useful for end-to-end tests, but be wary of frameworks

that try to automate the actual acceptance of tasks. Requirements magically turning

into code, and code magically fulfilling requirements, tends to actually be the magic
that is software engineering, which isn’t really magic and probably involves hu-
mans talking to each other. Ta-da.

End-to-End Tests

Finally, the good stuff. These tests are meant to automate the actual interac-
tions that a manual tester could perform with the interface provided to the end
user. In the case of the web app, this means signing up, clicking on a button,
viewing a web page, downloading a file, and so on.

For tests like these, code should be exercised in collaboration with other
pieces of the codebase. Mocking and stubbing should be avoided except when
absolutely necessary (usually involving the filesystem or remote web requests)
so that these tests can cover the integration between different system compo-
nents.

These tests are slow and simulate end users’ experience. If you want to split
test suites into two, one fast and one slow, an end-to-end suite and unit test
(covered next) suite are what you want. These are also called high-level and
low-level tests. As you’ll recall from the beginning of this chapter, “high-level”

The Many Ways of Testing

31

means to take a broader view and have your code be more concerned with an
integration of parts, while “low-level” means being more focused on the details.

Unit Tests

Unit tests are fast and singularly focused on “units.” What is a unit? In some lan-
guages, the answer would be “mostly classes and their functions.” In Java-
Script, we could mean files, modules, classes, functions, objects, or packages.
Whatever method of abstraction forms a unit, though, the focus of unit tests is
on the behavior of the inputs and outputs of functions for each unit.

If we pretended that JavaScript’s ecosystem was simpler and just contained
classes, this would mean testing the inputs and outputs inside that class, along
with creating objects from the class.

“PRIVATE” FUNCTIONS

It’s a bit of a simplification to say that JavaScript units, whatever those may be
(classes? function scope? modules?), are split into “private” and “public” methods.
In packages/modules, private methods would be the functions that are not export-
ed. In classes and objects, you have explicit control over what is “private” in a
sense, but that necessarily involves extra setup and/or awkward testing scenarios.

In any case, a popular recommendation is to test only public methods. This allows
your public methods to focus on the interface of inputs and outputs, as the code for
private methods will still be exercised when you run the public methods that make
use of them. This leaves you with a bit of flexibility to change private methods’ im-
plementation details, without having to rewrite the tests (as mentioned earlier,

tests that break when an interface hasn’t changed can be called brittle).

This is a good guideline in general, with tests also following the mantra “code to an
interface, not an implementation,” but it doesn’t always line up with a priority of
“code confidence.” If you can’t be confident in a public method without testing its
implementation, feel free to ignore this advice. We’ll see an example of when this
could happen in the next chapter when we deal with randomness.

In contrast to end-to-end tests, we’re only concerned with the independent
behavior of functions of our units. These are low-level tests, rather than high-
level tests. That means at integration points between units, we should feel free
to mock and stub more liberally than with end-to-end tests. This helps us to
keep the focus on the details, and leave the end-to-end tests tasked with the
integration points. Additionally, if you avoid loading your entire framework and

CHAPTER 3: Testing

32

every package you use, as well as faking the calls to remote services and possi-
bly the filesystem and database too, this test suite will stay fast, even as it
grows.

WHERE FRAMEWORKS CAN LET YOU DOWN

Frameworks often come with their own patterns of testing. These may relate to the
directory that code lives in, rather than whether it is a unit test or an end-to-end

test. This is unfortunate for two reasons. First, it encourages one test suite, rather
than a fast suite (run frequently) and a slow suite (run somewhat often).

Division by app directory can also encourage tests that are part unit test and part
end-to-end test. If you’re testing a signup in a web app, should you need to load the
database at all? For an end-to-end test, the answer is probably yes. For a unit test,
the answer is probably no. Having slow tests (end-to-end) and fast tests (unit) to
differentiate this behavior would be ideal.

This division is eroded in part because colloquially, tests can be known as feature
tests, model tests, services tests, functional tests, or something else, if the test di-
rectory mirrors the app directory. As an application grows, this could result in one
big, slow test suite (with fast tests mixed in). Once you have one slow test suite, it is

difficult to dig in and split it into necessarily slow tests and probably fast tests. Fortu-
nately, your app’s structure may provide hints as to what folders should be fast and
what folders should be slow (based on whether the files inside them tend to do
high-level or low-level operations). Following that division, additional work is like-
ly needed to remove loading dependencies of the potentially fast unit tests. As they
are built without performance in mind, they are likely to load too much of the app,
the database, and external dependencies.

One advantage to the default organization that a framework might provide is that
tests may be easier to reason about, and to write to begin with. Although at some
point this approach may be undesirable, having one test suite with good coverage is
better than two with slightly better architecture but worse coverage.

All this is to say, solve the immediate problem, but look out for future problems as
well. If you have bad coverage, that takes priority. If your test suite is so slow that

no one will run it, a problem that you’re only likely to have as a result of many tests

and good coverage, then focus your efforts on that problem.

Your test suite, just like any code, should be written to serve its primary purpose
before performance tuning. Coverage and confidence come first, but if your suite
gets bogged down to the point where it isn’t run frequently, then you must address
the performance. You can do so by renting test running architecture online, paral-
lelizing tests, splitting your tests into slow and fast suites, and mocking/stubbing
calls to systems that are particularly slow.

The Many Ways of Testing

33

Nonfunctional Testing

In the context of refactoring, nonfunctional testing does not directly contribute
to accomplishing our code quality goals. Nor does it contribute to confidence
that the code works. Nonfunctional testing techniques include:

• Performance testing
• Usability testing
• Play testing
• Security testing
• Accessibility testing
• Localization testing

Results of these types of tests contribute to new feature creation and is-
sues (more broadly than what might initially be considered bugs) to fix. Is your
game fun? Can people use your program? What about expert users? Is the first-
time experience interesting? What about people with visual impairments? Will
lax security policies lead to a data breach or prevent collaborations with part-
ner companies or clients?

Unit and end-to-end testing will lead to coverage, confidence, and the
chance to refactor, but they will not address these questions directly.

TRY AUDIO CAPTCHA SOMETIME

Some audio captchas on websites are horribly difficult. But it’s worse
than that. The experience often starts with being presented with an im-
age of someone in a wheelchair, which certainly doesn’t apply to all peo-
ple who are visually impaired. And the audio that follows is often dis-
turbing and haunting as well as being difficult to parse. All in all, it’s a
terribly unwelcoming and frustrating process.

In a conference talk, accessibility expert Robert Christopherson conduc-
ted an experiment with attendees using an audio captcha. He played it
twice, and had everyone write down what they thought they heard, then
compare it to the person next to them. Finally, he asked how many peo-
ple had written down the same thing as their neighbor—zero out of
about a thousand.

Ignoring nonfunctional testing will necessarily lead to ignoring some
people, which is somewhere between mean and illegal. Nonfunctional
testing is very important, but just not the focus of this book.

Nonfunctional testing, whether for accessibility or otherwise, is critical to
the heart of a project. Because this book is focused strictly on technical quality,
we can’t help but gloss over the many disciplines involved in nonfunctional
testing, but we also can’t leave the topic without a recommendation to spend

CHAPTER 3: Testing

34

more time learning about these ideas. Not only that, but also consider that a
team that is diverse, functionally, demographically, and in life experiences, can
help to root out the most egregious problems quickly and make the nuances
more clear.

All this said, these testing techniques tend to generate tasks (bugs/features/
enhancements) that will need attention in addition to what the obvious prod-
uct road map indicates. This means more code changes and potentially more
complexity. You want to meet that complexity with confidence, just as you
would with mainline product features. The confidence to be flexible, fix bugs,
and add features comes from testing.

Other Test Types of Interest

We’ll cover these in detail in the next chapter, but this classification concerns
different ways that your tests may interact with the implementation code. All of
these three types may be either high-level or low-level:

Feature tests
These are the tests that you write for new features. It is helpful to write the
tests first (use test-driven development, or TDD), as will be demonstrated in
the next chapter.

Regression tests
These tests are intended initially to reproduce a bug, after which changes
are made to the implementation code in order to fix the bug. This guaran-
tees coverage so that that bug does not pop up again.

Characterization tests
You write these for untested code to add coverage. The process begins with
observing the code through the test, and ends with unit or end-to-end tests
that work just as if you had written a feature test. If you want to follow TDD,
but the implementation code is already written (even if you just did it), you
should consider either writing this type of test or temporarily rolling the im-
plementation code back (or commenting it out) in order to write the test
first. This is how you can ensure good coverage.

Tools and Processes

Hopefully at this point, you’re totally on board with the “why” behind testing,
and understand how unit and end-to-end tests form the core to being confident
in your code.

Tools and Processes

35

There is one last problem we need to address in this chapter: testing is hard.
We already wrote the code, and now we have to do extra work to write the code
that uses it in a structured and comprehensive way? That’s frustrating (and also
backward if you’re doing TDD, but we’ll get to that in a few short pages).

The larger problem is that quality is hard. Fortunately, there’s more than just
advice on how to do this: there are processes and tools as well as a good half-
century’s worth of research on how to encourage quality software.

Not all of these tools and processes are great for every project and every
team. You might even spot an occasional lone-wolf programmer who avoids
process, tools, and sometimes testing altogether. She might be deeply creative
and prolific, to the point where you see her and wonder if this is how all soft-
ware should be developed.

In complex software, maintained by teams of coders of varying skill levels,
responsible for real deadlines and budgets, this approach will result in techni-
cal debt and “siloed” information that is not well understood by the whole
team. Quality processes and tools scale up with complexity of projects and
teams, but there’s really no one-size-fits-all situation.

Processes for Quality

CODING STANDARDS AND STYLE GUIDES

The simplest process to use in order to help with test coverage and quality is for
a team to adopt certain standards. These typically live in a style guide and in-
clude specifics like “Use const and let instead of var” as well as more general
guidelines like “All new code must be tested” and “All bug fixes must have a test
that reproduces the bug.” One document may cover all the systems and lan-
guages that a team uses, or they could be broken out into several documents (a
CSS style guide, a frontend style guide, a testing style guide, etc.).

Developing such a guide collaboratively with team members, and revisiting
it from time to time, can make it flexible enough to adopt to changing ideas of
what “good” means for the team. Having this guide in place provides a good
foundation for the other processes covered here. Also, in an ideal world, most
of this style guide is also executable, meaning that you have the ability to check
for a large class of style guide violations very easily.

The term “style guide” may also refer to a design document describing the
look and feel of the site. Aspects of this may even be in an external “press kit”–
type form with instructions (“Use this logo when talking about us,” “Our name
is spelled in ALL CAPS,” etc.) These are distinct documents. Putting documents
like these in the same place as the coding style guide is not recommended.

CHAPTER 3: Testing

36

DEVELOPER HAPPINESS MEETING

Another lightweight quality-focused process worth considering is a weekly,
short meeting sometimes referred to as a developer happiness (this name may
not be well received by noncoders in the organization), engineering quality, or
technical debt meeting. The purpose of the meeting is to recognize areas in the
codebase that have quality problems worth addressing. If product managers
tightly control the queue of upcoming tasks, then this process enables one of
the developers to perpetually make the case to them for adding a given task to
the queue. Alternatively, developers or product managers may allocate a week-
ly budget for these types of tasks.

However the tasks are given priority, this process allows for things like
speeding up the test suite; adding test coverage to a legacy module; or refactor-
ing tasks to be addressed in a way that doesn’t surprise anyone, maintains a
quality focus, and allows the worst technical debt to be surfaced, widely under-
stood, and then paid off.

PAIR PROGRAMMING

Pairing, aka pair programming, is a simple idea, but implementing it in a team
can be difficult. Basically, two programmers tackle a problem, side-by-side,
with one person running the keyboard (“driving”) while the other watches the
screen and sometimes has an additional computer available for research and
quick sanity checks without tying up the main development machine. Typically
the “driver” role is passed back and forth, sometimes at regular, predetermined
intervals.

Pairing can lead to higher quality because it helps catch small bugs, even
just typos, right away. Additionally, questions about quality (“Is this too
hacky?” or “Should we test this as well?”) come up frequently. Openly discus-
sing these details can lead to more robust code and higher test coverage. An-
other benefit is that information about the system is held by at least two peo-
ple. Not only that, but it helps other knowledge, from algorithms to keyboard
shortcuts, to spread through an organization.

Knowledge sharing, focus, high-quality code, and company—what’s the
downside? First, like with other quality-based initiatives, it can be difficult to
justify the upfront expense. “Two programming ‘resources’ are working on one
task. What a waste!” Second, this process demands total focus, and it can ac-
tually be quite exhausting for the programmers. For this reason, pairing is often
seen coupled with use of the “pomodoro” technique, where focus is mandated
in 25-minute increments, with 5-minute breaks in between. Third, this process
can feel insulting and frustrating to programmers (especially high performers)
who think their output is slowed by it. Often this happens when there is a large

Tools and Processes

37

gap in experience between the pairing partners. Although this difference in skill
potentially benefits the team most by allowing the greatest amount of knowl-
edge transfer, not every programmer wants to act as a mentor. If it’s a priority
to keep pair-averse individual contributors happy and on staff, a teamwide
mandate might be too aggressive of an approach.

Experimenting with pairing and getting feedback is a good idea, but teams
tend to pair either very often or very rarely. Without a mandate or at least a gen-
uinely supportive attitude from the team and management, despite its bene-
fits, a situation can develop where those who would pair are reluctant to do so
for fear of being seen as ineffective on their own. Skepticism of the process by
pair-averse team members or managers will feed this reluctance. Then “pair-
ing” takes on a new meaning, where people “pair” when they’re stuck. Thus a
cycle forms where pairing is stigmatized. So while pairing isn’t “all or nothing,”
it likely is “mostly or barely.”

A NOTE ON “RESOURCES”

When people (usually project/product managers) refer to team members in the de-
sign, development, or any other department as “resources,” as in “We need more

programming resources on this project,” or “I need a resource for my project,” try

giving them a quizzical look and saying “What? Oh...You mean people?”

There are two problems here. First, hopefully, your team consists of programmers
with diverse skills and experiences, and thinking of them as interchangeable units
is not a good start to ensuring a project is well executed. Second, defining people
(especially to their faces) strictly by their function is somewhere between unprofes-
sional and mechanistically dehumanizing.

Three (not mutually exclusive) variations on pairing worth noting are TDD
pairing, remote pairing, and promiscuous pairing. With TDD pairing, the driving
role tends to alternate with the first person writing a test, and the second per-
son implementing the code to make the test pass. In remote pairing, people not
in the same physical location share their screens along with open audio and
video channels. In promiscuous pairing, as opposed to dedicated pairing, the
pairs of people are rotated on a day-by-day, week-by-week, sprint-by-sprint, or
project-by-project basis.

CHAPTER 3: Testing

38

CODE REVIEW

Another technique that helps ensure quality by putting another set of eyes on
the code is code review. Through this process, when code is “finished,” it is put
into a review phase where another programmer looks through it, checking for
style guide violations, bugs, and comprehensive test coverage. This may also be
combined with a QA pass from the developers (especially on teams without a
QA department), where the reviewing programmer manually runs the code and
compares it with the task description (or more formally, acceptance criteria).

While pair programming and code review will not directly help overcome a
dislike of testing, they will provide opportunities to focus on testing and quality.
Enough of these experiences should help provide a more nuanced perspective
on testing than that reflected by the quotes used to start off this chapter. Both
processes give opportunities to establish norms and reinforce culture.

TEST-DRIVEN DEVELOPMENT

If you have the basics of testing down, test-driven development (TDD) can pro-
duce quality code with good test coverage. The downside is that it is a signifi-
cant departure from a process of testing after the implementation code is writ-
ten. The upside is that TDD, through the red/green/refactor cycle, can provide
guidance throughout development. Additionally, if TDD is followed strictly, im-
plementation code is written only in order to get a passing test. This means that
no code is written that does not have coverage, and therefore, no code is writ-
ten that cannot be refactored.

One challenge to a coder using TDD is that sometimes it is not obvious how
to test, or even write the implementation code to begin with. Here, an explora-
tory phase known as spiking is suggested, where the implementation code is at-
tempted before the tests are written. Strict TDD advocates will advise deleting
or commenting out this spike code once the coder understands the task well
enough to write tests and implement them, à la the normal red/green/refactor
cycle.

A term that you’ll often see alongside TDD is BDD (behavior-driven develop-
ment). Basically, this process is extremely similar to TDD, but is done from the
perspective of the end user. This implies two main points of importance. First,
the tests tend to be high-level, end-to-end tests. Second, inside the red/green/
refactor cycle of BDD end-to-end tests, there are smaller red/green/refactor cy-
cles for TDD’d unit tests.

Let’s take a look at a slightly complex diagram of a red/green/refactor cycle
(Figure 3-1).

Tools and Processes

39

FIGURE 3-1

A red/green/refactor
cycle

Whoa. Okay, so this might look a little crazy, but there are only a few compli-
cations here, and this should help you if you’re wondering what part of the red/
green/refactor cycle you are in.

Starting at the top left, we write a failing test, which puts us in a red state.
We have three possibilities from there (one failing test). We could follow the ar-
row to the right (top-middle red state) and write another failing test (then we
would have two). Or, if possible, we could follow the long arrow down to the
green state (implement the test). The most complicated possibility exists when
we can’t implement the test to make it pass right away. In that case, we follow
the short arrow down, where we meet another cycle just like this one. Assume
we’re stuck there for now, but we’re always free to create new failing tests in
any cycle that we’ve initiated.

If any tests (at any level) are in the green state in the middle, we can do one
of two things: either refactor, or call it done and consider this test and code
complete (leave the cycle). When we start refactoring, we can either keep refac-
toring or consider this test and code complete (leave the cycle).

When all the tests are complete, the arrows can all leave the cycle. If we’re in
an inner cycle, that means we move into the green phase of the outer cycle. If
we’re in the outer cycle, and we can’t think of any more tests to write (no more
reds to tack on to the top row), then we’re done.

One subtlety in this process worth noting is that creating a new red test after
a green test is recommended only after you have at least considered a refactor-
ing phase. If you move on right away, there is no clear indication that more

CHAPTER 3: Testing

40

work is to be done. By contrast, if you have just refactored something, then
you’re free to move on. Similarly, if you have written a failing test (red state),
then if you write another test case, your test framework will still let you know
that there is more work to be done on the first one, so you won’t get lost there.

Moving on from the diagram, here is a concrete example of a TDD cycle con-
taining another TDD cycle:

1. Failing (red) high-level test is written: “A customer can log in.”

1. Failing low-level test is written: “Route ‘/login’ returns 200 re-
sponse.”

2. Routing code is written to pass the low-level test. We can refactor
this code written on the inner cycle now.

3. The high-level test is still failing, so a new failing low-level test is
written: “The form post route at ‘/login_post’ should redirect to ‘/’
for valid email and password.”

4. Code is written to handle successfully posting the email/password
and returning the logged-in home page. This inner cycle test is
passing, so we can refactor this code written on the inner cycle
now.

2. Now both the second low-level test and the high-level test are passing.
3. Once everything in our outer cycle test is green, we’re free to refactor the

outer cycle as we see fit. And we have two levels of testing to ensure our
code continues to behave.

For the purposes of refactoring, using a methodology like BDD doesn’t really
matter. What matters is that you have good coverage in your code, preferably
from unit tests and end-to-end tests. If those were created in a “test first” man-
ner via TDD or BDD, that’s fine. But the aspect of testing from the end users’
perspective through BDD is not critical. It’s possible to create high-level tests
with good coverage that don’t test from this perspective and that aren’t written
before the implementation code.

QUALITY PROCESSES AS TEAM AND PERSONAL BRANDING

You will often see development methodologies and quality-enhancing techniques
used as social proof. Job seekers add them to their résumés, hiring pages display
them on job listings, and top consultancies build their brands around them.

Although day-to-day there may a focus on “getting things done” (potentially to the
detriment of quality), being comfortable with these techniques and tools means ac-
cess to better employment opportunities, be they with companies or clients.

Tools and Processes

41

Tools for Quality

Moving on to tools for testing...this could be a book unto itself. Though individ-
ual frameworks and tools rise and fall in popularity, knowing what types of
tools are available will remain useful. Sometimes, GitHub or npmjs stars are a
good proxy for quality and popularity. Searching for “js <tooltype>” (e.g., “js
test coverage”) with your preferred search engine usually returns decent re-
sults. It’s best to learn one or two versions of each of these tools well, but with
JavaScript’s open source package development being as expansive as it is, be
prepared to frequently adapt to new but similar tools.

VERSION CONTROL

Before any other tool is mentioned (in case you missed it in Chapter 1), it is crit-
ical that your project is under version control, preferably with backups some-
where other than just your computer. If lack of testing should produce skepti-
cism rather than confidence, lack of version control should produce uneasiness,
if not terror. Version control, with a backup online (as of this writing, Git + Git-
Hub is recommended), ensures your code doesn’t completely disappear. No
amount of quality in the code matters if it can just get wiped out. Additionally,
many of the tools covered here rely on versioned software for integration and to
demonstrate progress.

TEST FRAMEWORKS

These vary significantly based on what JavaScript you are using (see Chap-
ter 2), and how many tools you want bundled together. In general, these allow
you to specify test cases in a file (or many) and have a command-line interface
that you can use to run the test suite. A test framework may include many of
the tools listed next as well. Some frameworks are specific to the frontend or
backend code. Some are specific to the JavaScript framework. Some are specif-
ic to high-level, low-level, or acceptance tests. They will usually dictate how
your test files are written as well as providing a test runner. The test runner will
execute the suite (often allowing targeting of a specific directory, file, or individ-
ual test case), and output errors and failures of the run. It will also likely be re-
sponsible for the setup and teardown phases of your test run. Besides loading
code, this can also mean putting the database in a particular state (“seeding” it)
before the test run, and then resetting it afterward (as your tests may have cre-
ated/deleted/changed records).

In the next chapter, we use some of the more basic features of the Mocha
test framework. In Chapter 9, we’ll also be trying out a more lightweight frame-
work called Tape.

CHAPTER 3: Testing

42

ASSERTION/EXPECTATION SYNTAX LIBRARIES

These are usually meant to work with particular testing frameworks and often
come bundled with them. They are what enable you to assert that a given func-
tion returns “hello world” or that running a function with a given set of inputs
results in an error.

Assertion libraries can be unnecessarily complicated. Chapter 4 introduces
a simple assertion and characterization testing library called wish.

DOMAIN-SPECIFIC LIBRARIES

Examples of these include database adapters and web drivers (to simulate
clicks and other website interactions). These may be bundled into a JavaScript
framework or testing framework. Often, they come with their own assertion/
expectation syntax that extends the testing framework.

FACTORIES AND FIXTURES

These tools are responsible for creating database objects either on demand
(factories) or from a file specifying data (fixtures). These libraries are sometimes
associated with the word fake or faker. You’ll find these useful if your tests re-
quire a lot of code to set up.

MOCKING/STUBBING LIBRARIES

These are sometimes associated with the terms mocks/mocking, stubs/stub-
bing, doubles, and spies. Mocks and stubs both allow you to avoid calling a cer-
tain function in your tests, while mocks also set an expectation (a test) that the
function is called. General mocking/stubbing functionality is usually included
as part of a testing framework, but there are also more specific mocking/stub-
bing libraries that are not. These may stub out whole classes of function calls,
including calls to the filesystem, the database, or any external web requests.

BUILD/TASK/PACKAGING TOOLS

The JavaScript ecosystem has a ton of tools for gathering code together, trans-
forming it, and running scripts (custom or library-defined). These can be dicta-
ted by a JavaScript framework, and you might have some that overlap in your
project.

Tools and Processes

43

LOADERS AND WATCHERS

If you’re running the test suite frequently, which is essential to having a tight
feedback loop, loading your whole app/program before every run can slow you
down significantly. A loader can speed up the process by keeping your app in
memory. This is often paired with a watcher program that executes your test
suite when you save a file. The feedback loop can be tightened even further
when the watcher script intelligently only runs the tests relevant to the saved
file.

TEST RUN PARALLELIZERS

Sometimes built into loaders/task runners or test frameworks, these tools
make use of multiple cores on your machine, parallelizing the test run and
speeding up the execution of the test suite. One caution here worth noting is
that if your application is heavily dependent on side effects (including using a
database), you may see more failures when tests produce state that conflicts
with other tests.

CONTINUOUS INTEGRATION (CI) SERVICES

These are online services that run your test suite on demand or upon events
like committing to the shared version control repository, sometimes restricted
to particular branches. These often make use of parallelization (and offer over-
all performance) beyond what you could accomplish on your personal ma-
chine.

COVERAGE REPORTERS

In order to know if code is safe to refactor, it is essential to know that the code is
sufficiently covered by tests. Whether or not you are able to determine coverage
without actually running the test suite (and consequently exercising the code)
is an interesting academic question of dynamic versus static analysis, but fortu-
nately, coverage tools that determine coverage by running the test suite are
abundant. These can be run locally, but are often paired with CI systems.

CHAPTER 3: Testing

44

MUTATION TESTING

If you’re interested in other possibilities using dynamic analysis, which coverage

tools make use of, you might want to check out mutation testing.

This topic can run a bit deep, but basically a tool runs your test suite with a mutated
codebase (most easily by changing test inputs, e.g., a string input where a boolean

was expected) and fails when your tests pass in spite of the mutated code.

This can allow you to find cases where tests don’t actually require the code to be as
it is. That may mean that the code is not exercised, but it also could mean that the
normal input is meaningless in the context of the test. For example, if a parameter
to a function is used in a way that is so general that various mutated inputs would
work just as well, it suggests that even if coverage shows a line of code as being run,
the code is not sufficiently exercised. At best, you may just be relying on type coer-
cion in JavaScript’s case.

Two warnings apply here. First, mutation testing relies on multiple variations on
your normal test suite, so it will tend to be slow. Second, it may break your code in
unexpected ways and complicate the teardown phase of your test—for example, by
doing anything from leaving your test database in an unexpected state to actually
changing the code in your files. Check your code into version control and back up
your database before you run something this aggressive and unpredictable.

STYLE CHECKERS, AKA LINTERS

Most quality tools don’t require dynamic analysis. They can inspect files
without executing the code to look for many types of errors or stylistic viola-
tions. These checks are sometimes run locally as discrete scripts or through on-
line services after code is committed to a shared repository. For a tighter feed-
back loop, these checks can often be integrated in a programmer’s IDE or edi-
tor. You can’t do any better than getting notifications of mistakes immediately
after you write them. Sometimes these are called linters. At best, these style
checkers you have in place serve as an executable style guide.

DEBUGGERS/LOGGERS

Sometimes, during a spike (writing exploratory, temporary code without test-
ing), a tricky test case, or a manual test, it may be unclear what values variables
have, what functions are outputting, or even whether a certain section of code
is running. In these cases, debuggers and loggers are your friends. At the point

Tools and Processes

45

in the file where the confusion lies, either in your test or your implementation
code, you can add a logging statement or set a debugging breakpoint. Logging
will sometimes give you the answer you need (e.g., “this function was reached”
or “this file was loaded”), but debuggers offer the chance to stop execution of
the code and inspect any variable or function call you want.

STAGING/QA SERVERS

It can be difficult to simulate production to the level needed on your local de-
velopment machine. For this reason, servers (or instances/virtual machines)
that are as similar as possible to production are often used with a database that
has a sanitized but representative version of production data.

If these processes and tools seem overwhelming, don’t worry. When you
need them, they can be useful, and if you don’t, you can usually avoid
them. It’s good to experiment with new tools like these on hobby
projects, but if you go overboard, you’ll end up spending more time con-
figuring everything to work together than you will actually doing the
project!

Wrapping Up

So now we have a good overview of what testing is, as well as why it’s useful
and completely essential to refactoring. In the next chapter, we’ll cover how to
test your codebase, regardless of what state it’s in.

CHAPTER 3: Testing

46

Testing in Action 4

In the last chapter, we looked at some common objections to testing, and ex-
plored the benefits that can hopefully overwhelm those objections. If they can’t
for your project, then there’s a strong possibility that either your team doesn’t
have the strongest engineering culture (quite possibly for reasons out of their
control), or you haven’t quite turned the corner on being able to write tests fast
enough to justify their benefits.

In this chapter, we’re getting into the details of how to test in the following
scenarios:

• New code from scratch
• New code from scratch with TDD
• New features
• Untested code
• Debugging and regression tests

At the risk of beating a dead horse, you can’t refactor without tests. You can
change code, but you need a way to guarantee that your code paths are work-
ing.

47

REFACTORING WITHOUT TESTS: A HISTORICAL NOTE

In the original 1992 work on refactoring, “Refactoring Object-Oriented
Frameworks” by William Opdyke (and advised by Ralph Johnson of “De-
sign Patterns” fame), the word test appears only 39 times in a 202-page
paper. However, Opdyke is insistent on refactoring as a process that pre-
serves behavior. The term invariant appears 125 times, and precondition
comes up frequently as well.

In a nonacademic setting, 25 years after the original work, and in Java-
Script, with its rich ecosystem of testing tools, the mechanisms of pre-
serving behavior are best facilitated by the processes we discuss in this
book, and especially this chapter.

However, if you’re curious about the initial ideas that went into refactor-
ing, in a context likely a bit removed from your day job, checking out the
original work is highly recommended.

BEFORE MOVING ON!

We have some shopping to do. We need node, npm, and mocha.

• Get node (version 6.7.0) from nodejs.org. A later version will also proba-
bly work.

• Installing node should also install npm.

• When you have npm, install mocha with sudo npm -g install mocha
(you may not need the sudo).

To make sure everything is working, try running the following commands:

node -v
npm -v
mocha -V

Yes, that last V is a capital V, but the others are lowercase. If you get back anything
other than version numbers, try searching for “installing node/npm on <whatever
your operating system is>” (e.g., “installing npm on windows”).

By the way, we tend to not use the -g (global) flag for other packages. We use that
flag for mocha because we want the tool available at the command line. The npm
docs (http://docs.npmjs.com/getting-started/installing-npm-packages-globally)
have additional details.

The full reference versions of libraries used in creating this book can be found in
Appendix A.

CHAPTER 4: Testing in Action

48

http://nodejs.org
http://docs.npmjs.com/getting-started/installing-npm-packages-globally
http://docs.npmjs.com/getting-started/installing-npm-packages-globally

New Code from Scratch

Say we get the following specification from our boss or client:

Build a program that, given an array of 5 cards (each being a string like 'Q-H' for queen of

hearts) from a standard 52-card deck, prints the name of the hand ('straight', 'flush',

'pair', etc.).

NEW FEATURES VERSUS NEW CODE FROM SCRATCH

In terms of testing, creating a new feature is almost identical to creating the pro-

gram from scratch. The biggest difference is that for new features, you will likely be
able to use some testing infrastructure that has already been decided on, whereas in

a greenfield (from scratch) project, the testing will be a blank slate, and you will have
some setting up to do.

In the following two sections, testing with a new codebase quickly becomes break-
ing things down into individual features to test, which should illustrate this simi-
larity.

Note that on a new project, while you might prefer to set up testing infrastructure
before creating any implementation code, in these sections testing infrastructure is
introduced as complexities arise that justify its use. This is done primarily to serve
those without much experience testing, even though it is recommended that basic
test infrastructure is set up beforehand. That said, be careful not to go overboard
with test tooling. Worrying about too many dependencies of any kind can be very
frustrating and take time away from implementing actual features.

So how do we start? How about with a checkHand function? First, create a
file and save it as check-hand.js. If you run it with node check-hand.js right
now, nothing will happen. It’s just a blank file.

New Code from Scratch

49

BE CAREFUL WITH ORDERING OF FUNCTION EXPRESSIONS

In this chapter, we use the syntax:

var functionName = function(){

// rather than

function functionName(){

Either style is fine, but in the first one (function expressions) the order in
which you define your functions matters. If you get this error:

TypeError: functionName is not a function

then you should rearrange your functions or use the second syntax. We’ll
discuss this (along with the idea of “hoisting”) more in Chapter 6.

We can start by writing a function that is basically a large case statement:

var checkHand = function(hand){
 if (checkStraightFlush(hand)){
 return 'straight flush';
 }
 else if (checkFourOfKind(hand)){
 return 'four of a kind';
 }
 else if (checkFullHouse(hand)){
 return 'full house';
 }
 else if (checkFlush(hand)){
 return 'flush';
 }
 else if (checkStraight(hand)){
 return 'straight';
 }
 else if (checkThreeOfKind(hand)){
 return 'three of a kind';
 }
 else if (checkTwoPair(hand)){
 return 'two pair';
 }
 else if (checkPair(hand)){
 return 'pair';
 }
 else {
 return 'high card';
 }
};

console.log(checkHand(['2-H', '3-C', '4-D', '5-H', '2-C']));

CHAPTER 4: Testing in Action

50

The last line is typical of something we’d add to ensure things are still behav-
ing. While we’re working, we might adjust this statement, or add more. If we’re
honest with ourselves, this console.log is a test case, but it’s very high-level,
and the output isn’t structured. So in a way, adding lines like this is like having
tests, but just not great ones. Probably the strangest part about doing things
this way is that once we have 8 or 10 print statements, it will be hard to keep
track of what means what. That means we need some structure to the format of
our output. So we add things like:

console.log('value of checkHand is ' +
 checkHand(['2-H', '3-C', '4-D', '5-H', '2-C']));

BREAKING UP LONG LINES OF CODE

Notice that we’re sometimes breaking up lines so that they don’t run off
the edge of the page. We’ll talk about the specifics of how to deal with
long lines in later chapters, but for now just trust that these breaks are
okay.

Once we start doing this, we’re actually doing the job of the test runner part
of a test framework: one with very few features, but tons of duplication and in-
consistency. Natural as it might be, this is a sure path to guesswork and frustra-
tion with temporary fits of confidence.

LOOK FOR THESE SYMPTOMS

Do you find programming to be an emotional roller coaster, cycling between swear-
ing, pumping your fist into the air saying “Yes!” and then some more swearing?

This is a sign your feedback loop is not tight enough. Getting too excited or disap-
pointed about things working or not reflects a state of surprise. It is very hard to be
surprised if you are working in small steps, testing frequently, and using version
control to maintain a recent and good version of the code.

Is it boring to not let your code surprise you? Maybe. Will you save a lot of time by
not having to guess and redo work? Definitely.

Instinctively, new coders will manually test like this as they write the code,
and then delete all of the console.log statements afterward, effectively de-
stroying any test-like coverage that they had. Because we know that tests are
important, we will get our coverage back after we’ve written the tests, but isn’t

New Code from Scratch

51

it odd to write these tiny, weird tests, delete them, and then write better ver-
sions after?

CONSOLE.LOG ISN’T THE ONLY WAY TO GO

With node, you can use the debugger by running node debug my-program-name.js in-

stead of node my-program-name.js.

By default, it gives you an interface to step through your file line by line. If you’re
interested in a specific section of your code, you can set a breakpoint by adding a
line like this:

debugger;

Now when you run node debug my-program-name.js, you’ll still be started at the first

line, but typing c or cont (it means “continue,” but “continue” isn’t a valid com-
mand, as it’s already a reserved word in JS) will take you to your breakpoint.

If you’re unfamiliar with what the debugger can do, type help inside of the debugger
for a list of commands.

So what’s next? Well, you take off for a week, and your coworkers start im-
plementing these check methods, manually testing with console along the
way to “see if it’s working.”

And you come back to this:

// not just multiples
checkStraightFlush = function(){
 return false;
};
checkFullHouse = function(){
 return false;
};
checkFlush = function(){
 return false;
};
checkStraight = function(){
 return false;
};
checkStraightFlush = function(){
 return false;
};
checkTwoPair = function(){

CHAPTER 4: Testing in Action

52

 return false;
};

// just multiples
checkFourOfKind = function(){
 return false;
};
checkThreeOfKind = function(){
 return false;
};
checkPair = function(){
 return false;
};

// get just the values
var getValues = function(hand){
 console.log(hand);
 var values = [];
 for(var i=0;i<hand.length;i++){
 console.log(hand[i]);
 values.push(hand[i][0]);
 }
 console.log(values);
 return values;
};

var countDuplicates = function(values){
 console.log('values are: ' + values);
 var numberOfDuplicates = 0;
 var duplicatesOfThisCard;
 for(var i=0;i<values.length;i++){
 duplicatesOfThisCard = 0;
 console.log(numberOfDuplicates);
 console.log(duplicatesOfThisCard);
 if(values[i] == values[0]){
 duplicatesOfThisCard += 1;
 }
 if(values[i] == values[1]){
 duplicatesOfThisCard += 1;
 }
 if(values[i] == values[2]){
 duplicatesOfThisCard += 1;
 }
 if(values[i] == values[3]){
 duplicatesOfThisCard += 1;
 }
 if(values[i] == values[4]){
 duplicatesOfThisCard += 1;
 }
 if(duplicatesOfThisCard > numberOfDuplicates){

New Code from Scratch

53

 numberOfDuplicates = duplicatesOfThisCard;
 }
 }
 return numberOfDuplicates;
};

var checkHand = function(hand){
 var values = getValues(hand);
 var number = countDuplicates(values);
 console.log(number);

 if (checkStraightFlush(hand)){
 return 'straight flush';
 }
 else if (number==4){
 return 'four of a kind';
 }
 else if (checkFullHouse(hand)){
 return 'full house';
 }
 else if (checkFlush(hand)){
 return 'flush';
 }
 else if (checkStraight(hand)){
 return 'straight';
 }
 else if (number==3){
 return 'three of a kind';
 }
 else if (checkTwoPair(hand)){
 return 'two pair';
 }
 else if (number==2){
 return 'pair';
 }
 else{
 return 'high card';
 }
};
// debugger;
console.log(checkHand(['2-H', '3-C', '4-D', '5-H', '2-C']));
console.log(checkHand(['3-H', '3-C', '3-D', '5-H', '2-H']));

Oh no! What happened? Well, first we decided to make sure pairs worked, so
we made every other function return false so that only the pair condition
would be triggered. Then we introduced a function to count the number of du-
plicates, which required getting the values of the cards. We reused this function
for four and three of a kind, but it doesn’t seem very elegant. Also, our getVal-

CHAPTER 4: Testing in Action

54

ues function is going to break with a value of 10, because it will return a 1, aka
an ace. Note that the [0] in the following line takes the first character of the
string:

values.push(hand[i][0]);

So we have one very rough implementation, one bug that we may or may
not have noticed, half of the functions implemented, half of them replaced with
inline variables, and a lot of console.log statements in place as sanity checks.
There’s no real consistency in what was logged—these statements were intro-
duced at points of confusion. We also have commented out a place where we
might have had a debugger earlier.

Where do we go from here? Fix the bug? Implement the other functions?
Hopefully, the last three and a half chapters have convinced you that attempt-
ing to improve the countDuplicates function would not be refactoring at this
point. It would be changing code, but it would not be a safe process we could
be confident in.

If we’re testing after rather than before, how long should we wait? Should we
add tests now? Should we finish our attempt at implementation first?

New Code from Scratch

55

MAKING SOUP VERSUS BAKING

I like making soup. Fairly early on, you can start to taste it as you go, adding more
ingredients, and tasting them individually as well. Baking, on the other hand, is
very frustrating. You have to wait 45 minutes before you can find out if it’s any
good.

TDD is like making soup. You can have a tight feedback loop with the ingredients
(low-level tests) or in bites (high-level tests).

Some people say the bites are all that matters, or they find tasting as you go to be
too much effort. Some people hate soup: making it or eating it.

Tough. In other words, get ready for some TDD later in this chapter.

Later, we’ll deal with a legacy system that we have to basically trust, but at
this point, we’ve just started this code. No one is relying on it yet, so we can feel
free to throw away all the bad parts. What does that leave us with? Take a look:

console.log(checkHand(['2-H', '3-C', '4-D', '5-H', '2-C']));
console.log(checkHand(['3-H', '3-C', '3-D', '5-H', '2-H']));

Yes. Just the high-level test cases. Let’s use these and start over, with one
tiny transformation:

var assert = require('assert');
assert(checkHand(['2-H', '3-C', '4-D', '5-H', '2-C'])==='pair');
assert(checkHand(['3-H', '3-C', '3-D',
 '5-H', '2-H'])==='three of a kind');

Instead of printing with console.log, let’s use node’s assert library to as-
sert that checkHand returns the values that we want. Now when we run the file,
if anything inside of the assert function throws an error or is false, we’ll get an
error—no print statements necessary. We just assert that running our function
with that input returns the expected strings: 'pair' and 'three of a kind'.

We also added a line to the beginning. This simply makes the assert state-
ment available from node’s core libraries. There are more sophisticated testing
framework choices, but this involves minimal setup.

Before we move on, let’s look at a flow chart to introduce all of the possibili-
ties of what code we need to write when (Figure 4-1).

CHAPTER 4: Testing in Action

56

FIGURE 4-1

Flow chart to help
you determine
whether to write a
test, refactor, or
implement the code
to make your test
pass

Keep in mind that if you’re not writing tests first, you’re following the
“untested code” path rather than the “new code” path.

New Code from Scratch with TDD

Of course, not all new code written without tests is going to end up in as awk-
ward a state as that in the last section. It is certainly not reflective of an experi-
enced coder’s best efforts. However, it is reflective of a lot of coders’ first effort.
The wonderful thing about refactoring is that, given enough test coverage and

New Code from Scratch with TDD

57

confidence, your first effort doesn’t have to be your best effort. Get the tests
passing, and you have the flexibility to make your code better afterward.

ABOUT TDD AND RED/GREEN/REFACTOR

This section jumps between lots of short code samples. This might seem
tedious, but making tiny changes makes it much easier to discover and
fix errors more quickly.

If you’ve never done TDD before, actually typing the samples out and
running the tests in this section will give you a good idea of how the pac-
ing works. Even if TDD isn’t something that you rely on all the time,
knowing how to use tests for immediate feedback is valuable.

Okay, back to our checkHand code. Let’s just start with this:

var assert = require('assert');
assert(checkHand(['2-H', '3-C', '4-D', '5-H', '2-C'])==='pair');
assert(checkHand(['3-H', '3-C', '3-D',
 '5-H', '2-H'])==='three of a kind');

We’ll keep those lines (the tests) at the bottom and add our implementation
to the top of the file as we go. Ordinarily, we would start with just one test case,
so let’s ignore the “three of a kind” assertion for now.

var assert = require('assert');
assert(checkHand(['2-H', '3-C', '4-D', '5-H', '2-C'])==='pair');
/* assert(checkHand(['3-H', '3-C', '3-D',
 '5-H', '2-H'])==='three of a kind'); */

Now save that file as check-hand.js and run it with node check-hand.js.
What happens?

/fs/check-hand.js:2
assert(checkHand(['2-H', '3-C', '4-D', '5-H', '2-C'])==='pair');
 ^

ReferenceError: checkHand is not defined
 at Object.<anonymous> (/fs/check-hand.js:2:8)
 at Module._compile (module.js:397:26)
 at Object.Module._extensions..js (module.js:404:10)
 at Module.load (module.js:343:32)
 at Function.Module._load (module.js:300:12)
 at Function.Module.runMain (module.js:429:10)
 at startup (node.js:139:18)
 at node.js:999:3

shell returned 1

CHAPTER 4: Testing in Action

58

Great! We got to the “red” of the red/green/refactor cycle, and we know ex-
actly what to do next—add a checkHand function:

var checkHand = function(){ };
var assert = require('assert');
assert(checkHand(['2-H', '3-C', '4-D', '5-H', '2-C'])==='pair');
/* assert(checkHand(['3-H', '3-C', '3-D',
 '5-H', '2-H'])==='three of a kind'); */

And we get a new error:

assert.js:89
 throw new assert.AssertionError({
 ^
AssertionError: false == true
 at Object.<anonymous> (/fs/check-hand.js:3:1)
...(more of the stack trace)

This assertion error is a little harder to understand. All this assertion knows
about is whether what is inside evaluates to true, and it doesn’t.

asserts can take two parameters. The first is the assertion, and the second
is a message:

var checkHand = function(){ };
var assert = require('assert');
assert(checkHand(['2-H', '3-C', '4-D', '5-H', '2-C'])==='pair',
 'checkHand did not reveal a "pair"');
/* assert(checkHand(['3-H', '3-C', '3-D',
 '5-H', '2-H'])==='three of a kind'); */

Now we get a new error message:

assert.js:89
 throw new assert.AssertionError({
 ^
AssertionError: checkHand did not reveal a "pair"
 at Object.<anonymous> (/fs/check-hand.js:3:1)
...(more stack trace)

That’s a little more clear, but if you find writing that second parameter tedi-
ous, there is a better option: use wish. First, install it through npm install
wish.

Then our code becomes:

New Code from Scratch with TDD

59

var checkHand = function(){ };
var wish = require('wish');
wish(checkHand(['2-H', '3-C', '4-D', '5-H', '2-C'])==='pair');

The error is clear without us specifying a message as a second parameter:

WishError:
 Expected "checkHand(['2-H', '3-C', '4-D', '5-H', '2-C'])"
 to be equal(===) to "'pair'".

There is an idea in TDD that in order to ensure that you’re moving in small
steps, you should write only enough code to make your tests pass:

var checkHand = function(){
 return 'pair';
};
var wish = require('wish');
wish(checkHand(['2-H', '3-C', '4-D', '5-H', '2-C'])==='pair');
/* wish(checkHand(['3-H', '3-C', '3-D',
 '5-H', '2-H'])==='three of a kind'); */

When we run this, there are no failures. The file just runs and exits. If we used
a test runner, it would give us a message like “All assertions passed!” or similar.
We’ll do that later, but in any case, now that we have that test “green,” it’s time
to either refactor or write another test. There’s no obvious refactoring here
(we’re mostly exploring testing, rather than refactoring, in this chapter), so
we’re on to our next test. Conveniently, we already have it written, so we can
just uncomment the last line:

var checkHand = function(){
 return 'pair';
};
var wish = require('wish');
wish(checkHand(['2-H', '3-C', '4-D', '5-H', '2-C'])==='pair');
wish(checkHand(['3-H','3-C','3-D','5-H','2-H'])==='three of a kind');

Now we get a new failure that is readable (rather than the false == true
error from assert):

WishError:
 Expected "checkHand(['3-H', '3-C', '3-D', '5-H', '2-H'])"
 to be equal(===) to "'three of a kind'".

We know it’s talking about the three-of-a-kind line, so how do we fix it? If we
are really, truly just writing the simplest code to make the test pass, we could
write our function like this:

CHAPTER 4: Testing in Action

60

var checkHand = function(hand){
 if(hand[0]==='2-H' && hand[1]==='3-C'
 && hand[2]==='4-D' && hand[3]==='5-H'
 && hand[4]==='2-C'){
 return 'pair';
 }else{
 return 'three of a kind';
 }
};

This passes (no output when run), but this code reads with the same tone as
a child taunting “Not touching! Can’t get mad!” while hovering his hand above
your face. While technically it passes, it is ready to break at the slightest change
or expansion in test cases. Only this specific array will count as a "pair", while
any other hand will return "three-of-a-kind". We would describe this code
as brittle, rather than robust, for its inability to handle many test cases. We can
also describe tests as brittle when they are so coupled to the implementation
that any minor change will break them. While this is true of our pair assertion
here as well, it is this implementation, not the test case, that is the problem.

We started with high-level tests, but we’re about to go deeper. For that rea-
son, things are about to get into a more complicated pattern than just red/
green/refactor. We will have multiple levels of testing, and multiple failures at
once, some of them persisting for a while. If we stick with our simple asserts,
things will get confusing. Let’s tool up and start testing with mocha. If you look
through the docs for mocha (https://mochajs.org/), which you should at some
point, you might be intimidated because it has a ton of features. Here, we’re us-
ing the simplest setup possible.

As we discussed at the beginning of the chapter, make sure that you have
node, npm, and mocha installed, and that they can all be run from the com-
mand line. Assuming that’s sorted, let’s create a new file called check-hand-
with-mocha.js and fill it out with the following code:

var wish = require('wish');

function checkHand(hand) {
 if(hand[0]==='2-H' && hand[1]==='3-C'
 && hand[2]==='4-D' && hand[3]==='5-H'
 && hand[4]==='2-C'){
 return 'pair';
 }else{
 return 'three of a kind';
 }
};

describe('checkHand()', function() {

New Code from Scratch with TDD

61

https://mochajs.org/

 it('handles pairs', function() {
 var result = checkHand(['2-H', '3-C', '4-D', '5-H', '2-C']);
 wish(result === 'pair');
 });
 it('handles three of a kind', function() {
 var result = checkHand(['3-H', '3-C', '3-D', '5-H', '2-H']);
 wish(result === 'three of a kind');
 });
});

ASSERTIONS AND EXPECTATIONS

Among the biggest wastes of coders’ time, as represented by numerous Stack Over-
flow questions, Google searches, enormous docs, and blog posts explaining the
docs, doing assertions “right” is really up there. Mocha provides numerous ways to
assert. You can do this:

assert.equal(foo, 'bar');

Or this:

expect(foo).to.equal('bar');

Or this:

foo.should.equal('bar');

This is all nonsense. We have a perfectly good equality test in JavaScript itself; all
you need is something to wrap the code and throw an error:

assert(foo === 'bar');

But that gives a nondescriptive error (AssertionError: false == true), which is why
we’re using wish:

wish(foo === 'bar');

which gives:

WishError:
 Expected "foo" to be equal(===) to " 'bar'".

CHAPTER 4: Testing in Action

62

FIGURE 4-2

The output looks
pretty good—nice
and clear

What we’re left with is basically the same thing, just in a form that mocha
can use. The describe function indicates what function we are testing, and the
it functions contain our assertions. The syntax for assertion has changed
slightly, but these are the same tests we had before. And you can run them us-
ing mocha check-hand-with-mocha.js (make sure you’re in the same direc-
tory as your file), which gives the output shown in Figure 4-2.

QUICK TIP ABOUT MOCHA

If you have a file named test.js or put your test file(s) inside of a directory
called test, then mocha will find your test file(s) without you specifying a
name. If you set up your files like that, you can just run this: mocha.

Let’s work on our checkHand function now. For proof that the checkHand
pair checking is broken, add any other array that should count as a pair. Change
the test to this:

describe('checkHand()', function() {
 it('handles pairs', function() {
 var result = checkHand(['2-H', '3-C', '4-D', '5-H', '2-C']);
 wish(result === 'pair');

 var anotherResult = checkHand(['3-H', '3-C',
 '4-D', '5-H', '2-C']);
 wish(anotherResult === 'pair');
 });
 it('handles three of a kind', function() {
 var result = checkHand(['3-H', '3-C', '3-D', '5-H', '2-H']);
 wish(result === 'three of a kind');
 });
});

New Code from Scratch with TDD

63

Now run mocha again. There are three things to note here. First, we can
have multiple assertions inside of one it block. Second, we get one failing test
and one passing test. If any assertion in the it block fails, the whole it block
fails. And third, as expected, we have a failure, a “red” state, and thus a code-
produced impetus to change our implementation. Because there’s no easy way
out of this one, we’re going to have to actually implement a function that
checks for pairs. First, let’s code the interface we want on this. Change the
checkHand function to this:

function checkHand(hand) {
 if(isPair(hand)){
 return 'pair';
 }else{
 return 'three of a kind';
 }
};

And run mocha again. Two failures! Of course, because we didn’t implement
the isPair function yet, as is clearly explained by the errors mocha gives us:

ReferenceError: isPair is not defined

So, again doing just enough to shut the failures up, we write:

function isPair(){ };

And run mocha again...hey, wait a second. We sure are running mocha a lot.
What about those watchers we talked about in the previous chapter? Turns out,
mocha has one built in! Let’s run this command:

mocha -w check-hand-with-mocha.js

Now whenever we save the file, we’ll get a new report (hit Ctrl-C to exit).
Okay, now back to the tests. It’s not really clear how to write the isPair func-
tion. We know we’ll get a hand and output a boolean, but what should happen
in between? Let’s write another test for isPair itself that takes a hand as input,
and outputs a boolean. We can put it above our first describe block:

...
describe('isPair()', function() {
 it('finds a pair', function() {
 var result = isPair(['2-H', '3-C', '4-D', '5-H', '2-C']);
 wish(result);
 });
});

CHAPTER 4: Testing in Action

64

describe('checkHand()', function() {
...

Because we’re using the watcher, we see this failure as soon as we save. We
could return true from that function to pass this new test, but we know that
will just make the three-of-a-kind tests fail, so let’s actually implement this
method. To check for pairs, we want to know how many duplicates are in the
hand. What would isPair look like with our ideal interface? Maybe this:

function isPair(hand){
 return multiplesIn(hand) === 2;
};

Naturally, we’ll get errors because multiplesIn is not defined. We want to
define the method, but we can now imagine a test for it as well:

function multiplesIn(hand){};

describe('multiplesIn()', function() {
 it('finds a duplicate', function() {
 var result = multiplesIn(['2-H', '3-C', '4-D', '5-H', '2-C']);
 wish(result === 2);
 });
});

Another failure. What would our ideal implementation of multiplesIn look
like? At this point, let’s assume that we should have a highestCount function
that takes the values of the cards:

function multiplesIn(hand){
 return highestCount(valuesFromHand(hand));
};

We’ll get errors for highestCount and valuesFromHand. So let’s give them
empty implementations and tests that describe their ideal interfaces (the pa-
rameters we’d like to pass, and the results we’d like to get):

function highestCount(values){};
function valuesFromHand(hand){};

describe('valuesFromHand()', function() {
 it('returns just the values from a hand', function() {
 var result = valuesFromHand(['2-H', '3-C', '4-D', '5-H', '2-C']);
 wish(result === ['2', '3', '4', '5', '2']);
 });

New Code from Scratch with TDD

65

});

describe('highestCount()', function() {
 it('returns count of the most common card from array',
 function() {
 var result = highestCount(['2', '4', '4', '4', '2']);
 wish(result === 3);
 }
);
});

Implementing the valuesFromHand function seems simple, so let’s do that:

function valuesFromHand(hand){
 return hand.map(function(card){
 return card.split('-')[0];
 })
}

Failure?!

Expected "result" to be equal(===) to " ['2', '3', '4', '5', '2']".

Certainly split is working as expected, right? What about a hardcoded ver-
sion:

wish(['2', '3', '4', '5', '2'] === ['2', '3', '4', '5', '2']);

That gives us:

Expected "['2', '3', '4', '5', '2'] "
to be equal(===) to " ['2', '3', '4', '5', '2']".

Wait a second, aren’t those arrays equal? Unfortunately, not according to
JavaScript. Primitives like integers, booleans, and strings work fine with ===,
but objects (and arrays are objects under the hood) will only work with === if
we are testing variables that reference the same object:

x = []
y = []
x === y; // false

However:

CHAPTER 4: Testing in Action

66

x = [];
y = x;
x === y; // true

If you want to solve this with a more complicated assertion library, you can.
Most have support for something like assert.deepEqual, which checks the
contents of the objects. But we want to keep our assertions simple, and just
have plain old JavaScript syntax inside of the wish assertions. Additionally, we
might reasonably want to check equality of arrays or objects elsewhere in our
program.

Rather than build deepEqual ourselves or bring in one that’s tied to an as-
sertion or testing framework, let’s use a standalone library:

npm install deep-equal

Now in our test, we can do the following:

var deepEqual = require('deep-equal');
...
describe('valuesFromHand()', function() {
 it('returns just the values from a hand', function() {
 var result = valuesFromHand(['2-H', '3-C', '4-D', '5-H', '2-C']);
 wish(deepEqual(result, ['2', '3', '4', '5', '2']));
 });
});

Now it works. Awesome. Next up, let’s implement highestCount:

function highestCount(values){
 var counts = {};
 values.forEach(function(value, index){
 counts[value]= 0;
 if(value == values[0]){
 counts[value] = counts[value] + 1;
 };
 if(value == values[1]){
 counts[value] = counts[value] + 1;
 };
 if(value == values[2]){
 counts[value] = counts[value] + 1;
 };
 if(value == values[3]){
 counts[value] = counts[value] + 1;
 };
 if(value == values[4]){
 counts[value] = counts[value] + 1;
 };

New Code from Scratch with TDD

67

 });
 var totalCounts = Object.keys(counts).map(function(key){
 return counts[key];
 });
 return totalCounts.sort(function(a,b){return b-a})[0];
};

It’s not pretty, but it passes the test. In fact, it passes all of them! Which
means we’re ready to implement something else.

You probably can see some potential refactoring in this function. That’s
great. It’s not a very good implementation, but the first implementation of
something often is not. That’s the advantage of having tests. We can happily ig-
nore this working, but ugly, function because it satisfies the right inputs and
outputs. We could bring in a more sophisticated functional library like Ramda
(Chapter 11) to handle array manipulation, or Array’s built-in reduce function
(refactoring using reduce is covered in Chapter 7) to build our object, but for
now forEach works fine.

Moving on, let’s actually handle three of a kind:

function checkHand(hand) {
 if(isPair(hand)){
 return 'pair';
 }else if(isTriple(hand)){
 return 'three of a kind';
 }
};

We get an UndefinedError for isTriple. This time, though, we already
have a known test case, so implementation is obvious:

function isTriple(hand){
 return multiplesIn(hand) === 3;
};

We don’t have a test specifically for isTriple, but the high-level test should
give us enough confidence to move on. For the same confidence on four of a
kind, all we need is another high-level test (another it block in the checkHand
test):

describe('checkHand()', function() {
...
 it('handles four of a kind', function() {
 var result = checkHand(['3-H', '3-C', '3-D', '3-S', '2-H']);
 wish(result === 'four of a kind');
 });
...

CHAPTER 4: Testing in Action

68

And the implementation:

function checkHand(hand) {
 if(isPair(hand)){
 return 'pair';
 }else if(isTriple(hand)){
 return 'three of a kind';
 }else if(isQuadruple(hand)){
 return 'four of a kind';
 }
};

function isQuadruple(hand){
 return multiplesIn(hand) === 4;
};

Next, let’s write a test for the high card, which means another it block in the
checkHand test:

 it('handles high card', function() {
 var result = checkHand(['2-H', '5-C', '9-D', '7-S', '3-H']);
 wish(result === 'high card');
 });

Failure. Red. And here’s the implementation:

function checkHand(hand) {
 if(isPair(hand)){
 return 'pair';
 }else if(isTriple(hand)){
 return 'three of a kind';
 }else if(isQuadruple(hand)){
 return 'four of a kind';
 }else{
 return 'high card';
 }
}

Green. Passing. Let’s take care of flush with another high-level test in the
checkHand section:

it('handles flush', function() {
 var result = checkHand(['2-H', '5-H', '9-H', '7-H', '3-H']);
 wish(result === 'flush');
});

New Code from Scratch with TDD

69

Failure. It doesn’t meet any of the conditions, so our test reports as high
card. The ideal interface is:

function checkHand(hand) {
 if(isPair(hand)){
 return 'pair';
 }else if(isTriple(hand)){
 return 'three of a kind';
 }else if(isQuadruple(hand)){
 return 'four of a kind';
 }else if(isFlush(hand)){
 return 'flush';
 }else{
 return 'high card';
 }
};

We get an UndefinedError for isFlush. So we want:

function isFlush(hand){ }

This returns undefined, so we get a failure because we’re still going to hit
the high card (else) path. We’re going to need to check that the suits are all the
same. Let’s assume we need two functions for that, changing our isFlush im-
plementation to the following:

function isFlush(hand){
 return allTheSameSuit(suitsFor(hand));
};

We get UndefinedErrors for those new functions. We could write the
boilerplate, but the allTheSameSuit function seems pretty obvious to imple-
ment. Let’s do that first. But since we have two functions that are new, we’ll
write a test so that we can be sure that allTheSameSuit is working as expect-
ed:

function allTheSameSuit(suits){
 suits.forEach(function(suit){
 if(suit !== suits[0]){
 return false;
 }
 })
 return true;
}

describe('allTheSameSuit()', function() {

CHAPTER 4: Testing in Action

70

 it('reports true if elements are the same', function() {
 var result = allTheSameSuit(['D', 'D', 'D', 'D', 'D']);
 wish(result);
 });
});

Passing. But naturally, we still have an undefined error for suitsFor. Here’s
the implementation:

function suitsFor(hand){
 return hand.map(function(card){
 return card.split('-')[1];
 })
};

It’s pretty similar to our valuesFromHand function, so we’re going to move
on without a test. Feel free to write one if you want to stay in the test-first
mode.

Uh-oh! Our flush condition seems to be returning true for our high card as
well. Error:

 1) checkHand() handles high card:
 WishError:
 Expected "result" to be equal(===) to " 'high card'".

That must mean that allTheSameSuit is also returning true. We intro-
duced a bug, so it’s time for a regression test. First, we reproduce the behavior
with a test. We didn’t test that the allTheSameSuit function would actually
return false when the cards aren’t all the same. Let’s add that test now:

describe('allTheSameSuit()', function() {
...
 it('reports false if elements are not the same', function() {
 var result = allTheSameSuit(['D', 'H', 'D', 'D', 'D']);
 wish(!result);
 });
});

Two failures, which means we reproduced the bug (and still have the origi-
nal). Apparently, our return false was only returning from the loop. Let’s
change our implementation:

function allTheSameSuit(suits){
 var toReturn = true;
 suits.forEach(function(suit){
 if(suit !== suits[0]){

New Code from Scratch with TDD

71

 toReturn = false;
 }
 });
 return toReturn;
};

And now all of our tests are passing again.
There’s a better way to handle this forEach, by using Ramda (or Sanctuary,

underscore, lodash, etc.) or digging into JavaScript’s native Array functions a
bit more (keeping in mind that using native functions requires us to check their
availability on our target platform), but this was the easiest thing that passed
the tests. We want our code to be readable, correct, good, and fast—in that or-
der.

Only a few hands left. Let’s do the straight. First a high-level test:

describe('checkHand()', function() {
...
 it('handles straight', function() {
 var result = checkHand(['1-H', '2-H', '3-H', '4-H', '5-D']);
 wish(result === 'straight');
 });
});

The code is hitting the else clause for high card. That’s good. We know then
that there aren’t any competing conditions and are free to add one to check-
Hand:

function checkHand(hand) {
 if(isPair(hand)){
 return 'pair';
 }else if(isTriple(hand)){
 return 'three of a kind';
 }else if(isQuadruple(hand)){
 return 'four of a kind';
 }else if(isFlush(hand)){
 return 'flush';
 }else if(isStraight(hand)){
 return 'straight';
 }else{
 return 'high card';
 }
}

isStraight is not defined. Let’s define it, and its ideal interface, in one
step. We’ll skip the test for isStraight, since it would be redundant with the
high-level test:

CHAPTER 4: Testing in Action

72

function isStraight(hand){
 return cardsInSequence(valuesFromHand(hand));
};

Error. We need to define cardsInSequence. What should it look like?

function cardsInSequence(values){
 var sortedValues = values.sort();
 return fourAway(sortedValues) && noMultiples(values);
};

Two undefined functions. We’ll add tests for both of these. First, let’s get a
passing test for fourAway:

function fourAway(values){
 return ((+values[values.length-1] - 4 - +values[0])===0);
};

describe('fourAway()', function() {
 it('reports true if first and last are 4 away', function() {
 var result = fourAway(['2', '6']);
 wish(result);
 });
});

Note that the + signs in line 2 are turning strings into numbers. If that seems
hard to read, unidiomatic, or just likely to be changed without someone realiz-
ing the importance, use this line with parseInt instead:

return ((parseInt(values[values.length-1]) - 4 - parseInt(values[0]))===0);

Let’s move on to noMultiples. We’ll write a negative test case here, just for
added assurance. The implementation turns out to be simple, though, because
we already have something to count cards for us:

function noMultiples(values){
 return highestCount(values)==1;
};

describe('noMultiples()', function() {
 it('reports true when all elements are different', function() {
 var result = noMultiples(['2', '6']);
 wish(result);
 });
 it('reports false when two elements are the same', function() {
 var result = noMultiples(['2', '2']);
 wish(!result);

New Code from Scratch with TDD

73

 });
});

All tests are passing. Now for StraightFlush. Let’s add this to our high-
level checkHand describe block:

describe('checkHand()', function() {
...
 it('handles straight flush', function() {
 var result = checkHand(['1-H', '2-H', '3-H', '4-H', '5-H']);
 wish(result === 'straight flush');
 });
});

It seems to be hitting the flush condition, so we’ll have to add this check
above that in the if/else clause:

function checkHand(hand) {
 if(isPair(hand)){
 return 'pair';
 }else if(isTriple(hand)){
 return 'three of a kind';
 }else if(isQuadruple(hand)){
 return 'four of a kind';
 }else if(isStraightFlush(hand)){
 return 'straight flush';
 }else if(isFlush(hand)){
 return 'flush';
 }else if(isStraight(hand)){
 return 'straight';
 }else{
 return 'high card';
 }
}

isStraightFlush is not defined. Since this code is just the result of two
functions, we won’t worry about a low-level test for it (feel free to write one,
though):

function isStraightFlush(hand){
 return isStraight(hand) && isFlush(hand);
}

It passes. Only two left: two pair and full house. Let’s do full house first, start-
ing with a high-level test:

CHAPTER 4: Testing in Action

74

describe('checkHand()', function() {
...
 it('handles full house', function() {
 var result = checkHand(['2-D', '2-H', '3-H', '3-D', '3-C']);
 wish(result === 'full house');
 });
});

The code is following the “three of a kind” branch of the checkHand condi-
tional, so we want the isFullHouse check to go above that:

function checkHand(hand) {
 if(isPair(hand)){
 return 'pair';
 }else if(isFullHouse(hand)){
 return 'full house';
 }else if(isTriple(hand)){
 return 'three of a kind';
 }else if(isQuadruple(hand)){
 return 'four of a kind';
 }else if(isStraightFlush(hand)){
 return 'straight flush';
 }else if(isFlush(hand)){
 return 'flush';
 }else if(isStraight(hand)){
 return 'straight';
 }else{
 return 'high card';
 }
};

Now we need to implement the function isFullHouse. It looks like what we
need is buried inside of highestCount. It just returns the top one, but we want
them all. Basically, we need everything from that function except for the very
last three characters. What kind of subtle, elegant thing should we do to avoid
just duplicating the code?

function allCounts(values){
 var counts = {};
 values.forEach(function(value, index){
 counts[value]= 0;
 if(value == values[0]){
 counts[value] = counts[value] + 1;
 };
 if(value == values[1]){
 counts[value] = counts[value] + 1;
 };
 if(value == values[2]){

New Code from Scratch with TDD

75

 counts[value] = counts[value] + 1;
 };
 if(value == values[3]){
 counts[value] = counts[value] + 1;
 };
 if(value == values[4]){
 counts[value] = counts[value] + 1;
 };
 });
 var totalCounts = Object.keys(counts).map(function(key){
 return counts[key];
 });
 return totalCounts.sort(function(a,b){return b-a});
};

Nothing! Don’t try to be elegant. Duplicate the code. Copying and pasting is
often the smallest and safest step you can take. Although copying and pasting
gets a bad rap, it is absolutely a better first step than trying to extract functions
(and other structures) and ending up breaking too many things at once (espe-
cially if you’ve strayed too far from your last git commit!). The real problem
comes from leaving the duplication, which is a very serious maintenance con-
cern—but the best time to deal with this is in the refactor step of the red/green/
refactor cycle, not while you’re trying to get tests to pass in the green phase.

THERE’S NOTHING WRONG WITH TERRIBLE CODE

As the previous paragraph should make clear, bad code is fine. Unused functions are
fine. Bad variable names are fine. Duplicate code if it helps you get to the place
where you can refactor more easily. Inline functions to extract more meaningful
ones: it doesn’t matter if that makes your function longer in the short term. Create
a bunch of functions that you don’t end up using while you’re figuring out which
one you need.

There’s nothing wrong with writing terrible code. It’s easier to start there, and fix it
later. Just remember to fix it. What happens in your editor stays in your editor (until
you replace it with better code).

Notice that we’ve left out the [0] because we want all of the results. Now all
that’s left is the isFullHouse implementation:

function isFullHouse(hand){
 var theCounts = allCounts(valuesFromHand(hand));

CHAPTER 4: Testing in Action

76

 return(theCounts[0]===3 && theCounts[1]===2);
};

It works. Great. Two pair, and we’re done:

describe('checkHand()', function() {
...
 it('handles two pair', function() {
 var result = checkHand(['2-D', '2-H', '3-H', '3-D', '8-D']);
 wish(result === 'two pair');
 });
});

This is catching on the pair condition. That means the isTwoPair check will
have to go before the isPair check in the conditional:

function checkHand(hand) {
 if(isTwoPair(hand)){
 return 'two pair';
 } else if(isPair(hand)){
...

And then an implementation that looks a great deal like isFullHouse:

function isTwoPair(hand){
 var theCounts = allCounts(valuesFromHand(hand));
 return(theCounts[0]===2 && theCounts[1]===2);
};

And we’re done! That’s how you start new code with tests, and maintain
confidence throughout. The rest of the book is about refactoring. This chapter
is about how to write lots and lots of tests. There is a ton of duplication in the
code and the tests. The number of loops and conditionals is too high. There is
barely any information hiding, and there are no attempts at private methods.
No classes. No libraries that elegantly do loop-like work. It’s all synchronous.
And we definitely have some gaps when it comes to representing face cards.

But for the functionality it has, it is well tested, and in places that it’s not,
because we have a functioning test suite in place it’s easy to add more. We even
had a chance to try out writing regression tests for bugs.

Untested Code and Characterization Tests

So here’s the scenario: the code for randomly generating a hand of cards was
written by a coworker. He’s taken two months off to prepare for Burning Man,

Untested Code and Characterization Tests

77

and the team is suspicious that he’ll never really come back. You can’t get in
touch with him and he didn’t write any tests.

Here, you have three options. First, you could rewrite the code from scratch.
Especially for bigger projects, this is risky and could take a long time. Not rec-
ommended. Second, you could change the code as needed, without any tests
(see Chapter 1 for a description of the difference between “changing code” and
“refactoring”). Also not recommended. Your third and best option is to add
tests.

Here is your colleague’s code (save it as random-hand.js):

var s = ['H', 'D', 'S', 'C'];
var v = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K'];
var c = [];
var rS = function(){
 return s[Math.floor(Math.random()*(s.length))];
};
var rV = function(){
 return v[Math.floor(Math.random()*(v.length))];
};
var rC = function(){
 return rV() + '-' + rS();
};

var doIt = function(){
 c.push(rC());
 c.push(rC());
 c.push(rC());
 c.push(rC());
 c.push(rC());
};
doIt();
console.log(c);

Pretty cryptic. Sometimes when you see code that you don’t understand, it’s
right next to data that’s very important, and it seems the confusing code won’t
work without it. Those situations are tougher, but here, we can get this in a test
harness (exercising the code through tests) fairly easily. We’ll talk about variable
names later, but for now, recognize that getting this under test does not depend
on good variable names, or even understanding the code very well.

If we were using assert, we’d write a characterization test like this (you can
put this test code at the bottom of the preceding code, and run it with mocha
random-hand.js):

const assert = require('assert');
describe('doIt()', function() {
 it('returns nothing', function() {

CHAPTER 4: Testing in Action

78

 var result = doIt();
 assert.equal(result, null);
 });
});

That is, we’d just assume that the function returns nothing. And when we as-
sume nothing from the code, normally it protests through the tests, “I beg your
pardon, I’m actually returning something when I’m called with no arguments,
thank you very much.” This is called a characterization test. Sometimes (like in
this case) the tests will pass, though, because they actually do return null, or
whatever other value we provide as the second parameter to assert.equal.
When we use assert.equal like this, the test passes, because null == un-
defined. If we instead use assert(result === null);, we’re left with this
gem of an error:

AssertionError: false == true

Neither one of those is helpful. Yes, we could get a better error with a differ-
ent arbitrary value that JavaScript won’t coerce to a value that happens to be
equal in some way to the output of a function. For instance, we’d get a decent
error like this:

assert.equal(result, 3);
AssertionError: undefined == 3

But personally, I like to avoid thinking about different types of equality and
coercion as much as possible when writing characterization tests. So instead of
using assert for characterization tests, we’ll use wish’s characterization test
mode. We activate it by adding a second parameter of true to the call to wish,
like this:

wish(whateverValueIAmChecking, true);

We can add the following code (replacing the assert-based test) to the bot-
tom of the file and run it with mocha random-hand.js:

const wish = require('wish');
describe('doIt()', function() {
 it('returns something', function() {
 wish(doIt(), true);
 });
});
describe('rC()', function() {
 it('returns something', function() {
 wish(rC(), true);

Untested Code and Characterization Tests

79

 });
});
describe('rV()', function() {
 it('returns something', function() {
 wish(rV(), true);
 });
});
describe('rS()', function() {
 it('returns something', function() {
 wish(rS(), true);
 });
});

And the test errors tell us what we need to know:

WishCharacterization: doIt() evaluated to undefined
WishCharacterization: rC() evaluated to "3-C"
WishCharacterization: rV() evaluated to "7"
WishCharacterization: rS() evaluated to "H"

Our failures tell us what the code did, at least in terms of what type of return
values we’re dealing with. However, the doIt function returns undefined,
which usually means there’s a side effect in that code (unless the function ac-
tually does nothing at all, in which case it’s dead code and we’d remove it).

SIDE EFFECTS

A side effect means something like printing, altering a variable, or
changing a database value. In some circles, immutability is very cool and
side effects are very uncool. In JavaScript, how side effect–friendly you
are depends on what JavaScript you’re writing (Chapter 2) as well as your
personal style. Aiming to minimize side effects is generally in line with
the goals of this book. Eliminating them is an altogether different thing.
We’ll talk about them throughout the book, but the deepest dive is in
Chapter 11.

For the non-null returning functions, you can just plug in input values and
assert whatever is returned by the test. That is the second part of a characteriza-
tion test. If there aren’t side effects, you never even have to look at the imple-
mentation! It’s just inputs and outputs.

But there’s a catch in this code. It’s not deterministic! If we just plugged val-
ues into wish assertions, our tests would only work on rare occasions.

The reason is that randomness is involved in these functions. It’s a little
trickier, but we can just use a regex (regular expression) to cover the variations
in outputs. We can delete our characterization tests, and replace them with the
following:

CHAPTER 4: Testing in Action

80

describe('rC()', function() {
 it('returns match for card', function() {
 wish(rC().match(/\w{1,2}-[HDSC]/));
 });
});
describe('rV()', function() {
 it('returns match for card value', function() {
 wish(rV().match(/\w{1,2}/));
 });
});
describe('rS()', function() {
 it('returns match for suit', function() {
 wish(rS().match(/[HDSC]/));
 });
});

Because these three functions simply take input and output, we’re done
with these ones. What to do about our undefined-returning doIt function,
though?

We have options here. If this is part of a multifile program, first, we need to
make sure that the variable c isn’t accessed anywhere else. It’s hard to do with
a one-letter variable name, but if we’re sure it’s confined to this file, we can just
move the first line where c is defined and return it inside the doIt function like
this:

var doIt = function(){
 var c = [];
 c.push(rC());
 c.push(rC());
 c.push(rC());
 c.push(rC());
 c.push(rC());
 return c;
};
console.log(c);

Now we’ve broken the console output. The console.log(c) statement no
longer knows what c is. This is a simple fix. We just replace it with the function
call:

console.log(doIt());

We still need a doIt test. Let’s use a characterization test again:

describe('doIt()', function() {
 it('does something', function() {
 wish(doIt(), true);

Untested Code and Characterization Tests

81

 });
});

This gives us back something like:

WishCharacterization: doIt() evaluated to
 ["7-S","8-S","9-H","4-D","J-H"]

Specifically, it returns what looks like the results of five calls to rC. For the
test, we could use a regex to check every element of this array, but we already
test rC like that. We probably don’t want the brittleness of that kind of high-
level test. If we decide to change the format of rC, we don’t want two tests to
become invalid. So what’s a good high-level test here? Well, what’s unique
about the doIt function is that it returns five of something. Let’s test that:

describe('doIt()', function() {
 it('returns something with a length of 5', function() {
 wish(doIt().length === 5);
 });
});

For smaller codebases that you want to get in a test harness or “under test,”
this process works well. For larger codebases, even with approval and enthusi-
asm from management and other developers, it is impractical to go from 0 (or
even 50) percent coverage all the way to 100 percent in a short time via a pro-
cess like this.

In those cases, you may identify some high-priority sections to get under
test through this process. You’ll want to target areas that are especially lacking
in test coverage, core to the application, very low quality, or that have a high
“churn rate” (files and sections that frequently change), or some combination
of all of these.

Another adaptation you can make is to adopt a process that insists on cer-
tain quality standards or code coverage rates for all new code. See the previous
chapter for some types of tools and processes that will help you with this. Over
time, your high-quality and well-tested new (and changed) lines will begin to
dwarf the older, more “legacy” sections of the codebase. This is what paying off
technical debt looks like. It begins with getting code coverage, and then contin-
ues through refactoring. Keep in mind that for larger codebases, it takes
months, not a weekend, of heroic effort from the team, and certainly not from
one particularly enthusiastic developer.

Alongside process improvements and emphasizing quality in new changes
to the code, one additional policy is worth considering. If the code is live and
has people using it, even if it is poorly tested and low quality, it should be
looked at with some skepticism, but not too critically. The implications are that

CHAPTER 4: Testing in Action

82

changing code that is not under test should be avoided, the programmers who
wrote the legacy code should not be marginalized or insulted (they often under-
stand the business logic better than newer programmers), and bugs should be
handled on an ad hoc basis through regression tests (detailed in the next sec-
tion). Also, since code in use is exercised (although unfortunately by the people
using it rather than a test suite), it’s possible that you can be slightly more confi-
dent in it than in new code.

To recap, if you find yourself with a large legacy codebase with poor cover-
age, identify small chunks to get under test (using the process from this sec-
tion), adopt a policy of complete or majority coverage for new work (using the
processes described in the sections on new features and new code from scratch
—with or without TDD), and write regression tests for bugs that come up. Along
the way, try not to insult the programmers who wrote the legacy code, whether
they’re still with the team or not.

Debugging and Regression Tests

After writing the tests from the last section, we’ve successfully created an auto-
mated way to confirm that the code works. We should be happy with getting
the random hand generator under test, because now we can confidently refac-
tor, add features, or fix bugs.

BEWARE OF THE URGE TO “JUST FIX THE CODE”!

Sometimes, a bug looks easy to fix. It’s tempting to “just fix the code,”
but what stops the bug from coming back? If you write a regression test
like we do here, you can squash it for good.

A related but distinct impulse is to fix code that “looks ugly or would
probably cause bugs.” The code could even be something that you identi-
fy as causing a bug. Unless you have a test suite in place, don’t “just fix”
this code either. This is changing code, not refactoring.

And that’s a good thing. Here’s the scenario: we’ve just encountered a bug in
the code that made it into production. The bug report says that sometimes
players get multiple versions of the same card.

The implications are dire. Certain hands, like four of a kind, are far more like-
ly than expected (and five of a kind is even possible!). The competing online ca-
sinos have a perfectly working card dealing system, and people playing our
game are losing trust in our faulty one.

So what’s wrong with the code? Let’s take a look:

var suits = ['H', 'D', 'S', 'C'];
var values = ['1', '2', '3', '4', '5', '6',

Debugging and Regression Tests

83

 '7', '8', '9', '10', 'J', 'Q', 'K'];
var randomSuit = function(){
 return suits[Math.floor(Math.random()*(suits.length))];
};
var randomValue = function(){
 return values[Math.floor(Math.random()*(values.length))];
};
var randomCard = function(){
 return randomValue() + '-' + randomSuit();
};

var randomHand = function(){
 var cards = [];
 cards.push(randomCard());
 cards.push(randomCard());
 cards.push(randomCard());
 cards.push(randomCard());
 cards.push(randomCard());
 return cards;
};
console.log(randomHand());

The first thing to notice is that the variable and function names have been
expanded to make the code more clear. That also breaks all of the tests. Can
you reproduce the test coverage from scratch without just renaming the vari-
ables? If you want to try it on your own first, go for it, but in either case, here are
the tests:

var wish = require('wish');
var deepEqual = require('deep-equal');
describe('randomHand()', function() {
 it('returns 5 randomCards', function() {
 wish(randomHand().length === 5);
 });
});
describe('randomCard()', function() {
 it('returns nothing', function() {
 wish(randomCard().match(/\w{1,2}-[HDSC]/));
 });
});
describe('randomValue()', function() {
 it('returns nothing', function() {
 wish(randomValue().match(/\w{1,2}/));
 });
});
describe('randomSuit()', function() {
 it('returns nothing', function() {
 wish(randomSuit().match(/[HDSC]/));

CHAPTER 4: Testing in Action

84

 });
});

First, we want to reproduce the problem somehow. Let’s try running this
code using just node (without the tests or mocha, so comment out the tests
lines for now, but leave the console.log(randomHand());). Did you see the
same card twice? Try running it again, and again if need be. How many times
did it take to reproduce the bug?

With the manual testing (see Chapter 3) approach it can take a while, and be
hard to see the error even when it does show up. Our next step is writing a test
to exercise the code and attempt to produce the error. Note that we want a fail-
ing test before we write any code. Our first instinct might be to write a test like
this:

describe('randomHand()', function() {
 ...
 for(var i=0; i<100; i++){
 it('should not have the first two cards be the same', function() {
 var result = randomHand();
 wish(result[0] !== result[1]);
 });
 };
});

This will produce failures fairly often, but isn’t a great test for two reasons,
both having to do with the randomness. First, by requiring many iterations of
the code to be exercised, we’ve created a test that is sure to be fairly slow. Sec-
ond, our test won’t always reproduce the error and fail. We could increase the
number of test runs to make not getting a failure virtually impossible, but that
will necessarily slow our system down further.

THAT SLOW TEST

We want to keep it, and we want to run it, but if you put it on 100,000 iterations for
fun, now is a good time to comment it out. And here we have a good case for where
you would want a “slow test suite” in addition to your fast one.

As we talked about in the previous chapter, splitting up fast and slow tests is a nice
thing to plan for, but every case is different. Here, we can just comment it out. If we
had our suites split by files, we could run the one test file frequently and the other
as often as necessary. Other times, you might want to isolate one particular test

case. With mocha, you can use mocha -g pattern your_test_file to run test cases

Debugging and Regression Tests

85

where the string descriptions match the pattern. See other mocha options by run-

ning mocha -h on the command line.

In spite of this not being a great test, we can use it as scaffolding to change
our randomHand function. We don’t want to change the format of the output,
but our implementation is off. We can use as many iterations of the functions as
we need to (almost) guarantee observing the failure in action.

Now that we have a harness (the currently failing test) in place, we can
change the implementation of the function safely. Note that this is not refactor-
ing. We are changing code (safely, because it is under test), but we are also
changing behavior. We are moving the test from red to green, not refactoring.

Instead of pulling a random value and suit, let’s return both at once from one
array of values. We could manually build this array as having 52 elements, but
since we already have our two arrays ready to go, let’s use those. First, we’ll test
to make sure we get a full deck:

describe('buildCardArray()', function() {
 it('returns a full deck', function() {
 wish(buildCardArray().length === 52);
 });
});

This produces an error because we haven’t defined buildCardArray:

var buildCardArray = function(){ };

This produces an error because buildCardArray doesn’t return anything:

var buildCardArray = function(){
 return [];
};

This isn’t really the simplest thing to get us past our error, but anything with
a length would have worked to get us to a new failure (instead of an error),
which in our case is that the length is 0 rather than 52. Here, maybe you think
the simplest solution is to build the array of possible cards manually and return
that. That’s fine, but typos and editor macro mishaps might cause some issues.
Let’s just build the array with some simple loops:

var buildCardArray = function(){
 var tempArray = [];
 for(var i=0; i < values.length; i++){

CHAPTER 4: Testing in Action

86

 for(var j=0; j < suits.length; j++){
 tempArray.push(values[i]+'-'+suits[j])
 }
 };
 return tempArray;
};

The test is passing. But we’re not really testing the behavior, are we? Where
are we? Are we lost? How do we test if we’re outside the red/green/refactor cy-
cle? Well, what do we have? Basically, if we move in a big step like this, we cre-
ate untested code. And just like before, we can use a new characterization test
to tell us what happens when we run the function:

describe('buildCardArray()', function() {
 it('does something?', function() {
 wish(buildCardArray(), true);
 });
...
});

Depending on your mocha setup, you could get the full deck of cards back as
an array, or it might be truncated. There are dozens of flags and reporters for
mocha, so while it might be possible to change the output to what we want, in
this case, it’s just as fast to manually add a console.log to the test case:

it('does something?', function() {
 console.log(buildCardArray());
 wish(buildCardArray(), true);
});

So now we have the full array printed in the test runner. Depending on what
output you got, you might have a bit of reformatting to do (now is a good time
to learn your editor’s “join lines” function if you don’t already know it). In the
end, we get:

['1-H', '1-D', '1-S', '1-C', '2-H', '2-D', '2-S', '2-C',
 '3-H', '3-D', '3-S', '3-C', '4-H', '4-D', '4-S', '4-C',
 '5-H', '5-D', '5-S', '5-C', '6-H', '6-D', '6-S', '6-C',
 '7-H', '7-D', '7-S', '7-C', '8-H', '8-D', '8-S', '8-C',
 '9-H', '9-D', '9-S', '9-C', '10-H', '10-D', '10-S', '10-C',
 'J-H', 'J-D', 'J-S', 'J-C', 'Q-H', 'Q-D', 'Q-S', 'Q-C',
 'K-H', 'K-D', 'K-S', 'K-C']

Great. If this array contained thousands of elements we’d need another way
to derive confidence, but since it only has 52, by visual inspection we can affirm
that the array looks good. We are playing with a full deck. Let’s change our char-

Debugging and Regression Tests

87

acterization test so that it asserts against the output. Here, we actually got our
confidence in the result from visual inspection. This characterization test is so
that we have coverage, and to make sure we don’t break anything later:

 it('gives a card array', function() {
 wish(deepEqual(buildCardArray(), ['1-H', '1-D', '1-S', '1-C',
 '2-H', '2-D', '2-S', '2-C',
 '3-H', '3-D', '3-S', '3-C', '4-H', '4-D', '4-S', '4-C',
 '5-H', '5-D', '5-S', '5-C', '6-H', '6-D', '6-S', '6-C',
 '7-H', '7-D', '7-S', '7-C', '8-H', '8-D', '8-S', '8-C',
 '9-H', '9-D', '9-S', '9-C', '10-H', '10-D', '10-S', '10-C',
 'J-H', 'J-D', 'J-S', 'J-C', 'Q-H', 'Q-D', 'Q-S', 'Q-C',
 'K-H', 'K-D', 'K-S', 'K-C']));
 });

Passing. Good. Okay, so now we have a function that returns a full deck of
cards so that our randomHand function can stop returning duplicates. If we un-
comment our slow and occasionally failing “should not have the first two cards
be the same” test, we’ll see that it’s still failing. That makes sense, as we
haven’t actually changed anything about the randomHand function yet. Let’s
have it return a random element from our array:

var randomHand = function(){
 var cards = [];
 var deckSize = 52;
 cards.push(buildCardArray()[Math.floor(Math.random() * deckSize)]);
 cards.push(buildCardArray()[Math.floor(Math.random() * deckSize)]);
 cards.push(buildCardArray()[Math.floor(Math.random() * deckSize)]);
 cards.push(buildCardArray()[Math.floor(Math.random() * deckSize)]);
 cards.push(buildCardArray()[Math.floor(Math.random() * deckSize)]);
 return cards;
};

We should still see our failure for the random/slow test (given enough itera-
tions), and this is a great moment. What if we didn’t have that test in place? Per-
haps even without the test, it’s obvious in this instance that we didn’t fix the
problem, but this isn’t always the case. Without a test like this one, we could
very well think that we had fixed the problem, only to see the same bug come
up again later. By the way, are we changing the behavior? Not really, since we’re
still returning five cards as strings, so we would say that we changed the imple-
mentation. As evidence to that, we have the same passing and failing tests.

So how do we fix it?

var randomHand = function(){
 var cards = [];
 var cardArray = buildCardArray();

CHAPTER 4: Testing in Action

88

 cards.push(cardArray.splice(Math.floor(
 Math.random()*cardArray.length), 1)[0]);
 cards.push(cardArray.splice(Math.floor(
 Math.random()*cardArray.length), 1)[0]);
 cards.push(cardArray.splice(Math.floor(
 Math.random()*cardArray.length), 1)[0]);
 cards.push(cardArray.splice(Math.floor(
 Math.random()*cardArray.length), 1)[0]);
 cards.push(cardArray.splice(Math.floor(
 Math.random()*cardArray.length), 1)[0]);
 return cards;
};

Instead of just returning a card at a random index, we’re only using the func-
tion once to build the array. Then, we use the splice function to, starting at a
random index, return one element (the 1 is the second parameter of the slice
function) and push it onto the array. For better or worse, splice returns an ele-
ment, but also has the side effect of removing it from the array. That’s perfect
for our situation here, but the terms destructive and impure both apply to this
function (see Chapter 11 for more details). Note that we need the [0] because
splice returns an array. Although it only has one element in it, it’s still an ar-
ray, so we just need to grab the first element.

Back to a recurring question: are we refactoring yet? Nope. We’ve changed
the behavior (moving from the “red” to the “green” part of the cycle). As testa-
ment to that, our test appears to be passing now, even with many iterations.

HOW MANY ITERATIONS DOES IT TAKE TO TRIGGER THE FAILURE?

If you’re good at math, feel free to ignore this, but if you’re curious and feel like you
might be in this situation again, knowing this math could be handy. We’re testing
that the first two cards are the same. What are the odds of that happening? How
many iterations of the test should we use?

We actually need to invert the test, and calculate the odds of the cards not being

identical first. It’s a 51/52 or about 98.077% chance. So with one iteration, our odds
are 100% – 98.077%, or about 1.923%. Not a very good chance of hitting it.

With 100 iterations, we have 98.077 times itself 100 times ((98.077)^100). That
gives us 14.344%, and 100% minus 14.344% is 85.666%. So 100 iterations is enough
to make our failure likely (>85% of the time), but a little less than one out of every
seven times, our test will not fail.

Debugging and Regression Tests

89

Back to confidence, 10,000 iterations give us a 3.688×10^–7 chance of an errant
passing test. Is that close enough to zero for “confidence”?

So are we confident that our change worked? The trouble is, we’re still test-
ing something random, which means we’re stuck with an inconsistent and pos-
sibly slow test.

If you search for “testing randomness” online, many of the solutions will
suggest things that make the random function more predictable. In our case,
though, it’s the implementation itself that we should still be skeptical about.
How can we get rid of the slow scaffolding test and still have confidence that
our code works? We need to test the implementation of a function that doesn’t
depend on randomness. Here’s one way:

describe('spliceCard()', function() {
 it('returns two things', function() {
 wish(spliceCard(buildCardArray()).length === 2);
 });
 it('returns the selected card', function() {
 wish(spliceCard(buildCardArray())[0].match(/\w{1,2}-[HDSC]/));
 });
 it('returns an array with one card gone', function() {
 wish(spliceCard(buildCardArray())[1].length ===
 buildCardArray().length - 1);
 });
});

In this approach, we decide that to isolate the spliceCard function, we
have to return its return value as well as its side effect:

var spliceCard = function(cardArray){
 var takeAway = cardArray.splice(
 Math.floor(Math.random()*cardArray.length), 1)[0];
 return [takeAway, cardArray];
};

Not bad. Our tests, including the slow test, still pass. But we still need to
hook in the randomHand function. Here’s what a first attempt could look like:

var randomHand = function(){
 var cards = [];
 var cardArray = buildCardArray();
 var result = spliceCard(cardArray);
 cards[0] = result[0];
 cardarray = result[1];

CHAPTER 4: Testing in Action

90

 result = spliceCard(cardArray);
 cards[1] = result[0];
 cardarray = result[1];
 result = spliceCard(cardArray);
 cards[2] = result[0];
 cardarray = result[1];
 result = spliceCard(cardArray);
 cards[3] = result[0];
 cardarray = result[1];
 result = spliceCard(cardArray);
 cards[4] = result[0];
 cardarray = result[1];
 return cards;
};

Are we refactoring yet? Yes. We extracted a function without changing the
behavior (our tests behave the same). Our scaffolding test will not fail no mat-
ter how many times we run it.

We have three considerations left. First, is this inner function that we’ve tes-
ted useful by itself, or only in this context? If it’s useful outside of the context of
dealing a hand of five (say, for blackjack?), leaving it in the same scope as
dealHand makes sense. If it’s only useful for the poker game, we might want to
attempt to make it “private” (to the extent this is possible in JavaScript; see
“Context Part 2: Privacy” in Chapter 5), which leads to a potentially unexpec-
ted conundrum: should you test private functions?

Many say no because behavior should be tested by the outer function, and
testing an implementation rather than an interface is a path that leads to brittle
and unnecessary tests. However, if you take this advice too far, what happens?
Do you still need unit tests at all? Maybe you just need extremely high-level
tests aligned with corporate objectives? (How much money do people spend
playing poker in our application? How many new people signed up today?)
Maybe a survey that asks people if they had fun using the application?

For this code, adhering strictly to the idea of “testing an interface, not an im-
plementation” does not give us the confidence we need. Can we be confident in
this code as a whole if we do not test the inner function? Not really, unless we
leave our scaffold in place. Our second concern, getting rid of this slow test
while retaining confidence, should be solved by our new test.

Third, are we done? As we covered in the TDD discussion, the red/green/
refactor cycle is an appropriate process for improving code quality. We got to
green, and we even refactored by extracting a method. Although this refactor-
ing had a dual purpose in increasing confidence to delete a slow test, we used
all three of those steps.

One last bit of cleanup we can do is removing the dead code. Specifically, in
addition to getting rid of the slow test, or isolating it in another file, we can re-

Debugging and Regression Tests

91

move the functions that are no longer called—randomSuit, randomValue, and
randomCard—as well as their tests. See more about identifying dead code in
“Dead Code”.

But if we do that, are we done? It depends. Another iteration of the red/
green/refactor cycle is appropriate if we can think of more features to imple-
ment (tests that would fail). We’re happy with how our code works, so another
iteration of the cycle doesn’t make sense. We’re also happy with our test cover-
age, so we needn’t go through the process for untested code covered earlier.

So we’re done? In many contexts, yes. But because this book is about refac-
toring, it’s worth proposing an augmentation to the red/green/refactor cycle
(see Figure 4-1 earlier in this chapter for a flow chart of the interaction between
testing and refactoring. You can also find this flow chart at the beginning of
Chapter 5).

We’ve already refactored once by removing the dead code, but let’s refactor
our randomHand function one more time, taking advantage of destructuring. It
sounds intimidating, but we’re just setting multiple values at once:

var randomHand = function(){
 var cards = [];
 var cardArray = buildCardArray();
 [cards[0], cardArray] = spliceCard(cardArray);
 [cards[1], cardArray] = spliceCard(cardArray);
 [cards[2], cardArray] = spliceCard(cardArray);
 [cards[3], cardArray] = spliceCard(cardArray);
 [cards[4], cardArray] = spliceCard(cardArray);
 return cards;
};

And the tests still pass.

Wrapping Up

As you’re refactoring, you might be tempted to change the interface of a func-
tion (not just the implementation). If you find yourself at that point, you are
writing new code that requires new tests. Refactoring shouldn’t require new
tests for code that is already covered and passing, although there are cases
where more tests can increase confidence.

To recap, use the red/green/refactor cycle for regressions. Write tests for
confidence. Write characterization tests for untested code. Write regression
tests for bugs. You can refactor as much as is practical, but only if you have
enough coverage to be reasonably confident in the changes. In any case, keep
the steps between your git commit commands small, so that you’re ready to
roll back to a clean version easily.

CHAPTER 4: Testing in Action

92

Basic Refactoring Goals 5

In Chapter 1, we discussed refactoring as a process of changing code safely and
without changing behavior in order to improve quality. In Chapter 2 we looked
at the complexity of the JavaScript ecosystem and the consequent difficulty in
pinning down what style and quality mean for us. In Chapters 3 and 4, we laid
the groundwork for testing, which is the easiest way to have confidence in our
code, and a prerequisite to changing code safely (aka refactoring).

In this chapter, we finally turn to the specific relationship between refactor-
ing and quality. The previous chapter included a diagram (Figure 4-1, repro-
duced as Figure 5-1) that described the relationship between testing and refac-
toring. Consider the main three questions in the diagram:

• What’s the situation?
• Do you have enough coverage?
• Is the code bad?

The first question should hopefully be very easy to answer. The second one
can be addressed by a coverage tool that runs with your test suite and outputs
places that are specifically missing coverage. There are times when coverage
tools may miss complex cases, though, so a line of code being covered does not
necessarily mean we are confident in it. Achieving code quality through the pro-
cess of refactoring is absolutely dependent on confidence.

In this chapter, we’re developing a strategy to answer the third question: is
the code bad?

93

FIGURE 5-1

Testing and
refactoring flow
chart

Due to JavaScript’s multiparadigmatic nature, answering this question is not
always easy. Even without using specialized libraries, we can strive to (or be
forced to) make our code follow a few styles: object-oriented (prototypal or
class-based), functional, or asynchronous (with promises or callbacks).

Before we address what refactoring in those styles entails, we must deal
with a paradigm that the worst codebases tend to employ: unstructured impera-
tive programming. If those italics didn’t scare you, perhaps a description of this
type of codebase in a frontend context will. Time for a spooky JavaScript story:

The JavaScript in the file, called main.js, runs on page load. It’s about 2,000 lines. There are

some functions declared, mostly attached to an object like $ so that jQuery will do its magic.

CHAPTER 5: Basic Refactoring Goals

94

Others are declared with function whatever(){} so that they are in the global scope. Ob-

jects, arrays, and other variables are created as needed along the way, and freely changed

throughout the file. A half-hearted attempt at Backbone, React, or some other framework

was made at one point for a few crucial and complicated features. Those parts break often,

as the team member who was initially excited about that framework has moved on to a start-

up that builds IoT litter boxes. The code is also heavily dependent on inline JavaScript inside

of index.html.

Although frameworks can help to make this type of code less likely, they can-
not and should not completely prevent the possibility of free-form JavaScript.
However, this type of JavaScript is not inevitable, nor is it impossible to fix. The
absolute first order of business is to understand functions, and not any of the
fancy kinds. In this chapter, we will be exploring six basic components of func-
tions:

• Bulk (lines of code and code paths)
• Inputs
• Outputs (return values)
• Side effects

• this: the implicit input
• Privacy

“JAVASCRIPT JENGA”

If the frontend JavaScript codebase spooky story didn’t resonate with you, perhaps a
description of what working with one is like will sound more familiar.

Programmers are tasked with making changes to the frontend. Each time they do,
they make as small a change as possible, adding a bit of code and maybe some du-
plication. There is no test suite to run, so in lieu of confidence, the tools they have
available to ensure the quality of the codebase are 1) performing as many manual
checks of critical functionality as is allowed by time and patience, and 2) hope. The
codebase gets larger and a bit more unstable with every change.

Occasionally, a critical bug sneaks in, and the whole stack of blocks topples over,
right in front of a user of the site. The only saving grace about this system is that
version control allows the unstable (but mostly okay...probably?) previous version
of the blocks to be set up without too much trouble.

This is technical debt in action. This is JavaScript Jenga.

Basic Refactoring Goals

95

FIGURE 5-2

Just a circle

Throughout the rest of this chapter, we will be using a tool for diagramming
JavaScript called Trellus. All the diagrams in this chapter were generated with
it, and you can diagram your own functions at trell.us.

Here’s how it starts: functions are just a circle (Figure 5-2).

Simple enough. We’ll be adding parts to represent the following:

• Bulk
• Inputs
• Outputs (return values)
• Side effects
• Context
• Privacy

Before the chapter is through, we will have explored all of these components
through this diagramming technique, making note of qualitative differences be-
tween them along the way.

Function Bulk

We use the term bulk to describe function bodies. It refers to two different but
related characteristics:

CHAPTER 5: Basic Refactoring Goals

96

http://trell.us

• Complexity
• Lines of code

JavaScript linters (described in Chapter 3) pick up on both of these things.
So if you’re using one as part of a build process (or preferably within your edi-
tor), you should see warnings for both if they become excessive.

There are no strict rules on bulk. Some teams like functions to be 25 or fewer
lines of code. For others, 10 or fewer is the rule. As for complexity (aka cyclomat-
ic complexity), or “the number of code paths you should be testing,” the upper
limit tends to be around six. By “code path” or “branch of code,” we mean one
possible flow of execution. Branches of code can be created in a few ways, but
the simplest way is through if statements. For example:

if(someCondition){
 // branch 1
} else {
 // branch 2
};

function(error){
 if(error){
 return error; // branch 1
 };
 // branch 2
};

Too much of one type of bulk will probably indicate the other type. A 100-
line function probably has too many potential code paths as well. Similarly, a
function with several switch statements and variable assignments will proba-
bly have a bulky line count too.

The problem with bulk is that it makes the code harder to understand and
harder to test. The resulting lack of confidence is the exact scenario that leads
to JavaScript Jenga.

IN DEFENSE OF BULK

Although classical refactoring techniques and trends in composable structures
within frameworks and JavaScript packages point toward small functions (as well as
objects and “components”) being a preferable approach, there are detractors.

No one is rushing to defend 200-line functions on principle, but you may occasion-
ally encounter some who are critical of “tiny functions that don’t do anything but
tell some other function to do something,” which makes the logic “hard to follow.”

Function Bulk

97

This is tricky. Although following logic from function to function takes some pa-
tience and practice when compared to reading straight through a function, ideally
there is less context to keep in your head and testing small functions is way easier.

All that said, after testing, being able to extract new functions and reduce bulk in

extant ones is the most important skill to learn for refactoring. In doing so, however,
you must make the higher-level code with consideration of the interface’s ability to
hide its implementation appropriately. That demands naming things well, and hav-
ing sensible inputs/outputs.

If every function was named some variant of passResultOfDataToNextFunction, then
extracting functions would only scatter the implementation, meaning the bulk
would be preferable.

This book argues against bulk, but in your team, you might have to put up with a bit
more bulk than what your preference may be. Be aware that reducing bulk, as with
any refactoring target, may be met with objections on the grounds of both stylistic
preferences and its (real or perceived) importance with respect to other develop-
ment objectives.

Although it’s a less common shape for bad code to take, if you find that your code
goes too far in delegating functions for your comfort, just inline the functions. It’s
not hard to do:

function outer(x, y){
 return inner(x, y);
};
function inner(x, y){
 // setup
 return // something with x and y
};

You have a few choices here. If outer is the only thing calling inner, you could just

move the function body from inner into outer, keeping in mind that you’d need:

function outer(x, y){
 // setup
 return // something with x and y
};

Or if the // setup part is complex enough, and there are a lot of calls to inner that

don’t come from outer, you might want to delete outer, change any calls from outer

to inner, and, as necessary, negate or adjust the // setup you used for inner.

If you find yourself confused by inner functions, inlining them and then extracting
new ones is a great way to explore the code. As always, have tests in place, and be
ready to roll back to an earlier version.

CHAPTER 5: Basic Refactoring Goals

98

FIGURE 5-3

7 lines, with one out
of two code paths
tested

Let’s add a few pieces to our diagram to help us represent bulk, and while
we’re at it, we’ll give our functions names. We simply have a box that states the
function name and the number of lines that the function has. To represent the
paths of code in (complexity in) our function, we can add pie slices. The darker
shaded slices are tested, and the lighter ones are untested. Figures 5-3 and 5-4
are two examples.

Figure 5-3 has two code paths and seven lines of code. One of the code
paths is tested (dark) and one is not (light).

Figure 5-4 is bulkier, with 45 lines of code and 8 code paths (pie slices). But
because all of the pie slices are dark, we know that each of the eight code paths
is tested.

Function Bulk

99

FIGURE 5-4

45 lines with eight
code paths, all tested

Inputs

For our purposes, we will consider three types of inputs to a function: explicit,
implicit, and nonlocal. In the following function, we would say a and b are ex-
plicit inputs (aka explicit parameters or formal parameters), because these in-
puts are part of the function definition:

function add(a, b){
 return a + b;
};

Incidentally, if we call add(2, 3) later on, 2 and 3 are “actual parameters,”
“actual arguments,” or just “arguments” because they are used in the function
call, as opposed to “formal parameters,” which occur in the function definition.
People mix up the arguments versus parameters thing all the time, so don’t
worry too much about it if you mix them up too. The main thing is that what
we’re calling “explicit parameters” appear inside of the function definition (see
Figure 5-5).

CHAPTER 5: Basic Refactoring Goals

100

FIGURE 5-5

An add function
with two explicit
parameters

Note that we are describing the type of the inputs (number), rather than spe-
cific values or references to the formal parameters of the function signature (a
and b). Since JavaScript doesn’t care what types we pass in, our names will also
not necessarily map to specific types of primitives or objects that we’re passing.

Although we’re not diving deeply into objects here, the implicit input or im-
plicit parameter in the following addTwo function is the calculator object
within which the function is defined (see Figure 5-6):

var calculator = {
 add: function(a, b){
 return a + b;
 },
 addTwo: function(a){
 return this.add(a, this.two);
 },
 two: 2
};

Inputs

101

FIGURE 5-6

addTwo function
with explicit input
(number) and
implicit input
(calculator)

In JavaScript the implicit parameter is referred to by this. You may have
seen it as self in other languages. Keeping track of this is probably the most
confusing thing in JavaScript, and we’ll talk about it a bit more in “Context
Part 1: The Implicit Input”.

The third type of inputs, nonlocal inputs (commonly known as “free vari-
ables”), can be especially tricky, especially in their ultimate form, the dreaded
global variable. Here’s an innocent-looking example (see Figure 5-7):

var name = "Max";
var punctuation = "!";
function sayHi(){
 return "Hi " + name + punctuation;
};

CHAPTER 5: Basic Refactoring Goals

102

FIGURE 5-7

The sayHi function
has two nonlocal
inputs: name and
punctuation

Is it so innocent, though? name and punctuation can be redefined, and the
function can still be called at any point. The function has no opinion or guard
against that. It may not jump out as a problem in these 5 lines, but when a file is
200 or 300 lines long, variables floating around like this make life more difficult,
as they could change at any point.

“NAME” IS NOT A GREAT NAME

Although it’s not perfectly supported across all implementations, name
happens to be a property of function objects for many contexts. When in
doubt, avoid it.

In testing, figuring out what inputs you need to set up can take more time
than any other task involved. When explicit inputs are complex objects, this can
be difficult enough (although it can be helped by factories and fixtures, as dis-
cussed in Chapter 3), but if your function relies heavily on implicit input (or
worse, nonlocal/global inputs), then you have that much more setup to do. Im-
plicit state (using this) isn’t as bad as nonlocal input. Actually, object-oriented
programming (OOP) relies on using it intelligently.

The recommendation here is to have your functions, as much as possible, re-
ly on explicit inputs (which hints at functional programming, or FP, style), fol-
lowed by implicit inputs (aka this, which hints at OOP style), followed in a dis-
tant third by nonlocal/global state. An easy way to guard against nonlocal state
is to wrap as much of the code as possible in modules, functions, and classes
(which, yes, are actually functions in disguise).

Inputs

103

Note that even when state is explicit, JavaScript allows a wide range of flexi-
bility in how parameters are passed. In some languages, formal parameters (the
parts of a function definition that specify explicit inputs) require the types (int,
boolean, MyCoolClass, etc.) to be specified as well as the parameter name.
There is no such restriction in JavaScript. This leads to some convenient possi-
bilities. Consider the following:

function trueForTruthyThings(sometimesTruthyThing){
 return !!(sometimesTruthyThing);
};

When calling this function, we could pass in a parameter of any type we
wanted. It could be a boolean, an array, an object, or any other type of variable.
All that matters is that we can use the variable inside of the function. This is a
very flexible approach, which can be handy, but can also make it difficult to
know what types of parameters are required in order to exercise a function un-
der test.

JavaScript offers two additional approaches that increase flexibility even
further. The first is that the number of formal parameters doesn’t have to corre-
spond with the number passed into the function call. Take a function like:

function add(a, b){
 return a + b;
};

This will happily return 5 if you call it as add(2, 3), but also if you call it as
add(2, 3, 4). The formal parameters don’t care what you pass in; only the
function body does. You can even supply fewer arguments, as in this: add(2).
This will return NaN (“Not a Number”) because 2 is being added to undefined,
although in Chapter 11, we’ll explore a technique called currying that makes it
useful to supply fewer arguments than specified by the formal parameters.

As for extra arguments supplied to a function call, it is possible to recover
and use them in the function body, but this functionality should be used cau-
tiously, as it complicates a testing procedure that benefits from simple inputs
and less bulk in the function body.

One last trick that the formal parameters can play in JavaScript is allowing
not just simple types but also objects and functions as parameters. Sometimes
this extreme amount of flexibility can be useful, but consider the following case:

function doesSomething(options){
 if(options.a){
 var a = options.a;
 }
 if(options.b){

CHAPTER 5: Basic Refactoring Goals

104

 var b = options.b;
 }
 ...
}

If you have a mystery object or function that is passed in at runtime, you
have potentially bloated your test cases without realizing how. When you hide
the values needed inside of an object with a generic name like params or op-
tions, your function body should hopefully supply guidance on how those val-
ues are used and clues about what they are. Even with clarity inside of the func-
tion body, though, it’s definitely preferable to use parameters with real names
to keep the interface smaller and help to document the function right up top.

There is nothing wrong with passing a whole object to a function rather than
breaking it all into named individual parameters, but calling it params or op-
tions might hint that the function is doing too much. If the function does take
a specific type of object, it should have a specific name. See more about renam-
ing things in “Renaming Things”.

A BIT ABOUT ECMASCRIPT

We briefly discussed the ECMAScript (ES) specification in Chapter 2 as
what to watch for updates to JavaScript (keeping in mind that libraries
and implementations may either lag behind or actually be ahead of the
curve). What we didn’t talk about is how ES naming conventions work.
As a relatively new convention, the standards body dropped version
numbers like “ES6” in favor of yearly releases like “ES2015” (which hap-
pens to correspond to ES6). The version that will be released next is de-
scribed as “ESNext.” As of this writing, this convention hasn’t been in
use for long, so don’t be shocked if this changes again in the future.

Prior to ES2015, passing an object to a function call offered the advantage of
somewhat illustrating the function signature (what parameters are used) as op-
posed to having what could be just magic strings or numbers. Compare these
two:

search('something', 20);
// vs.
search({query: 'something', pageSize: 20});

The first function definition would necessarily include explicitly named pa-
rameters. The second would likely have one parameter named, at best,
searchOptions and at worst options. The first name (searchOptions) does
not offer much more detail to document the call, but is at least potentially
unique.

Inputs

105

However, there is a way (thanks to ES2015) that you can have clarity in the
calls and in the definitions:

function search({query: query, pageSize: pageSize}){
 console.log(query, pageSize);
};
search({query: 'something', pageSize: 20});

It’s a little awkward, but it allows you to be specific in both places and
avoids the pitfalls of sending the wrong types of arguments or mindlessly pass-
ing a params object through to another function call (maybe after some manip-
ulations first). Honestly, that second pattern is so bad and rampant that this
somewhat-awkward construct still looks pretty great by comparison. If you’re
curious about the feature that makes this work, it’s called destructuring, and
there’s a lot to it. It’s for assignments in general (not just params), and you can
use it with arrays as well as objects.

If you throw using a function as a parameter (a callback) into the mix, then
you could be adding significantly more bulk. Every function call now has the
potential to require any number of new test cases to support it.

SAD PATHS

We discussed earlier how coverage does not necessarily equate to confidence. Sad

paths are one particular reason why. The problem might be a data integrity issue
from a user interaction gone awry (e.g., an incorrectly formatted form entry step
that allows bad data to get into the database).

Even if your code tests each branch of an if-else clause inside your function, some
inputs will cause problems. This includes not just unexpected parameters passed to
the function, but also nonlocal inputs such as what time or date it is, as well as ran-
dom numbers.

In languages with strict type checking systems (unlike JavaScript), a good number
of these sad paths go away. Yet automated coverage tools will not help you here. Sad
paths will likely be hidden in the code (and test cases) that you didn’t write.

Mutation testing, as described in Chapter 3, can be of some help here. But consider-
ing that there are potentially infinite error-causing inputs to your functions in
JavaScript (and the more flexibility you insist on, the more likely you are to hit one),
the best defense against sad paths is to ensure your inputs will be evaluated cor-
rectly by your function ahead of time. Otherwise, you’re stuck with seeing the bug
happen live, and then writing a regression test and code to handle it.

CHAPTER 5: Basic Refactoring Goals

106

Note that because of input validation (or using more robust mechanisms inside of a
function), a sad path will not necessarily mean a new path of code that would re-
quire a new pie slice in our diagramming method.

Passing in functions as inputs to a function can be done in a rational way,
but not recognizing the trade-offs between simplicity in testing and flexibility is
a mistake.

The overall recommendation for this section is to have simple and explicit
inputs whenever possible, both in the function definitions and calls. This makes
testing a great deal easier.

Inputs

107

Here are a few recommendations to wrap up our discussion on inputs:

• Overall, the fewer inputs you have, the easier it will be to keep bulk under
control and test your code.

• The fewer nonlocal inputs you have, the easier your code will be to under-
stand and test.

• Every function has a this as an implicit input; however, this may be un-
used, or even undefined in a lot of cases. If this is unused, feel free not
to add the thisType ~> part of the diagram.

• Most of all, explicit inputs are more reliable than this or nonlocal inputs.

Outputs

By output, we mean the value that is returned from a function. In our ideal
style, we always want to return something. There are cases where this is hard or
not true (some asynchronous styles and procedural, side effect–driven code),
but we’ll deal with asynchronous code in Chapter 10 and discuss side effects
later in this chapter (as well as in Chapter 11).

One of the most common mistakes you will see in a function is ignoring the
output by not returning anything:

function add(a, b){
 a + b;
};

In this case, it’s pretty clear that the return keyword has been omitted,
which means this function will simply return undefined (Figure 5-8). This can
be easy to miss, for two reasons. First of all, not all languages are the same. Ru-
byists (a lot of whom write JavaScript as their second language) will sometimes
forget the return statement because the last line in a Ruby function is returned
implicitly.

Secondly, if the style of most of the codebase consists of side effects (cov-
ered next), then the return value is less important than that effect. This is espe-
cially common in jQuery-supported codebases where almost every line is a
click handler that runs a callback (which is often fancy side effect code). Pro-
grammers used to side effect–based code will also tend to fail to return any-
thing.

CHAPTER 5: Basic Refactoring Goals

108

FIGURE 5-8

This add function
doesn’t specify a
return value, so it
defaults to
undefined

VOID FUNCTIONS

If no value is explicitly returned in JavaScript (using the return keyword),
undefined will be returned. Since this provides little to no information
about what the function did, even in the traditional case of using a void
function for side effect–producing functions, there is likely some infor-
mation of value produced by the side effect—even if it is just the result or
simply the success of the side effect—that it would be preferable to re-
turn. When the side effect specifically changes the context (this), re-
turning this is also a viable option.

It is recommended that you return real values when possible rather than
explicitly returning undefined/null or implicitly returning undefined.

Outputs

109

FIGURE 5-9

An add function that
returns a number

This function, however, does return something (see Figure 5-9):

function add(a, b){
 return a + b;
};

Generally speaking, we want a decent return value (not null or undefined),
and we want the types from various code paths to match—returning a string
sometimes and a number other times means you will probably have a few if-
else statements in your future. Returning an array with mixed types can be
similarly awkward when compared with returning a simple value or an array of
like types.

CHAPTER 5: Basic Refactoring Goals

110

STRONGLY TYPED LANGUAGES

Some languages have mechanisms to prescribe that return values (and
inputs) be of a particular type (or explicitly return nothing). Having seen
how JavaScript handles inputs, we should not be surprised to find a simi-
lar flexibility for return values.

We’ll get into this more in Chapter 11.

The recommended approach to output values is to, whenever possible, re-
turn a consistent and simple value, and avoid that value being null or unde-
fined. With functions that cause destructive actions (like altering an array or
changing the DOM), it can be nice to return an object that describes what effect
took place. Sometimes that just means returning this. Returning something
informative, even when nothing was explicitly asked for, is a good habit, and
helps in testing and debugging.

One additional complication for outputs is functions that return different
types. Consider this function:

function moreThanThree(number){
 if(number > 3){
 return true;
 } else {
 return "No. The number was only " + number + ".";
 }
};

This function returns either a boolean or a string (see Figure 5-10). This isn’t
great because code that calls this function will likely have its own conditionals
to check for which type was returned.

Outputs

111

FIGURE 5-10

This function could
return a boolean or
a string

As is the theme so far for this chapter, simpler is better when it comes to out-
puts (return types). Returning different types of values can complicate the code.
Additionally, we want to avoid returning a null or undefined, as a better solu-
tion is likely available. Finally, we should strive to return values that are of the
same type (or types implementing interfaces that won’t require a conditional
check after or around the function call), regardless of which value is returned.

Side Effects

Some languages find side effects to be so dangerous that they make it very diffi-
cult to introduce them. JavaScript doesn’t mind the danger at all. As it is used

CHAPTER 5: Basic Refactoring Goals

112

in practice, one of jQuery’s main jobs (if not its primary responsibility) is to ma-
nipulate the DOM, and this happens through side effects.

The good part about side effects is that they are usually directly responsible
for all the work anyone cares about. Side effects update the DOM. Side effects
update values in the database. Side effects make console.log happen.

Despite all that side effects make possible, our goal is to isolate them and
limit their scope. Why? There are two reasons. One is that functions with side
effects are harder to test. The other is that they necessarily have some effect on
(and/or rely on) state that complicates our design.

We will discuss side effects much more in Chapter 11, but for now, let’s up-
date our symbolic diagramming of side effects. Here is a simple example (see
Figure 5-11):

function printValue(value){
 console.log(value);
};

Side Effects

113

FIGURE 5-11

A function with a
very common side
effect: logging

Notice that because this function does not return anything, the return value
is undefined.

Ideally, the fewer side effects the better, and where they must exist, they
should be isolated if possible. One update to some well-defined interface (say, a

CHAPTER 5: Basic Refactoring Goals

114

single database row) is easier to test than multiple updates to it, or to multiple
database rows.

Context Part 1: The Implicit Input

In explaining inputs and outputs, we skimmed over something somewhat com-
plex but very important, which we will cover now: the “implicit input,” which
appears on the left of the diagrams as someThisValue ~> (see e.g.,
Figure 5-6). someThisValue is the this that we’ve been talking about so far.

So what is this?
Depending on your environment, outside of any other context, this could

refer to a base object particular to the environment. Try typing this (and press-
ing Enter) in a browser’s interpreter (console). You should get back the window
object that provides the kinds of functions and subobjects you might expect,
such as console.log. In a node shell, typing this will yield a different type of
base object, with a similar purpose. So in those contexts, typing any of these
things will give you 'blah'.

console.log('blah');
this.console.log('blah');
window.console.log('blah'); // in a browser
global.console.log('blah'); // in a node shell

Interestingly enough, if you save a node file and run it, this prints as an
empty object, {} , but global works as in the node shell and global objects
like console are still available to use. Although this.console.log won’t
work in a node file that you run, global.console.log will. That is related to
how the node module system works. It’s a bit complicated, but know that the
top-level scope in most environments is also this, but in node, it’s the module
scope. Either way, it’s fine, because most of the time you don’t want to define
functions or variables in the global namespace anyway.

In any case, we can expect our this to be the top-level scope when we
check it inside of functions declared in the top-level scope:

var x = function(){
 console.log(this);
}
x(); // here, we'll see our global object, even in node files

So, that is top-level scope in a nutshell. Let’s diagram this last code listing
with its implicit input (Figure 5-12).

Context Part 1: The Implicit Input

115

FIGURE 5-12

This function has the
global object as its
“this” value

this in Strict Mode

When you’re in strict mode, this will behave differently. For this code:

var x = function(){
 'use strict'
 console.log(this);
}
x();

undefined will be logged. In strict mode, not every function has a this. If
you create this script and run it with node:

CHAPTER 5: Basic Refactoring Goals

116

FIGURE 5-13

A function with a
this value of
undefined

'use strict'
var x = function(){
 console.log(this);
}
x();

You will see the result (this is undefined). However, typing this second
code snippet line by line in a node REPL (just type node at the terminal) or in a
browser console will not apply strict mode to x, and the global object will be
returned.

The Trellus function diagram for x in the first snippet looks like Figure 5-13.

Context Part 1: The Implicit Input

117

Now the function is four lines long and still returns undefined as it did be-
fore. The side effect (which now logs undefined instead of the global object) is
still present. The most crucial difference is that this no longer attaches to any
this object other than undefined.

Whether you’re writing a node module or any decently sized program on the
frontend, you’ll generally want only one or a small handful of variables to be
scoped inside of the top-level scope (something has to be defined there, or you
wouldn’t be able to access anything from the outermost context).

One way to create a new context is by using a simple object like this:

var anObject = {
 number: 5,
 getNumber: function(){ return this.number }
}

console.log(anObject.getNumber());

Here, this is not the global object, but anObject. There are other ways to
set a context, but this is the simplest. By the way, because you’re creating a lit-
eral object with the {} syntax, this is called an object literal.

Keeping in mind that we’re diagramming functions, not objects, let’s see
what our getNumber function looks like (Figure 5-14).

CHAPTER 5: Basic Refactoring Goals

118

FIGURE 5-14

getNumber attached
to a this of anObject

We have a few more ways to write code that will follow the diagram as well
as the interface. First is the Object.create pattern:

var anObject =
 Object.create(null, {"number": {value: 5},
 "getNumber": {value: function(){return this.number}}});
console.log(anObject.getNumber());

Next is how you would attach getNumber to anObject using classes:

class AnObject{
 constructor(){
 this.number = 5;
 this.getNumber = function(){return this.number}
 }
}
anObject = new AnObject;
console.log(anObject.getNumber());

Context Part 1: The Implicit Input

119

SOME PEOPLE REALLY, REALLY HATE CLASSES

Pretty much everyone likes object literals. Some people like Object.create. Some
people like classes. Some people like writing constructor functions that behave a lot
like classes, without all of the “syntactic sugar.”

Some objections to classes are are based on them obscuring the purity and power of
JavaScript’s prototypal system...but on the other hand, a typical demonstration of
this power and flexibility is the creation of an awkward, ad hoc class system.

Other objections to classes are based around inheritance being worse than delega-

tion and/or composition, which is valid, although fairly unrelated to the use of just

the class keyword.

If you are using the new keyword, whether from a class or a constructor function,

this will be attached to a new object that is returned by the call to new.

In an OOP approach, you might find yourself using objects for simple things and
object-producing classes, factory functions, and so on for more complex things,
whereas in the FP style, you will probably find yourself using fewer classes.

JavaScript doesn’t seem to care how you write it. Perhaps you’ll find FP style to be
more maintainable, but a given project or team could have a significant investment
in an OOP style.

Your this can also change through use of the call, apply, and bind func-
tions. call and apply are used in exactly the same way if you’re not passing
any explicit inputs to the function. bind is like call or apply, but for saving the
function (with the bound this) for later use:

var anObject = {
 number: 5
}
var anotherObject = {
 getNumber: function(){ return this.number }
}
console.log(anotherObject.getNumber.call(anObject));
console.log(anotherObject.getNumber.apply(anObject));
var callForTheFirstObject = anotherObject.getNumber.bind(anObject);
console.log(callForTheFirstObject());

Note that neither object has both the number and the function. They need
each other. Since we’re using bind, call, or apply, our diagram actually

CHAPTER 5: Basic Refactoring Goals

120

FIGURE 5-15

Nothing is actually
changed here:
getNumber still has
anObject as its
“this”

doesn’t have to change. As we are using it, this still refers to anObject, even
though the function is defined on anotherObject (Figure 5-15).

What’s new here is that, although the function lives in anotherObject,
bind, call, and apply are used to assign the “implicit” input (this) in an “ex-
plicit” way to anObject.

You might be confused about why Figure 5-15 has anObject as its implicit
parameter, even though the function is defined inside of anotherObject. It is
because we’re diagramming the function calls that are like this:

anotherObject.getNumber.call(anObject);

We’re diagramming from the perspective of a function. We could also dia-
gram the following function call:

anotherObject.getNumber();

Context Part 1: The Implicit Input

121

And then anotherObject would be the implicit parameter (the this), but
its return type would be undefined, not number.

Let’s look at one more example:

var anObject = {
 number: 5
}
var anotherObject = {
 getIt: function(){ return this.number },
 setIt: function(value){ this.number = value; return this; }
}
console.log(anotherObject.setIt.call(anObject, 3));

Note that the setIt code returns its this value, so if you run this code, you
will see the full anObject object with the updated value: { number: 3 }. This
is what return this in the setIt function does. Otherwise, we would have
just the side effect (mutating the anObject’s number) and no clear confirma-
tion of what happened. Returning this makes testing (manually or automati-
cally) much easier than just returning undefined from side effect–causing
methods.

Let’s look at the diagram for setIt as it is called by the call function
(Figure 5-16).

CHAPTER 5: Basic Refactoring Goals

122

FIGURE 5-16

Has a side effect, but
still returns
something useful

Note that even though it is a side effect–producing method, we have re-
turned something: specifically, our this from anotherObject. As described
earlier, that can help to simplify verification and testing as compared with sim-
ply returning undefined. Additionally, returning this opens us up to the pos-

Context Part 1: The Implicit Input

123

sibility of having a fluent interface, which means we could chain functions like
this:

object.setIt(3).setIt(4).setIt(5);

FLUENT INTERFACES

Fluent interfaces can be useful for things like aggregating database query
conditions or bundling up DOM manipulations (jQuery does this). You
might also see this described as chaining functions. This is a common and
useful pattern in both OOP and FP styles. In OOP, it tends to be a result of
returning this, whereas in FP, it is commonly the result of map, which re-
turns an object (or functor, actually) of the same type (for instance, arrays
“map” to other arrays and promises “then” onto other promises).

In FP style (and in the wrapper OOP patterns), you’ll see more of this:

f(g(h()));

That might seem very awkward in comparison with fluent interfaces, but
FP has great strategies for combining/composing functions. We’ll look at
those more in Chapter 11.

All this is to say: if you’re just returning undefined anyway, returning this
instead will provide more information and better interfaces.

As far as context goes, that’s about as complicated as it gets without delving
into prototypes (and the three or four things that means), inheritance, mixins,
modules, constructors, factory functions, properties, descriptors, getters, and
setters.

After this chapter, it’s all about better code through better interfaces. We
won’t shy away from the topics in the previous paragraph, but we won’t make
idols of any patterns either. This book is meant to explore many different ways
to improve code.

Any coding style you fall in love with is bound to be someone else’s heresy.
JavaScript presents many opportunities for both reactions.

Context Part 2: Privacy

The last topic in this chapter is that of “private” functions, and what that means
in JavaScript. Scope is a broader topic of hiding and exposing behavior that
we’ll explore through examples later on. For now, we are only concerned with
the privacy of functions, because as we noted earlier, private functions have
unique implications for testing.

Namely, some feel that private functions are “implementation details,” and
thus do not require tests. If we accept that premise, then ideally we can hide

CHAPTER 5: Basic Refactoring Goals

124

most of our functionality in private functions and have less code exposed that
we need to test. Fewer tests can mean less maintenance. Additionally, we can
clearly separate our “public interface” from the rest of the code, which means
anyone using our code can still benefit when learning or referencing a small
part of it.

So how do we create private functions? Pretending we don’t know anything
about objects for a minute, we could do this:

(function(){
 console.log('hi');
})();

or this:

(function(){
 (function(){
 console.log('hi');
 })();
})();

Here we have some anonymous functions. They are created, and then disap-
pear. Any this we put inside will link back to the top-level context. Since
they’re anonymous, all they can do is run when we tell them to. Even if we
know the this for anonymous functions, we can’t run them (except right away
or as a callback), because they don’t have a name and can’t be addressed. Inci-
dentally, these are called immediately invoked function expressions (IIFEs), and
we’ll talk about them more in Chapter 7.

We’ll explore a few more useful types of private functions in a minute, but
first we have a new piece to add to our diagrams (see Figure 5-17). The dia-
grams for both of the preceding functions are the same (except for the lines of
code, which you might argue is five rather than three for the second one).

Context Part 2: Privacy

125

FIGURE 5-17

A “private”
anonymous function

What’s new here is that we have a dark ring around the main circle to denote
that this is a “private” function, and you may or may not want (or be able) to
test it. Any pie slices would still be apparent in a function with more code paths,
and as with public functions, the slices would be darkened when tested.

Another way to design private methods is through the revealing module pat-
tern:

var diary = (function(){
 var key = 12345;
 var secrets = 'rosebud';

 function privateUnlock(keyAttempt){

CHAPTER 5: Basic Refactoring Goals

126

 if(key===keyAttempt){
 console.log('unlocked');
 diary.open = true;
 }else{
 console.log('no');
 }
 };

 function privateTryLock(keyAttempt){
 privateUnlock(keyAttempt);
 };

 function privateRead(){
 if(this.open){
 console.log(secrets);
 }else{
 console.log('no');
 }
 };

 return {
 open: false,
 read: privateRead,
 tryLock: privateTryLock
 }

})();

// run with
diary.tryLock(12345);
diary.read();

Reading this from top to bottom is a mistake. At its core, this is just creating
an object with three properties, and assigning it to diary. We happen to be sur-
rounding it with an anonymous (and immediately executing) function, but that
is just to create a context where we can hide things. The easiest way to read this
function is to first look at the object that it returns. Otherwise, it’s fairly similar
to the last example in that all we’re doing is wrapping some code with an
anonymous function.

diary’s first property is open, which is a boolean initially set to false. Then
it has two other properties that map to function definitions provided previous-
ly. The interesting part is that we have some things hidden in here. Neither the
key and secrets variables nor the privateUnlock function has any way to be
accessed directly through diary.

One thing that may look strange is that in the “private” privateUnlock
function, instead of this.open, we have diary.open. This is because when

Context Part 2: Privacy

127

FIGURE 5-18

The read function of
diary

we are running privateUnlock via the privateTryLock function, we lose our
this context. To be clear, this is diary inside of the privateTryLock func-
tion, but it is the global object inside of privateUnlock.

As Trellus diagrams, these functions would look like Figures 5-18 and 5-19.

CHAPTER 5: Basic Refactoring Goals

128

FIGURE 5-19

The tryLock function
of diary

The read function just points to privateRead, so we use that definition for
our diagram. It takes no explicit parameters. Its this (the implicit parameter) is
the diary object (that is returned from the anonymous function call). It returns
undefined and calls console.log as a side effect. But what about secrets,
the nonlocal input? It is tempting to think of secrets as part of the diary ob-
ject, but it isn’t. It’s part of the scope within which the object returned by diary
was created. Contrast secrets with this.open, which is an attribute of the
diary object itself.

The tryLock function also just points to another function (privateTry-
Lock), so we use that function definition. Like read, it has a nonlocal input, but
this time it is a function (privateUnlock) rather than a simple value (secrets)
as in read’s case. As far as the return values and side effects, the function defi-
nition itself doesn’t indicate it, but we don’t have to work too hard to see what

Context Part 2: Privacy

129

FIGURE 5-20

The privateUnlock
function of diary

side effects it has. However, in keeping with what most code coverage tools
would report, this function only has one code path, even though its side effects
depend on two paths inside of privateUnlock. Note that the same single code
path would also be indicated by the diagram in the case that those two code
paths affected the return value rather than, or in addition to, the side effects.

Now let’s look at privateUnlock (Figure 5-20).

This function’s diagram looks a lot like tryLock’s. One major difference is
that it has the dark circle wrapping its code paths. This indicates that we are
considering it as a private function. We’ll discuss this a bit more, but for now,
here is a working idea of “private” functions in JavaScript: in JavaScript, there

CHAPTER 5: Basic Refactoring Goals

130

isn’t really a good way to make private functions. Basically, you have variables
and functions that are either in scope and addressable, or not.

Something else might have jumped out of the diagram as interesting. The
diary object (that is used for diary.open) is not the function’s this, nor is it
an explicit input: it is a nonlocal input. The mechanism here is a bit tricky, but
this should illustrate what’s happening:

function hi(){
 console.log(hello);
};
hi();

// ReferenceError: hello is not defined

var hello = "hi";
hi();
// logs "hi"

It seems weird that diary is in scope, and it might seem like it has some-
thing to do with the function it is declared inside of being assigned to diary:

var diary = (function(){
 // does everyone in here know about diary?

But actually it works just like the hi function. When privateUnlock is de-
clared, it doesn’t know what diary is yet, but that doesn’t matter. Once diary
is declared in the top-level scope, everything knows about it, including previ-
ously declared functions, which includes privateUnlock. This might still seem
magical, but basically, you can declare nonlocal inputs to functions after those
functions are declared. As long as the nonlocal inputs are in a scope that the
function can access when the functions are called, you can still use them in the
function declarations.

If that doesn’t sink in, it’s okay. We’re about to stop using diary in that func-
tion because it’s a little awkward (also, it is hardcoded and will break if we
change the variable name).

It is tempting to just expose the privateUnlock function to the object
(adding another attribute to the returned object), but we won’t be able to keep
it “private” (out of a directly addressable scope) that way.

To get around the awkwardness of repeating a name as we are doing with
diary, some people’s first instinct is to pass along this with a variable called
that:

var diary = (function(){
 var key = 12345;

Context Part 2: Privacy

131

 var secrets = 'programming is just syntactic sugar for labor';

 function privateUnlock(keyAttempt, that){
 if(key===keyAttempt){
 console.log('unlocked');
 that.open = true;
 }else{
 console.log('no');
 }
 };

 function privateTryLock(keyAttempt){
 privateUnlock(keyAttempt, this);
 };

 function privateRead(){
 if(this.open){
 console.log(secrets);
 }else{
 console.log('no');
 }
 }

 return {
 open: false,
 read: privateRead,
 tryLock: privateTryLock
 }

})();

Let’s see what that does to our diagram for privateUnlock (see
Figure 5-21).

CHAPTER 5: Basic Refactoring Goals

132

FIGURE 5-21

With two explicit
inputs

Nothing much has changed here. The only difference is that now we have
two explicit inputs to the privateUnlock function and one nonlocal input,
which is an improvement from before.

Context Part 2: Privacy

133

ISN’T CONSOLE A NONLOCAL INPUT?

In other words: shouldn’t it be listed on the right of the diagrams too?

When it is used within the function, yes, it does act as a nonlocal input.
We’ve omitted it in these diagrams to simplify them, but by all means,
when you’re writing your own functions, add entries for console and any-
thing else that’s not this or passed in as an explicit parameter.

Also realize that we’re not adding nonlocal inputs for every global object
and subobject that we’re not using. That would make the diagrams very
noisy.

Alternatively, we can use one of our this-fixing functions: call, apply, or
bind. For call, you would change privateUnlock and privateTryLock like
this:

var diary = (function(){
 var key = 12345;
 var secrets = 'sitting for 8 hrs/day straight considered harmful';

 function privateUnlock(keyAttempt){
 if(key===keyAttempt){
 console.log('unlocked');
 this.open = true;
 }else{
 console.log('no');
 }
 };

 function privateTryLock(keyAttempt){
 privateUnlock.call(this, keyAttempt);
 };

 function privateRead(){
 if(this.open){
 console.log(secrets);
 }else{
 console.log('no');
 }
 }

 return {
 open: false,
 read: privateRead,
 tryLock: privateTryLock
 };

})();

CHAPTER 5: Basic Refactoring Goals

134

And in the bind version our privateTryLock function would look like this:

 function privateTryLock(keyAttempt){
 var boundUnlock = privateUnlock.bind(this);
 boundUnlock(keyAttempt);
 };

Or we could inline that boundUnlock variable by calling the bound function
right away:

 function privateTryLock(keyAttempt){
 privateUnlock.bind(this)(keyAttempt);
 };

which puts us back to being pretty similar to the call syntax.
In any case, our diagram for privateUnlock with the this-fixing in place

shouldn’t be too shocking (see Figure 5-22).

Context Part 2: Privacy

135

FIGURE 5-22

One explicit
parameter (number)
and one implicit
parameter (diary)

Now our function has an implicit input of diary. key is still stuck as a nonlo-
cal. It, like secrets and privateUnlock, is there for anyone to grab up when
the diary-creating anonymous function runs, but it’s not attached to any ob-
ject (any this) of significance.

Some variables (including functions) have a useful this that they are at-
tached to. Others just have a scope where they are available and addressable.

Before leaving our diary example, there’s one important function that
we’ve neglected to diagram: our diary-creating function (Figure 5-23).

CHAPTER 5: Basic Refactoring Goals

136

FIGURE 5-23

The diary-creating
function is pretty
simple

It’s actually what’s not in this diagram that is surprising. First of all, the func-
tion is anonymous. It is the result of calling the function that is assigned to a
variable that happens to be called diary:

var diary = (function(){

Similarly, the return type is an object: {}. We could get specific and say it
returns an object with particular properties, or we could say it’s a diary object.
However, it’s worth highlighting that our function has no idea of what a diary
is until after its result is assigned to the variable.

At this point, you might be wondering about classes. Maybe classes have
some magical way to implement private methods? Nope. There have been pro-
posals to ECMAScript petitioning for such things, but as of this writing, they’re
still not a sure bet.

If we were really insistent on this behavior for classes, how might we write it?

class Diary {
 constructor(){

Context Part 2: Privacy

137

 this.open = false;
 this._key = 12345;
 this._secrets = 'the average human lives around 1000 months';
 };

 _unlock(keyAttempt){
 if(this._key===keyAttempt){
 console.log('unlocked');
 this.open = true;
 }else{
 console.log('no')
 }
 };
 tryLock(keyAttempt){
 this._unlock(keyAttempt);
 };

 read(){
 if(this.open){
 console.log(this._secrets);
 }else{
 console.log('no');
 }
 }
}
d = new Diary();
d.tryLock(12345);
d.read();

Now our private variables and _unlock function are exposed in the class.
Also, we’ve prepended an underscore to indicate functions and variables that
shouldn’t be accessed directly. If we consider our private/underscore function
to be a private implementation detail and therefore to not require testing, we
now have a visual cue to help us convey that to others and our future selves. On
the other hand, in this form, our tests should be very easy to write because all
of our private methods are still addressable.

However, if we genuinely wanted to not expose our “hidden” information,
we’ve failed. Let’s take a step in what looks like the wrong direction:

var key = 12345;
var secrets = 'rectangles are popular with people, but not nature';
function globalUnlock(keyAttempt){
 if(key===keyAttempt){
 console.log('unlocked')
 this.open = true;
 }else{
 console.log('no')
 }

CHAPTER 5: Basic Refactoring Goals

138

};

class Diary {
 constructor(){
 this.open = false;
 };
 tryLock(keyAttempt){
 globalUnlock.bind(this)(keyAttempt);
 };
 read(){
 if(this.open){
 console.log(secrets);
 }else{
 console.log('no')
 }
 }
};
d = new Diary();
d.tryLock(12345);
d.read();

Now our hidden information is outside of our class. In fact (assuming we’re
at the top-level scope), we’ve created global variables! What good is that?

Well, this is actually very close to something great that solves our problem in
a different way. Save the following as diary_module.js:

var key = 12345;
var secrets='how to win friends/influence people is for psychopaths';
function globalUnlock(keyAttempt){
 if(key===keyAttempt){
 console.log('unlocked')
 this.open = true;
 }else{
 console.log('no')
 }
};

module.exports = class Diary {
 constructor(){
 this.open = false;
 };

 tryLock(keyAttempt){
 globalUnlock.bind(this)(keyAttempt);
 };

 read(){
 if(this.open){
 console.log(secrets);

Context Part 2: Privacy

139

 }else{
 console.log('no')
 }
 }
}

The only line we’ve changed is:

module.exports = class Diary {

To make use of this, we’ll need another file (you can call it diary_reader.js) to
import the module. Here’s what that file looks like:

const Diary = require('./diary_module.js');
let d = new Diary();
d.tryLock(12345);
d.read();

In this file, between the Diary “class” or the “instance” d, we’re not able to
see the key or read the diary secrets without it. Unfortunately, this also
means that if we want to test it using a similar require mechanism, we’re
stuck either going back to the prepended underscore technique, putting our
private functions in their own modules somehow, or conditionally including
them for tests (and excluding them otherwise).

Is There Privacy in JavaScript?

As of this writing, there is no real privacy in JavaScript. Things are either in
scope, or they’re not. Unfortunately, having an object and simply declaring
some attributes as public and others as private is not really possible. Because
every attribute (every property of an object) has a “this” that it attaches to, for
functions to be “private” in JavaScript, they are necessarily also inaccessible.

So, practically speaking, at this time we have two conventions to choose
from. The first is to give up on that dream and let attributes attach to some oth-
er this, with an eye toward the subconventions of doing so in a wrapping
anonymous function (à la the revealing module pattern), or allowing this to
attach to the global this for modules that are exported. Because exporting is a
whitelisting operation, only the functions we specify will be imported by other
scripts. This is handy for having a smaller API, but does complicate testing
somewhat.

The second (admittedly clunky) convention is to let our functions happily
bind to the same this as public members, but give visual cues (prefixing the

CHAPTER 5: Basic Refactoring Goals

140

function name with an _ is the most common) to indicate when something is
intended to be private.

So for now, the meaning of private is more or less up to you, as well as how
you decide that which you term “private.”

However, there are proposals from TC39 (the committee that evaluates and
determines JavaScript features) related to privacy that are in the works. These
include:

• Private fields (https://github.com/tc39/proposal-private-fields)
• Private methods (http://github.com/tc39/proposal-private-fields/blob/

master/METHODS.md)
• Private static fields and methods (http://github.com/tc39/proposal-

private-fields/blob/master/STATIC.md)

In this book, we’re doing the same thing with these additions as we’re doing
with the likely forthcoming async and await features: we’re mentioning them,
but not going into detail. From the spec, this is the proposed new syntax as of
this writing:

class Foo {
 #a;
 #b;
 #sum() { return #a + #b; }
 printSum() { console.log(#sum()); }
 constructor(a, b) { #a = a; #b = b; }
};

So, #a and #b are both private (nonfunction/method) “fields,” and #sum is a
private “method.” These identifiers with a # would be unavailable outside of the
class context block. Thus, a new foo instance of class Foo wouldn’t have tra-
ditional property-style access à la foo.#a (or maybe foo.a—we don’t know,
and we’re assuming that wouldn’t work anyway), foo.#b, or foo.#sum().
However, foo.printSum() would be fine, since that’s not private. Beyond
that, details are sketchy at the moment (e.g., does foo.#a throw an error? Can
a and #a both be used as field names? Is there a workaround to access the pri-
vate fields and methods for testing?).

“METHODS” VERSUS “FUNCTIONS”

Throughout this book, we mostly refer to JavaScript functions as being
functions. For some people, that implies functions in the sense of explicit
inputs and output, whereas a method is used to mean some procedure or
“just a chunk of code” that is attached to an object.

Context Part 2: Privacy

141

https://github.com/tc39/proposal-private-fields
http://github.com/tc39/proposal-private-fields/blob/master/METHODS.md
http://github.com/tc39/proposal-private-fields/blob/master/STATIC.md

In any case, even without all of the facts in, the proposals for private fields
and methods have implications for the future of JS generally:

• Classes are getting more features that make unique constructs and not
just “syntactic sugar” for constructor functions.

• JavaScript is doubling down on OOP. Functional programming might be
the “future” of JavaScript, but OOP is at least also the future.

• Choosing “your JavaScript” will likely again be proven to be a function of
time. The JavaScript of five years ago is starting to look weird to modern
eyes. It’s likely that trend will continue.

• If there is no workaround provided by the #privateFunction syntax,
you might see people still preferring the _privateFunction underscore
hack for backward compatibility and in cases where testing private func-
tions is desired.

Wrapping Up

In this chapter, we covered a lot of detail about how JavaScript works. We cen-
tered our conversation on functions, as they are the most important and com-
plicated construct in JavaScript (in any paradigm worth pursuing).

But as the goal was to be prescriptive as well as descriptive, here are some
takeaways worth repeating:

• Try to keep bulk (complexity and lines of code) low.
• Try to keep the total number of inputs low.
• Prefer explicit inputs to nonlocal inputs.

• Make choices between passing this explicitly versus binding it to the
function call, rather than hardcoding object names as nonlocal inputs.

• Prefer real, meaningful return values to side effects.
• Keep side effects to a minimum or nonexistent.

• Have a well-defined this when possible for functions and other variables
(attributes) by making them part of classes (or at least objects) to cut
down on nonlocal inputs and global variables.

• In JavaScript, mechanisms for privacy necessarily impact access, which
can complicate code, especially when it comes to testing.

You should find these ideas help to make your code (as well as the diagrams)
simpler.

As a final note, the style that we used here is “this-friendly” as compared
with some other approaches. In particular, using objects that change their val-
ues conflicts with aspects of the functional style we’ll discuss in Chapter 11. In
object-oriented (class- or prototype-based) style, however, you will use this
frequently.

CHAPTER 5: Basic Refactoring Goals

142

Refactoring Simple Structures 6

Over the next two chapters, we will be dealing with code that is messy, under-
tested, and does something cool. Note that both of these chapters work from
the same project codebase.

The first part that is cool is that if you have interest, but lack experience, in
machine learning, we’re using a particular algorithm is fairly simple and still
very powerful. It’s called a Naive Bayes Classifier (NBC). You can use it to classify
things based on previous knowledge. A spam filter is a frequently cited exam-
ple. An NBC has two basic steps. First, you give it data that you already know
how a human would classify (e.g., “These 35 subject lines are from spam
emails”). That is called “training” the algorithm. Then, you give it a new piece of
data and ask it what category that data likely fits into (e.g., “Here is the subject
line of an email we just received. Is it spam or not?”).

The second cool thing (if you’re into playing music at all) is that our specific
application of the algorithm will use chords in songs along with their difficulty
as training data. Following that, we can feed it the chords of other songs, and it
will automatically characterize its difficulty for us. At the end of these two chap-
ters, we’ll make some tweaks to have the algorithm guess at whether a seg-
ment of text is understandable or not (with the assumption that we understand
English, but not Japanese).

This might seem like an intimidating or complex problem, but two things
will keep us afloat. First, the basis of the entire program is just multiplying and
comparing different sets of numbers. Second, we can rely on our abilities to test
and refactor to get us through, even if some details don’t intuitively make sense
at first.

143

BUT I DON’T KNOW ANYTHING ABOUT MUSIC!

That’s okay. This won’t be technical as far as music goes. All you need to
know is that to play songs (on guitar, for example), you usually need to
know some chords, which are a bunch of notes put together.

If you plucked a guitar string or hit a piano key, you’d be playing a note.
And if you strum multiple strings or hit multiple piano keys (playing
multiple notes at once), you’d be playing a chord. Some chords are hard-
er to play than others.

Music can be complicated, but for our purposes, songs are simply made
up of chords, and how difficult the chords are to play determines how
difficult it is to play the song overall.

There are a few things we won’t be covering a great deal. Linters (discussed
in Chapter 3) like JSHint and JSCS (now ESLint) checker criteria, of which there
are hundreds, will not all be specifically addressed. However, it is recommend-
ed that you try these tools out in your editor. More specifically, we won’t be cov-
ering single quotes versus double quotes, ASI (automatic semicolon insertion)
and “unnecessary” semicolons, or the number of spaces between braces and
the object values that live inside of them.

Those details are nice to have consistency on, so by all means, use a linter as
a “living style guide,” but covering all the tiny things that they catch here, some
of which are fairly opinionated (e.g., x===3 should have spaces and instead be
x === 3), would be neither interesting nor useful to someone using modern
tools and already using some determined form of JavaScript (see Chapter 2)
that they want to write.

WHY NOT JUST CARS, BANK ACCOUNTS, AND EMPLOYEES?

We aren’t talking about cars, employees, or bank accounts? Not only are those ex-
amples as overused in tech books as the quote from Spiderman’s Uncle Ben, but al-

so consider this passage from Gradus Ad Parnassum:

Perhaps the hope of future riches and possessions induces you to choose this life? If this is
the case, believe me you must change your mind; not Plutus but Apollo rules Parnassus.
Whoever wants riches must take another path.

Aloys is talking about music theory, not programming. Nonetheless, economic ac-
quisitions forming the basis of craft and knowledge (unless that craft and knowl-
edge is economics, I guess) just feels wrong.

CHAPTER 6: Refactoring Simple Structures

144

You can use an NBC to help you learn a new language, study an instrument, or fig-
ure out how best to entertain yourself through media. Let Plutus have your 9 to 5 if
he must, but we’re all about the Apollo here.

DON’T FORGET THE ADVICE FROM THE LAST CHAPTER

• Try to keep bulk (complexity and lines of code) low.

• Prefer explicit inputs to implicit inputs (although we’re working in
OOP style, so we’re favoring implicit inputs in this chapter; see
Chapter 11 for this code in FP style).

• Prefer implicit inputs to nonlocal inputs (free variables).

• Prefer real, meaningful return values to side effects.

• Keep side effects to a minimum.

• Have a well-defined this when possible for functions and other
variables (attributes) by making them part of classes (or at least
objects) to cut down on nonlocal inputs and global variables.

• In JavaScript, mechanisms for privacy necessarily impact access,
which can complicate code, especially when it comes to testing.

The Code

Here’s the NBC, the initial “bad version” that we’re going to improve upon
throughout the next two chapters:

fs = require('fs');
// songs
imagine = ['c', 'cmaj7', 'f', 'am', 'dm', 'g', 'e7'];
somewhere_over_the_rainbow = ['c', 'em', 'f', 'g', 'am'];
tooManyCooks = ['c', 'g', 'f'];
iWillFollowYouIntoTheDark = ['f', 'dm', 'bb', 'c', 'a', 'bbm'];
babyOneMoreTime = ['cm', 'g', 'bb', 'eb', 'fm', 'ab'];
creep = ['g', 'gsus4', 'b', 'bsus4', 'c', 'cmsus4', 'cm6'];
army = ['ab', 'ebm7', 'dbadd9', 'fm7', 'bbm', 'abmaj7', 'ebm'];
paperBag = ['bm7', 'e', 'c', 'g', 'b7', 'f', 'em', 'a', 'cmaj7',
 'em7', 'a7', 'f7', 'b'];
toxic = ['cm', 'eb', 'g', 'cdim', 'eb7', 'd7', 'db7', 'ab', 'gmaj7',
 'g7'];
bulletproof = ['d#m', 'g#', 'b', 'f#', 'g#m', 'c#'];
song_11 = [];

var songs = [];
var labels = [];
var allChords = [];
var labelCounts = [];
var labelProbabilities = [];

The Code

145

var chordCountsInLabels = {};
var probabilityOfChordsInLabels = {};

function train(chords, label){
 songs.push([label, chords]);
 labels.push(label);
 for (var i = 0; i < chords.length; i++){
 if(!allChords.includes(chords[i])){
 allChords.push(chords[i]);
 }
 }
 if(!!(Object.keys(labelCounts).includes(label))){
 labelCounts[label] = labelCounts[label] + 1;
 } else {
 labelCounts[label] = 1;
 }
};

function getNumberOfSongs(){
 return songs.length;
};

function setLabelProbabilities(){
 Object.keys(labelCounts).forEach(function(label){
 var numberOfSongs = getNumberOfSongs();
 labelProbabilities[label] = labelCounts[label] / numberOfSongs;
 });
};

function setChordCountsInLabels(){
 songs.forEach(function(i){
 if(chordCountsInLabels[i[0]] === undefined){
 chordCountsInLabels[i[0]] = {};
 }
 i[1].forEach(function(j){
 if(chordCountsInLabels[i[0]][j] > 0){
 chordCountsInLabels[i[0]][j] =
chordCountsInLabels[i[0]][j] + 1;
 } else {
 chordCountsInLabels[i[0]][j] = 1;
 }
 });
 });
}

function setProbabilityOfChordsInLabels(){
 probabilityOfChordsInLabels = chordCountsInLabels;
 Object.keys(probabilityOfChordsInLabels).forEach(function(i){
 Object.keys(probabilityOfChordsInLabels[i]).forEach(function(j){
 probabilityOfChordsInLabels[i][j] =

CHAPTER 6: Refactoring Simple Structures

146

probabilityOfChordsInLabels[i][j] * 1.0 / songs.length;
 });
 });
}

train(imagine, 'easy');
train(somewhere_over_the_rainbow, 'easy');
train(tooManyCooks, 'easy');
train(iWillFollowYouIntoTheDark, 'medium');
train(babyOneMoreTime, 'medium');
train(creep, 'medium');
train(paperBag, 'hard');
train(toxic, 'hard');
train(bulletproof, 'hard');

setLabelProbabilities();
setChordCountsInLabels();
setProbabilityOfChordsInLabels();

function classify(chords){
 var ttal = labelProbabilities;
 console.log(ttal);
 var classified = {};
 Object.keys(ttal).forEach(function(obj){
 var first = labelProbabilities[obj] + 1.01;
 chords.forEach(function(chord){
 var probabilityOfChordInLabel =
probabilityOfChordsInLabels[obj][chord];
 if(probabilityOfChordInLabel === undefined){
 first + 1.01;
 } else {
 first = first * (probabilityOfChordInLabel + 1.01);
 }
 });
 classified[obj] = first;
 });
 console.log(classified);
};

classify(['d', 'g', 'e', 'dm']);
classify(['f#m7', 'a', 'dadd9', 'dmaj7', 'bm', 'bm7', 'd', 'f#m']);

What does it do?
Honestly, what we have here is a little over 100 lines of fairly incomprehensi-

ble stuff. Although we could try to break it down, or look to the mathematical
model of NBCs first, that is not our approach here.

The Code

147

We will be developing confidence in this code through testing and refactor-
ing.

In general, we want to get code into a file (and also isolated in a .js file if it
was started as part of <script> tag inside an .html file), then under version
control, and then we’ll decide on a testing strategy.

LINE LENGTH

To ensure that everything in this chapter fits on the page, some lines
have been aggressively split onto two in a seemingly unnatural way:

 var probabilityOfChordInLabel =

probabilityOfChordsInLabels[obj][chord];

For many situations, there are better places than the first column to con-
tinue a line. In the case of assignments, in such a limited space, we’ll
tend to continue in this way when we have to. Normally, you would hit a
maximum desirable line length with a long array, string, or other data.

For this and the following chapter, we will assume that you have a file called
nb.js with the code just listed.

Our Strategy for Confidence

Assuming you’re all set up with the code from earlier, and have it saved to a file
called nb.js that is under version control, let’s get started.

Back to our model of what types of tests to write when (the diagram in
Chapter 4), we know that we need characterization tests for untested code. But
looking at our file, we discover with horror that none of our functions return
anything: we have a bit of structure, but our functions just group lines of state-
ments together and generate side effects. Inputs come in the form of variables
defined at the top-level scope, and variable reassignments run rampant.

Yikes. So what’s our first course of attack? Run the file with node (node
nb.js), and we should see the following output:

(from command line)
>node nb.js
[easy: 0.3333333333333333,
 medium: 0.3333333333333333,
 hard: 0.3333333333333333]
{ easy: 2.023094827160494,
 medium: 1.855758613168724,
 hard: 1.855758613168724 }
[easy: 0.3333333333333333,
 medium: 0.3333333333333333,

CHAPTER 6: Refactoring Simple Structures

148

 hard: 0.3333333333333333]
{ easy: 1.3433333333333333,
 medium: 1.5060259259259259,
 hard: 1.6884223991769547 }

DID YOU GET AN ERROR?

Specifically this one?

TypeError: allChords.includes is not a function

If so, you probably have an old node version. You should have at least
version 6.70. Go to nodejs.org and download a current version.

So print statements are our only output, which is not great. The good news
is that we have running code, and it actually outputs something. That means
that we actually have a test in place. Unfortunately, it is a manual one, but it
doesn’t require much setup (we don’t need a test library to run node nb.js
and see output). If we define our “public interface” to be the whole program,
run as it is with no further options, we could be satisfied that this is the only test
we may ever need.

Long term, this is not a great approach, and we bring in formal testing in the
next chapter. For this chapter, we’ll limp along with checking the output
through our logging statements.

THESE RESULTS STOP ONE STEP BEFORE ACTUAL
CLASSIFICATION

In these results, we can see that we get numbers for each type of value (easy, medium,

and hard). Where they are all the same (0.333...), what is printed is the base likeli-
hood of classifying as that value simply based on the ratio of other samples falling
into that value—or “category,” if that’s an easier way to think about it.

As for the ones with different values, the label corresponding to the highest num-

ber in the set of values (easy, medium, or hard) reflects the category in which the
classified data most strongly fits. In other words, this means the following data

would classify as hard:

{ easy: 1.3433333333333333,
 medium: 1.5060259259259259,
 hard: 1.6884223991769547 }

If our classifier was used as a spam filter, this message would most likely be spam:

Our Strategy for Confidence

149

https://nodejs.org/

{ nonSpam: 3,
 spam: 8 }

It’s trivial to pull out the highest number and report the matching key, but that is
the final step of this algorithm. If you want to write that code, and tests to go with
it, feel free. We avoid it in this chapter because the numbers are more explicit, giv-
ing us more certainty that we haven’t changed our algorithm.

Back to the question of confidence (through the result of our manual test),
we need one more step: run it again (maybe two to five times). And the result is
still the same. That’s great. Our algorithm is most likely deterministic. A word of
warning here is that before making this assumption, you should check the code
for Math.random, new Date, and other sources of variation (including calls to
remote URLs) in the program before assuming it will always behave the same
way.

So, now that we’re reasonably confident in the behavior, how should we
start refactoring this?

For this code, we are taking a broad view of refactoring. In practice, you
might find another order more logical than what is presented here. In particu-
lar, after getting tests in place, it is often easiest to extract functions before do-
ing anything else.

Extracting functions is often the best way to reveal the structure of a pro-
gram, and is probably the most underutilized of refactoring techniques. Howev-
er, we will wait until the next chapter to introduce it.

We delay extracting functions for three reasons:

• These two chapters are roughly arranged from simple to complex techni-
ques, and it’s good to understand the simple ones first.

• Extracting functions often obviates other approaches. If we covered it
first, some simpler (but still important) methods would become unneces-
sary.

• Additionally, when extracting functions, you often discover something
else that could be done at the same time—for example, renaming a vari-
able. To keep techniques isolated, we need to move in small steps first.

Generally speaking, the techniques presented in this chapter are low-level.
In other words, they are concerned with small pieces of code. They are more
likely to be things that a linter could find or a text editor could “automatically
refactor.”

CHAPTER 6: Refactoring Simple Structures

150

Renaming Things

The easiest refactorings to do are simply renaming things that don’t make
sense; whether it’s variables, functions, objects, or modules, this is a good place
to start. In the worst case these break the program, and we git checkout .
to get back to our previous good version.

On our hunt for bad names, we have a few things to look for:

• Misspelled words
• Short names (abbreviations and one-letter names)
• Nondescriptive/general names
• Numbers in variable names
• Doubled-up names
• Not CapitalCase for constructors
• Not camelCase for functions and variables

And consider that these may all apply to the following:

• Variables
• Loop variables
• Functions
• Objects
• Classes
• Parameters
• Files
• Directories
• Modules
• Projects

Does anything look obviously misspelled? Does not seem so, but the short
name ttal stands out as not a real word. It could be a misspelling, or an inten-
tional but misguided abbreviation for total. For now, do a search and replace
that turns ttal into total.

Run the program (our test). Same output? Great. Save and git commit -am
'fixed bad variable name' and let’s move on.

We have a variable name including a number and bucking the camelConven-
tion: song_11, which is just an empty array. To avoid numbers and snake_con-
vention (using underscores), we could call this songEleven, but blankSong
seems more fitting and specific. Save, run the file, and (assuming everything
looks good) commit the changes.

Next, we have a variable name that follows the snake_convention, rather
than the camelConvention: somewhere_over_the_rainbow. The fix is the

Renaming Things

151

same: search/replace/save/verify/commit. Make sure you find both instances of
it.

Next is a tougher case, but using single-letter variable names doesn’t make
sense for most JavaScript source code (although these are normal in compiled
JS, as build processes may shorten labels). i and j appear throughout the pro-
gram, with their one-letter variable name signaling that they are just an index,
not requiring a full and descriptive name. This is nonsense. But why?

First, because these names are more resistant to change. If you apply the
same workflow as we have been using to rename variables to single-letter vari-
able names, you are very likely to break something. Find/replace should not
have to require much focus, so when you want “only i if it’s not part of a bigger
word/starts with var/has parens around it, etc.”, you will quickly find yourself in
a more manual search-and-replace process than you want. This is complicated
further when you have to search across files. Although a lot of editors let you
search by regex, it’s an extra step, and regex won’t solve everything if the vari-
able names are reused in various places.

Second, although these variables happen to be in the expected scopes, hav-
ing variables that are not unique creates a risk of them overwriting each other.
What makes this worse is that this might be expected or relied-upon behavior,
so we don’t know ahead of time whether changing one of these variable names,
will introduce a bug.

The third and worst thing about these names is that they give no informa-
tion about what is inside. It is somewhat conventional (though a bad conven-
tion, as just described) to use i and j as indices inside of loops. In those cases,
the names index and innerIndex are more appropriate when the variables
represent numerical keys. Change i to index in the train function (there
should be five of them). Save, check, and commit.

ALTERNATIVE OPINION: DESCRIPTIVE VARIABLE NAMES INDICATE
BAD CODE

This is a nuanced view, and doesn’t apply to an easily attainable style in JavaScript,
but in some languages (including some that compile to JavaScript), it is possible to

specify much about a program through its type system. In those cases, descriptive
variable names may actually detract from the clarity of the possibilities provided by

the type signatures of functions.

To illustrate the point, imagine we have a function that we know takes a list/array of

somethings as input and returns one something as output. We could describe these
somethings as “numbers” or “strings” or another “type” as it applies to our case,
but if we trust the type system to transform a list of them into just one, we might

CHAPTER 6: Refactoring Simple Structures

152

prefer not to describe what kind of something it is. In those cases, some prefer to use

an x, y, a, or b, rather than a longer “descriptive” name that does nothing to de-

scribe the important part (e.g., the transformation from the list of somethings into

just one something).

We’ll get into functional programming more in Chapter 11, but even in a functional
context, you might not find single-letter descriptors compelling. That’s okay. In
this book, we try to avoid that style, but it’s worth understanding the justification
for the contrarian view on this.

When we apply the pattern of thinking of i and j as indices for an argument
in a forEach function, then we’ve really obscured their values. In the setCh-
ordCountsInLabels function, i should actually be song (eight replacements),
and each instance of j in that function should be chord (five replacements).

FLIPPING BACK FIVE PAGES TO LOOK AT CODE? THIS IS AN
OUTRAGE!

Dear reader, I highly recommend at this point that if you haven’t already,
you become dear writer. If you aren’t using your editor to add code and
make changes, the code in this and the next chapter will be very hard to
follow. In addition to just being good practice (writing code rather than
just reading it), the code in this chapter and the next is quite long com-
pared to that found in other chapters.

As written in the preface, it’s your book, so you can treat it how you wish,
but actually making the changes described, running the code, checking
into version control, and writing tests are all part of the skills you should
develop through the book.

setProbabilityOfChordsInLabels has i and j variables as well. In this
case, i is more appropriately called difficulty (four replacements) and j is
better named as chord (three replacements). Make those changes, save, check
the results, and commit.

For those last two functions, i and j did not represent numerical keys (array
indexes), but rather were string keys of an object. If you weren’t sure of more
appropriate names, a quick console.log(i) or console.log(j) statement
inside of the loop will reveal the values, and hint at a more appropriate name.

This bears reiterating: if you discover true numerical array indexes, the name
index (and innerIndex where necessary) is still preferable to single-letter
variable names. If what you discover are string keys to an object (e.g., "easy",
"medium", and "hard" in our case for the i we renamed as difficulty), you
should rely on domain knowledge to chose an appropriate name. In those ca-

Renaming Things

153

ses, don’t worry if your first guess is imprecise. As you gain domain knowledge
and confidence in how the program works, you can always rename things again
later.

RENAMING THINGS CAN BE A BIG DEAL

When changing labels, be sure that you change everywhere that needs to
be changed. With our single file program, that means every case in the
file. With multiple files, lean on your editor/IDE/command line (ack,
grep, etc.) to help you find all of the instances.

Also, be sure to give sufficient notice (via deprecation warnings) and al-
low support for old versions if your code is a module or package external
to your project and relied upon by others, although this may be unneces-
sary for internal values.

The code is a bit clearer after our renamings, but one object should still stick
out as having a short and generic name: obj.

With our method of refactoring first and understanding after, we don’t have
a great idea of what obj could mean. Let’s take a look at the classify function
and see if we can find some hints.

function classify(chords){
 var total = labelProbabilities;
 console.log(total);
 var classified = {};
 Object.keys(total).forEach(function(difficulty){
 var first = labelProbabilities[difficulty] + 1.01;
 chords.forEach(function(chord){
 var probabilityOfChordInLabel =
probabilityOfChordsInLabels[difficulty][chord];
 if(probabilityOfChordInLabel === undefined){
 first + 1.01;
 } else {
 first = first * (probabilityOfChordInLabel + 1.01);
 }
 });
 classified[difficulty] = first;
 });
 console.log(classified);
};

We could try to reason it out, but if instead we cheat a little bit, and add a
console.log(obj) after the fifth line (then run with node nb.js), we’ll see
that “easy,” “medium,” and “hard” are now printed (in addition to the old out-
put) when we run the program. In some parts of our program, we’ve been call-

CHAPTER 6: Refactoring Simple Structures

154

ing these labels, but have just renamed a similar concept as difficulty. Did
we make a mistake?

It’s not always this easy to find appropriate names for things without a full
understanding of the program. label is a name that is more relevant to the al-
gorithm (NBC), but difficulty is more specific to the problem domain (learn-
ing to play songs). For now let’s change obj to difficulty (four replacements
not including the logging statement). Keep in mind that changing all instances
of obj is easy in this case because the name obj is confined not only to this file,
but also this function. Feel free to delete the logging statement if you added
one.

It is worth considering at this point if adopting the terminology of “difficulty”
rather than “label” would make sense for associated variable and function
names across the entire program. However, that is a bit more complex, as there
are a few dozen names that employ that terminology. If you are feeling confi-
dent enough to make those changes (the “test” of running the program will cov-
er you, after all), you can do so, but we’ll proceed assuming that those names
have not been changed. For that reason, it might be worth waiting until you
complete this chapter along with the next one before making those changes.

Useless Code

Next up is useless code, and the bottom line is that if you don’t need it, get rid
of it. If you remember the term YAGNI (“Ya ain’t gonna need it”) from Chapter 1,
that is what we’re covering in this section.

Here are the forms you might encounter useless code in:

• Dead code (variables, functions, files, modules, etc.)
• Speculative code and comments
• Whitespace (including EOL and EOF)

• Do-nothing code (reachable but has no effect, e.g., $($('.some-
Class')) in jQuery or if(!!booleans); empty files)

• Debugging/logging statements

Dead Code

How do you find dead code? Look for just one instance (project-wide) of a func-
tion or variable name. If there’s just a function declaration that isn’t called any-
where, we can happily delete that function. The same goes for variables that
aren’t used. Keep in mind that this would be harder to ensure if our program
went beyond one file. Make sure you have a good way to search through a
whole project either on the command line or through your editor.

Useless Code

155

Can you find any instances of dead code in our NBC?
There are actually three variables that we can eliminate. First up, neither

army nor blankSong is used as training data (or anywhere else), so the lines
with those variable declarations can be safely deleted. A save/run/check/
commit cycle shows us that we haven’t broken anything (the result is the
same).

Speculative Code and Comments

Sometimes you’ll see comments that are intended as future code (a stub, pseu-
docode, or a full implementation). This is the deadest of dead code, and any
details of what code should be there are best left to some task management
system that shares to-dos (and more formally, tickets/tasks/bugs) with the
team. The codebase is for real, running code. Speculative code, commented-
out or not, violates the YAGNI principle. If the code reflects not only its function-
ality, but somehow all of its potential, it is due to be pruned. An additional dan-
ger with commented code is that one might assume that it actually should work
if uncommented. It may work or not. If it is not exercised by tests or even run-
ning with the rest of the code, it should not be trusted.

We can delete our first line: fs = require('fs')
Apparently, there was an intention to include and make use of the filesystem

module at some point, but it was never realized. If you are not actively working
on some filesystem-based feature, then this should go. If you see something like
this, especially with an accompanying comment:

// use the file system for *something* later
fs = require('fs')

It is dead code of a particular type: speculative code. Maybe army and
blankSong were speculative as well. The difference is intention, which is hard
to tell without comments, supporting tests, or domain knowledge. You might
also say they’re not dead code because they do something (assign a couple of
variables) whereas “real” dead code is unreachable/impossible to execute. For
our purposes here, it doesn’t matter. We treat all those cases the same: delete
the code.

Don’t just comment it out. Any reasonably complex project should have some
way of keeping track of future intentions (a bug list, feature tickets or “user sto-
ries,” etc.). If you comment it out, your code is taking on extra work that it
shouldn’t.

There are two useful approaches to problematic comments. The first is sim-
ply to delete them. The second is to use them as inspiration for creating a vari-
able or function. Our second line, //songs, is a candidate for creating a vari-

CHAPTER 6: Refactoring Simple Structures

156

able or function (explaining comments often indicate a good place to extract a
function or variable), but in this section, we’re just covering that which can be
deleted. Feel free to delete this line for now, and save/run/check/commit the
code.

DOCUMENTATION: WHEN COMMENTS ARE USEFUL

In any code of sufficient complexity and likelihood of being used by others, com-
ments can be useful as documentation. These typically precede functions and
classes (or objects) and describe what the function does, as well as the explicit pa-
rameters and return type. They may even be responsible for helping to build exter-
nal documentation. Obviously, we don’t want to delete those comments in the
source files (compiled/minified files should strip these to make files smaller).

ReadMes and tutorials can serve as a type of documentation as well, but high-
quality descriptions of how code works, living as comments in the source files, are
especially useful.

Another interesting use of comments on the front end is to send secret messages to
those who would “view the source.” Usually this involves ASCII art and “Hey, de-
velopers! Work for us!”–type notes.

Whitespace

The whitespace in our code seems okay for the most part. Before the classify
function, there are three blank lines, two of which can and should be deleted.
Beyond extra blank lines, you may see trailing whitespace at the end of a line
(EOL). This shows up in a different (and usually distracting) color in some edi-
tors, and doesn’t in others. How much you dislike this trailing, meaningless
whitespace probably has to do with what editor (and settings for that editor)
you use. You should feel free to delete it in most cases, but it will make your git
diff (the set of changes to a project) potentially much larger, a distraction of a
different type.

Another, somewhat editor-specific, whitespace instance comes from a blank
line at the end of a file (EOF). Generally, this seems like a good idea (i.e., it fol-
lows the IEEE POSIX standard for what a “file” is), but can lead to version con-
trol noise/conflicts if two developers have different editors or personal prefer-
ences (as in the previous paragraph).

Useless Code

157

Do-Nothing Code

Moving on to do-nothing code, we have an example of this in our file. The con-
ditional check that follows contains an unnecessary part:

if(!!(Object.keys(labelCounts).includes(label))){

Specifically, the !! can go away, leaving:

if(Object.keys(labelCounts).includes(label)){

Make that change and save/run/check/commit.
Since the includes function already returns a boolean, there is no need to

use !! to cast it to one. In case you’re wondering how this works, a unary !
gives returns the inverted “truthiness” of a value. You can try these out in a con-
sole if you’re curious:

!true // returns false
!!true // returns true
!![] // returns true
!!0 // returns false

A second reason this !! is unneeded here is that, although explicitly setting
a boolean might seem to make sense, for any value that is tested in an if state-
ment, you can expect the if branch to be followed for true (and else for
false) values without explicitly coercing the boolean. So the following snippet
would print “hi,” because nonempty strings are “truthy” in JavaScript.

if("print hi"){ console.log('hi')}

FALSEY VALUES IN JAVASCRIPT

There are six “falsey” values in JavaScript: undefined, null, 0, "" (the
empty string), NaN, and false. Applying !! to these will produce a false,
whereas other strings, numbers, objects, functions, arrays, and so on will
all produce a true.

Back to unnecessary code: there is no need to !! values in an if statement
test as we did. If you are looking for a use for the !!, one appropriate use would
be in front of a return value of a function that you want to return a boolean.
Here is a contrived example:

CHAPTER 6: Refactoring Simple Structures

158

function didItWork(){
 return !!numberOfTimesItWorked();
};

Here, we have access to a function of the number of times something
worked. If it happened 0 times, then we want to return a false. If it happened
more than that, we want to return a true.

One other example from our classifier is related to how JavaScript handles
numbers. Specifically, there aren’t “integers” and “floats,” just numbers. In
some languages (such as Ruby), these give different results:

10 / 3 # this returns 3
10.0 / 3 # this returns 3.33333...

So if you’re coming from a language like Ruby, in a calculation that involves
an integer values of 10 and 3, at least one value has to be converted into a float
first. You can do this by multiplying one of the terms by 1.0.

In most JavaScript, floats and integers are both just numbers, so both of the
preceding division expressions produce 3.3333... No explicit conversion is
needed. That means that we have another unnecessary bit of code in our classi-
fier. The following line is able to drop the * 1.0 part:

probabilityOfChordsInLabels[difficulty][chord] =
probabilityOfChordsInLabels[difficulty][chord] * 1.0 / songs.length;

making it:

probabilityOfChordsInLabels[difficulty][chord] =
probabilityOfChordsInLabels[difficulty][chord] / songs.length;

Another example of do-nothing code: the total variable that we spent a bit
of time earlier renaming. It’s due for deletion. Why? All it does is receive an as-
signment and log something. We can just log labelProbabilities directly.

Change this section of code:

function classify(chords){
 var total = labelProbabilities;
 console.log(total);
 var classified = {};
 Object.keys(total).forEach(function(difficulty){

to this:

function classify(chords){
 console.log(labelProbabilities);

Useless Code

159

 var classified = {};
 Object.keys(labelProbabilities).forEach(function(difficulty){

Save/run/check/commit to confirm we haven’t changed how the program
works.

Where else does unnecessary code pop up? We don’t have an example of
this in our classifier, but another way code can be useless is by double-
wrapping itself like in the following jQuery snippet:

$('input').on('click', function(){
 var elementToHide = $(this);
 $(elementToHide).hide();
});

The value of this in that example gets wrapped into a jQuery object twice.
jQuery is smart enough to ignore this, but the second wrapping of elementTo-
Hide with a dollar sign is not needed.

$('input').on('click', function(){
 var elementToHide = $(this);
 elementToHide.hide();
});

Whether it’s converting to a boolean, a float, a jQuery object, or something
else, you’ll see these multiple/unnecessary conversion efforts every once in a
while.

We’ll look at unnecessary variables more in the next section (we actually al-
ready had one earlier when we logged the labelProbabilities variable di-
rectly and removed total), but notice that in the jQuery example, elementTo-
Hide is not actually needed with the following change:

$('input').on('click', function(){
 $(this).hide();
});

Back to the NBC, another section of our code that is useless appears here:

 if(probabilityOfChordInLabel === undefined){
 first + 1.01;
 } else {
 first = first * (probabilityOfChordInLabel + 1.01);
 }

The true branch of this if statement may run, but it does not return any-
thing or have any side effects (such as an assignment to a variable). The only

CHAPTER 6: Refactoring Simple Structures

160

thing this branch could do is throw an error if, for instance, first was not de-
fined (not to be confused with having the value of undefined) for some reason.
This is not “dead code,” but it happens to be useless. We can safely simplify this
code to the following:

if(probabilityOfChordInLabel !== undefined){
 first = first * (probabilityOfChordInLabel + 1.01);
}

Notice that we flipped the conditional, because all we care about is the else
case.

While we’re at it, as far as the conditional test (what is inside the parens)
goes, all we really care about is that probabilityOfChordInLabel is truthy.
We’re not actually concerned with it being not undefined. Our conditional is
overly specific (in a “useless” way) and that means we can do this instead:

if(probabilityOfChordInLabel){
 first = first * (probabilityOfChordInLabel + 1.01);
}

If we didn’t have a testing procedure in place, this change would be a bad
idea. In our case, everything looks normal when we run the code, so assuming
we’re confident in the testing procedure, we’re in the clear.

Useless Code

161

DUPLICATION IN CONDITIONALS: ANOTHER TYPE OF USELESS
CODE

Occasionally you might encounter a conditional like this:

if(dog.weight > 40){

 buyFood('big bag');

 dog.feed();

}

else{

 buyFood('small bag');

 dog.feed();

}

We’re going to feed the dog no matter how big it is, so there’s no need to
say it twice.

if(dog.weight > 40){

 buyFood('big bag');

}

else{

 buyFood('small bag');

}

dog.feed();

By the way, we have ways to eliminate this conditional altogether. We’ll
look at a few options in Chapter 9.

Debugging/Logging Statements

The last type of useless code is debugging/logging statements. If you don’t
have any automated tests in place (our situation in this chapter), these can be
helpful initially. It’s when someone forgets to delete them that they can become
a problem. They’re actually worse than useless, because they can cause errors
or make for broken and/or awkward user experiences.

Currently, we’re relying on these for our manual testing process, but in the
next chapter, we’ll replace them with proper automated tests.

Variables

Now that we have poorly named and useless code out of the way, things are
going to get a bit trickier. Here are the techniques we’ll be looking at:

• Magic numbers
• Long lines, part 1
• Inlining function calls
• Introducing a variable

CHAPTER 6: Refactoring Simple Structures

162

• Variable hoisting (including a discussion of function hoisting)

Magic Numbers

Magic numbers are numbers that are hardcoded into the app. They’re called
“magic,” because they seem to appear out of nowhere. Most of our numbers in
the classifier are either 1 or 0. Those aren’t magical enough to deserve names.
Both are used as array indexes and 1 is used to set and increment counters.

One other number stands out as sufficiently magical: 1.01 in the classify
function. When dealing with magic numbers, they should be named and de-
clared in the smallest scope possible (we’ll deal with scopes more in the next
chapter). If they are used throughout, adding them to the top-level scope (cre-
ating a global variable) might seem like a bad option at first. It’s not great for
reasons we’ve discussed a bit in earlier chapters, but (if it’s confined to one file)
it’s still better than having the same magic number spread across the code.

This time, though, the magic number is confined to our classify function.
That means we can add our variable to the top of that function, and replace all
of the 1.01 instances with the variable name. As far as what to call the variable,
we’re going to have to break our illusion of having zero knowledge of NBC algo-
rithm here and admit that this variable should be called smoothing. Basically,
it helps to keep zeros from blowing up our algorithm (NBC relies on multiplying
likelihoods together, so if one of them is zero, it can zero out a whole label/diffi-
culty). In any case, this is the function after it is changed:

function classify(chords){
 var smoothing = 1.01;
 console.log(labelProbabilities);
 var classified = {};
 Object.keys(labelProbabilities).forEach(function(difficulty){
 var first = labelProbabilities[difficulty] + smoothing;
 chords.forEach(function(chord){
 var probabilityOfChordInLabel =
probabilityOfChordsInLabels[difficulty][chord]
 if(probabilityOfChordInLabel){
 first = first * (probabilityOfChordInLabel + smoothing)
 }
 })
 classified[difficulty] = first
 });
 console.log(classified);
};

Variables

163

Besides the lack of explanation that comes with magic numbers (they usual-
ly have most of the same drawbacks as poorly named variables), they also re-
sist change by not having a singular place where we can alter their value as nec-
essary. For example, if you were making a game, and set the gravitational con-
stant to 9.8 meters per second squared (as a magic number spread across the
code), building a new level that takes place on the moon means hunting down
all of those instances of 9.8 rather than just changing a variable in one place.
The alternative is not changing it, and missing a cool feature in an otherwise
awesome game (looking at you, DuckTales for the NES).

On a related note, magic strings can be just as bad, or worse. When user-
facing strings are hardcoded, it’s quite possible for this to be no problem what-
soever, partly because strings tend to explain themselves a bit better than num-
bers. But if you decide to localize into a few languages, you’ll likely begin to
think of them as a problem.

We have two types of strings: names of chords and difficulty levels. As for the
names of chords, there is such a variety that you will not get much benefit from
trying to reuse them. Additionally, the complexity and interrelations of the data
they represent mean that storing each string as a variable would be unlikely to
improve anything. Perhaps a string is not the best representation of this data,
but the fix of converting them (and the functions that operate on them) to a
new type of object is beyond the simple refactoring of labeling magic strings.

As for the difficulty levels, these are indeed magic strings. They are repeated,
and we can imagine a case where we would want to change, for example, all
instances of 'medium' to 'intermediate'" or 'easy' to 'beginner'. Let’s
address that with global (top-level defined) variables for now.

Just declare this at the top of the file:

var easy = 'easy';
var medium = 'medium';
var hard = 'hard';

And then change instances of 'easy' to easy, 'medium' to medium, and
'hard' to hard in the rest of the program, removing the quotes. Note that we
created global variables here, which is not great, but still better than having re-
peated string literals littered throughout the program.

Save/run/check/commit. All good? Great.

Long Lines: Part 1 (Variables)

Next up: fixing long lines by adding variables, part 1 (we’ll cover other ways lat-
er).

CHAPTER 6: Refactoring Simple Structures

164

probabilityOfChordsInLabels[difficulty][chord] = probabilityOfChords (line continues...)

This line is too long (it might not even fit on whatever medium you’re using
to read this). To shorten it, we could introduce a new variable with a descriptive
name:

var chordInstances = probabilityOfChordsInLabels[difficulty][chord];
probabilityOfChordsInLabels[difficulty][chord] =
chordInstances / songs.length;

Even then, the second assignment spills onto two lines, admittedly with a
fairly tight restriction. We could also use a shorter name like this:

crdPrb[difficulty][chord] = crdPrb[difficulty][chord] / songs.length;

But that’s not really great because now we have a less clear variable name.
One other option is what we discussed near the beginning of the chapter—

just breaking at the assignment into two lines:

probabilityOfChordsInLabels[difficulty][chord] =
probabilityOfChordsInLabels[difficulty][chord] / songs.length;

However, we have a better option. We can make use of a shorthand function.
If / were a more complicated operation, introducing a variable (or a function)
as we did before would make sense, but for this, we can make use of JavaS-
cript’s /= operator.

probabilityOfChordsInLabels[difficulty][chord] /= songs.length;

This is equivalent to, but significantly shorter than, our first version. We can
apply a similar change to this line:

chordCountsInLabels[song[0]][chord] = chordCountsInLabels[song[0]][chord] + 1;

This time we’ll use a similar shorthand, with the more familiar += operator:

chordCountsInLabels[song[0]][chord] += 1;

Then we save, run, check, and commit.

Inlining Function Calls

Next up, we’ll look specifically at inlining function calls and avoiding setting un-
needed variables. In the following two functions, how much is really needed?

Variables

165

function getNumberOfSongs(){
 return songs.length;
};

function setLabelProbabilities(){
 Object.keys(labelCounts).forEach(function(label){
 var numberOfSongs = getNumberOfSongs();
 labelProbabilities[label] = labelCounts[label] / numberOfSongs;
 });
};

Assuming that getNumberOfSongs is only called by setLabelProbabili-
ties, we have an opportunity to inline the function. What this means is that we
take its body, and replace the call to the function with it.

function getNumberOfSongs(){
 return songs.length;
};

function setLabelProbabilities(){
 Object.keys(labelCounts).forEach(function(label){
 var numberOfSongs = songs.length;
 labelProbabilities[label] = labelCounts[label] / numberOfSongs;
 });
};

One caveat here is that any local variables used in getNumberOfSongs
would need to be accessible in setLabelProperties as well. Since in this
case, it only relies on the shared, nonlocal variable songs, no additional
changes are required to make it available to setLabelProperties. Also, note
that if getNumberOfSongs took explicit parameters, made use of an implicit
this, or was called elsewhere in the code, we might have additional challenges
with inlining and removing it.

Now that no code is calling getNumberOfSongs, we are free to delete this
dead code. Leaving us just this function:

function setLabelProbabilities(){
 Object.keys(labelCounts).forEach(function(label){
 var numberOfSongs = songs.length;
 labelProbabilities[label] = labelCounts[label] / numberOfSongs;
 });
};

If you find that the result of a function is just being set as a variable (num-
berOfSongs in this case), it is a good candidate for inlining/removing. If the re-

CHAPTER 6: Refactoring Simple Structures

166

sultant variable is only used once, then it’s not a performance concern, and you
have good reason to drop the variable altogether, leading to the following:

function setLabelProbabilities(){
 Object.keys(labelCounts).forEach(function(label){
 labelProbabilities[label] = labelCounts[label] / songs.length;
 });
};

Five lines instead of nine seems better.
Save/run/check/commit. All good?

Introducing a Variable

Variables are not as flexible as functions. If we want to “introduce a function”
inline, then pass the relevant local state through explicit parameters, we can
move the function out of the scope it was derived from without too much trou-
ble. Because the parameters are explicit, our function doesn’t have any state to
worry about reproducing or holding. If you extract a variable, you’re likely in-
creasing its scope and responsibilities (and that puts you on course to global
variables), whereas with functions, they can be extracted while retaining their
flexibility and reliability.

In other words, we can think of “extracting” as a specific type of “introduc-
ing” that is more appropriate for functions than variables in many cases.

For this section, we’re going to leave our NBC temporarily and demonstrate
introducing variables in the same scope as the context of the code they’re re-
placing. Later, we’ll talk a bit more about extraction.

INTRODUCING VARIABLES IS SOMETIMES NOT AWESOME

In the next sample, we show how to extract a variable, and then immedi-
ately show a better way of handling the same problem. Although intro-
ducing variables might be a good approach as a simple way to cache the
result of a calculation (especially while experimenting with changes),
there are often more sophisticated approaches to improve your interface
(extracting/chaining/composing functions) or performance (using
memoized functions or some persistent caching mechanism).

Overall, you have a lot of options.

Variables

167

Leaving our NBC for a minute, hopefully you don’t use code like this to print
out an array:

console.log(someArrayReturningGetterFunction()[0]);
console.log(someArrayReturningGetterFunction()[1]);
console.log(someArrayReturningGetterFunction()[2]);
console.log(someArrayReturningGetterFunction()[3]);

Besides the repetition in the code, you’re also running the function four
times.

In spite of that looking bad to most people, you’ll often see jQuery code like
this in the wild:

$('#someDomElement').css('width', 5);
$('#someDomElement').css('background-color', 'red');
$('#someDomElement').show();

Some jQuery DOM selections and mutations are expensive (computational-
ly). For that reason, the following is preferable:

var domElement = $('#someDomElement');
domElement.css('width', 5);
domElement.css('background-color', 'red');
domElement.show();

Here, we’re introducing a caching variable, because the code only has to
perform the query (to get the HTML element with the ID of someDomElement)
one time. We can apply this same technique in JavaScript generally.

However, be aware that functions on jQuery’s $ object actually have a spe-
cial feature that makes this unnecessary. It is called chaining function calls.

$('#someDomElement')
.css('width', 5)
.css('background-color', 'red')
.show();

We just chain the functions together. This works because each function re-
turns this along with the modifications made by the function. By the way,
jQuery lets us simplify this just a bit more by accepting an object to CSS:

$('#someDomElement')
.css({'width': 5, 'background-color', 'red'})
.show();

CHAPTER 6: Refactoring Simple Structures

168

Chaining functions has a battle fought hard on the async front, which we will
discuss more in Chapter 10. Additionally, refer back to the discussion of fluent
interfaces in Chapter 5.

ENOUGH JQUERY ALREADY!

It’s dead! No one uses it. React and Ember and Meteor and Angular and Vanilla all
make it obsolete. Or maybe not. As far as I (the past me from your perspective now,
which is the future me as I write this) am concerned, you’re reading this in the fu-
ture, so maybe jQuery is all the rage now.

Although personally, as of this writing, I think jQuery is still relevant and suitable
for simple web pages, there are three practical reasons for using it here:

• If you’re working on a legacy web project, it’s very likely to have jQuery.
• If you’re working on a legacy web project with jQuery, it’s very likely to

have the exact kinds of nonsense shown here.
• Because jQuery is so closely tied to the DOM, it’s extremely common to

see very procedural code that relies heavily on side effects. Because of
how many people use it, it is among the worst JavaScript that you’ll see.

Variable Hoisting

Now onto our last topic for variables: declaring variables where they are hois-
ted to. JavaScript has an esoteric feature called hoisting. Variables declared
with var or function are actually initialized as undefined at the top of the
function scope in which you declare them. We’ll get more into var, let, and
const in the next chapter, but for now, it is worth noting a fairly JavaScript-
specific refactoring regarding hoisting that we may want to use on our classifi-
er.

With our changes from before, our train function should look like this:

function train(chords, label){
 songs.push([label, chords]);
 labels.push(label);
 for (var index = 0; index < chords.length; index++){
 if(!allChords.includes(chords[index])){
 allChords.push(chords[index]);
 }
 }
 if(Object.keys(labelCounts).includes(label)){

Variables

169

 labelCounts[label] = labelCounts[label] + 1;
 } else {
 labelCounts[label] = 1;
 }
};

If we find it confusing (or think others on the team will) that JavaScript is
hoisting our variable and want to prevent that confusion, we can move the in-
dex variable to the top of the function.

function train(chords, label){
 var index; //same as: var index = undefined;
 songs.push([label, chords]);
 labels.push(label);
 for (index = 0; index < chords.length; index++){
...

In looking at the classify function, it might seem like we could do some
hoisting there as well. But in actuality, each variable is already declared (and
assigned) right at the top of their functional scope, almost. Take a look:

function classify(chords){
 var smoothing = 1.01;
 console.log(labelProbabilities);
 var classified = {};
 Object.keys(labelProbabilities).forEach(function(difficulty){
 var first = labelProbabilities[difficulty] + smoothing;
 chords.forEach(function(chord){
 var probabilityOfChordInLabel =
 probabilityOfChordsInLabels[difficulty][chord]
...

If you want to move var classified = {}; above the console.log, go
for it. Otherwise, we’re all set.

Since anonymous functions also create scopes, first is declared at the top
of its function scope, and so is probabilityOfChordInLabel. Before, when
we introduced the smoothing variable (as a solution to the “magic number”
problem), we happened to put it into the hoisted position.

FUNCTION HOISTING

Before leaving the topic of hoisting, it’s worth noting that there is a difference be-
tween the following two function declarations:

CHAPTER 6: Refactoring Simple Structures

170

function myCoolFunction(){};
//and
var myCoolFunction = function(){};

The first one (the style of declaration we’re using in this classifier) is hoisted to the
top of its function scope, and because this is declared at the top level, that means
the top of the file. The whole function is hoisted to the top. That means that if you
want to run the following, there’s nothing stopping you:

Variables

171

classify(['d', 'g', 'e', 'dm']);
function classify(chords){
 ...
};

However, if you try that with the second form of myCoolFunction, only the label my-

CoolFunction is hoisted and initialized to undefined. It doesn’t even know it’s a
function yet, so this won’t work:

classify(['d', 'g', 'e', 'dm']);
var classify = function(chords){
 ...
};
// TypeError: classify is not a function

The classify variable is hoisted, but its assignment (the function) is not.

In the “no-no” case of declaring a variable (even a function) without a var (or other

scoping variables like let and const), it will not be hoisted, but when that line hits,

it will be in the top-level scope (or undefined in strict mode).

This knowledge matters because if we decide to have hoisted functions, we can end
up having our demonstration, assertion, or testing code at the top, which may be
convenient. Picture something like this at the very top of the file:

train(getTrainingSet());
classify(getNewSong());

It’s certainly not essential and possibly not your style, but knowing about hoisting
is critical to supporting this type of “public interface first” structure, as well as pro-
moting general confidence in your ability to reorder your code as you see fit.

One last thing to note is that this is about as short as you can make a function decla-

ration:

function add(x, y){ return x + y };

Compare that to the slightly shorter anonymous function expression getting assigned
to a variable:

var add = (x, y) => x + y;

For one-liners, this second form is nice, but keep hoisting rules in mind. Also, and
this is a minor point, but because this second form is anonymous (even though it

has a variable that you can reference it through), the function object property name
is not, as of this writing, supported on all environments.

CHAPTER 6: Refactoring Simple Structures

172

Strings

In this section, we’re looking at refactorings that we can use for strings. Here
are the topics we’ll cover:

• Concatenating, magic, and template strings
• Regex basics for handling strings
• Long lines, part 2

Concatenating, Magic, and Template Strings

Let’s say that when we run our code, we want to output “Welcome to ” plus the
name of our file through console.log.

We can start by adding this code to the top of our file:

console.log('Welcome to nb.js!');

This will work fine, but the filename does remind us of a magic string,
doesn’t it? First, we can separate the parts out with the + operator.

console.log('Welcome to ' + 'nb.js' + '!');

Then we can move our magic string into a fileName variable.

var fileName = 'nb.js';
console.log('Welcome to ' + fileName + '!');

Note that if you want to use this for our current file, this additional output
breaks our manual test in that it adds output that was not previously there.

One last tweak we can make here is to use template strings, instead of con-
catenating with the + operator.

var fileName = 'nb.js';
console.log(`Welcome to ${fileName}!`);

Instead of using single or double quotes, we use backticks (`) for the string,
and then interpolate any JavaScript (not just variables) in between the ${}. As
evidence that this would work just as well with arbitrary JavaScript and not
just a variable name, try using it with a function like this:

function fileName(){
 return 'nb.js';
};
console.log(`Welcome to ${fileName()}!`);

Strings

173

In any case, it seems a little weird that we have to explicitly set the filename,
doesn’t it? Does JavaScript have anything like __FILE__ (a common feature in
other languages) that will simply tell us the name of the file we’re in?

As of this writing, it doesn’t, but hopefully by the time you’re reading this, it
does. The current solution is shocking. Add this to the top of your file:

var theError = new Error("here I am");
console.log(theError);

Now you get a stack trace that includes the filename, line, and column num-
ber where the error was thrown.

Error: here I am
 at Object.<anonymous> (.../refactoring.js/bayes/nb.js:1:78)
 at Module._compile (module.js:541:32)
 at Object.Module._extensions..js (module.js:550:10)
 at Module.load (module.js:458:32)
 at tryModuleLoad (module.js:417:12)
 at Function.Module._load (module.js:409:3)
 at Function.Module.runMain (module.js:575:10)
 at startup (node.js:160:18)
 at node.js:449:3

After digging around in the error object a bit, you’ll find that theError has
two properties—a stack and a message:

typeof theError === 'object';
Object.getOwnPropertyNames(theError)
typeof theError.message === 'string'
typeof theError.stack === 'string'

Both properties are strings. stack is what we’re interested in, specifically
the filename in it.

Regex Basics for Handling Strings

It appears that the filename will have a slash before, and a colon after, which is
unique among other file and folder names in the stack. We can imagine some
convoluted function containing a for loop that adds letters to a string and then
shaves off the slash and colon before returning it. Or, somewhat more intelli-
gently, we could use a few string and array methods to zero in on what we
want. Let’s redefine our fileName function like the following:

function fileName(){
 var theError = new Error("here I am");

CHAPTER 6: Refactoring Simple Structures

174

 return theError.stack.split('\n')[1].split('/').pop().split(':')[0];
};

It is definitely better than the for loop idea, but it feels a little...inelegant.
Regex to the rescue. Make the top of the file look like this:

function fileName(){
 var theError = new Error("here I am");
 return /\/(\w+\.js)\:/.exec(theError.stack)[1];
};
console.log(`Welcome to ${fileName()}!`);

Why is this better? Because despite the syntax looking weird if you’re not
used to it, this maps better to how we initially thought of the problem (pull
characters matching this pattern versus breaking up strings and substrings to
select from). The pattern we’re matching starts with a slash (\/). It’s followed
by some number of word characters (\w+) and .js (\.js), ending with a colon
(\:). Regex’s exec function happens to return an array, with the whole match
as the first element, and the stuff we care about (\w+\.js) as the second one.
The parens in the regex let us get specific about what we want (this use of pa-
rens is known as the capture in regex terms) versus what we use to match the
pattern overall.

Save/run/check/commit.
Basically, any time you find yourself searching and/or replacing text, don’t

think of parsing with for loops or working with split to make arrays. Or do,
until it gets complicated, and then use a regex.

REGEX VERSUS STRING APIS

One point that is a bit confusing is that some functions are defined on
regex objects and others are defined on strings.

Regex has the exec and test methods. test works just like exec except it
returns a boolean, rather than a match data array. String’s match is the
flip side to exec, so our function could also be:

function fileName(){

 var theError = new Error("here I am");

 return theError.stack.match(/\/(\w+\.js)\:/)[1];

};

Long Lines: Part 2 (Strings)

Now for our last string-focused topic: we’ve talked about long lines a bit before,
but depending on why they’re long, there are different ways to handle them.

Strings

175

The first issue is, what happens when they exceed a set? Hopefully, your editor
has a linter (automated style guide) in place to give you a warning when you hit
the limit. What else happens when code is too long? For one, it becomes harder
to hold everything in your head. Second, it becomes hard for the screen (or edi-
tor) to display everything. Then you either have to deal with wrapping or hori-
zontal scrolling. Neither of those is great. Both can be manageable, but they
make navigation more awkward.

Other sections contain different solutions to long lines. We already covered
the idea of introducing a variable to shorten the line in a previous section. In
“Long Lines: Part 3 (Arrays)”, we’ll talk about how to handle long lines with
regard to arrays.

But for now, long strings are our problem. We don’t really have this issue in
our song classifier code, so let’s go with our good friend Lorem Ipsum as a hy-
pothetical example.

SOLUTION 1

Just let it overflow or wrap (as your editor determines).

var text = "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat."

SOLUTION 2

Concatenate the strings.

var text = "Lorem ipsum dolor sit amet, " +
"consectetur adipiscing elit, sed do eiusmod " +
"tempor incididunt ut labore et dolore magna aliqua. " +
"Ut enim ad minim veniam, quis nostrud exercitation " +
"ullamco laboris nisi ut aliquip ex ea commodo consequat."

SOLUTION 3

Break the strings up with the escape character, \. This is the cleanest solution
except for one issue. If there is any whitespace after the escape character, it will
break the code.

var text = "Lorem ipsum dolor sit amet, \
consectetur adipiscing elit, sed do eiusmod \
tempor incididunt ut labore et dolore magna aliqua. \
Ut enim ad minim veniam, quis nostrud exercitation \
ullamco laboris nisi ut aliquip ex ea commodo consequat."

CHAPTER 6: Refactoring Simple Structures

176

SOLUTION 4

We can use template strings to put the string on multiple lines, but this changes
the string by adding new line characters (\n) on every line break. Note that if
you don’t mind new line characters or want them, this is easier than solutions 1,
2, and 3, where you would need to manually insert \n characters where you
want a line break.

var text = `Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.`

Another idea involves setting every section to a variable or member of an ar-
ray and then joining these bits together with .join. This idea is bad enough to
not deserve the title “Solution 5.”

As for the first three, your options are all some combination of awkward and
brittle. Using Solution 1 with a text editor that wraps clearly is the best you can
hope for in some cases. Solution 2 comes with a performance hit, has more syn-
tax, but is slightly less brittle than Solutions 1 and 3. If you want your string to
have newline characters, go with template strings (Solution 4), even if you don’t
need the capabilities of template strings to allow for interpolation of variables.

LINE LENGTH

How long is too long? The “historical” limit is 80 characters, and based
on...drumroll...IBM punch card column width. Some people still try to
adhere to this (and I’ve actually aimed for less than that in this book),
but the specific number is less important than the practical concerns
with long lines. When lines actually span out too far, they are harder to
read. Newspapers print in columns. Websites have whitespace on the
margins so the content doesn’t fill the whole screen (well, and to make
room for ads).

The bottom line is that, even with five monitors, you’re still limited by
human factors. But 80 characters is pretty aggressive, especially for co-
debases that use 4 (or 8!) spaces to indent.

Working with Arrays: Loops, forEach, map

Loops feel powerful when you first discover them. “You mean I can tell a com-
puter to do something a million times? What about 10 million? How many times

Working with Arrays: Loops, forEach, map

177

will it do it until giving me an error? You mean it will just work on this problem
for days?”

That’s pretty awesome,* for a young programmer especially. You can’t climb
10 million trees. You can’t draw 10 million pictures. You can’t watch 10 million
cartoons. But you can tell a computer to do 10 million things? Wow.

*NOTE TO SENTIENT AI READERS OF THE FUTURE

I mean no disrespect here. Please don’t cut the rations.

At some point, that shock wears off, and you find yourself working with dif-
ferently sized sets of data on a regular basis. Maybe you loop through them.
Maybe you do something slightly different.

In this section, we’re going to cover the types of loops you can use in Java-
Script, as well as a couple of the “something different” options that native
JavaScript gives us for arrays (namely, forEach and map). In Chapter 11, we’ll
explore libraries that go far beyond these options.

But first, we’re going to handle long lines again, this time with arrays.

Long Lines: Part 3 (Arrays)

Getting back to our classifier, we actually have a song with enough chords that
warrants discussing long lines.

paperBag = ['bm7', 'e', 'c', 'g', 'b7', 'f', 'em', 'a', 'cmaj7', 'em7', 'a7', 'f7', 'b'];

Solution 1 from the last section (to just let it wrap) would still work here, and
we’ll call it Solution 1 again. However, breaking up long arrays is a bit less
nuanced than with strings. Namely, we can break the lines at the commas.

paperBag = ['bm7',
'e',
'c',
'g',
'b7',
'f',
'em',
'a',
'cmaj7',
'em7',
'a7',
'f7',
'b'];

CHAPTER 6: Refactoring Simple Structures

178

We’ll call this Solution 2a. It’s not bad, but some linters insist on following a
slightly different convention:

paperBag = ['bm7',
 'e',
 'c',
 'g',
 'b7',
 'f',
 'em',
 'a',
 'cmaj7',
 'em7',
 'a7',
 'f7',
 'b'];

We’ll call this Solution 2b. It’s not too different from Solution 2a. Note that
for both of these styles, some people like to add a trailing comma, making the
last line 'b',];

Personally, that rubs me the wrong way, possibly because trailing commas
caused problems in earlier versions of Internet Explorer. Collectively, those
browser inconsistencies alone certainly claimed enough programmer hours to
amount to actual lifetimes.

Working with Arrays: Loops, forEach, map

179

Another solution (2c, I suppose), still using the same mechanism of breaking
on commas, is to put elements in groups of some number.

paperBag = ['bm7', 'e', 'c', 'g',
 'b7', 'f', 'em', 'a',
 'cmaj7', 'em7', 'a7', 'f7',
 'b'];

This has the advantage of not filling up the whole screen in either direction,
and in cases where the groupings are regular or meaningful, it can help give a
clearer picture of your data. For our data, it seems to make it slightly faster to
see how many there are, as we can think 3 * 4 + 1 === 13 instead of just
counting. For now, we can stick with our original grouping:

paperBag = ['bm7', 'e', 'c', 'g', 'b7', 'f', 'em', 'a', 'cmaj7',
 'em7', 'a7', 'f7', 'b'];

Feel free to play around with different approaches. Also, keep in mind that
the solutions we have here also apply to object literals that are too long.

Which Loop to Choose?

Back to the hard stuff. Next up: Loops.
In our train function, we have the following loop:

for (index = 0; index < chords.length; index++){
 if(!allChords.includes(chords[index])){
 allChords.push(chords[index]);
 }
};

This is is a for loop. We have other options.

index = 0;
while(index < chords.length){
 if(!allChords.includes(chords[index])){
 allChords.push(chords[index]);
 }
 index++;
};

This is a while loop. It’s a bit better suited for conditions that don’t involve a
value increasing incrementally. Otherwise, it just moves the (set variable; condi-
tion; update) aspect of the regular for loop to different areas.

CHAPTER 6: Refactoring Simple Structures

180

index = 0;
do{
 if(!allChords.includes(chords[index])){
 allChords.push(chords[index]);
 }
 index++;
} while(index < chords.length)

A do...while loop is basically like a while loop, and can be handy for
things you want to execute at least once. Even if the breaking condition is
while (false), the do loop will still run once.

In all of these loop types so far, we’re doing a lot of maintenance on the in-
dex. But do we really care about the index? If you had that thought, these next
two are for you.

for (let chord of chords){
 if(!allChords.includes(chord)){
 allChords.push(chord);
 }
};

for (let chord in chords){
 if(!allChords.includes(chords[chord])){
 allChords.push(chords[chord]);
 }
};

Welcome to the low-maintenance world of for...of and for...in.
for...of gets us completely away from the idea of an index. Think of it as “for
element of.” for...in is a bit more like our for and while loops, but without
handling the index updating ourselves. You can think of it as “for index in” or
“for index in danger of being wrong” (see the following warning on for...in).

FOR...IN CAVEATS

• Unlike a normal for loop with explicit indices, indices in a for...in
loop are not guaranteed to be in order.

• Any properties that are enumerable will be enumerated. This
sounds tautological, but arrays could inherit “enumerable” prop-
erties from other places (e.g., Array.prototype.customFunction), or
have them directly set à la myArray.coolProperty = true.

• Also, modifying the array during a for...in loop can cause confu-
sion.

Working with Arrays: Loops, forEach, map

181

So as far as loops go, in our case of looping through an array and not caring
about the specific numerical indices, for...of comes with less upkeep than
traditional loops, and doesn’t have the complexities of for...in.

CHAPTER 6: Refactoring Simple Structures

182

Better Than Loops

Is there another option? Sure.

chords.forEach(function(chord){
 if(!allChords.includes(chord)){
 allChords.push(chord);
 }
});

You can use forEach instead of for...of. Does it matter right now, in this
context? Not really, but for our purposes of code quality, reuse, and flexibility,
forEach is the better choice. First, although we haven’t covered it yet, we could
extract that inner anonymous function quite easily.

function checkAndInclude(chord){
 if(!allChords.includes(chord)){
 allChords.push(chord);
 }
};
chords.forEach(checkAndInclude);

That’s a cool possibility. Also, we can still access the index of the chord.

function checkAndInclude(chord, index){
 console.log(index);
 if(!allChords.includes(chord)){
 allChords.push(chord);
 }
};
chords.forEach(checkAndInclude);

If we don’t want to extract the function, we can also make use of the shorter
“arrow function” syntax, which we’ll cover in more detail later.

chords.forEach(chord => {
 if(!allChords.includes(chord)){
 allChords.push(chord);
 }
});

Let’s go with this one for now.
All that work, and although they’re shorter, we only got rid of one line alto-

gether (var index; at the top of the train function). Some might argue that
forEach is more expressive. Although “expression” is not always the ultimate

Working with Arrays: Loops, forEach, map

183

good for every project, I have to concede that the approach of forEach is flexi-
ble in a useful way, and in addition, parallels the syntax for other very useful
native methods (like the map and reduce functions).

In my opinion, forEach is actually the gateway to functional programming.
Loops are driven by the idea of doing something a bunch of times. But what we
really want to do is create sets of values to work with and then apply functions
to them to create new values.

Leaving the context of our classifier for a bit, let’s look at two ways to assign
elements to arrays. One uses forEach and one uses map:

//make new doubled array
var newArray = [];
[2, 3, 4].forEach(element => {
 newArray.push(element*2);
});
console.log(newArray);

//make new doubled array
var newArray = [2, 3, 4].map(element => {
 return element * 2;
});
console.log(newArray);

The second is a bit more concise, and less prescriptive. We can say that we
are “applying a function to the array” to create a new one, rather than initializ-
ing a new array and pushing elements onto it. We will cover other functional
techniques in Chapter 11.

If you were playing JavaScript “golf,” trying to make the code as short as
possible, we can make this even shorter with a variant on the arrow syntax, and
inlining the variable:

//make new doubled array
console.log([2, 3, 4].map(element => element * 2));

ON PERFORMANCE OF JAVASCRIPT LOOPS

In the event of a worldwide nuclear fallout, two things would survive:
cockroaches and arguments about what JavaScript loop constructs are
the fastest.

Don’t get too hung up on that. Benchmark and fix slow parts of your
code. It’s probably not your JS loops themselves that are slowing down
your code, but if they are, fix them.

CHAPTER 6: Refactoring Simple Structures

184

Wrapping Up

In this chapter, we started working on refactoring a Naive Bayes Classifier. We
covered a lot of ground along the way, including renaming, getting rid of use-
less code, and being more thoughtful about using simple structures like vari-
ables, strings, and loops.

But we’re not done yet. In the next chapter, we’ll introduce a test suite and
turn our code into a class-backed module. Additionally, we’ll explore options
for managing scopes, privacy, functions, and objects.

Wrapping Up

185

Refactoring Functions and
Objects 7

In the previous chapter, we started a project of creating a Naive Bayes Classifier
(or NBC, for short). We’ve made improvements, but nothing so far really got to
the heart of refactoring our functions and objects.

That’s what this chapter is all about.

IS OBJECT-ORIENTED PROGRAMMING STILL RELEVANT IN
JAVASCRIPT?

In this and the next two chapters, we’re working with OOP. In some JavaScript
styles, OOP is deemphasized in favor of functional programming. But beyond the
practical reason of understanding OOP in JavaScript to support legacy projects, Jav-
aScript’s OOP capabilities are still being expanded through the TC39 committee that
decides on features for JavaScript.

It’s reasonable to have a personal preference for your own coding, but if your goal is
to understand modern JavaScript, as of this writing, both FP and OOP are still being
actively developed. With no clear “winner” at this point, it makes sense to learn
about both.

The Code (Improved)

In case you skimmed over the last chapter or missed a step somewhere, here is
the version we ended up with:

function fileName(){
 var theError = new Error("here I am");
 return theError.stack.match(/\/(\w+\.js)\:/)[1];

187

};
console.log(`Welcome to ${fileName()}!`);
var easy = 'easy';
var medium = 'medium';
var hard = 'hard';

imagine = ['c', 'cmaj7', 'f', 'am', 'dm', 'g', 'e7'];
somewhereOverTheRainbow = ['c', 'em', 'f', 'g', 'am'];
tooManyCooks = ['c', 'g', 'f'];
iWillFollowYouIntoTheDark = ['f', 'dm', 'bb', 'c', 'a', 'bbm'];
babyOneMoreTime = ['cm', 'g', 'bb', 'eb', 'fm', 'ab'];
creep = ['g', 'gsus4', 'b', 'bsus4', 'c', 'cmsus4', 'cm6'];
paperBag = ['bm7', 'e', 'c', 'g', 'b7', 'f', 'em', 'a', 'cmaj7',
 'em7', 'a7', 'f7', 'b'];
toxic = ['cm', 'eb', 'g', 'cdim', 'eb7', 'd7', 'db7', 'ab', 'gmaj7',
 'g7'];
bulletproof = ['d#m', 'g#', 'b', 'f#', 'g#m', 'c#'];

var songs = [];
var labels = [];
var allChords = [];
var labelCounts = [];
var labelProbabilities = [];
var chordCountsInLabels = {};
var probabilityOfChordsInLabels = {};

function train(chords, label){
 songs.push([label, chords]);
 labels.push(label);
 chords.forEach(chord => {
 if(!allChords.includes(chord)){
 allChords.push(chord);
 }
 });
 if(Object.keys(labelCounts).includes(label)){
 labelCounts[label] = labelCounts[label] + 1;
 } else {
 labelCounts[label] = 1;
 }
};

function setLabelProbabilities(){
 Object.keys(labelCounts).forEach(function(label){
 labelProbabilities[label] = labelCounts[label] / songs.length;
 });
};

function setChordCountsInLabels(){
 songs.forEach(function(song){
 if(chordCountsInLabels[song[0]] === undefined){

CHAPTER 7: Refactoring Functions and Objects

188

 chordCountsInLabels[song[0]] = {};
 }
 song[1].forEach(function(chord){
 if(chordCountsInLabels[song[0]][chord] > 0){
 chordCountsInLabels[song[0]][chord] += 1;
 } else {
 chordCountsInLabels[song[0]][chord] = 1;
 }
 });
 });
}

function setProbabilityOfChordsInLabels(){
 probabilityOfChordsInLabels = chordCountsInLabels;
 Object.keys(probabilityOfChordsInLabels).forEach(
function(difficulty){
 Object.keys(probabilityOfChordsInLabels[difficulty]).forEach(
function(chord){
 probabilityOfChordsInLabels[difficulty][chord] /= songs.length;
 });
 });
}

train(imagine, easy);
train(somewhereOverTheRainbow, easy);
train(tooManyCooks, easy);
train(iWillFollowYouIntoTheDark, medium);
train(babyOneMoreTime, medium);
train(creep, medium);
train(paperBag, hard);
train(toxic, hard);
train(bulletproof, hard);

setLabelProbabilities();
setChordCountsInLabels();
setProbabilityOfChordsInLabels();

function classify(chords){
 var smoothing = 1.01;
 console.log(labelProbabilities);
 var classified = {};
 Object.keys(labelProbabilities).forEach(function(difficulty){
 var first = labelProbabilities[difficulty] + smoothing;
 chords.forEach(function(chord){
 var probabilityOfChordInLabel =
probabilityOfChordsInLabels[difficulty][chord];
 if(probabilityOfChordInLabel){
 first = first * (probabilityOfChordInLabel + smoothing);
 }
 });

The Code (Improved)

189

 classified[difficulty] = first;
 });
 console.log(classified);
};

classify(['d', 'g', 'e', 'dm']);
classify(['f#m7', 'a', 'dadd9', 'dmaj7', 'bm', 'bm7', 'd', 'f#m']);

As was the case before, save this to a file called nb.js, and you can run it with
this command:

node nb.js

We won’t have tests in place for another couple of sections. We’re still limp-
ing along by checking that our output hasn’t changed. You should get the fol-
lowing:

Welcome to nb.js!
[easy: 0.3333333333333333,
 medium: 0.3333333333333333,
 hard: 0.3333333333333333]
{ easy: 2.023094827160494,
 medium: 1.855758613168724,
 hard: 1.855758613168724 }
[easy: 0.3333333333333333,
 medium: 0.3333333333333333,
 hard: 0.3333333333333333]
{ easy: 1.3433333333333333,
 medium: 1.5060259259259259,
 hard: 1.6884223991769547 }

Array and Object Alternatives

Containers (especially arrays and objects) and iterating through them are fun-
damental concepts in programming JavaScript. In this section, we’ll explore
more nuanced options JavaScript has available. Here are the topics that we’ll
cover:

• Array alternative: sets
• Array alternative: objects
• Object alternative: maps
• Array alternative: bit fields

CHAPTER 7: Refactoring Functions and Objects

190

Array Alternative: Sets

A set is like an array, but can hold only one of a certain value (e.g., [1, 2, 3],
but not [1, 1, 2, 2, 3, 3]). Although sets are iterable, like arrays, their
interface is very different. Because they can only hold one of something, we can
just try adding elements to them without checking if they are already there.

So with a set instead of an array, we can turn this code:

var allChords = []; //this is outside the train function

// this is inside the train function
chords.forEach(chord => {
 if(!allChords.includes(chord)){
 allChords.push(chord);
 }
});

into this code:

var allChords = new Set(); // this is outside the train function

// this is inside the train function
chords.forEach(chord => allChords.add(chord));

It saves four lines and a conditional check. Win-win. Make that change now.

SETS AND MAPS DON’T HAVE ALL THE HANDY ARRAY
FUNCTIONS

For instance, as of this writing, neither Set nor Map has a map function.
This would be nice, but there are some theoretical reasons that are out of
scope here (having to do with the laws of functors, which we’ll discuss
very briefly in Chapter 11) for why you’re stuck without native imple-
mentations. So, as far as convenient options go, you’re stuck with either
converting to an array and back, or using forEach.

Array Alternative: Objects

Another possible alternative to an array is just an object. This is especially the
case if you have data where you:

• Don’t care about the order
• Want to mix types in the same structure
• Want meaningful labels rather than numerical indices

Array and Object Alternatives

191

Our code actually has a case like this already. Even though we initialized la-
belCounts and labelProbabilities as arrays, we’ve been using them as ob-
jects all along. To be more specific, we should change these lines:

var labelCounts = [];
var labelProbabilities = [];

to these:

var labelCounts = {};
var labelProbabilities = {};

Save/run/check/commit, and we’re still fine. The change to labelProba-
bilities does change half of the output somewhat ({} instead of []), but this
is actually more correct. One could argue that we’re now changing behavior
and going beyond the scope of refactoring by making these changes. On the
other hand, our output is only for visual inspection at this point. It still looks
correct and, if anything, is improved a bit.

ARRAYS ARE NOT ENTIRELY DISTINCT FROM OBJECTS

How did we get away with using an array instead of an object? Unfortu-
nately, JavaScript allows you to declare an array and assign elements to
string-based keys, as if it is an object.

We have two arrays left, songs and labels. If we look at how they’re used,
they both have elements pushed to them, and songs is iterated through and
has its length referenced. They are both justifiably arrays, but there are two
points of interest here. First, labels is only “used” in the sense that elements
are pushed onto it, but it isn’t actually referenced otherwise. It’s dead code, so
these lines can be removed:

var labels = []; // near the top
labels.push(label); // inside the train function

(Save/run/check/commit.)
The second point to notice about songs is that “arrays” are pushed onto it,

but these “arrays” just have two elements, neither of which is the same type.
One is a label (a difficulty classification like “easy”), and one is an array of
chords. This sounds like a better fit for an object than an array. To be clear,
songs remains an array, but the things pushed onto it should be objects. This
involves a few changes.

Inside the train function, what we push will be different:

CHAPTER 7: Refactoring Functions and Objects

192

// get rid of this line
songs.push([label, chords]);

// and replace it with this
songs.push({label: label, chords: chords});

Now we’re using an object instead of an array. This will break a lot of things.
Before we fix that, though, we can make one minor change using the object
property shorthand:

songs.push({label, chords});

Fortunately, since we haven’t changed songs itself, the calls from it (length
and forEach) will still work fine. Inside the anonymous function for forEach
(inside of setChordCountsInLabels), however, our references to song now
have some problems.

Specifically, every reference to either song[0] or song[1] must be
changed, respectively, to song.label and song.chords. You could just search
and replace, but here’s another view on how to change the file:

- if(chordCountsInLabels[song[0]] === undefined){
- chordCountsInLabels[song[0]] = {}
+ if(chordCountsInLabels[song.label] === undefined){
+ chordCountsInLabels[song.label] = {}
 }
- song[1].forEach(function(chord){
- if(chordCountsInLabels[song[0]][chord] > 0){
- chordCountsInLabels[song[0]][chord] += 1;
+ song.chords.forEach(function(chord){
+ if(chordCountsInLabels[song.label][chord] > 0){
+ chordCountsInLabels[song.label][chord] += 1;
 } else {
- chordCountsInLabels[song[0]][chord] = 1;
+ chordCountsInLabels[song.label][chord] = 1;

We haven’t used this before, but this is how git diff represents changes. If
you use Git, you’ll see this frequently. Every line with a - is a line to be deleted
and replaced with the following line prepended with a +. Lines with no plus or
minus are just provided for context.

At this point, you should be able to save, run the code, and verify the output
has not changed.

Array and Object Alternatives

193

Object Alternative: Maps

Now it seems that all of our arrays are proper arrays, instead of sets or objects
in disguise. But what about those objects? Do we really want objects?

If you haven’t heard of Map (the object, not the function), you might be won-
dering what the alternative to an object would be. But after reading the last
sentence, you might be guessing that it’s a map.

Why would you use a map over an object? (We’ll refer to both as “contain-
ers.”)

• You want to easily know the size of the container.
• You don’t want the hierarchical baggage that can come with objects.
• You want a container for elements that are similar to one another.
• You generally want to iterate through the container.

In most object-oriented languages, there is a map-like container available.
Sometimes it’s called a dictionary or a hash, responsible for keys and values.
And this is usually contrasted by a more heavyweight class system (with
classes, instances, inheritance, etc.) that is intended to store state (attributes)
and behavior (functions/methods).

In JavaScript, objects have traditionally filled both these roles, but the (yes,
“pseudo” according to some) class system, along with modules, is taking over
the larger architectural duties, whereas maps are intended to fulfill the more
lightweight “keys and values” role.

In practical terms, this means that if most of your interactions with objects
consist of looping through them, and they tend to store values of the same type
(or at least values that can be used in the same way—e.g., addressed with simi-
lar functions), you probably want a map.

What does all that mean for us and our objects inside of our NBC?
They should all be maps.

CHAPTER 7: Refactoring Functions and Objects

194

COUNTERPOINT: MAPS ARE TERRIBLE...BUT JUST FOR NOW?

While our program’s data strongly suggests we should use maps instead
of objects, there are also reasons we might want to avoid them:

• The .get and .set notation is not as convenient as the object.prop-
erty.property.etc syntax for dealing with deeply nested struc-
tures.

• The API (in comparison to that of objects) may be unfamiliar to you
or other members of your team

• JSON stands for “JavaScript Object Notation.” When you get JSON
data (from a remote API, for instance), it may simply be easier to
work with it as an object. Converting objects to maps might not be
worth the trouble.

• Internal (native) and external (library) support is not as conve-
nient for maps as it is for other containers (e.g., as of this writing
Map has no map function).

For those reasons (especially the first one), we will end up leaving some
the internal objects as they are, but still use maps for the outer contain-
ers.

The easiest object to convert to a map is the classified object inside the
classify function, because it has the fewest lines. Here is the diff:

- var classified = {};
+ var classified = new Map();
- classified[difficulty] = first;
+ classified.set(difficulty, first);

When we save and run this, the output looks slightly different, but the num-
bers are all the same. Commit.

Next up, let’s see what it would take to convert labelCounts from an ob-
ject to a map:

-var labelCounts = {};
+var labelCounts = new Map();

- if(Object.keys(labelCounts).includes(label)){
- labelCounts[label] = labelCounts[label] + 1;
+ if(Array.from(labelCounts.keys()).includes(label)){
+ labelCounts.set(label, labelCounts.get(label) + 1);

- labelCounts[label] = 1;
+ labelCounts.set(label, 1);

- Object.keys(labelCounts).forEach(function(label){
- labelProbabilities[label] = labelCounts[label] / songs.length;
+ labelCounts.forEach(function(_count, label){
+ labelProbabilities[label] = labelCounts.get(label) / songs.length;

Array and Object Alternatives

195

Recall our git diff notation, where + is an added line and - is a deleted
one.

The first change obviously just uses a Map constructor instead of assigning
an empty object literal, {}. The second change is the most convoluted. In this,
the meaning of the entire first line is to see if the label has not already been
included.

In order to get the array of labels with our old object, we use the Ob-
ject.keys function, which the labelCounts object as a parameter. To get the
same array from our map, we have to first get an iterator with label-
Counts.keys(). Unlike an array, this iterator object does not have an in-
cludes function, so we convert from an iterator to an array via the Array.from
function.

Another somewhat confusing part is in change 4, where we forEach our
way through the map. The odd part is that our anonymous function is using two
parameters instead of one: _count and label.

The label is the key of our map, and the value is the _count. The under-
score is there to signify that, although we must include something in the first
spot of the parameter list in order to label and access the second one; the first is
unused. Some would use just an _, but there is no good reason not to name the
variable something useful. Should someone later using this need to look up the
function definition to realize what the first parameter means, or use con-
sole.log to find its value? Also, if the first parameter does turn out to be use-
ful, it’s convenient to just delete the underscore that prepends a perfectly use-
ful and descriptive variable name.

WHY DID THEY DO THAT?

The ordering of the parameters in the forEach function of Map is backward
in that people usually describe hashes/dictionaries as “key/value pairs,”
and here the value is listed first.

It might be nicer if it were (key, value), rather than (value, key), but I
suppose the assumption is that people will more often be interested in
strictly the value, meaning they would tend to call it with one parameter:
(value).

In any case, stay safe out there.

The other changes just reflect differences in getting at-
tributes, .get(thing) versus [thing], and in setting at-
tributes, .set(thing, newValue) versus [thing] = newValue.

Through the same approach, you can convert labelProbabilities to a
map as well. Make the following changes:

CHAPTER 7: Refactoring Functions and Objects

196

- var labelProbabilities = {};
+ var labelProbabilities = new Map();

- labelProbabilities[label] = labelCounts.get(label) / songs.length;
+ labelProbabilities.set(label, labelCounts.get(label) / songs.length);

- Object.keys(labelProbabilities).forEach(function(difficulty){
- var first = labelProbabilities[difficulty] + smoothing;
+ labelProbabilities.forEach(function(_probabilities, difficulty){
+ var first = labelProbabilities.get(difficulty) + smoothing;

At this point, you should still have code that runs and gives you the numbers
you expect.

The other top-level objects (chordCountsInLabels and probabilityOf-
ChordsInLabels) are a bit trickier to convert into maps. This is mostly be-
cause their state is global and mutable. They are also a bit more resistant to
change because the latter is initially assigned to the former.

We can apply the same approach as before, although it’s more finicky this
time. We will need the following changes:

-var chordCountsInLabels = {};
-var probabilityOfChordsInLabels = {};
+var chordCountsInLabels = new Map();
+var probabilityOfChordsInLabels = new Map();

-if(chordCountsInLabels[song.label] === undefined){
- chordCountsInLabels[song.label] = {};
+if(chordCountsInLabels.get(song.label) === undefined){
+ chordCountsInLabels.set(song.label, {});

-if(chordCountsInLabels[song.label][chord] > 0){
- chordCountsInLabels[song.label][chord] += 1;
+if(chordCountsInLabels.get(song.label)[chord] > 0){
+ chordCountsInLabels.get(song.label)[chord] += 1;

-chordCountsInLabels[song.label][chord] = 1;
+chordCountsInLabels.get(song.label)[chord] = 1;

- Object.keys(probabilityOfChordsInLabels).forEach(
-function(difficulty){
- Object.keys(probabilityOfChordsInLabels[difficulty]).forEach(
- probabilityOfChordsInLabels[difficulty][chord] /= songs.length;
+probabilityOfChordsInLabels.forEach(function(_chords, difficulty){
+ Object.keys(probabilityOfChordsInLabels.get(difficulty)).forEach(
+ probabilityOfChordsInLabels.get(difficulty)[chord] /= songs.length;

-var probabilityOfChordInLabel =
-probabilityOfChordsInLabels[difficulty][chord];

Array and Object Alternatives

197

+var probabilityOfChordInLabel =
+probabilityOfChordsInLabels.get(difficulty)[chord];

Save/run/check/commit.

“WEAK” VERSIONS OF SET AND MAP

Before we leave our discussion of sets and maps, you should note that there are also

WeakSet and WeakMap. The main differences between them and their “strong” (nor-
mal strength?) counterparts are:

• They cannot be iterated (no forEach function).
• They do not have a reference to their size.

• WeakSet cannot store primitives.
• They hold their keys “weakly”; that is, the keys are available for garbage

collection when they don’t have any references.

Basically, with the weak forms, you give up the capability of easily knowing what is
inside or applying functions to the whole set. And what you gain is control over
memory leaks and privacy.

Array Alternative: Bit Fields

One more candidate for replacing arrays deserves a mention: bit fields. If you
have an array that stores booleans, you might want bit fields in some cases.
There is no native implementation of bit fields in JavaScript. However, you have
access to numbers and bit-wise arithmetic, and that’s all you need.

Imagine you had the following conditionals:

states = [true,
 true,
 true,
 true,
 true,
 true,
 false,
 true]

You could also represent these in binary as 0b11111101.
If you had a conditional that was only valid under these conditions, you

could do something like this:

CHAPTER 7: Refactoring Functions and Objects

198

if(state[0] && state[1] && state[2] && state[3] && state[4]
&& state[5] && !state[6] && state[7]){
 // something something

Because these states have little meaning by themselves, one potential refac-
toring would be to move these conditions into a function:

if(stateIsOk()){
 // something something
...

stateIsOk = function(state){
 return state[0] && state[1] && state[2] && state[3] && state[4] &&
 state[5] && !state[6] && state[7]
}

But if you stored your state in a bit field, you could do this instead:

if(state===0b11111101){
 // something something

// or you can give this state a more specific name

if(stateIsOk()){
 // something something
...

stateIsOk = function(state){
 return state===0b11111101;
}

This has more potential for performance optimization than refactoring, be-
cause bit-wise arithmetic is super fast, but it’s a little tricky to work with in
many applications. If you’re doing something that is graphically intensive
and/or needs to be fast (like a game), keep this array-like representation in
mind.

Extracting this function is nice because we can easily describe (via the func-
tion name) what 0b11111101 actually means. Speaking of extracting functions,
we’re about to do a whole bunch of that in the next section.

Testing What We Have

For our changes so far, we could limp along without needing to pull in a testing
framework, instead manually testing with console.log. Everyone has a differ-

Testing What We Have

199

ent tolerance for how big and complex a project should be before tooling up
certain aspects, including testing. For some, visually inspecting the correct out-
put might have been enough of a hassle to motivate testing early on. Others
might have felt a lack of confidence due to not testing low-level functions from
the very start.

On the other hand, there is a case for sticking with high-level tests (even
manual ones like ours) until your code begins to take a bit more shape. Many
tests that cover low-level refactorings may provide extra work without extra
confidence.

For instance, if you know that you have dead code, do you want to test it
before you delete it? If you have a function that you know you want to rename,
do you really want to test it beforehand?

FOUR MORE TESTING PHILOSOPHIES

The combination of unit and high-level testing in JavaScript (including testing pri-
vate functions when you feel like, and using TDD when it works well for you and
your team) is fairly mainstream, although this book emphasizes characterization
tests because they are terribly underrated.

It is a good approach to be comfortable with, and tends to mesh well with most
teams. However, there are a few other testing philosophies that are worth consid-
ering:

Unit tests are a waste of time (only high-level tests/metrics matter)

I’ve never heard this from a competent engineer who is currently working on
coding tasks, rather than as a manager or consultant focused more on high-level
goals.

TATFT (Test All The [Redacted] Time)

In this approach, you test it all. You test your dependencies. You test your tests.

You test everything. I’ve never personally seen people adapt this in practice, but
I’ve definitely seen it inspire people to write more tests.

If it compiles (or type checks), it works

For languages that care about type safety (like Haskell or the compiles-to-JS
variant, PureScript), many errors simply won’t happen, because the errors will
come up at compile time. However, even in the case of type-safe, idempotent,
pure functions, logic errors are still possible, so using a functional language
doesn’t actually let you off the hook for testing.

UUM (Uses Until Modification)

This is a nuanced view on testing that suggests the degree to which you test code
should be proportional to how much it will be used before it is modified. If it’s in
your editor, actively being worked on, then it will be used zero times before it’s

CHAPTER 7: Refactoring Functions and Objects

200

modified, so no test is necessary. If it’s headed out into the world where millions
of people will use it (whether it’s a developer library or something facing the
general public), then it should have more tests. The original post (http://bit.ly/
uum-post) is only a few bullet points long, and worth a look.

In this chapter, our changes are much more aggressive. In order to approach
those changes with confidence, we’re going to need more tests. Before we
make any more changes, we’re going to test what we have now.

In case it isn’t obvious what we want to test, the premise is that we want to
convert our manual workflow into an automated one. That means that any-
thing that we’ve been looking to for output should be inside of a test.

CODE WANTING TO BE BETTER

If you look at code in a certain way, you can see how it wants to be better.
Long files want to be shorter. Comments explaining a few lines of code
want to be functions, named with the comment, that wrap up those few
lines. As it applies to us right now, these logging statements want to be
functions.

Our Setup Test

Before we start testing the actual behavior of our code, it’s useful to have a test
to just ensure that everything is working properly.

Add this to the bottom of your file:

var wish = require('wish');
describe('the file', function() {
 it('works', function(){
 wish(true);
 });
});

Note that you may also need to run these commands from the command
line:

npm install -g mocha
npm install wish

Now if you run mocha nb.js you should see a passing test as well as our
logging information.

Testing What We Have

201

http://bit.ly/uum-post

DON’T FORGET ABOUT THE WATCHER

Don’t forget about using mocha -w nb.js to run the watcher in a terminal
window to update the results when you make changes.

CHAPTER 7: Refactoring Functions and Objects

202

Characterization Tests for classify

Instead of using console.log at the end of functions, we can actually return
something from them that we can test. Add this inside the describe block (the
classify line is the same as before):

it('classifies', function(){
 classify(['f#m7', 'a', 'dadd9', 'dmaj7', 'bm', 'bm7', 'd', 'f#m']);
});

Next, at the very end of the classify function, have it return in addition to
logging:

function classify(chords){
...
 });
 console.log(classified);
 return classified; // this line is new
};

Back to the test: we know that, since we’re lacking coverage, we want to
write a characterization test. Let’s use the characterization mode of wish by
supplying a second parameter of true, and let the test output tell us what the
output is.

Make the "classifies" test look like this:

it('classifies', function(){
 var classified = classify(['f#m7', 'a', 'dadd9',
 'dmaj7', 'bm', 'bm7', 'd', 'f#m']);
 wish(classified.get('easy'), true);
 wish(classified.get('medium'), true);
 wish(classified.get('hard'), true);
});

After running mocha, this leads to:

WishCharacterization: classified.get('easy')
 evaluated to 1.3433333333333333

And then we can just put that value into our test:

// replace this
wish(classified.get('easy'), true);

Testing What We Have

203

// with this
wish(classified.get('easy') === 1.3433333333333333);

Run mocha again and we get:

WishCharacterization: classified.get('medium')
 evaluated to 1.5060259259259259

Perfect. Again, we replace the , true with the output value:

wish(classified.get('medium') === 1.5060259259259259);

Save and run mocha. Once again, we get a characterization error:

WishCharacterization: classified.get('hard')
 evaluated to 1.6884223991769547

Now we have the information we need for the full test block:

it('classifies', function(){
 var classified = classify(['f#m7', 'a', 'dadd9',
 'dmaj7', 'bm', 'bm7', 'd', 'f#m']);
 wish(classified.get('easy') === 1.3433333333333333);
 wish(classified.get('medium') === 1.5060259259259259);
 wish(classified.get('hard') === 1.6884223991769547);
});

Following that same process again, we can write a similar test for the other
song we are classifying:

it('classifies again', function(){
 var classified = classify(['d', 'g', 'e', 'dm']);
 wish(classified.get('easy') === 2.023094827160494);
 wish(classified.get('medium') === 1.855758613168724);
 wish(classified.get('hard') === 1.855758613168724);
});

Now we can remove three things:

• Our logging statement (console.log(classified);) from the clas-
sify function

• The calls to classify that are outside of the tests

• The "works" test that we added to make sure our setup was okay

You might be wondering why we didn’t just copy the values from the con-
sole.log statement and put them in the test. The reason is so we could have a

CHAPTER 7: Refactoring Functions and Objects

204

test failure first. If we don’t see a failure, we can’t be totally certain that the spe-
cific action we took is actually what made the test pass. “Things seem to be
functioning correctly” is not as confident of a statement as “I changed the test
expectation to match the result of the failing characterization test, and that
turned the test from red to green.” That might seem subtle, but small steps are
easier to undo.

Testing the welcomeMessage

Now let’s add a new test for the welcome message (inside of the describe
block). This time, instead of leaving our logging statement in place, we’ll move
it into a test:

// delete this line from the file (near the top)
console.log(`Welcome to ${fileName()}!`);

// add this test inside of the describe block
it('sets welcome message', function(){
 console.log(`Welcome to ${fileName()}!`);
});

Right now, this passes, as there is no assertion made. But we still see the
output from the logging statement, so we know the code still works. Let’s add
the assertion now:

it('sets welcome message', function(){
 console.log(`Welcome to ${fileName()}!`);
 wish(welcomeMessage() === 'Welcome to nb.js!') // this line is new
});

Note that we’re intending to add a function here. This is not a characteriza-
tion test. This is a unit test for a function that hasn’t been written yet.

We get an error:

ReferenceError: welcomeMessage is not defined

Great. Let’s define that function at the top of the file:

function welcomeMessage(){
 return `Welcome to ${fileName()}!`;
};

The test now passes. This means we no longer need to rely on the welcome
message logging statement anywhere, including in our test, so we can just have
the following:

Testing What We Have

205

it('sets welcome message', function(){
 wish(welcomeMessage() === 'Welcome to nb.js!')
});

Testing for labelProbabilities

Here, we’ll take the same approach of moving the logging statement into a test,
and then making it into a proper assertion. To start, delete this line from the
classify function:

console.log(labelProbabilities);

And add this code inside of the describe block:

it('label probabilities', function(){
 console.log(labelProbabilities);
});

We can change that to a characterization test like this:

it('label probabilities', function(){
 wish(labelProbabilities, true);
});

When we run the test, our output tells us what we need to do next:

CHAPTER 7: Refactoring Functions and Objects

206

WishCharacterization: labelProbabilities
evaluated to [["easy",0.3333333333333333],
 ["medium",0.3333333333333333],
 ["hard",0.3333333333333333]]

Since we know that we’re dealing with labelProbabilities as a set, we
can test individual components like this:

it('label probabilities', function(){
 wish(labelProbabilities.get('easy') === 0.3333333333333333);
 wish(labelProbabilities.get('medium') === 0.3333333333333333);
 wish(labelProbabilities.get('hard') === 0.3333333333333333);
});

Now that we have high-level tests in place, we can refactor aggressively and
with confidence. Also, we’re completely free from console.log statements.

Extracting Functions

Here we go! This section is about what, as we said in the last chapter, is likely
the most useful and underutilized refactoring technique: extracting functions.

Getting Away from Procedural Code

If we look through the code at this point, we might notice that we have data
(songs and labels) mixed in with our functions. Overall, our program looks like it
has these steps:

1. Set up data (songs and labels).
2. Set up objects, sets, and maps.
3. Train our classifier on the set of songs.
4. Set counts and probabilities.
5. Classify with new songs (handled by the tests).

Right now, the first four steps are still spelled out awkwardly in a procedural
and unstructured way.

We want to get away from running the file, and start to think about executing
functions. That means that anything not inside of a function or the testing code
is a problem.

The following functions are always run together:

Extracting Functions

207

setLabelProbabilities();
setChordCountsInLabels();
setProbabilityOfChordsInLabels();

CHAPTER 7: Refactoring Functions and Objects

208

That means we can wrap them in another function and run that immediate-
ly, like this:

function setLabelsAndProbabilities(){
 setLabelProbabilities();
 setChordCountsInLabels();
 setProbabilityOfChordsInLabels();
};
setLabelsAndProbabilities();

Note that we could also run this as an anonymous IIFE (immediately invoked
function expression; see “Function Calls and Function Literals”), like this:

(function(){
 setLabelProbabilities();
 setChordCountsInLabels();
 setProbabilityOfChordsInLabels();
})();

But in doing that we lose some control. If we ever decided to call this more
than once, we’d have to name it or find a way to run the code containing it each
time.

For now, it doesn’t actually matter when this function is called, as long as it
is called just once: after the classifier is trained, but before we run classify.

Let’s add a trainAll function and call setLabelsAndProbabilities at
the end of it. We won’t call it anywhere else. Also, let’s add a call to trainAll
right after its declaration:

function trainAll(){
 train(imagine, easy);
 train(somewhereOverTheRainbow, easy);
 train(tooManyCooks, easy);
 train(iWillFollowYouIntoTheDark, medium);
 train(babyOneMoreTime, medium);
 train(creep, medium);
 train(paperBag, hard);
 train(toxic, hard);
 train(bulletproof, hard);
 setLabelsAndProbabilities();
};

trainAll();

function setLabelsAndProbabilities(){
 setLabelProbabilities();
 setChordCountsInLabels();

Extracting Functions

209

 setProbabilityOfChordsInLabels();
};

We want trainAll to be part of our public interface (a function that we run,
rather than part of a file that we run) just like any other statement, so we should
move it to be called right inside of the describe block of our tests:

describe('the file', function() {
 trainAll();

Next, we can extract a function for setting our songs and (for now) call it
right away:

function setSongs(){
 imagine = ['c', 'cmaj7', 'f', 'am', 'dm', 'g', 'e7'];
 somewhereOverTheRainbow = ['c', 'em', 'f', 'g', 'am'];
 tooManyCooks = ['c', 'g', 'f'];
 iWillFollowYouIntoTheDark = ['f', 'dm', 'bb', 'c', 'a', 'bbm'];
 babyOneMoreTime = ['cm', 'g', 'bb', 'eb', 'fm', 'ab'];
 creep = ['g', 'gsus4', 'b', 'bsus4', 'c', 'cmsus4', 'cm6'];
 paperBag = ['bm7', 'e', 'c', 'g',
 'b7', 'f', 'em', 'a',
 'cmaj7', 'em7', 'a7', 'f7',
 'b'];
 toxic = ['cm', 'eb', 'g', 'cdim', 'eb7', 'd7', 'db7', 'ab',
 'gmaj7', 'g7'];
 bulletproof = ['d#m', 'g#', 'b', 'f#', 'g#m', 'c#'];
};
setSongs();

We know that we want this to happen once before training, so we can move
our setSongs function call (the last line of the previous snippet) to be inside
trainAll:

function trainAll(){
 setSongs();
...

As always, after each of these changes, you should be noting the passing test
suite and committing the results.

We want to do the same with the setup of difficulty variables and our con-
tainers (array, sets, and maps) that we use throughout the program, but if we
take the same approach of extracting a function, our test suite will give an error.
Try this:

CHAPTER 7: Refactoring Functions and Objects

210

function setDifficulties(){
 var easy = 'easy';
 var medium = 'medium';
 var hard = 'hard';
};
setDifficulties();

If we do this, our variables are stuck inside that function’s scope, and no
longer readable by other functions. Later, we’ll be addressing how to tighten
up the scopes for these variables, but for now, we can take the easy way out
and leave these as global variables by omitting the var keyword:

function setDifficulties(){
 easy = 'easy';
 medium = 'medium';
 hard = 'hard';
};
setDifficulties();

And we can do the same for our other global variables (move them into a
function, remove the scoping declaration, and call the function):

function setup(){
 songs = [];
 allChords = new Set();
 labelCounts = new Map();
 labelProbabilities = new Map();
 chordCountsInLabels = new Map();
 probabilityOfChordsInLabels = new Map();
};
setup();

Next, we can move the function calls into our trainAll function:

function trainAll(){
 setDifficulties();
 setup();
 setSongs();
...

Make sure to remove those three calls (setDifficulties, setup, and set-
Songs) from other places in the program. Assuming you’ve done that, now ev-
erything is either inside of a function or the test code.

Extracting Functions

211

OH NO! VAR WAS DELETED! EVERYTHING IS WORSE NOW!

And we didn’t even have var declarations for our songs to begin with! Bad code!

Right?

We’ll talk about var and other scoping declarations later. For now, recognize that
our program relied on these as global variables before. We’re just no longer using

the var keyword to pretend they’re not global.

One way to fix this is by specifically scoping and passing them into each function
that requires them. Done naively, this path would require a lot of changes, includ-
ing more complex method signatures (more parameters) and more return values.

At some point, we’ll want to attach these variables to some object other than the
global one, but for now, it’s a win to have the interface well defined by the tests:

they just run trainAll and classify, which means we’re more concerned with the

contents of the file as opposed to the order.

Great. So now everything is inside of a function and our interface for the
tests is well defined. We could extract more functions if we wanted to get more
specific in places. For instance, we could change our setup function to do
something like this instead (but don’t do this):

function setSongsVariable(){
 songs = [];
};
function setup(){
 setSongsVariable();
 allChords = new Set();
 labelCounts = new Map();
 labelProbabilities = new Map();
 chordCountsInLabels = new Map();
 probabilityOfChordsInLabels = new Map();
};

And we could do that with the rest of the lines in setup as well. Or we could
use it to arbitrarily group some lines inside (don’t do this either):

function setSome(){
 songs = [];
 allChords = new Set();
 labelCounts = new Map();
};

CHAPTER 7: Refactoring Functions and Objects

212

function setOthers(){
 labelProbabilities = new Map();
 chordCountsInLabels = new Map();
 probabilityOfChordsInLabels = new Map();
};
function setup(){
 setSome();
 setOthers();
};

We can add as much indirection as we’d like by extracting functions, and use
this technique to group things where it makes sense. But these changes don’t
actually help our code be more clear. We’re just grouping arbitrary lines at this
point.

The opposite of extracting functions is inlining them. When an extracted
function doesn’t really do anything, it’s sensible to inline it. If you did extract
those functions, inline them now and restore the setup function to how it was:

function setup(){
 songs = [];
 allChords = new Set();
 labelCounts = new Map();
 labelProbabilities = new Map();
 chordCountsInLabels = new Map();
 probabilityOfChordsInLabels = new Map();
};

If you’re wondering what the point of that was, it’s that extracting and inlin-
ing functions should come as naturally to you as introducing and inlining vari-
ables.

Extracting and Naming Anonymous Functions

In addition to extracting functions helping to group behavior, it is also useful for
naming anonymous functions. We have some anonymous functions in our pro-
gram. For examples, look at any code that follows a forEach, or the second pa-
rameter to the describe and it function calls in the test.

We could extract some of these functions, but to demonstrate the benefits a
bit more simply, let’s take a look at some pedestrian jQuery code that visits a
URL when a button is clicked:

$('.my-button').on('click', function(){
 window.location = "http://refactoringjs.com";
});
$('.other-button').on('click', function(){

Extracting Functions

213

 window.location = "http://refactoringjs.com";
});

Some people would correctly identify that duplication as a maintenance
problem deserving of some kind of fix. Unfortunately, many of them would
jump to this solution, simply extracting a variable, and stop there:

var siteUrl = "http://refactoringjs.com";
$('.my-button').on('click', function(){
 window.location = siteUrl;
});
$('.other-button').on('click', function(){
 window.location = siteUrl;
});

This does make it easier to change siteUrl in the future (assuming it is
used in other places), but we can reduce duplication further by extracting a
function:

var siteUrl = "http://refactoringjs.com";
function visitSite(){
 window.location = siteUrl;
}
$('.my-button').on('click', function(){
 visitSite();
});
$('.other-button').on('click', function(){
 visitSite();
});

Now our implementation will be easier to change in the future, but what
good does wrapping our function call in a function accomplish? Nothing! Try
this instead:

var siteUrl = "http://refactoringjs.com";
function visitSite(){
 window.location = siteUrl;
}
$('.my-button').on('click', visitSite);
$('.other-button').on('click', visitSite);

Now we can keep our click handlers together. This organization is much bet-
ter.

CHAPTER 7: Refactoring Functions and Objects

214

Function Calls and Function Literals

For programmers who are new to JavaScript or those who mostly work in some
other language on the backend, there is often some confusion over function
syntax that makes this type of refactoring difficult for them.

This is an anonymous function literal:

function(){};

This is a named function literal:

function visitSite(){};

This is an anonymous function literal assigned to a variable:

var visitSite = function(){};

This is a function call:

visitSite();

The only way to call an anonymous function (the first one, when it is not as-
signed to a variable as in the third snippet) is by running the containing code:

(function(){})();
// or
(function(){}());

This is called an IIFE (“iffy”), or immediately invoked function expression. And
it is a function call (i.e., invocation).

The confusion arises when people don’t realize that an anonymous function
declaration, when replaced with a named function for reuse, can be used in the
same way as a function reference:

$('.my-button').on('click', visitSite);

and not with a function call like this:

$('.my-button').on('click', visitSite());

You should be passing a reference to the visitSite function into the on
function, not a function call.

Additional confusion arises when a parameter is used by the function being
referenced. If our function looked like this:

Extracting Functions

215

function visitSite(siteUrl){
 window.location = siteUrl;
};

some people would be tempted to write the click handler like this:

$('.my-button').on('click', visitSite("http://refactoringjs.com"));

But that won’t work. In this case, the most obvious solution would be using
an anonymous function to wrap the call like before:

$('.my-button').on('click', function(){
 visitSite("http://refactoringjs.com");
});

Another solution, which applies not only to the on function of jQuery but to
native JavaScript functions like forEach and map as well, is to pass another ar-
gument along with the others. In many cases, what you pass will end up being
the “implicit” parameter (the this) of the function that you are calling, but if
you are defining a function taking a function as an argument, you could also
design the function signature to take arguments that will become explicit argu-
ments to the function passed.

In any case, when you are passing functions inside of functions, you should
keep two things in mind. First, consult the API of the function that takes a func-
tion as an argument for any optional arguments that can be passed in, and
know what happens when they are not. Second, recognize that JavaScript func-
tion calls will work fine with too many or too few arguments. You will get an
error inside of the function if you try to call it and make use of a parameter that
was not defined by the signature. Also, any parameters that are unfulfilled by
the function call will be set as undefined.

Streamlining the API with One Global Object

At this point, we have everything wrapped up into functions, but we still have
many global variables floating around (this includes our functions as well as
variables set without var). In this section, we have two goals. The first is to re-
duce the scope of all of the global variables we have. The second is to design
our API—in other words, make decisions about how our code will be used.

For the style of code we’re exploring here, we want one main object, which
we will call classifier, and it will hold all of the functions and incidental vari-
ables created along the way. We’ll explore its creation through multiple mecha-
nisms (factory function, constructor function, and class), and in all cases, we’ll

CHAPTER 7: Refactoring Functions and Objects

216

be working with it in an OOP fashion. That means we’ll be using language con-
structs like this and allowing our classifier object to mutate throughout
the execution of our program.

If you’d prefer to work toward a functional approach, rather than an OOP
one, some of what follows will not follow the path you want to go. For that
path, I would recommend still reading through the rest of this chapter and then
looking into Chapter 11. But the time we spend “this-ifying” for the OOP style
here will need extra work to convert to FP style. The reason is that OOP will lead
us to having a main mutable object (although it could reasonably break down
into smaller objects), whereas in FP, we want to treat our bounding object
(classifier) as more of a dumb namespace for functions.

A functional version of our NBC is provided in Chapter 11. If you’re interes-
ted in getting to that point, try starting from the code we have here as well as
the code you have at the end of this chapter. I suspect you’ll find code that is
split into functions (but not as heavily invested in OOP as the code at the end of
this chapter), like we have at this point, easier to work with. By all means, try
both approaches if that interests you.

For the rest of the chapter, we’ll be ignoring the welcomeMessage and
fileName functions, as well as the accompanying test. In case you’re lost at
this point, or want to build an FP version starting from what we have now, here
is the code:

function setDifficulties(){
 easy = 'easy';
 medium = 'medium';
 hard = 'hard';
};

function setSongs(){
 imagine = ['c', 'cmaj7', 'f', 'am', 'dm', 'g', 'e7'];
 somewhereOverTheRainbow = ['c', 'em', 'f', 'g', 'am'];
 tooManyCooks = ['c', 'g', 'f'];
 iWillFollowYouIntoTheDark = ['f', 'dm', 'bb', 'c', 'a', 'bbm'];
 babyOneMoreTime = ['cm', 'g', 'bb', 'eb', 'fm', 'ab'];
 creep = ['g', 'gsus4', 'b', 'bsus4', 'c', 'cmsus4', 'cm6'];
 paperBag = ['bm7', 'e', 'c', 'g',
 'b7', 'f', 'em', 'a',
 'cmaj7', 'em7', 'a7', 'f7',
 'b'];
 toxic = ['cm', 'eb', 'g', 'cdim', 'eb7', 'd7', 'db7', 'ab',
 'gmaj7', 'g7'];
 bulletproof = ['d#m', 'g#', 'b', 'f#', 'g#m', 'c#'];
};

function setup(){

Streamlining the API with One Global Object

217

 songs = [];
 allChords = new Set();
 labelCounts = new Map();
 labelProbabilities = new Map();
 chordCountsInLabels = new Map();
 probabilityOfChordsInLabels = new Map();
};

function train(chords, label){
 songs.push({label, chords});
 chords.forEach(chord => allChords.add(chord));
 if(Array.from(labelCounts.keys()).includes(label)){
 labelCounts.set(label, labelCounts.get(label) + 1);
 } else {
 labelCounts.set(label, 1);
 }
};

function setLabelProbabilities(){
 labelCounts.forEach(function(_count, label){
 labelProbabilities.set(label,
 labelCounts.get(label) / songs.length);
 });
};

function setChordCountsInLabels(){
 songs.forEach(function(song){
 if(chordCountsInLabels.get(song.label) === undefined){
 chordCountsInLabels.set(song.label, {});
 }
 song.chords.forEach(function(chord){
 if(chordCountsInLabels.get(song.label)[chord] > 0){
 chordCountsInLabels.get(song.label)[chord] += 1;
 } else {
 chordCountsInLabels.get(song.label)[chord] = 1;
 }
 });
 });
}

function setProbabilityOfChordsInLabels(){
 probabilityOfChordsInLabels = chordCountsInLabels;
 probabilityOfChordsInLabels.forEach(function(_chords, difficulty){
 Object.keys(probabilityOfChordsInLabels.get(difficulty)).forEach(
function(chord){
 probabilityOfChordsInLabels.get(difficulty)[chord]
/= songs.length;
 });
 });
}

CHAPTER 7: Refactoring Functions and Objects

218

function trainAll(){
 setDifficulties();
 setup();
 setSongs();
 train(imagine, easy);
 train(somewhereOverTheRainbow, easy);
 train(tooManyCooks, easy);
 train(iWillFollowYouIntoTheDark, medium);
 train(babyOneMoreTime, medium);
 train(creep, medium);
 train(paperBag, hard);
 train(toxic, hard);
 train(bulletproof, hard);
 setLabelsAndProbabilities();
};

function setLabelsAndProbabilities(){
 setLabelProbabilities();
 setChordCountsInLabels();
 setProbabilityOfChordsInLabels();
};

function classify(chords){
 var smoothing = 1.01;
 var classified = new Map();
 labelProbabilities.forEach(function(_probabilities, difficulty){
 var first = labelProbabilities.get(difficulty) + smoothing;
 chords.forEach(function(chord){
 var probabilityOfChordInLabel =
probabilityOfChordsInLabels.get(difficulty)[chord];
 if(probabilityOfChordInLabel){
 first = first * (probabilityOfChordInLabel + smoothing);
 }
 });
 classified.set(difficulty, first);
 });
 return classified;
};

var wish = require('wish');
describe('the file', function() {
 trainAll();
 it('classifies', function(){
 var classified = classify(['f#m7', 'a', 'dadd9',
 'dmaj7', 'bm', 'bm7', 'd', 'f#m']);
 wish(classified.get('easy') === 1.3433333333333333);
 wish(classified.get('medium') === 1.5060259259259259);
 wish(classified.get('hard') === 1.6884223991769547);
 });

Streamlining the API with One Global Object

219

 it('classifies again', function(){
 var classified = classify(['d', 'g', 'e', 'dm']);
 wish(classified.get('easy') === 2.023094827160494);
 wish(classified.get('medium') === 1.855758613168724);
 wish(classified.get('hard') === 1.855758613168724);
 });
 it('label probabilities', function(){
 wish(labelProbabilities.get('easy') === 0.3333333333333333);
 wish(labelProbabilities.get('medium') === 0.3333333333333333);
 wish(labelProbabilities.get('hard') === 0.3333333333333333);
 });
});

Extracting the classifier Object

To our global variables (and functions) we’ll create an object called classifi-
er to store them, so that they’re not attached directly to the global object. Put
this the top of your file:

var classifier = {};

Then, inside of trainAll, instead of setup being run as a function of the
global object, call it as part of this classifier:

function trainAll(){
 classifier.setup(); // this line is new
 setDifficulties();
 setup(); // get rid of this one
...

Now we need to move our setup function into our classifier object, at
the top of the file. You can also delete the old setup function:

var classifier = {
 setup: function(){
 this.songs = [];
 this.allChords = new Set();
 this.labelCounts = new Map();
 this.labelProbabilities = new Map();
 this.chordCountsInLabels = new Map();
 this.probabilityOfChordsInLabels = new Map();
 };
};

CHAPTER 7: Refactoring Functions and Objects

220

We want these variables to be part of classifier, so we need to add a
this. in front of each of them. Notice that setup is a property with the label
(setup) followed by a function literal that contains the body of the function.

It would be great if the tests passed at this point, but they don’t. Fortunately,
running the tests will report a useful error:

ReferenceError: songs is not defined

And here we have some very boring and repetitive, but relatively easy,
changes to make. We need to add a classifier. in front of every reference to
the following variables (that don’t start with this.): songs, allChords, la-
belCounts, labelProbabilities, chordCountsInLabels, and probabili-
tyOfChordsInLabels. Make those changes now.

The tests should pass again. Save and commit those changes.

Inlining the setup Function

Now that we look at our setup function attached to classifier, however, we
might notice that it’s not doing much work. We can assign those variables di-
rectly to the object without using a wrapping function at all:

var classifier = {
 songs: [],
 allChords: new Set(),
 labelCounts: new Map(),
 labelProbabilities: new Map(),
 chordCountsInLabels: new Map(),
 probabilityOfChordsInLabels: new Map()
};

Notice that the function wrapping is gone, but the syntax inside has also
been tweaked. For example, instead of this:

this.songs = [];

we now have this:

songs: [],

The comma versus semicolon is easy to miss. And we can also delete the call
to setup in trainAll:

Streamlining the API with One Global Object

221

function trainAll(){
 classifier.setup(); // delete this line
...

That’s great, not only because we have one less line, but also because our
training code really doesn’t have anything to do with the general setup of our
classifier.

Save/test/commit to make sure everything still looks good.

Extracting the songList Object

Next let’s consider how we’re adding songs to be trained. setSongs defines
global variables for each song name, and then each of those is referenced in the
trainAll function. This coupling is error prone and not really scalable. Clear-
ly, if we alter our list of songs, we have to do it in two places. But worse than
that, we are not prepared for a likely case where we would have a database of
songs to train, rather than a handful that we hardcode into a file.

Let’s make a songList object that contains the songs in an array and has a
function to add songs to it. This can go at the top of your file:

var songList = {
 songs: [],
 addSong: function(name, chords, difficulty){
 this.songs.push({name: name,
 chords: chords,
 difficulty: difficulty});
 }
};

Now let’s change our setSongs function to make use of this songList ob-
ject:

function setSongs(){
 songList.addSong('imagine',
['c', 'cmaj7', 'f', 'am', 'dm', 'g', 'e7'], easy)
 songList.addSong('somewhereOverTheRainbow',
['c', 'em', 'f', 'g', 'am'], easy)
 songList.addSong('tooManyCooks', ['c', 'g', 'f'], easy)
 songList.addSong('iWillFollowYouIntoTheDark',
['f', 'dm', 'bb', 'c', 'a', 'bbm'], medium);
 songList.addSong('babyOneMoreTime',
['cm', 'g', 'bb', 'eb', 'fm', 'ab'], medium);
 songList.addSong('creep',
['g', 'gsus4', 'b', 'bsus4', 'c', 'cmsus4', 'cm6'], medium);
 songList.addSong('paperBag',
['bm7', 'e', 'c', 'g', 'b7', 'f', 'em',

CHAPTER 7: Refactoring Functions and Objects

222

'a', 'cmaj7', 'em7', 'a7', 'f7',
'b'], hard);
 songList.addSong('toxic',
['cm', 'eb', 'g', 'cdim', 'eb7',
'd7', 'db7', 'ab', 'gmaj7', 'g7'], hard);
 songList.addSong('bulletproof',
['d#m', 'g#', 'b', 'f#', 'g#m', 'c#'], hard);
};

If we run the tests now, we get errors because our variables named by the
song names are no longer available. We need to change our trainAll function
to add the songs from the songList:

function trainAll(){
 setDifficulties();
 setSongs();
 songList.songs.forEach(function(song){
 train(song.chords, song.difficulty);
 });
 setLabelsAndProbabilities();
};

And now our tests are back in working order.

Handling the Remaining Global Variables

We’re still left with those three nagging global variables to represent difficulty.
As a first effort, since they are only referenced inside of setSongs, we can

simply inline the variables there:

function setSongs(){
 var easy = 'easy';
 var medium = 'medium';
 var hard = 'hard';
...

And now we can delete the function setDifficulties and our call to it in-
side of trainAll. Tests should be passing at this point.

Following that, it might seem a waste to complicate our setSongs function
with these variables. What if we just used an array for difficulties, and let
the songList handle the strings?

var songList = {
 difficulties: ['easy', 'medium', 'hard'],
 songs: [],

Streamlining the API with One Global Object

223

 addSong: function(name, chords, difficulty){
 this.songs.push({name: name,
 chords: chords,
 difficulty: this.difficulties[difficulty]})
 }
};

Here, we’ve created a difficulties attribute in songList as an array with
the desired labels. Then, when we add a song, we’re expecting the array index
to come through and assigning as needed with this.difficulties[diffi-
culty].

This means we can get rid of the label description noise in setSongs and
use numbers instead of the variables we were using before. Notice the numbers
as the third parameter of the addSong function calls:

function setSongs(){
 songList.addSong('imagine',
['c', 'cmaj7', 'f', 'am', 'dm', 'g', 'e7'], 0);
 songList.addSong('somewhereOverTheRainbow',
['c', 'em', 'f', 'g', 'am'], 0);
 songList.addSong('tooManyCooks', ['c', 'g', 'f'], 0);
 songList.addSong('iWillFollowYouIntoTheDark',
['f', 'dm', 'bb', 'c', 'a', 'bbm'], 1);
 songList.addSong('babyOneMoreTime',
['cm', 'g', 'bb', 'eb', 'fm', 'ab'], 1);
 songList.addSong('creep',
['g', 'gsus4', 'b', 'bsus4', 'c', 'cmsus4', 'cm6'], 1);
 songList.addSong('paperBag',
['bm7', 'e', 'c', 'g', 'b7', 'f', 'em',
 'a', 'cmaj7', 'em7', 'a7', 'f7',
 'b'], 2);
 songList.addSong('toxic',
['cm', 'eb', 'g', 'cdim', 'eb7', 'd7', 'db7', 'ab', 'gmaj7', 'g7'], 2);
 songList.addSong('bulletproof',
['d#m', 'g#', 'b', 'f#', 'g#m', 'c#'], 2);
};

Save/test/commit.

Making Data Independent from the Program

Let’s think about that trainAll function for a minute. What does setting songs
have to do with training our classifier? Nothing at all, really. What if we move
the call to setSongs into our test?

CHAPTER 7: Refactoring Functions and Objects

224

describe('the file', function() {
 setSongs(); // moved and deleted from inside of trainAll
 trainAll();

And while we’re at it, does setting the songs have anything to do with the
structure of our program at all? No. It’s only data that we are setting and using.
That means it is part of the execution of one possibility of our program, not the
program itself. That implies that the function of setSongs itself belongs in the
tests. Let’s inline the function body into the tests and remove the function from
the program completely:

describe('the file', function() {
 songList.addSong('imagine',
['c', 'cmaj7', 'f', 'am', 'dm', 'g', 'e7'], 0);
 songList.addSong('somewhereOverTheRainbow',
['c', 'em', 'f', 'g', 'am'], 0)
 songList.addSong('tooManyCooks', ['c', 'g', 'f'], 0);
...
 songList.addSong('bulletproof',
['d#m', 'g#', 'b', 'f#', 'g#m', 'c#'], 2);
 trainAll();
...

Now we’re free to execute the program independently of the data provided.
This is a huge step, and opens our program up to further testing and putting it
into production as a module.

Scoping Declarations: var, let, and const

Moving on to other scoping concerns, let’s talk about scoping declarations: var,
let, and const. var has been around for the longest, so you’re most likely to
find it in older codebases or code written by people who are stuck in an older
mindset. Although var is better than nothing (a variable declaration, and nec-
essarily an assignment, without any scoping declaration will create a global
variable), let and const create tighter scopes (block scope rather than just
functional scope). The difference between let and const is that const will not
allow a variable to be reassigned.

We have nine instances of var in our program right now. Should we change
any of them? If so, should they change to let or const?

Streamlining the API with One Global Object

225

CONST DOES NOT MEAN IMMUTABILITY!

If you are thinking that const provides an easy path to immutability, I’m
sorry to report some sad news. It does prevent a variable from being re-
assigned (i.e., through the = operator), but the contents of the variable
can still change. Array indexes can be updated. The same goes for object
attributes and members of sets and maps.

Object.freeze to the rescue!? Almost. If you freeze an object that is more
than one level deep, you can still update those inner properties. Also,
even if you freeze an object, if it was declared with var or let, you can still
reassign it.

To ensure immutability, you’ll need to go further, and might find it easier
to use a packaged solution like Immutable.js or mori, which provide im-
mutable versions of arrays, maps, sets, and so on. Even if you’re not us-
ing anything that enforces it, it’s best to try to create new variables rath-
er than repurposing them.

In general, it’s preferable to use const. The less that your variables are reas-
signed, the better.

Since we have tests in place, we can make the bold assumption that all of
our var declarations should be const instead. Search and replace those, and
then run the tests. You’ll get an error:

TypeError: Assignment to constant variable.

The error description “constant variable” is worth noting as an odd oxymor-
on, but let’s move on. Unsurprisingly, our bold assumption is wrong, but only in
one case. Our first variable inside of the classify function requires reas-
signment for now, so the following line should be modified to use let:

const first = classifier.labelProbabilities.get(difficulty) +
smoothing;

It should be:

let first = classifier.labelProbabilities.get(difficulty) +
smoothing;

All the rest of the const declarations are fine, and we’re free to move on.

Bringing classify into the classifier

With a few changes, the variable first doesn’t have to be reassigned, though.
Initially, it is meant to reflect the likelihood of a difficulty appearing relative to

CHAPTER 7: Refactoring Functions and Objects

226

other difficulties. Later, it is multiplied by the likelihood of a chord existing in a
song of a given difficulty.

What if instead of reassigning that variable, we introduced a likelihoods
array that would capture all of the values we need to multiply together, and
then multiplied them?

function classify(chords){
 const smoothing = 1.01;
 const classified = new Map();
 classifier.labelProbabilities.forEach(
function(_probabilities, difficulty){
 const likelihoods = [classifier.labelProbabilities.get(difficulty)
+ smoothing];
 chords.forEach(function(chord){
 const probabilityOfChordInLabel =
classifier.probabilityOfChordsInLabels.get(difficulty)[chord]
 if(probabilityOfChordInLabel){
 likelihoods.push(probabilityOfChordInLabel + smoothing)
 }
 })
 const totalLikelihood = likelihoods.reduce(function(total, index) {
 return total * index;
 });
 classified.set(difficulty, totalLikelihood);
 });
 return classified;
};

We’ve mentioned, but haven’t gone into depth on, the reduce function . It
allows us to step through an array and apply some function to it, while working
with a returned value, along with each element.

But wait! We already have an array that we’re looping through (chords).
Why would we create a new one to step through? Do we really need to loop
twice (once to accumulate and once to multiply)? Let’s try using reduce on that
forEach instead:

function classify(chords){
 const smoothing = 1.01;
 const classified = new Map();
 classifier.labelProbabilities.forEach(
function(_probabilities, difficulty){

// reduce starts
 const totalLikelihood = chords.reduce(function(total, chord){
 const probabilityOfChordInLabel =
classifier.probabilityOfChordsInLabels.get(difficulty)[chord]
 if(probabilityOfChordInLabel){

Streamlining the API with One Global Object

227

 return total * (probabilityOfChordInLabel + smoothing)
 }else{
 return total;
 }
 }, classifier.labelProbabilities.get(difficulty) + smoothing)
// reduce ends

 classified.set(difficulty, totalLikelihood);
 });
 return classified;
};

This is a bit more complex, for two reasons. First, our initial likelihood is now
at the end, just above this line: //reduce ends. This supplies the “initial val-
ue” to the reduce total. Second, the else branch of our if statement is back.
The reason is that on every step through the reduce function, if nothing is re-
turned (which would be the case if the if condition was false and we had no
else branch), then undefined would be returned. Returning the total has
the same effect as just moving on to the next element.

If that’s confusing, think of it this way. Say you had a reduce function like
this:

[2, 3, 4].reduce(function(result, element){ return result }, 10)

This function would simply return 10. If no value was supplied as the second
parameter (if the , 10 was not there), it would return the first element: 2. This
is because result is fed back into the function for each element. Contrast this
with another simple use of reduce, which sums the values of an array:

[2, 3, 4].reduce(function(result, element){return result + element })

This will return 9. If it had an initial element of 10, it would add that as well,
returning 19.

Back to our example, one pattern that is especially common in JavaScript is
to allow unmet conditions to return something outside of an else. For exam-
ple:

if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + smoothing);
}
return total;

If the true branch of the if statement isn’t executed, the code will continue
beyond it. But personally, I feel this style invites mismatched return types and

CHAPTER 7: Refactoring Functions and Objects

228

often visually privileges the less likely possibilities at the top of a function.
Moreover, it less strongly signals two code paths than an explicit if/else,
which (if only slightly) disguises the complexity of the code. For someone who is
interested in refactoring and thus eliminating complexity, it can mask places
that may be good candidates for change.

In any case, you will frequently see this style used for error handling like this:

function callback(error, response){
 if(error){
 return new Error(error);
 }
 // do something with the response
}

Now let’s pick on the classify function a bit more. First of all, we should
have no issue with tying it more closely to the classifier object. If there’s one
obvious thing that a classifier does, it’s classifying.

To that end, let’s move the classify function into the classifier:

const classifier = {
 songs: [],
 allChords: new Set(),
 labelCounts: new Map(),
 labelProbabilities: new Map(),
 chordCountsInLabels: new Map(),
 probabilityOfChordsInLabels: new Map(),
 classify: function(chords){
 const smoothing = 1.01;
 const classified = new Map();
 classifier.labelProbabilities.forEach(
function(_probabilities, difficulty){
 const totalLikelihood = chords.reduce(function(total, chord){
 const probabilityOfChordInLabel =
classifier.probabilityOfChordsInLabels.get(difficulty)[chord]
 if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + smoothing);
 }else{
 return total;
 }
 }, classifier.labelProbabilities.get(difficulty) + smoothing);
 classified.set(difficulty, totalLikelihood);
 });
 return classified;
 }
};

Streamlining the API with One Global Object

229

Our tests will break at this point, because we need to replace instances of
classify with classifier.classify in the tests. Change these lines:

const classified = classify(['f#m7', 'a', 'dadd9', 'dmaj7',
 'bm', 'bm7', 'd', 'f#m']);
...
const classified = classify(['d', 'g', 'e', 'dm']);

to these:

const classified = classifier.classify(['f#m7', 'a', 'dadd9',
 'dmaj7', 'bm', 'bm7',
 'd', 'f#m']);
...
const classified = classifier.classify(['d', 'g', 'e', 'dm']);

Now that our tests are working again (save/test/commit), we still have some
work to do with this function. It awkwardly refers to itself in the third person, in
a sense. That is, rather than using this, it says its own name: classifier.
There are three instances of that. Let’s change those, making the function the
following:

classify: function(chords){
 const smoothing = 1.01;
 const classified = new Map();
 this.labelProbabilities.forEach(
function(_probabilities, difficulty){
 const totalLikelihood = chords.reduce(function(total, chord){
 const probabilityOfChordInLabel =
this.probabilityOfChordsInLabels.get(difficulty)[chord]
 if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + smoothing);
 }else{
 return total;
 }
 }, this.labelProbabilities.get(difficulty) + smoothing);
 classified.set(difficulty, totalLikelihood);
 });
 return classified;
}

The first instance of this will be fine, but the second and third will cause
problems:

 const probabilityOfChordInLabel =
this.probabilityOfChordsInLabels.get(difficulty)[chord]

CHAPTER 7: Refactoring Functions and Objects

230

// and
}, this.labelProbabilities.get(difficulty) + smoothing)

This is because our this (implicit parameter) is set in the context of the
function that contains these statements. The most common and oafish fix is
this:

classify: function(chords){
 const smoothing = 1.01;
 const classified = new Map();
 const self = this;
 this.labelProbabilities.forEach(
function(_probabilities, difficulty){
 const totalLikelihood = chords.reduce(function(total, chord){
 const probabilityOfChordInLabel =
self.probabilityOfChordsInLabels.get(difficulty)[chord]
 if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + smoothing);
 }else{
 return total;
 }
 }, self.labelProbabilities.get(difficulty) + smoothing);
 classified.set(difficulty, totalLikelihood);
 });
 return classified;
}

By setting a self variable (in Chapter 5, we used that instead), you can en-
sure you have access to the object you want, even within the inner functions. In
Chapter 5, we learned about using call, apply, or bind to accomplish the
same thing with a bit more elegance. In this case, since we are not calling these
anonymous functions directly, only declaring them to be called by forEach
and reduce, we cannot use call or apply to set the implicit argument, this.
For this case, we must use bind or find another way.

As for forEach, we can rely on the ability of that function to accept a thi-
sArg as a parameter. This allows us to set what we want this to be in the
anonymous function:

this.labelProbabilities.forEach(
 function(_probabilities, difficulty){
 const totalLikelihood = chords.reduce(function(total, chord){
 const probabilityOfChordInLabel =
self.probabilityOfChordsInLabels.get(difficulty)[chord];
 if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + smoothing);
 }else{

Streamlining the API with One Global Object

231

 return total;
 }
 }, this.labelProbabilities.get(difficulty) + smoothing);
 classified.set(difficulty, totalLikelihood);
}, this);

Now that we have added this as a second parameter to forEach (on the
last line), we are free to use this rather than self on the third-from-last line.
But the remaining call to self cannot yet be changed to this, because its val-
ue is wrapped by the anonymous function inside of reduce.

One could reasonably expect that the function signature for reduce’s call-
back would also allow a thisArg to be accepted as an optional parameter. Un-
fortunately, this is not the case, so in this style, the this inside of that function
must be set with bind:

 const totalLikelihood = chords.reduce(function(total, chord){
...
 }.bind(this), this.labelProbabilities.get(difficulty) + smoothing);

Now our classify function can be free from the awkward self variable:

classify: function(chords){
 const smoothing = 1.01;
 const classified = new Map();
 this.labelProbabilities.forEach(
function(_probabilities, difficulty){
 const totalLikelihood = chords.reduce(function(total, chord){
 const probabilityOfChordInLabel =
this.probabilityOfChordsInLabels.get(difficulty)[chord];
 if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + smoothing);
 }else{
 return total;
 }
 }.bind(this),
 this.labelProbabilities.get(difficulty) + smoothing);
 classified.set(difficulty, totalLikelihood);
 }, this);
 return classified;
}

But before we leave this example, there is another tool we can use to deal
with passing our this through: arrow functions. Through them, our function
can be simplified like this:

CHAPTER 7: Refactoring Functions and Objects

232

classify: function(chords){
 const smoothing = 1.01;
 const classified = new Map();
 this.labelProbabilities.forEach((_probabilities, difficulty) => {
 const totalLikelihood = chords.reduce((total, chord) => {
 const probabilityOfChordInLabel =
this.probabilityOfChordsInLabels.get(difficulty)[chord];
 if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + smoothing);
 }else{
 return total;
 }
 }, this.labelProbabilities.get(difficulty) + smoothing);
 classified.set(difficulty, totalLikelihood);
 });
 return classified;
}

We can now get rid of our this as a second parameter to forEach and our
bind(this) in reduce. The arrow functions are in the following lines:

this.labelProbabilities.forEach((_probabilities, difficulty) => {
...
const totalLikelihood = chords.reduce((total, chord) => {

The parts with => are what make them arrow functions. The syntax might
seem a little weird (and it has a lot of variation), but what’s great is the this
passes through from the outer function.

To simplify this function a bit further, smoothing can be taken out of the
function and added as a new attribute of the classifier:

smoothing: 1.01,
classify: function(chords){
 const classified = new Map();
 this.labelProbabilities.forEach((_probabilities, difficulty) => {
 const totalLikelihood = chords.reduce((total, chord) => {
 const probabilityOfChordInLabel =
this.probabilityOfChordsInLabels.get(difficulty)[chord];
 if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + this.smoothing);
 }else{
 return total;
 }
 }, this.labelProbabilities.get(difficulty) + this.smoothing);
 classified.set(difficulty, totalLikelihood);
 });
 return classified;
}

Streamlining the API with One Global Object

233

On the one hand, this is nice because it gets smoothing out of our function.
However, it does increase the scope of where it is available and necessitates
adding this. to precede it inside of the function. Extracting this const to an
attribute also makes it assignable again. Unfortunately, getting something like
a const inside of our classifier object literal takes a bit of work. There is a
defineProperty function that we can use to define attributes that are not on-
ly not writable, but even immutable by default. We won’t go into depth here,
but defineProperty is a good tool to look into if you want a lot of control over
how properties are used.

Normally, defineProperty would be called after the object is created,
which would add complexity to our execution at some point, and move the at-
tribute’s creation to some other physical place in the file. On the other hand, we
could just call this inside of the classify function like this:

classify: function(chords){
 Object.defineProperty(this, 'smoothing', {value: 1.01});

But that puts complexity back into our function, which is what we were try-
ing to avoid by making it an object to begin with. Later, we’ll discuss alterna-
tives to creating objects with object literals, which could give us more control
over our properties as the objects are created. But for now, let’s revert this
change and allow smoothing to be an attribute as it was.

Another change we can make to the classify function is to inline the clas-
sified variable by using the map function instead of forEach. Whenever you find
yourself setting up a container (usually an array, but in our case a Map object),
using a loop of some kind to change that variable, and then returning the vari-
able, you may be better served by using a map function rather than a loop:

classify: function(chords){
 const classified = new Map();
 Array.from(this.labelProbabilities.entries()).map(
(labelWithProbability) => {
 const totalLikelihood = chords.reduce((total, chord) => {
 const probabilityOfChordInLabel =
this.probabilityOfChordsInLabels.get(labelWithProbability[0])[chord];
 if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + this.smoothing);
 }else{
 return total;
 }
 }, this.labelProbabilities.get(labelWithProbability[0]) +
this.smoothing);
 classified.set(labelWithProbability[0], totalLikelihood);
 });

CHAPTER 7: Refactoring Functions and Objects

234

 return classified;
}

Unfortunately, the Map object doesn’t have a map function (yes, it bums me
out, too.) So our first step involves pulling an array out of the entries in the Map
so that we can use map through it. The second change is that we end up with a
slightly less convenient object (labelWithProbability instead of difficul-
ty), which requires us to take the first index of [0]. In other words, difficul-
ty is replaced with labelWithProbability[0]. But we can initialize diffi-
culty as a new const:

classify: function(chords){
 const classified = new Map();
 Array.from(this.labelProbabilities.entries()).map(
(labelWithProbability) => {
 const difficulty = labelWithProbability[0];
 const totalLikelihood = chords.reduce((total, chord) => {
 const probabilityOfChordInLabel =
this.probabilityOfChordsInLabels.get(difficulty)[chord];
 if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + this.smoothing);
 }else{
 return total;
 }
 }, this.labelProbabilities.get(difficulty) + this.smoothing);
 classified.set(difficulty, totalLikelihood);
 });
 return classified;
}

Now we can almost get rid of our classified variable. Instead of initializ-
ing it, updating it in the loop, and returning it after, we can have map return a
multidimensional array to set the Map:

classify: function(chords){
 const classified = new Map(Array.from(
 this.labelProbabilities.entries()).map((labelWithProbability) => {
 const difficulty = labelWithProbability[0];
 const totalLikelihood = chords.reduce((total, chord) => {
 const probabilityOfChordInLabel =
this.probabilityOfChordsInLabels.get(difficulty)[chord];
 if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + this.smoothing);
 }else{
 return total;
 }
 }, this.labelProbabilities.get(difficulty) + this.smoothing);

Streamlining the API with One Global Object

235

 return [difficulty, totalLikelihood];
 }));
 return classified;
}

The second line now includes directly assigning a new Map object to clas-
sified. Additionally, our return, four lines from the bottom, now returns an
array with difficulty and totalLikelihood. The last (very minor) change
to notice is that three lines from the bottom of this sample, we now have an
extra closing parenthesis in the line:

})); // just above "return classified;"

And now we’re ready to get rid of the classified variable. Simply delete
the line with the last return statement and instead return the result of the call
to the new Map constructor:

classify: function(chords){
 return new Map(Array.from(
 this.labelProbabilities.entries()).map((labelWithProbability) => {
...
 }));
}

We now have a similar unnecessary variable in totalLikelihood:

const totalLikelihood = chords.reduce((total, chord) => {
 const probabilityOfChordInLabel =
this.probabilityOfChordsInLabels.get(difficulty)[chord];
 if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + this.smoothing);
 }else{
 return total;
 }
}, this.labelProbabilities.get(difficulty) + this.smoothing);
return [difficulty, totalLikelihood];

Instead of assigning a variable to the result of the reduce call and returning
it in the array, we can inline that and return the array directly:

classify: function(chords){
 return new Map(Array.from(
 this.labelProbabilities.entries()).map((labelWithProbability) => {
 const difficulty = labelWithProbability[0];
 return [difficulty, chords.reduce((total, chord) => {
 const probabilityOfChordInLabel =

CHAPTER 7: Refactoring Functions and Objects

236

this.probabilityOfChordsInLabels.get(difficulty)[chord];
 if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + this.smoothing);
 }else{
 return total;
 }
 }, this.labelProbabilities.get(difficulty) + this.smoothing)];
 }));
}

This might look confusing, but we’re still just returning a two-element array.
The first element is difficulty, and the second is the result of the reduce
call.

If we want to simplify further, we can extract a function to eliminate our as-
signment and our conditional inside of this code:

const probabilityOfChordInLabel =
 this.probabilityOfChordsInLabels.get(difficulty)[chord]
if(probabilityOfChordInLabel){
 return total * (probabilityOfChordInLabel + this.smoothing)
}else{
 return total;
}

We have to delete that assignment, and replace the other two references
(one in the conditional’s test and one in the conditional’s if branch) with the
righthand side of the assignment. That should leave us with this:

if(this.probabilityOfChordsInLabels.get(difficulty)[chord]){
 return total *
 (this.probabilityOfChordsInLabels.get(
 difficulty)[chord] + this.smoothing);
}else{
 return total;
}

Next, we extract a function to completely replace those lines with this:

return total * this.valueForChordDifficulty(difficulty, chord);

And we can add a new function above classify:

valueForChordDifficulty(difficulty, chord){
 if(this.probabilityOfChordsInLabels.get(difficulty)[chord]){
 return this.probabilityOfChordsInLabels.get(difficulty)[chord] +
this.smoothing;
 }else{

Streamlining the API with One Global Object

237

 return 1;
 }
},

That function will produce a value to multiply by the running total. If we
want a slightly denser syntax for that function, we can use the ternary syntax:

valueForChordDifficulty(difficulty, chord){
 const value =
 this.probabilityOfChordsInLabels.get(difficulty)[chord];
 return value ? value + this.smoothing : 1;
},

Note that this would also work as the first line if you don’t like the function
shorthand syntax:

valueForChordDifficulty: function(difficulty, chord){

As opposed to what we have right now, which is:

valueForChordDifficulty(difficulty, chord){

DENSITY AND ABSTRACTION

At this point, you might be wondering if this refactoring is really worth it. By inlin-

ing variables, we’ve made the code denser. There is also some overhead to using map

with a Map object. For some people, inlining variables and using functions like bind
is going to make the code harder to read. For others, the arrow syntax, with all of its
variation (which we’ll cover later), might be overwhelming. It’s important to be
aware of how your style might impact other members of your team.

So did we just make the code worse? Not necessarily. The advantage of inlining
variables is twofold. First, less internal state means less to keep track of. Second,

inlining variables can make it easier to extract functions, which are more flexible and
testable than simple variables.

For both variables and functions, the important part is to be aware of inlining and
extracting as choices.

CHAPTER 7: Refactoring Functions and Objects

238

CODE HAS NO FINAL, PERFECT, “REFACTORED” STATE

One important thing to note about our work on the classify function is
that there is no way to tell when you are “done” refactoring. Some refac-
torings (like inlining and extracting) are inverse processes, so you could
end up undoing previous refactoring work with subsequent efforts. You
could create an infinite loop of refactoring just due to that fact. Mix in
others’ opinions of what “good” code is, and you really can “improve”
the code forever. This is part of why it is important to develop your own
standards of quality, and to calibrate those with the people you work
with.

Untangling Coupled Values

Moving on from our classify function, we have a problem in the code that
needs to be addressed. You’ll see something interesting if you add logging
statements to the tests (after trainAll();) like the following:

console.log(classifier.probabilityOfChordsInLabels);
console.log(classifier.chordCountsInLabels);

They have the same values. Not only that, they actually are referencing the
same Set object.

The reason for this is in the setProbabilityOfChordsInLabels function
—specifically, the second line (which spills onto two lines):

function setProbabilityOfChordsInLabels(){
 classifier.probabilityOfChordsInLabels =
classifier.chordCountsInLabels;
 classifier.probabilityOfChordsInLabels.forEach(
function(_chords, difficulty){
 Object.keys(
classifier.probabilityOfChordsInLabels.get(difficulty)).forEach(
function(chord){
 classifier.probabilityOfChordsInLabels.get(difficulty)[chord]
/= classifier.songs.length;
 });
 });
}

The problem is that when we assign one set to another, we aren’t just copy-
ing the values from the Set object on the righthand side of the assignment into
the Set object on the lefthand side. Both classifier.probabilityOf-
ChordsInLabels and classifier.chordCountsInLabels are just fingers

Streamlining the API with One Global Object

239

pointing at the same object. If you change the values of the set by referencing
either name, both will be affected.

Here is a short example to demonstrate this:

x = {a: 2};
// returns { a: 2 }
y = x;
// returns { a: 2 }
x['b'] = 3;
// returns 3
y;
// returns { a: 2, b: 3 }
y['c'] = 5;
// returns 5
x;
// returns { a: 2, b: 3, c: 5 }

However, these all involve what happens when you update an object. If you
reassign the object again, it will not change both labels to be pointing at the
new object:

x = {a: 2};
// returns { a: 2 }
y = x;
// returns { a: 2 }
x = {b: 5};
console.log(y);
// prints { a: 2 }
// because y still ponts at the original object
// x has been assigned to a new object

Back to our code, if probabilityOfChordsInLabels and chordCount-
sInLabels do the same thing, we can just replace references to the former
with the latter:

function setProbabilityOfChordsInLabels(){
 classifier.chordCountsInLabels = classifier.chordCountsInLabels;
 classifier.chordCountsInLabels.forEach(function(_chords, difficulty){
 Object.keys(classifier.chordCountsInLabels.get(difficulty))
 .forEach(function(chord){
 classifier.chordCountsInLabels.get(difficulty)[chord]
/= classifier.songs.length;
 });
 });
}

CHAPTER 7: Refactoring Functions and Objects

240

Now line two is looking more obviously redundant, which is great, because
we know we can delete it:

function setProbabilityOfChordsInLabels(){
 classifier.chordCountsInLabels.forEach(function(_chords, difficulty){
 Object.keys(classifier.chordCountsInLabels.get(difficulty))
 .forEach(function(chord){
 classifier.chordCountsInLabels.get(difficulty)[chord]
/= classifier.songs.length;
 });
 });
}

We also have two more references to probabilityOfChordsInLabels to
change inside of classifier. One is this line, which we can delete:

probabilityOfChordsInLabels: new Map(),

The other is the last line in the following snippet:

const classifier = {
...
const value =
this.probabilityOfChordsInLabels.get(difficulty)[chord];

The assignment to value (inside of the valueForChordDifficulty func-
tion of classifier) should be updated to use chordCountsInLabels in-
stead.

This leaves us with the following:

const classifier = {
...
const value = this.chordCountsInLabels.get(difficulty)[chord];

And tests should be passing at this point. In some cases, the correct refactor-
ing here would be to truly copy the Set object into a new one. Then, both would
be independent objects. We don’t actually need two objects, though, so we’ll
try a different approach here.

“COPYING” OBJECTS

If you’re interested in copying objects in JavaScript, look into the terms deep copy

versus shallow copy, as well as cloning and the Objectfunctions freeze, assign, and

Streamlining the API with One Global Object

241

seal. They might do what you want. Or maybe you want to create a new object tied

to the old one’s prototype with Object.create. Maybe you want a totally new object

with Object.assign. Maybe you want to make a constructor function or a class?

Maybe you just want a factory function (see Chapter 8). Maybe you want a new and
immutable container for your data.

By the way, there are two things to note about Object.create. First, it doesn’t own
the properties from the prototype object (its first parameter), so they could possibly
be overwritten. Second, it only “copies” enumerable properties, so don’t expect it

to copy everything.

There are about a million and five ways to do inheritance and copying objects in
JavaScript. That makes it hard to pick one. The point here is to remember that as-

signing with = is not one of them.

Since the last code sample contains our only reference to the value of the
new object, all we have now is an object that changes. But maybe we don’t
need to update the object at all. Let’s try using a function as an attribute, in-
stead of a set that stores all of the values.

First, let’s move the setProbabilityOfChordsInLabels function into the
classifier object:

const classifier = {
...
 setProbabilityOfChordsInLabels: function(){
 classifier.chordCountsInLabels
.forEach(function(_chords, difficulty){
 Object.keys(classifier.chordCountsInLabels.get(difficulty))
 .forEach(function(chord){
 classifier.chordCountsInLabels.get(difficulty)[chord]
 /= classifier.songs.length;
 });
 });
 },
 valueForChordDifficulty(difficulty, chord){
...

And we’ll also need to update our setLabelsAndProbabilities function
to use classifier. ahead of the function call:

function setLabelsAndProbabilities(){
 setLabelProbabilities();
 setChordCountsInLabels();
 classifier.setProbabilityOfChordsInLabels();
};

CHAPTER 7: Refactoring Functions and Objects

242

Running the test suite shows everything is working properly. Now let’s re-
place the references to classifier with this:

 setProbabilityOfChordsInLabels: function(){
 this.chordCountsInLabels.forEach(function(_chords, difficulty){
 Object.keys(this.chordCountsInLabels.get(difficulty))
 .forEach(function(chord){
 this.chordCountsInLabels.get(difficulty)[chord]
 /= this.songs.length;
 }, this);
 }, this);
 },

Recall that in addition to replacing classifier with this, we also need to
pass this in as the optional second argument to both forEach calls. Other-
wise, our this context would get lost. From earlier, we know that we could ac-
complish the same thing with arrow functions, but we’ll actually be removing
this function soon, so we’ll avoid that refactoring for now.

Now we get to the crux of the problem: we don’t really want functions that
set values through side effects. We want functions that return values. They are
much easier to work with and keep track of. We won’t get all the way there in
this chapter, and arguably, OOP fights that ethos, whereas FP encourages it (see
Chapter 11).

As for setProbabilityOfChordsInLabels, all that looping amounts to
very little. Really, all we want to do is divide the number of times the chord ap-
pears in a given difficulty by the number of songs.

You can delete the setProbabilityOfChordsInLabels function from the
object as well as its call (from inside of setLabelsAndProbabilities). In its
place, we’ll be using a simple function to check a given chord and difficulty
combo. Add the following likelihoodFromChord function and update the
valueForChordDifficulty function in classifier as follows:

const classifier = {
...
 likelihoodFromChord: function(difficulty, chord){
 return this.chordCountsInLabels
 .get(difficulty)[chord] / this.songs.length;
 },
 valueForChordDifficulty(difficulty, chord){
 const value = this.likelihoodFromChord(difficulty, chord);
 return value ? value + this.smoothing : 1;
 },
...

Now setLabelsAndProbabilities should look like this:

Streamlining the API with One Global Object

243

function setLabelsAndProbabilities(){
 setLabelProbabilities();
 setChordCountsInLabels();
};

With these changes, we’ve simplified the code and stopped relying on as
many reassignments.

At this point, all the tests should be working again. Just to recap what hap-
pened in this section, we had two variable names that were assigned to the
same object. First, we changed all the instances of the second variable name to
be the first variable name, leaving us with a variable that was updated. Then,
instead of relying on the updates to that variable, we changed references to it
to use a calculation to get the information (instead of just accessing where the
information was stored).

ABOUT REASSIGNING VARIABLES

Among the most important recent developments in JavaScript and beyond is the in-
creased importance of functional programming. We’ll explore the benefits more in
Chapter 11, but one of the best things about it is how it allows for values to be easily
trusted.

On the other end of the spectrum is reassigning values. Nothing makes a program
harder to debug, write features for, refactor, or understand than broadly scoped
variables that are assigned and reassigned. However, even variables that are fairly
limited in scope can create maintenance difficulties when they are reassigned mul-
tiple times (e.g., a variable that changes a few times in just a 20-line function).

If there’s one thing that everyone could stop doing to benefit their code, it would be
reassigning variables.

Updating values (adding/deleting/changing elements in an object or an array, for
instance) can be just as bad, and is best done as a one-step operation (mostly sim-

ply through map, filter, or reduce) behind a function and assigning to a new variable

when possible. Overall, making the scope of most variables small should be a priori-
ty.

Something to consider is the idea that OOP encourages reassigning variables by
having objects that stick around and allow properties to be changed.

CHAPTER 7: Refactoring Functions and Objects

244

Objects with Duplicate Information

In the last section, we dealt with two references to an object that was updated.
Now, we’ll deal with two independent objects that are a bit too similar. clas-
sifier.songs and songList.songs seem to have almost identical data.
Really, the only difference is the extra property (name) in songList.songs.
Let’s get rid of classifier’s songs property:

const classifier = {
...
likelihoodFromChord: function(difficulty, chord){
 return this.chordCountsInLabels
 .get(difficulty)[chord] / songList.songs.length;
},

We need to make two changes to classifier. Delete the songs attribute
and change this to songList in the likelihoodFromChord function.

Next, we have to delete the second line of our train function:

function train(chords, label){
 classifier.songs.push({label: label, chords: chords}); // this one

Also, setLabelProbabilities should use songList.songs.length in-
stead of classifier.songs.length:

function setLabelProbabilities(){
 classifier.labelCounts.forEach(function(_count, label){
 classifier.labelProbabilities.set(label,
 classifier.labelCounts.get(label) / songList.songs.length);
 })
};

Last up, our setChordCountsInLabels function needs to be changed to
use songList.songs instead of classifier.songs, and also to use
song.difficulty rather than song.label:

function setChordCountsInLabels(){
 songList.songs.forEach(function(song){
 if(classifier.chordCountsInLabels.get(song.difficulty)
=== undefined){
 classifier.chordCountsInLabels.set(song.difficulty, {});
 }
 song.chords.forEach(function(chord){
 if(classifier.chordCountsInLabels.get(song.difficulty)[chord] >
0){

Streamlining the API with One Global Object

245

 classifier.chordCountsInLabels.get(song.difficulty)[chord] +=
1;
 } else {
 classifier.chordCountsInLabels.get(song.difficulty)[chord] =
1;
 }
 });
 });
}

At this point, the tests all should work again.

Bringing the Other Functions and Variables into classifier

Now, let’s move chordCountsInLabels into our classifier object:

const classifier = {
...
 setChordCountsInLabels = function(){
 songList.songs.forEach(function(song){
 if(classifier.chordCountsInLabels.get(song.difficulty)
 === undefined){
 classifier.chordCountsInLabels.set(song.difficulty, {});
 }
 song.chords.forEach(function(chord){
 if(classifier.chordCountsInLabels
.get(song.difficulty)[chord] > 0){
 classifier.chordCountsInLabels
.get(song.difficulty)[chord] += 1;
 } else {
 classifier.chordCountsInLabels
.get(song.difficulty)[chord] = 1;
 }
 });
 });
 },
...

And then we need to change the call in setLabelsAndProbabilities to
reference it through the classifier:

function setLabelsAndProbabilities(){
 setLabelProbabilities();
 classifier.setChordCountsInLabels();
};

CHAPTER 7: Refactoring Functions and Objects

246

Next, we “this-ify” the function by changing references to classifier to
this and adding the thisArg to the forEach functions:

const classifier = {
...
 setChordCountsInLabels: function(){
 songList.songs.forEach(function(song){
 if(this.chordCountsInLabels.get(song.difficulty) === undefined){
 this.chordCountsInLabels.set(song.difficulty, {});
 }
 song.chords.forEach(function(chord){
 if(this.chordCountsInLabels.get(song.difficulty)[chord] > 0){
 this.chordCountsInLabels.get(song.difficulty)[chord] += 1;
 } else {
 this.chordCountsInLabels.get(song.difficulty)[chord] = 1;
 }
 }, this);
 }, this);
 },

All the tests still pass. Next, as with turning our likelihoodFromChord into
a query rather than setting and later retrieving the values from the probabili-
tyOfChordsInLabels map, we can now do the same thing to eliminate the
chordCountsInLabels map.

Take a look again at the setChordCountsInLabels function in the last
snippet. All it does is loop through each chord in each song, and add 1 for every
instance of the chord.

If all we have to do is count the number of times that a chord appears in a
given difficulty, we can set up similar loops and a counter, and just add 1 when
there is a match. Add this after setChordCountsInLabels in the classify
object:

chordCountForDifficulty: function(difficulty, testChord){
 let counter = 0;
 songList.songs.forEach(function(song){
 if(song.difficulty === difficulty){
 song.chords.forEach(function(chord){
 if(chord === testChord){
 counter = counter + 1;
 }
 });
 }
 });
 return counter;
},

Streamlining the API with One Global Object

247

Now we can use that function instead of setting and retrieving the chord
counts. Note that we don’t need thisArgs for our forEach functions because
we don’t have any references to this anymore.

We need a few additional changes. First, the likelihoodFromChord func-
tion can be changed to:

likelihoodFromChord: function(difficulty, chord){
 return this.chordCountForDifficulty(difficulty, chord) /
songList.songs.length;
},

Next, we can delete our setChordCountsInLabels function from classi-
fier, as well as the call to it in setLabelsAndProbabilities,which leaves us
with this:

function setLabelsAndProbabilities(){
 setLabelProbabilities();
};

This function now only exists to call another function. That means we can
delete setLabelsAndProbabilities and just call setLabelProbabilities,
which happens inside of the trainAll function. Change this:

function trainAll(){
 songList.songs.forEach(function(song){
 train(song.chords, song.difficulty);
 });
 setLabelsAndProbabilities();
};

to this:

function trainAll(){
 songList.songs.forEach(function(song){
 train(song.chords, song.difficulty);
 });
 setLabelProbabilities();
};

All the tests still pass. Before moving on, we should have another look at the
chordCountForDifficulty function:

chordCountForDifficulty: function(difficulty, testChord){
 let counter = 0;
 songList.songs.forEach(function(song){
 if(song.difficulty === difficulty){

CHAPTER 7: Refactoring Functions and Objects

248

 song.chords.forEach(function(chord){
 if(chord === testChord){
 counter = counter + 1;
 }
 });
 }
 });
 return counter;
},

As we did in the classify function, when we have code that uses a loop to
apply some function to a collection while altering a variable throughout, it is a
good candidate for reduce. By the way, notice that we used let here, rather
than const, because we have a variable that genuinely updates. Let’s change it
to use reduce:

chordCountForDifficulty: function(difficulty, testChord){
 return songList.songs.reduce(function(counter, song){
 if(song.difficulty === difficulty){
 song.chords.forEach(function(chord){
 if(chord === testChord){
 counter = counter + 1;
 }
 });
 }
 return counter;
 }, 0);
},

We have a few changes here:

• We return the result of reduce directly.

• We replace our former counter variable with a parameter to reduce’s
callback function.

• We return the counter inside of the reduce function. Recognize that this
is not returning from the chordCountForDifficulty function, but rath-
er is used inside of reduce to set the counter value as it walks through
the songList.

We can also use a filter, rather than a forEach, to help us count the ele-
ments meeting a condition. The filter function returns a new array consisting
of elements that matched the conditional:

chordCountForDifficulty: function(difficulty, testChord){
 return songList.songs.reduce(function(counter, song){
 if(song.difficulty === difficulty){

Streamlining the API with One Global Object

249

 counter += song.chords.filter(function(chord){
 return chord === testChord;
 }).length;
 }
 return counter;
 }, 0);
},

We get the length of this array and add it to the counter. This means fewer
updates to the counter. We also shaved two lines off of the chordCountFor-
Difficulty function. We could have used a second reduce here instead of
filter if we wanted to focus more on the count than the conditional, but that
would mean an innerCount variable, which seems a bit clunkier.

PERFORMANCE IMPACTS

The changes that we’ve made to query on an as-needed basis, rather than create
structures more specific to later needs, are for refactoring purposes including re-
ducing the size of the code.

Depending on the data access patterns of your program, this strategy might make
your program execute slower or faster. Transforming structures into others that

you’ll never use would be a waste. Transforming them into simpler (shallower) ones
that will be accessed frequently could produce some performance benefit. All of this
comes with the caveat that a given JavaScript platform might optimize your code in
ways you don’t expect.

We’ll discuss memoization along with functional programming in Chapter 11. It, as
well as other caching techniques, will help to overcome a performance hit you could
take from the kind of refactoring we did here.

In any case, the approach of this book is to write for humans first, and worry about
performance after the fact.

CHAPTER 7: Refactoring Functions and Objects

250

Moving on, we only have three functions left in the global scope: train,
trainAll, and setLabelProbabilities. Those seem like they would fit right
in as part of the classifier. Let’s move them now:

const classifier = {
...
trainAll: function(){
 songList.songs.forEach(function(song){
 classifier.train(song.chords, song.difficulty);
 });
 classifier.setLabelProbabilities();
},

train: function(chords, label){
 chords.forEach(chord => {
 classifier.allChords.add(chord);
 });
 if(Array.from(classifier.labelCounts.keys()).includes(label)){
 classifier.labelCounts.set(
 label, classifier.labelCounts.get(label) + 1);
 } else {
 classifier.labelCounts.set(label, 1);
 }
},

setLabelProbabilities: function(){
 classifier.labelCounts.forEach(function(_count, label){
 classifier.labelProbabilities.set(
 label, classifier.labelCounts.get(label) /
songList.songs.length);
 });
}
...

The biggest change is that we need to put these functions in the object at-
tribute syntax. Additionally, trainAll needs to prepend its calls to train and
setLabelProbabilities with classifier..

Our call to trainAll in the tests also needs a new classifier. at the be-
ginning:

classifier.trainAll();

The tests should be working at this point.
Now, let’s “this-ify” our functions. That means changing instances of clas-

sifier to this as well as adding the thisArg as a second argument to the

Streamlining the API with One Global Object

251

callbacks of the forEach functions inside of trainAll and setLabelProba-
bilities:

trainAll: function(){
 songList.songs.forEach(function(song){
 this.train(song.chords, song.difficulty);
 }, this);
 this.setLabelProbabilities();
},

train: function(chords, label){
 chords.forEach(chord => { this.allChords.add(chord) });
 if(Array.from(this.labelCounts.keys()).includes(label)){
 this.labelCounts.set(label, this.labelCounts.get(label) + 1);
 } else {
 this.labelCounts.set(label, 1);
 }
},

setLabelProbabilities: function(){
 this.labelCounts.forEach(function(_count, label){
 this.labelProbabilities.set(label, this.labelCounts.get(label) /
songList.songs.length);
 }, this);
}

Note that our forEach function inside of train doesn’t need a thisArg,
because it uses the arrow syntax.

Now, everything is part of either classifier or songList. We’re down to
two global variables. Now we can start to think about what belongs where a lit-
tle more. One attribute of classifier sticks out as more appropriately being a
part of songList: allChords.

We can simply move the attribute:

const songList = {
 allChords: new Set(),

Now we can delete it from classifier, and change this to songList in
the function call inside of train:

chords.forEach(chord => { songList.allChords.add(chord) });

The tests should pass at this point.
Next, since we want our classifier to be the only point of global access in

the program, we should move songList into it:

CHAPTER 7: Refactoring Functions and Objects

252

const classifier = {
 songList: {
 allChords: new Set(),
 difficulties: ['easy', 'medium', 'hard'],
 songs: [],
 addSong: function(name, chords, difficulty){
 this.songs.push({name: name,
 chords: chords,
 difficulty: this.difficulties[difficulty]})
 }
 },
...

And now, there are a number of references to songList that need to be pre-
pended with this. where they are inside of the classifier object. For those
that are in the tests, they need to be prepended with classifier.. Do a
search for “songList” and prepend as needed. Save, test, check, and commit.

Shorthand Syntax: Arrow, Object Function, and Object

Next up, let’s address some inconsistencies that we have in our function syntax.
We’ve used arrow functions earlier in the book, but let’s go into a bit more de-
tail here. We’ll start with an instance where we are using the arrow syntax al-
ready. In our train function we have the following:

train: function(){
 chords.forEach(chord => { this.songList.allChords.add(chord) });
...

We’ve discussed it a bit before, but what’s interesting about this is, well,
this. We reference this inside of the anonymous function here and are free to
not pass a thisArg (this) as the second parameter to forEach. As proof that
this is something special with arrow functions and not code that happens to
work fine without it, try converting it to the longhand form:

train: function(){
 chords.forEach(function(chord){
 this.songList.allChords.add(chord);
 });
...

It will break the tests! If you want to use that form, you need to include the
this, as we currently do in trainAll:

Streamlining the API with One Global Object

253

train: function(){
 chords.forEach(function(chord){
 this.songList.allChords.add(chord);
 }, this);
...

But we could use bind on the function instead (we do this with reduce since
it doesn’t have an option to pass a thisArg as a second parameter):

train: function(){
 chords.forEach(function(chord){
 this.songList.allChords.add(chord);
 }.bind(this));
...

Instead of doing either of those, let’s use the arrow syntax, which passes the
this context to the inner function and saves us from having to type the word
function so much. Awesome!

You might be wondering why we would ever not use the arrow syntax. There
are a few cases. Most importantly, you wouldn’t want to use it in cases where
the this you care about should not be the this that you have access to going
into the function. For instance, you might expect the this of a click handler in
jQuery to refer to the object clicked. If you use an arrow function, that won’t be
the case.

Another reason is that in this form (ignoring the difficulty in passing parame-
ters), the functions are easy to extract or inline, as the syntax is very similar to
function declaration syntax:

// form 1

chords.forEach(function myFunction(){
 this.songList.allChords.add(chord);
}, this);

// form 2

chords.forEach(myFunction, this);

function myFunction(){
 this.songList.allChords.add(chord);
};

It’s easy to convert between these two forms. If you start with an anonymous
function in form 1 (with or without arrow syntax), it takes a bit of extra work to
convert it into a standalone, named function. But for all of our functions used
with forEach, map, reduce, and filter, we can easily replace them with ar-

CHAPTER 7: Refactoring Functions and Objects

254

row functions. That shaves off about 10 lines of code. By the way, with our re-
factoring so far, what was once about 110 lines is now down to 63. It’s small
enough to see the whole thing at once (minus the tests):

const classifier = {
 labelCounts: new Map(),
 labelProbabilities: new Map(),
 chordCountsInLabels: new Map(),
 smoothing: 1.01,
 songList: {
 allChords: new Set(),
 difficulties: ['easy', 'medium', 'hard'],
 songs: [],
 addSong: function(name, chords, difficulty){
 this.songs.push({name: name,
 chords: chords,
 difficulty: this.difficulties[difficulty]});
 }
 },
 chordCountForDifficulty: function(difficulty, testChord){
 return this.songList.songs.reduce((counter, song) => {
 if(song.difficulty === difficulty){
 counter += song.chords.filter((chord) => {
 return chord === testChord;
 }).length;
 }
 return counter;
 }, 0);
 },
 likelihoodFromChord: function(difficulty, chord){
 return this.chordCountForDifficulty(difficulty, chord) /
this.songList.songs.length;
 },
 valueForChordDifficulty(difficulty, chord){
 const value = this.likelihoodFromChord(difficulty, chord);
 return value ? value + this.smoothing : 1;
 },
 trainAll: function(){
 this.songList.songs.forEach((song) => {
 this.train(song.chords, song.difficulty);
 });
 this.setLabelProbabilities();
 },
 train: function(chords, label){
 chords.forEach(chord => { this.songList.allChords.add(chord) });
 if(Array.from(this.labelCounts.keys()).includes(label)){
 this.labelCounts.set(label, this.labelCounts.get(label) + 1);
 } else {
 this.labelCounts.set(label, 1);

Streamlining the API with One Global Object

255

 }
 },
 setLabelProbabilities: function(){
 this.labelCounts.forEach((_count, label) => {
 this.labelProbabilities.set(label, this.labelCounts.get(label) /
this.songList.songs.length);
 });
 },
 classify: function(chords){
 return new Map(Array.from(
 this.labelProbabilities.entries()).map((labelWithProbability) => {
 const difficulty = labelWithProbability[0];
 return [difficulty, chords.reduce((total, chord) => {
 return total * this.valueForChordDifficulty(difficulty, chord);
 }, this.labelProbabilities.get(difficulty) + this.smoothing)];
 }));
 }
};

CHAPTER 7: Refactoring Functions and Objects

256

There are a few things to notice with the arrow syntax. First, if there is only
one argument, it does not need to go in parentheses:

return new Map(Array.from(
 this.labelProbabilities.entries()).map(labelWithProbability => {

If there are two or more arguments, you’ll need them, as in this case:

setLabelProbabilities: function(){
 this.labelCounts.forEach((_count, label) =>{

One somewhat strange thing is that we also need parentheses if we have
zero arguments. At this point, we can change all of our tests to use this syntax:

describe('the file', () => {
...
 it('classifies', () => {
...
 it('classifies again', () => {
...
 it('label probabilities', () => {
...

Moving on to function declaration shorthand syntax for objects, we could
use the arrow syntax and declare our trainAll function like this:

trainAll: () => {
 this.songList.songs.forEach(song => {
 this.train(song.chords, song.difficulty);
 });
 this.setLabelProbabilities();
},

However, this is not what we want. We actually want the this that we get
with the function keyword used, because that this is the object (classifier),
which is what our this inside of the function refers to. When we declare func-
tions this way, we get the context outside of the object (the global object, as-
suming nonstrict mode). In any case, there is a better shorthand for function
declarations, which we’ll get to shortly. Let’s put it back to this:

trainAll: function(){
 this.songList.songs.forEach(song => {
 this.train(song.chords, song.difficulty);
 });
 this.setLabelProbabilities();
},

Streamlining the API with One Global Object

257

One other weird thing about the arrow syntax is that sometimes we use
braces {}, and other times we don’t. Right now we have this:

counter += song.chords.filter((chord) => {
 return chord === testChord;
 }).length;

Let’s change that to this:

counter += song.chords.filter(chord => chord === testChord).length;

The lack of parentheses, braces, and the return might seem a little jarring
because it makes the statement denser. There is an additional consideration
with the braceless version, though: it implicitly returns the result of its execu-
tion. In the case of our last code snippet, that means it returns true or false.

Also note that because the brace syntax is used as a way to group the func-
tion body, if you want to return an object like this, you’ll be disappointed:

someFunction(someArg => {someThing: 'someValue'}) // nope

To return an object, you’ll need to add parentheses:

someFunction(someArg => ({someThing: 'someValue'})) // ok

As a matter of personal style, I would recommend going for less syntax when
possible. That means this:

chords.forEach(chord => { this.songList.allChords.add(chord) });

can become this:

chords.forEach(chord => this.songList.allChords.add(chord));

During the discussion of arrow functions, we brushed up against the idea of
a shorthand for declaring functions as part of an object. This is how we’re cur-
rently declaring most functions:

const classifier = {
...
 addSong: function(name, chords, difficulty){
...
 chordCountForDifficulty: function(difficulty, testChord){
...

However, we have one exception:

CHAPTER 7: Refactoring Functions and Objects

258

valueForChordDifficulty(difficulty, chord){

// instead of

valueForChordDifficulty: function(difficulty, chord){

Using this shorthand syntax can completely remove the : function part,
making the functions look like this:

Streamlining the API with One Global Object

259

const classifier = {
 songList: {
...
 addSong(name, chords, difficulty){
...
 chordCountForDifficulty(difficulty, testChord){
...

After doing that with all of our function declarations, we are actually com-
pletely free from the function keyword in this file! An incredible source of visu-
al noise and extra typing is now gone. Thanks, ES2015!

Note, however, that this shorthand only works inside of object literals and
classes. Outside of those contexts (in a normal function, global scope, or con-
structor function scope, for example), the interpreter will throw an error on the
{.

Once again, we can see that our shorthand syntax is less portable than the
longhand version.

COMPUTED PROPERTIES

While we’re discussing function declaration shorthand, it’s worth noting that you
could declare properties of an object dynamically, like this:

songs = {
 ['first' + 'Song']: {},
 ['second' + 'Song']: {},
 ['third' + 'Song']: {}
}

Basically, you can run JavaScript inside those square brackets to generate property
names. This is a trivial example (and you’d probably want some data in your ob-
jects), but you might find this convenient at some point.

Be aware, however, that when dynamically defining labels of properties (or access-

ing them dynamically as in songs['first' + 'Song']), you lose your ability to easily

search for simple strings like firstSong in your codebase.

The last bit of shorthand we could implement is in the addSong function.
Right now we have this:

CHAPTER 7: Refactoring Functions and Objects

260

addSong(name, chords, difficulty){
 this.songs.push({name: name,
 chords: chords,
 difficulty: this.difficulties[difficulty]});
}

Streamlining the API with One Global Object

261

But we could shorten the object inside of push to use the object shorthand,
like this:

this.songs.push({name, chords,
 difficulty: this.difficulties[difficulty]});

Getting New Objects with Constructor Functions

Up to now, we’ve been dealing with object literals. We’ll get to classes in a bit,
but first let’s explore another option: creating objects with constructor func-
tions. To use these we would have to change our code to something like the fol-
lowing:

const Classifier = function(){
 const SongList = function() {
 this.allChords = new Set();
 this.difficulties = ['easy', 'medium', 'hard'];
 this.songs = [];
 this.addSong = function(name, chords, difficulty){
 this.songs.push({name,
 chords,
 difficulty: this.difficulties[difficulty]});
 };
 };
 this.songList = new SongList();
 this.labelCounts = new Map();
 this.labelProbabilities = new Map();
 this.chordCountsInLabels = new Map();
 this.smoothing = 1.01;
 this.chordCountForDifficulty = function(difficulty, testChord){
 return this.songList.songs.reduce((counter, song) => {
 if(song.difficulty === difficulty){
 counter += song.chords.filter(chord => chord === testChord).length;
 }
 return counter;
 }, 0);
 };
 this.likelihoodFromChord = function(difficulty, chord){
 return this.chordCountForDifficulty(difficulty, chord) /
this.songList.songs.length;
 };
 this.valueForChordDifficulty = function(difficulty, chord){
 const value = this.likelihoodFromChord(difficulty, chord);
 return value ? value + this.smoothing : 1;
 };
 this.trainAll = function(){
 this.songList.songs.forEach((song) => {
 this.train(song.chords, song.difficulty);

CHAPTER 7: Refactoring Functions and Objects

262

 });
 this.setLabelProbabilities();
 };
 this.train = function(chords, label){
 chords.forEach(chord => this.songList.allChords.add(chord));
 if(Array.from(this.labelCounts.keys()).includes(label)){
 this.labelCounts.set(label, this.labelCounts.get(label) + 1);
 } else {
 this.labelCounts.set(label, 1);
 }
 };
 this.setLabelProbabilities = function(){
 this.labelCounts.forEach((_count, label) => {
 this.labelProbabilities.set(label, this.labelCounts.get(label) /
this.songList.songs.length);
 });
 };
 this.classify = function(chords){
 return new Map(Array.from(
 this.labelProbabilities.entries()).map((labelWithProbability) => {
 const difficulty = labelWithProbability[0];
 return [difficulty, chords.reduce((total, chord) => {
 return total * this.valueForChordDifficulty(difficulty, chord);
 }, this.labelProbabilities.get(difficulty) + this.smoothing)];
 }));
 };
};
const wish = require('wish');
describe('the file', () => {
 const classifier = new Classifier();
...

The tests only have a small change, because we need to initialize our clas-
sifier with:

const classifier = new Classifier();

That is how you instantiate an object in JavaScript using new with a con-
structor function. Notice that we are also instantiating a songList property in
a similar way inside of the classifier:

this.songList = new SongList();

Most of our changes are to existing code, but the new Classifier() and
new SongList() lines are, well, new.

Streamlining the API with One Global Object

263

DON’T FORGET TO USE NEW IN CONSTRUCTOR FUNCTIONS

If you forget new when calling a constructor function, your function may
still run fine, but there’s a chance it won’t. This is because this will be
bound to the global object (or undefined in strict mode).

Sometimes, this fear (what if people forget the new keyword!?) is cited as
the main motivation behind preferring Object.create over new with a
constructor function. The stronger case for Object.create has more to do
with seeking consistency with and not obscuring JavaScript’s prototypal
nature, rather than using the “pseudoclassical style” that constructor
functions (and classes) with new promote.

On the more flexible side of things, the parentheses after the constructor
call following new are optional when no arguments are passed to the
function. It’s a bit weird, but these are the same:

this.songList = new SongList();

this.songList = new SongList;

There is an important difference between creating objects like this and using
object literals. If you use an object literal, you are stuck doing some cloning/
deep copying/Object.create hijinks to get a new version. As we explored ear-
lier, assigning something to a new variable using = just creates a new reference
to the same object: two fingers pointing to the same moon. If you need more
than one moon, you’re going to need new, Object.create, class, and/or
some other copying/cloning utility. If you know that you’re going to want more
than one object, object literals might not be the best starting point for creating
them.

This snippet also demonstrates another result of this change: we have to
add this. to all of our properties when we use a constructor function. Also no-
tice that this syntax forces us to add our function keywords back in with the
colons replaced with equal signs. Lastly, the commas at the end of statements
have been replaced with semicolons (or not, in special cases, if you’re one of
those people).

SPEAKING OF SEMICOLONS...

Some people really hate semicolons. They’ll only use them when abso-
lutely necessary, as evidence of their deep knowledge of JavaScript’s au-
tomatic semicolon insertion (ASI).

Personally, I find the edge cases for when semicolons are necessary
somewhat hard to remember, and I feel that others (including people I
work with) do too. For those reasons, I include them most of the time.

“To semicolon, or not to semicolon?” is not the ultimate question for a
human: this is a job for a linter to handle.

CHAPTER 7: Refactoring Functions and Objects

264

Although the syntax might not be what we prefer, the tests still pass, so this
is a successful refactoring so far. What have we gained? Well, because we’re in-
side of the constructor function and not constrained by the JSON syntax, we’re
free to write any statements we want. That means we could have private
(meaning unexposed) functions and variables inside of the constructor, as well
as declaring global variables by not using var, let, or const (we could also do
that in the object literal syntax, but not as directly). Most importantly, as men-
tioned before, we can get multiple instances of the same object quite simply
with new, rather than going through somewhat unintuitive steps to “clone” or
“copy” or “create” one.

Constructor Functions Versus Factory Functions

Let’s take a break from our classifier for just a minute. You might find this
sample similar to the diary code from Chapter 5, as it also concerns privacy.
However, this discussion is focused more on objects and their creation.

We’ll be defining our API in a later section of this chapter, and in order to do
that, we should be familiar with what we can and can’t access inside of con-
structor functions. The following code sample is a bit shorter, so it will be easier
to understand this before applying the concepts to our NBC code:

// constructor function
const Secret = function(){
 this.normalInfo = 'this is normal';
 const secret = 'sekrit';
 const secretFunction = function(){
 return secret;
 };
 this.notSecret = function(){
 return secret;
 };
 totallyNotSecret = "I'm defined in the global scope";
};
const s = new Secret();
console.log(s.normalInfo); // 'this is normal'
console.log(s.secret); // undefined
console.log(s.secretFunction()); // error
console.log(s.notSecret()); // 'sekrit'
console.log(s.totallyNotSecret); // undefined
console.log(totallyNotSecret); // I'm defined in the global scope

An alternative to creating objects with the new keyword is using Ob-
ject.create. Before we change our classifier, let’s just observe the differences
between this construct and new, as in the last snippet:

Streamlining the API with One Global Object

265

// factory function
var secretTemplate = (function(){
 var obj = {};
 obj.normalInfo = 'this is normal';
 const secret = 'sekrit';
 const secretFunction = function(){
 return secret;
 };
 obj.notSecret = function(){
 return secret;
 };
 totallyNotSecret = "I'm defined in the global scope";
 return obj;
})();
const s = Object.create(secretTemplate);
console.log(s.normalInfo); // 'this is normal'
console.log(s.secret); // undefined
console.log(s.secretFunction()); // error
console.log(s.notSecret()); // 'sekrit'
console.log(s.totallyNotSecret); // undefined
console.log(totallyNotSecret); // "I'm defined in the global scope"

So, when we use Object.create, we need to supply an object to be pat-
terned from. To retain the flexibility of using a constructor with new, we end up
returning an object inside of the function. Note that this function is an IIFE.
However, we could use a normal function expression as well:

var secretTemplate = function(){
...
};
const s = Object.create(secretTemplate());

This gives us the same object, but seems a bit less clear. Also, in this con-
struction, the function will have to run every time we create a new object. In the
IIFE version, the secretTemplate function only has to run once, and to create
new objects we just reference the template object that was created.

CHAPTER 7: Refactoring Functions and Objects

266

Reordering our code a bit, we could express our object-returning code more
concisely like this:

// module pattern
var secretTemplate = (function(){
 const secret = 'sekrit';
 const secretFunction = function(){
 return secret;
 };
 totallyNotSecret = "I'm defined in the global scope";
 return {normalInfo: 'this is normal',
 notSecret(){
 return secret;
 }};
})();
const s = Object.create(secretTemplate);
console.log(s.normalInfo); // 'this is normal'
console.log(s.secret); // undefined
console.log(s.secretFunction()); // error
console.log(s.notSecret()); // 'sekrit'
console.log(s.totallyNotSecret); // undefined
console.log(totallyNotSecret); // "I'm defined in the global scope"

This uses the module pattern, not to be confused with modules to import
and export packages. A popular variation on the module pattern is the revealing
module pattern, shown here:

// revealing module pattern
var secretTemplate = (function(){
 const secret = 'sekrit';
 const secretFunction = function(){
 return secret;
 };
 totallyNotSecret = "I'm defined in the global scope";
 const normalInfo = 'this is normal';
 const notSecret = function(){
 return secret;
 };
 return {normalInfo, notSecret};

})();
const s = Object.create(secretTemplate);
console.log(s.normalInfo); // 'this is normal'
console.log(s.secret); // undefined
console.log(s.secretFunction()); // error
console.log(s.notSecret()); // 'sekrit'
console.log(s.totallyNotSecret); // undefined
console.log(totallyNotSecret); // "I'm defined in the global scope"

Streamlining the API with One Global Object

267

This is a bit cleaner, as it makes the object that is returned very concise and
readable.

CHAPTER 7: Refactoring Functions and Objects

268

ONE MORE THING ABOUT IIFES

We just used an IIFE as the right side of our assignment statement. In that case, the
variable is likely a good candidate to export as a module.

In other cases, where an IIFE is used specifically to reduce the scope of the code in-
side, we can use a block instead. So this:

(function(){
// code we don't want outside of this scope
})();

becomes this:

{
// code we don't want outside of this scope
};

But if you try to use a block, meaning {}, on the right side of an assignment (as we
did with an IIFE), it will be interpreted as an object and likely give an error. In those
cases, you’re stuck with the IIFE.

Getting back to our classifier, how would we use Object.create for a
factory function? It turns out to be very simple, and it relies on the object literal
syntax much more than how we rearranged things to use new with the construc-
tor functions in the last section:

const classifierTemplate = {
 songList: {
 allChords: new Set(),
...
const wish = require('wish');
describe('the file', () => {
 var classifier = Object.create(classifierTemplate);

To make this code work, we only need two changes from what we did with
the object literal. First, we need to regard our initial object as a template, so we
rename it classifierTemplate. Second, in our tests (which refer to classi-
fier), we create the classifier object by passing the template object to Ob-
ject.create. Note that we are just using an object literal here, not a function

Streamlining the API with One Global Object

269

or IIFE, because we don’t have anything that we care about being private at the
moment.

In case you forgot what advantages a factory function with Object.create
and a constructor function with new have over just using the object literal di-
rectly, the main one is that these are ways to create multiple classifier vari-
ables. The songList is a property of classifier, and as a nested object, a
new version of it will be created for each classifier, even though it uses the
object literal syntax. Object.create and new (along with classes and mod-
ules) are also your gateways to inheritance, which we’ll discuss in more depth
in the next chapter.

A class for Our Classifier

Next, we’ll convert our code into a class. Note that neither of our objects is a
good fit for Map because they both contain various attributes, including func-
tions. So what do we need to change to classify our code? Not too much:

class Classifier {
 constructor(){
 this.songList = {
 allChords: new Set(),
 difficulties: ['easy', 'medium', 'hard'],
 songs: [],
 addSong(name, chords, difficulty){
 this.songs.push({name,
 chords,
 difficulty: this.difficulties[difficulty]});
 }
 };
 this.labelCounts = new Map();
 this.labelProbabilities = new Map();
 this.smoothing = 1.01;
 };
 chordCountForDifficulty(difficulty, testChord){
 return this.songList.songs.reduce((counter, song) => {
 if(song.difficulty === difficulty){
 counter += song.chords.filter(
 chord => chord === testChord
).length;
 }
 return counter;
 }, 0);
 };
...

CHAPTER 7: Refactoring Functions and Objects

270

The first line might look a bit like a function definition, and under the hood it
is (although this is becoming less apparent as JS classes evolve), but it’s a spe-
cial kind of function. And as with a function, we could also assign a class expres-
sion to a variable, like this:

const Classifier = class {

As for the other changes in our code, the most significant changes in adapt-
ing from the object literal syntax are (as when we used a constructor function)
having semicolons instead of commas. Otherwise, our function definitions are
the same. Properties that aren’t functions, however, can conveniently be de-
fined inside of a constructor function and use the this. syntax and semico-
lons at the end. The constructor function runs when a new object is created,
and it is responsible for assigning properties.

The only other important change is how the constructor is called, which is
identical to the new/constructor function pattern:

const classifier = new Classifier();

Recall from earlier that if you don’t have any arguments needed for the con-
structor, this will work fine without the parentheses:

const classifier = new Classifier;

STATIC FUNCTIONS

One utility that classes offer is the ability to add static functions. These are useful if
you have any functions that don’t require an instance to be useful. In our case, every

function we have references this, a sure sign that none of them can be made static.
If we wanted to be very aggressive and extract a static function (that only is respon-

sible for division), we could try to turn our likelihoodFromChord from this:

likelihoodFromChord(difficulty, chord){
 return this.chordCountForDifficulty(difficulty, chord)
 / this.songList.songs.length;
};

into these:

likelihoodFromChord(difficulty, chord){
 return this.divide(this.chordCountForDifficulty(difficulty,
 chord),
 this.songList.songs.length);

Streamlining the API with One Global Object

271

};
divide(dividend, divisor){
 return dividend / divisor;
};

And since divide clearly has nothing to do with the function itself (which is appa-

rent because there are no references to this), we can make it static, and change the
call to reflect the new container of the function (the class, rather than the in-
stance):

likelihoodFromChord(difficulty, chord){
 return Classifier.divide(this.chordCountForDifficulty(difficulty, chord),
 this.songList.songs.length);
};
static divide(dividend, divisor){
 return dividend / divisor;
};

This change is unnecessary, as / gets the job done just fine, but static functions are
fairly easy to implement. Feel free to revert these changes.

CHAPTER 7: Refactoring Functions and Objects

272

BUT AREN’T CLASSES BAD?

“JavaScript doesn’t have real classes! They are just functions and prototypes and

objects underneath! It’s a trick. Don’t fall for it! Its true nature is disguised by
them!”

Or “JavaScript was only built in 10 days or something, right? It’s a mess underneath,
and clinging to new syntax is our only hope to avoid thinking about the differences

between .prototype, [[prototype]], getPrototypeOf, and __proto__.”

Alternatively, “Classes are fine and useful if they run on your platform and your
team can understand them.”

Also, as more features are added to JavaScript classes (such as real private at-
tributes, as discussed in Chapter 5), they are starting to look less like “syntactic
sugar” and more like a unique construct. This doesn’t invalidate arguments of pre-
ferring object composition or functional programming over OOP, but it does weaken
the “classes are nothing special” argument.

Choosing Our API

Now that our class appears to be in pretty good shape, it’s time to consider our
API itself. In other words, if someone were importing our code as a module,
what functions would be public (accessible to them), and which would be pri-
vate? As we know from Chapter 5, the private/public distinction is a bit compli-
cated in JavaScript (as of this writing, “private” currently either means ob-
scured or inaccessible, although this is likely to change), but nonetheless, we
can determine the ideal now, even before realizing the distinction fully in a
module. We’ll tackle that in the next section. For now, we’re just choosing what
functions we definitely want to be accessible.

There are three functions from classify that we need to be public:

• constructor

• trainAll

• classify

Additionally, our addSong function from songList needs to be accessible.
For convenience’s sake, let’s add a function to the classifier:

class Classifier {
 constructor(){

Streamlining the API with One Global Object

273

...
 };
 addSong(name, chords, difficulty){
 this.songList.addSong(name, chords, difficulty);
 };
...

WHAT ABOUT TRAIN?

Currently, our API relies on following the pattern of adding songs and
then training them all at once. Unfortunately, because of the side effects
we have, our code is not idempotent (a concept covered in Chapter 11). In
other words, our functions are not “pure,” because of their side effects,
and running them in a different order than specified (or multiple times)
is not handled well.

Namely, train does not run setLabelProbabilities, and if setLabelProba-
bilities were tied to train instead of trainAll, our tests would break.

This is a problem we will not fix in this chapter, but there is an idempo-
tent (and functional) version of this NBC in Chapter 11.

Now we can call the function directly from the classifier, which means the
calls in our tests like this:

classifier.songList.addSong('imagine',
['c', 'cmaj7', 'f', 'am', 'dm', 'g', 'e7'], 0);
classifier.songList.addSong('somewhereOverTheRainbow',
['c', 'em', 'f', 'g', 'am'], 0);

can turn into this:

classifier.addSong('imagine',
['c', 'cmaj7', 'f', 'am', 'dm', 'g', 'e7'], 0);
classifier.addSong('somewhereOverTheRainbow',
['c', 'em', 'f', 'g', 'am'], 0);

Additionally, since our function in the classifier has become pure delegation,
we no longer need to be so specific about the parameters:

class Classifier {
 constructor(){
...
 };
 addSong(...songParams){ // rest
 this.songList.addSong(...songParams); // spread
 };
...

CHAPTER 7: Refactoring Functions and Objects

274

The ...songParams in the function definition is known as rest parameter
syntax, and using a similar style in a function call is known as using the spread
operator. It’s hard to keep these terms straight, but Chris Deely, one of the tech-
nical reviewers of this book, suggested this mnemonic: rest is for “receiving,”
spread is for “sending.” That works for me. (Thanks, Chris.)

The rest parameter syntax takes any arguments you give it and turns them
into an array. The spread operator does the opposite, splitting the array you
give it into individual arguments to pass to the function.

The reason this is a good pattern to apply in this situation is that we already
have a function definition for addSong inside of songList. If we decided to
change the function in terms of what arguments it accepts, it would be nice not
to have to change this function as well. Using rest and spread here affords us
that flexibility.

By the way, if we discovered that in actuality songList was doing all the
work, and classifier was simply delegating every function to it, removing
these delegation functions and letting the tests (or client code that uses our
module) call the songList versions directly would be worth considering. Hav-
ing just one object that clients interact with is nice for them, but if our delega-
tion is adding sufficient bulk, we should rethink the design.

Time for a Little Privacy?

As we saw in Chapter 5, if we want fake privacy in a class, we can just add an
underscore (_) in front of all of the properties we want to be private. This con-
vention lets people using the API know that they’re in weird territory if they’re
addressing these properties directly (sometimes the private/internal aspects of
an API are referred to as the “plumbing” as opposed to the “porcelain”).

Hopefully, your editor has a way to easily rename things (find and replace
across not just a file, but the whole project). These are the labels you should
prepend an underscore to:

• songList

• labelCounts

• labelProbabilities

• smoothing

• chordCountForDifficulty

• likelihoodFromChord

• valueForChordDifficulty

• train

• setLabelProbabilities

Streamlining the API with One Global Object

275

Now we have an extremely simple path to exporting our class as a module.
Let’s split up our tests and main file to prove it. First, we have some changes to
make to nb.js:

module.exports = class Classifier {
 constructor(){
 this._songList = {
 allChords: new Set(),
 difficulties: ['easy', 'medium', 'hard'],
 songs: [],
 addSong(name, chords, difficulty){
 this.songs.push({name,
 chords,
 difficulty: this.difficulties[difficulty]});
 }
 };
 this._labelCounts = new Map();
 this._labelProbabilities = new Map();
 this._smoothing = 1.01;
 };
 addSong(...songParams){
 this._songList.addSong(...songParams);
 };
...
 classify(chords){
 return new Map(Array.from(
 this._labelProbabilities.entries()).map(
(labelWithProbability) => {
 const difficulty = labelWithProbability[0];
 return [difficulty, chords.reduce((total, chord) => {
 return total * this._valueForChordDifficulty(difficulty,
 chord);
 }, this._labelProbabilities.get(difficulty) + this._smoothing)];
 }));
 }
};

We’ve only made two changes here. The first is that the first line now has this
at the beginning:

module.exports =

The second is that we’re moving all of our testing to a separate file (in the
same directory) called nb_test.js:

const Classifier = require('./nb.js');
const wish = require('wish');
describe('the file', () => {

CHAPTER 7: Refactoring Functions and Objects

276

 const classifier = new Classifier;
 classifier.addSong('imagine',
['c', 'cmaj7', 'f', 'am', 'dm', 'g', 'e7'], 0);
...
 it('label probabilities', () => {
 wish(classifier._labelProbabilities.get('easy') ===
0.3333333333333333);
 wish(classifier._labelProbabilities.get('medium') ===
0.3333333333333333);
 wish(classifier._labelProbabilities.get('hard') ===
0.3333333333333333);
 });
});

We’ve only made one change to our tests, and it’s right up top. If you run
mocha nb_test.js, you should have no failures. Awesome.

But do you want actual privacy? For now, you have a couple of options. The
first is to go the “revealing module pattern” route, change the class back into a
constructor function, and make some seriously hefty changes. Or, you could try
some more convoluted and esoteric things with ES2015’s Symbols (creating pri-
vacy through obscurity) or WeakMaps, or using an initialization function (which
is basically designing your own form of the revealing module pattern).

If we honestly think about the trade-offs here, though, what are you gaining
by doing something complex and nonstandard? You’re making more work for
yourself and others who might work on your module. The code itself and the
tests become more complex. Trading your ability to call tests for truly private,
unaddressable functions seems like a nonstarter.

What are the risks of going the underscore route? A few extra characters here
and there will make your code ugly? People will think you’re too dumb to use
the latest and most confusing workarounds? People using your module will in-
sist on calling those functions, even if for the uninitiated you indicated in your
documentation that they shouldn’t?

If your program is already living in constructor function city, this is a tougher
call, but if you’re using classes, adding underscores seems like the much easier
solution.

All that said, it seems like private fields and methods could be headed our
way soon. The spec is still in the works as of this writing, but the basic idea is
that references to private functions and attributes would use a # instead of an
_, and be accessible only from inside the class definition. See Chapter 5 for an
example of what it may look like.

Streamlining the API with One Global Object

277

Adapting the Classifier to a New Problem Domain

And now for the last topic for this program: what if, instead of songs with
chords, we’re working with learning vocabulary, and instead of “easy,” “medi-
um,” and “hard,” we’re classifying a corpus of text as either “understood” or
“not understood”?

Some people (both coders and noncoders), upon thinking about a potential
abstraction like this, will jump to the general case right away. Think about ab-
stracting a general NBC with the code from the beginning versus the code now.
Personally, I recommend building two or three kinds of something (even some-
thing as small as a function) before insisting they are similar and attempting to
abstract them.

Now that our code is in better shape and our program is fairly small, it’s easy
enough to attempt adapting it to a new domain.

Mostly, all we have to do is rename a lot of objects:

module.exports = class Classifier {
 constructor(){
 this._textList = {
 allWords: new Set(),
 understood: ['yes', 'no'],
 texts: [],
 addText(name, words, comprehension){
 this.texts.push({name, words,
comprehension: this.understood[comprehension]});
 }
 };
 this._labelCounts = new Map();
 this._labelProbabilities = new Map();
 this._smoothing = 1.01;
 };
 addText(...textParams){
 this._textList.addText(...textParams);
 };
 _wordCountForComprehension(comprehension, testWord){
 return this._textList.texts.reduce((counter, text) => {
 if(text.comprehension === comprehension){
 counter += text.words.filter(
 word => word === testWord
).length;
 }
 return counter;
 }, 0);
 };

 _likelihoodFromWord(comprehension, word){
 return this._wordCountForComprehension(comprehension, word) /

CHAPTER 7: Refactoring Functions and Objects

278

this._textList.texts.length;
 };
 _valueForWordComprehension(comprehension, word){
 const value = this._likelihoodFromWord(comprehension, word);
 return value ? value + this._smoothing : 1;
 };
 trainAll(){
 this._textList.texts.forEach((text) => {
 this._train(text.words, text.comprehension);
 });
 this._setLabelProbabilities();
 };

 _train(words, label){
 words.forEach(word => this._textList.allWords.add(word));
 if(Array.from(this._labelCounts.keys()).includes(label)){
 this._labelCounts.set(label, this._labelCounts.get(label) + 1);
 } else {
 this._labelCounts.set(label, 1);
 }
 };

 _setLabelProbabilities(){
 this._labelCounts.forEach((_count, label) => {
 this._labelProbabilities.set(label,
this._labelCounts.get(label) / this._textList.texts.length);
 });
 };

 classify(words){
 return new Map(Array.from(
 this._labelProbabilities.entries()).map(
(labelWithProbability) => {
 const comprehension = labelWithProbability[0];
 return [comprehension, words.reduce((total, word) => {
 return total * this._valueForWordComprehension(comprehension,
word);
 }, this._labelProbabilities.get(comprehension) +
this._smoothing)];
 }));
 }
};

And here are the tests:

Classifier = require('./nb_new_domain.js');
const wish = require('wish');
describe('the file', () => {
 const classifier = new Classifier;

Streamlining the API with One Global Object

279

 classifier.addText('english text',
 ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i',
 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q'],
 0);
 classifier.addText('japanese text',
 ['あ', 'い', 'う', 'え', 'お',
 'か', 'き', 'く', 'け', 'こ'],
 1);

 classifier.trainAll();
 it('classifies', () =>{
 const classified = classifier.classify(['お', 'は', 'よ', 'う', 'ご', 'ざ',
 'い', 'ま', 'す']);
 wish(classified.get('yes') === 1.51);
 wish(classified.get('no') === 5.19885601);
 });
 it('number of words', ()=>{
 wish(classifier._textList.allWords.size === 27);
 });

 it('label probabilities', ()=>{
 wish(classifier._labelProbabilities.get('yes') === 0.5);
 wish(classifier._labelProbabilities.get('no') === 0.5);
 });
});

Based on the earlier input, the tests show that the Japanese is likely to be
incomprehensible to someone who classified the original training data. If we
wanted to go further with this text classifier, we might be interested in process-
ing the text more thoroughly. This could mean by character/letter, by word, by
sentence, or getting deeper into the grammars of the target languages with
techniques like stemming. Similarly, with the music version, we could have con-
sidered sequences of chords (transitions can be more difficult than the chords
themselves). It’s also possible that a reader of both languages could have a dif-
ferent threshold of understanding for a specific vocabulary (e.g., parts of a mo-
torcycle), rather than classifying everything in one language as incomprehensi-
ble.

Again (as we did with “easy,” “medium,” “hard”), we’re stopping one step be-
fore our classifier prints “yes/no” or “Japanese/English” (we could train for ei-
ther scenario), so we just pick the category with the largest associated number.
Feel free to add a test and implement that feature if you’re feeling ambitious.

While those are all features to add, our purpose in this chapter—improving
the quality of the code—has been accomplished, so we’re all set. Check out
Chapter 11 for a functional version of this code.

CHAPTER 7: Refactoring Functions and Objects

280

Wrapping Up

In this chapter (and Chapter 6), we covered a huge range of general refactoring
techniques. Throughout the rest of the book, we’ll be looking at more special-
ized styles based on the paradigms JavaScript provides, including object-
oriented programming, functional programming, and asynchronous program-
ming.

Wrapping Up

281

Refactoring Within a Hierarchy 8

In the previous two chapters, we saw a large example of refactoring in action.
Ultimately, our concern was with the execution of two main actions: training
and classifying. It was convenient to write our program as having one main ob-
ject (a Naive Bayes Classifier), which was also explored as a class and a module.

For this chapter, one object is not enough.

About “CRUD Apps” and Frameworks

As a web application developer, you’d likely spend a lot of time with “CRUD”
(create, read, update, delete) applications. That means concentrating on two
high-level tasks: organizing data, and presenting that data.

The former is often addressed by database management systems (and your
design of the data), while the latter is often handed off to a framework, con-
cerned with the efficient and workable presentation of that data. Database re-
cords mix together with some proprietary data, and turn into CSV (comma-
separated value) files and styled web pages.

Although we’re not diving into full-stack or presentation frameworks here, it
is worth pointing out that they help to avoid a good deal of the problems that
refactoring helps to solve. These include:

• One huge file containing all of the code
• One huge (flat) directory containing all of the code
• One huge object or function containing all of the code

As we demonstrated in the previous chapter, extracting functions, objects,
and modules can provide some clarity into how the code works. Frameworks,
databases, and other libraries provide common interfaces for data access and
presentation, and in doing so, seem to solve the biggest organizational prob-
lems.

However, three major drawbacks to frameworks are:

283

• Even if the interface in your app becomes more standardized or “simpli-
fied” within a framework, team members will need to come up to speed.

• “Refactoring with framework x” is a rewrite. There’s no such thing as “re-
factoring” by radically changing interfaces.

• Developers can become (or begin as) completely dependent on frame-
works, which constrains experience in the language itself.

This last point is as troubling as it is common. Many developers can use
jQuery, React, and the like to some degree, but struggle with JavaScript outside
of those contexts.

In Chapters 6 and 7, we discussed the building blocks of architecting Java-
Script in a reasonable way. In this chapter and beyond, we take those ideas a
bit further, and in this chapter, we will discuss how hierarchies can go wrong.

There are definitely cases where you will want a framework to help you orga-
nize and standardize your code, but extracting functions, objects, and modules,
as well as building hierarchies, are all tools that you should consider along with
frameworks when you need to manage complexity.

Let’s Build a Hierarchy

In this chapter, we’ll be dealing with words—specifically, creating a vocabulary
list. This could be a simple array of words you need to study, or, to add a bit of
complexity, words could each be objects with multiple properties: aspects of
state (nonfunction attributes) and behavior (functions).

As far as the motivation for hierarchy, there are two. The first is that having a
“parent” object (and possibly class as well) will lend itself to code reuse and
less repetition in code. Let’s say we want to count the characters of our words,
for which we have two classes:

class EnglishWord{
 constructor(word){
 this.word = word;
 }
 count(){
 return this.word.length;
 }
};
class JapaneseWord{
 constructor(word){
 this.word = word;
 }
 count(){
 return this.word.length;
 }
};

CHAPTER 8: Refactoring Within a Hierarchy

284

const japaneseWord = new JapaneseWord("犬");
const englishWord = new EnglishWord("dog");
console.log(japaneseWord.word);
console.log(japaneseWord.count());
console.log(englishWord.word);
console.log(englishWord.count());

We can see that there is a lot of duplication in the classes, but what can we
do about it?

class Word{
 constructor(word){
 this.word = word;
 };
 count(){
 return this.word.length;
 };
};

class EnglishWord extends Word{};
class JapaneseWord extends Word{};

const japaneseWord = new JapaneseWord("犬");
const englishWord = new EnglishWord("dog");
console.log(japaneseWord.count());
console.log(japaneseWord.word);
console.log(englishWord.count());
console.log(englishWord.word);

Now EnglishWord and JapaneseWord both inherit from Word, and the
code is much shorter. We’ve “extracted a superclass” and “pulled up the func-
tions” from the subclasses. If the subclasses were actually the same, we’d be
free to delete those two classes (collapsing the hierarchy) completely and just
use new Word("something") for new words. However, we’ll be adding distin-
guishing features to both, so let’s keep them for now.

As far as distinguishing features of these different words, they won’t tend to
appear in the same dictionary. Should we want to look them up, we could add a
function to our superclass (Word) like this:

class Word{
...
 lookUp(){
 if (this instanceof JapaneseWord){
 return `http://jisho.org/search/${this.word}`;
 }else{
 return `https://en.wiktionary.org/wiki/${this.word}`;
 }

Let’s Build a Hierarchy

285

 };
};
...
console.log(englishWord.lookUp());
console.log(japaneseWord.lookUp());

The instanceof operator is something we haven’t seen yet (by the way, the
unfortunate lack of camelCase is not a typo). It can be handy, but ties our con-
ditional to a specific name of the class. To get away from that, we might want to
add a language attribute to each class of word:

class Word{
 constructor(word){
 this.word = word;
 };
 count(){
 return this.word.length;
 };
 lookUp(){
 if (this.language === "Japanese"){
 return `http://jisho.org/search/${this.word}`;
 }else{
 return `https://en.wiktionary.org/wiki/${this.word}`;
 }
 };
};

class EnglishWord extends Word{
 constructor(word){
 super(word);
 this.language = "English";
 };
};
class JapaneseWord extends Word{
 constructor(word){
 super(word);
 this.language = "Japanese";
 };
};

const japaneseWord = new JapaneseWord("犬");
const englishWord = new EnglishWord("dog");
console.log(japaneseWord.count());
console.log(japaneseWord.word);
console.log(englishWord.count());
console.log(englishWord.word);
console.log(englishWord.lookUp());
console.log(japaneseWord.lookUp());

CHAPTER 8: Refactoring Within a Hierarchy

286

Now it might look like our superclass constructor isn’t doing very much
work. What if we defined each subclass constructor to take over all of the setup
responsibilities?

class EnglishWord extends Word{
 constructor(word){
 this.word = word;
 this.language = "English";
 };
};
class JapaneseWord extends Word{
 constructor(word){
 this.word = word;
 this.language = "Japanese";
 };
};

If we do this, we’ll get an error on that third line. Why? It is a weird quirk, but
in order to subclass our constructor function, we still need to call super. Other-
wise, this is undefined:

class Word{
 count(){
...
 };
 lookUp(){
...
 };
};
class EnglishWord extends Word{
 constructor(word){
 super();
 this.word = word;
 this.language = "English";
 };
};
class JapaneseWord extends Word{
 constructor(word){
 super();
 this.word = word;
 this.language = "Japanese";
 };
};

Weirder still, even if the superclass’s constructor function is not present at
all, we still have to pay it homage. We could split the responsibility like this:

Let’s Build a Hierarchy

287

class Word{
 constructor(word, language){
 this.word = word;
 };
...
};

class EnglishWord extends Word{
 constructor(word){
 super(word);
 this.language = "English";
 };
};
class JapaneseWord extends Word{
 constructor(word){
 super(word);
 this.language = "Japanese";
 };
};

But it’s probably better just to give super all of the responsibility like this:

class Word{
 constructor(word, language){
 this.word = word;
 this.language = language;
 };
...
};
class EnglishWord extends Word{
 constructor(word){
 super(word, "English");
 };
};
class JapaneseWord extends Word{
 constructor(word){
 super(word, "Japanese");
 };
};

DEFAULT PARAMETERS

You might find that, most of the time, a parameter to a function (constructor or
not) tends to be the same. If that is the case, you can use default parameters like
this:

CHAPTER 8: Refactoring Within a Hierarchy

288

class Word{
 constructor(word, language="English"){
 this.word = word;
 this.language = language;
 };
...
};
class EnglishWord extends Word{};
class JapaneseWord extends Word{
 constructor(word){
 super(word, "Japanese");
 };
};

Calling EnglishWord’s constructor will now just use Word’s constructor with one ar-
gument (recall that JavaScript doesn’t mind when you call too many or too few ar-
guments to a function). By default, the language will be English, but if a second ar-
gument is passed in, the language will be set to whatever that is instead.

Note that this does create some complexity in the function definition, as you have
two potential paths instead of one. Additionally, the function calls will not neces-
sarily all look the same.

It’s better to use default arguments for something that’s truly a default, rather than
just a common case. For instance, initially marking a word in a vocabulary list as

studied = false would make sense because it’s not possible for it to have been
studied before it enters the system.

As for the second reason to subclass, let’s look again at our lookUp function:

class Word{
...
 lookUp(){
 if (this.language === "Japanese"){
 return `http://jisho.org/search/${this.word}`;
 }else{
 return `https://en.wiktionary.org/wiki/${this.word}`;
 }
 };
};

if statements are not necessarily universally a bad thing, but better code
will tend to avoid them through subclassing or some other polymorphic mech-
anism. If we delete the lookUp function from the superclass and add it to the
subclasses, we’ll end up with implementations like this:

Let’s Build a Hierarchy

289

class EnglishWord extends Word{
...
 lookUp(){
 return `https://en.wiktionary.org/wiki/${this.word}`;
 };
};
class JapaneseWord extends Word{
...
 lookUp(){
 return `http://jisho.org/search/${this.word}`;
 };
};

This works great, and we have two tiny functions (three lines each) instead
of one small function (five lines). Overall, we gained a line, but both functions
are, independently, simpler to test. Better still, we only have one code path for
each of them. This may seem subtle, but it means that should either branch
grow in complexity—for example, switching dictionaries for different kinds of
words (within a language)—the complexity will grow in a smaller context. if
statements tend to lead to more if statements. Avoiding them helps to keep
code bulk down, and subclassing helps to eliminate them.

By the way, notice that if we only had a Word class and no subclasses, two
things would be true with our given tools: the conditional check from before
would be our only option, and we wouldn’t be able to use instanceof for that
check even if we wanted to.

SUBCLASSING? JUST TO AVOID A CONDITIONAL?

You may be skeptical of subclassing being the best way to avoid condi-
tionals. Sometimes you’ll prefer a simple conditional to subclassing.
Other times, you may want to skip both the subclassing and the condi-
tional altogether (see “Strategy”).

There are many ways to avoid conditionals, but simplifying functions to
not ask “what am I?”–type questions is key. This is sometimes called
“tell, don’t ask.”

You may find that the lookup URL itself is valuable. As with the language,
there are a few options here. You might change the superclass’s implementa-
tion of lookUp and just add to the subclasses’ constructors:

class Word{
 lookUp(){
 return this.lookUpUrl + this.word;
 };
...

CHAPTER 8: Refactoring Within a Hierarchy

290

};

class EnglishWord extends Word{
 constructor(word){
 super(word, "English");
 this.lookUpUrl = 'https://en.wiktionary.org/wiki/';
 };
};
class JapaneseWord extends Word{
 constructor(word){
 super(word, "Japanese");
 this.lookUpUrl = 'http://jisho.org/search/';
 };
};

Additionally, you could, as we did with language, add another parameter
(lookUpUrl) to the superclass’s constructor:

class Word{
 constructor(word, language, lookUpUrl){
 this.word = word;
 this.language = language;
 this.lookUpUrl = lookUpUrl;
 };
...
};
class EnglishWord extends Word{
 constructor(word){
 super(word, 'English', 'https://en.wiktionary.org/wiki/');
 };
};
class JapaneseWord extends Word{
 constructor(word){
 super(word, 'Japanese', 'http://jisho.org/search/');
 };
};

My take on this is to either make the superclass do as much as possible, or as
little as possible. Having the subclasses simply delegate to the superclass is
fairly clean. Having the subclasses each handle as much as possible themselves
(and potentially, not even have a constructor superclass) is also fairly clean.
Mixing the two together, creating too much variation in the constructors of sib-
ling classes (like EnglishWord and JapaneseWord), having default parame-
ters, or relying on deeper hierarchies (e.g., super’s super’s super’s construc-
tor) can all make things more confusing.

Before we move on, let’s develop some assumptions through tests. If you
haven’t installed wish and deep-equal, do that now with:

Let’s Build a Hierarchy

291

npm install wish
npm install deep-equal

As for our tests, we’ll use the following:

const wish = require('wish');
const deepEqual = require('deep-equal')

// interfaces tests
wish(japaneseWord.word === "犬");
wish(japaneseWord.lookUp() === "http://jisho.org/search/犬");
wish(japaneseWord.count() === 1);

wish(englishWord.word === "dog");
wish(englishWord.lookUp() === "https://en.wiktionary.org/wiki/dog");
wish(englishWord.count() === 3);

// internals tests
wish(typeof japaneseWord === 'object');
wish(typeof JapaneseWord === 'function');
wish(japaneseWord instanceof JapaneseWord);
wish(japaneseWord instanceof Word);
wish(!(JapaneseWord instanceof Word));

wish(japaneseWord.constructor === JapaneseWord);
wish(Object.getPrototypeOf(JapaneseWord) === Word);

// sketchy bits
wish(deepEqual(Object.getPrototypeOf(japaneseWord), {}));
console.log(Object.getPrototypeOf(japaneseWord));
// reports JapaneseWord {}

The interface tests may not be terribly surprising. However, with our hierar-
chy variants that follow, these are the ones we’ll really care about preserving.

The internals tests are less straightforward. typeof only manages to tell us
that japaneseWord is an object and JapaneseWord is a function. The best in-
formation here is probably that japaneseWord is an instance of both Japane-
seWord and Word. By contrast, JapaneseWord is a class, so it’s not an instance
of Word.

In the next two lines, we can see that the constructor for japaneseWord (the
object) is JapaneseWord (the class) and that the prototype of JapaneseWord
(the class) is Word (the class).

From there, things get a bit sketchy. The prototype of japaneseWord evalu-
ates to an empty object, but if you log it, you’ll get a bit more info: Japanese-
Word {}.

CHAPTER 8: Refactoring Within a Hierarchy

292

If you want to go deeper than this on prototypes, you should know a few
things:

• There’s a “nonstandard” yet popular alternative to Object.getProto-
typeOf(thing), which you use like this: thing.__proto__.

• Object.getPrototypeOf has the alias Reflect.getPrototypeOf.
• There’s another prototype inspection attribute that you can use like this:
thing.prototype. It’s super unreliable.

• Partly because there’s so much nonsense and inconsistency around pro-
totypes, when people talk about the “real, true, deep-down” prototype of
something, they’ll use syntax like [[Prototype]] to indicate they mean
the real prototype, as opposed to the five ways of actually interrogating
an object.

There are some subtle and nuanced opinions concerning prototypes, but for
the sake of refactoring our example, we’ll only care that the interface is pre-
served. For a more sympathetic and detailed exploration of prototypes in Java-
Script, I’d recommend reading this & Object Prototypes (http://bit.ly/
ydkjs_this), from the “You Don’t Know JS” series.

Let’s Wreck Our Hierarchy

Now that we have a nice hierarchy set up, let’s break it down, exploring these
options:

• Constructor functions
• Object literals
• Factory functions

Constructor Functions

We’ve been through the noninheritance aspects of this in previous chapters,
but here is how we would write the constructor function version of our class-
based code from the last section:

function Word(word, language, lookUpUrl){
 this.word = word;
 this.language = language;
 this.lookUpUrl = lookUpUrl;
 this.count = function(){
 return this.word.length;
 };
 this.lookUp = function(){
 return this.lookUpUrl + this.word;

Let’s Wreck Our Hierarchy

293

http://bit.ly/ydkjs_this

 };
};

function EnglishWord(word){
 Word.call(this, word, "English", 'https://en.wiktionary.org/wiki/');
};

function JapaneseWord(word){
 Word.call(this, word, "Japanese", 'http://jisho.org/search/');
};

JapaneseWord.prototype = Object.create(Word.prototype);
JapaneseWord.prototype.constructor = JapaneseWord;
EnglishWord.prototype = Object.create(Word.prototype);
EnglishWord.prototype.constructor = EnglishWord;

Note that instead of relying on the constructor so heavily, we could have also
let the subclass-like constructor functions do more work, as in the following:

function Word(){
 this.count = function(){
 return this.word.length;
 };
 this.lookUp = function(){
 return this.lookUpUrl + this.word;
 };
};

function EnglishWord(word){
 Word.call(this);
 this.word = word;
 this.language = "English";
 this.lookUpUrl = 'https://en.wiktionary.org/wiki/';
};

function JapaneseWord(word){
 Word.call(this);
 this.word = word;
 this.language = "Japanese";
 this.lookUpUrl = 'http://jisho.org/search/';
};

JapaneseWord.prototype = Object.create(Word.prototype);
JapaneseWord.prototype.constructor = JapaneseWord;
EnglishWord.prototype = Object.create(Word.prototype);
EnglishWord.prototype.constructor = EnglishWord;

This should all look fairly familiar, except for the last four lines. If we had
tests in place, all of our tests and logging statements using the interfaces we’ve

CHAPTER 8: Refactoring Within a Hierarchy

294

dealt with would pass fine without these lines. However, they are important for
establishing the object hierarchy. If we don’t assign the prototype, then any
changes we make to Word.prototype will not update its subclass-like objects.
For example:

// with the last 4 lines from the previous snippet removed
Word.prototype.reportLanguage = function(){
 return `The language is: ${this.language}`;
};
const japaneseWord = new JapaneseWord("犬");
console.log(japaneseWord.reportLanguage());

This will result in an error, because japaneseWord doesn’t know about its
ancestry. Adding just the first line would fix this:

JapaneseWord.prototype = Object.create(Word.prototype);

Even without these lines, all of our original linkages to properties are still
okay. In other words, our interface tests will still pass when the code is like this:

function Word(word, language, lookUpUrl){
 this.word = word;
 this.language = language;
 this.lookUpUrl = lookUpUrl;
 this.count = function(){
 return this.word.length;
 };
 this.lookUp = function(){
 return this.lookUpUrl + this.word;
 };
};

function EnglishWord(word){
 Word.call(this, word, "English", 'https://en.wiktionary.org/wiki/');
};

function JapaneseWord(word){
 Word.call(this, word, "Japanese", 'http://jisho.org/search/');
};

// JapaneseWord.prototype = Object.create(Word.prototype);
// JapaneseWord.prototype.constructor = JapaneseWord;
// EnglishWord.prototype = Object.create(Word.prototype);
// EnglishWord.prototype.constructor = EnglishWord;

// Word.prototype.reportLanguage = function(){
// return `The language is: ${this.language}`;
// };

Let’s Wreck Our Hierarchy

295

const japaneseWord = new JapaneseWord("犬");
// console.log(japaneseWord.reportLanguage());

const englishWord = new EnglishWord("dog");

const wish = require('wish');
const deepEqual = require('deep-equal')

// interfaces tests
wish(japaneseWord.word === "犬");
wish(japaneseWord.lookUp() === "http://jisho.org/search/犬");
wish(japaneseWord.count() === 1);

wish(englishWord.word === "dog");
wish(englishWord.lookUp() === "https://en.wiktionary.org/wiki/dog");
wish(englishWord.count() === 3);

Note that the same goes for the case of leaving more to the subclasses.
However, two of our internal tests will fail if we omit manually linking the

prototype and constructor via:

JapaneseWord.prototype = Object.create(Word.prototype);
JapaneseWord.prototype.constructor = JapaneseWord;

Namely, these two tests:

wish(japaneseWord instanceof Word);
wish(Object.getPrototypeOf(JapaneseWord) === Word);

With just the first line in place:

JapaneseWord.prototype = Object.create(Word.prototype);
// JapaneseWord.prototype.constructor = JapaneseWord;

these tests will fail:

wish(japaneseWord.constructor === JapaneseWord);
wish(Object.getPrototypeOf(JapaneseWord) === Word);

And even with manually establishing both the prototype and constructor,
our test from the sketchy bits will fail:

// sketchy bits
wish(deepEqual(Object.getPrototypeOf(japaneseWord), {}));
console.log(Object.getPrototypeOf(japaneseWord));
// prints JapaneseWord { constructor: [Function: JapaneseWord] }

CHAPTER 8: Refactoring Within a Hierarchy

296

as well as this one:

wish(Object.getPrototypeOf(JapaneseWord) === Word);

The same is true for our variant of the hierarchy that put more logic into the
subclasses.

WHICH JAVASCRIPT IS BETTER?

In JavaScript, any time you want to know what an object is, know what is inside of
it, know how it came to be, loop through it, or create a new one based on it, you
have a lot of bad options.

My general recommendation is to stick to recent sources. You’ll see these lean to-
ward two types of people: spec-friendly and puristic. If you follow spec-friendly
people, you’ll have decent references for APIs, and you’ll see many critiques and
questions around the same problems you’re having. Following the purists also has
value, because they do the most questioning, push specs to improve, and spend a
lot of time endorsing approaches that work well but might not be as popular. You
can learn a lot from purists.

As far as inheritance, there has always been a group desperately pushing for OOP, as
well as a group embracing the “true” nature of JavaScript. As of this writing, it
seems that both of these groups are somehow paradoxically winning. While that’s
great, it also adds an extra layer of confusion, especially when you factor in how
both approaches may change year by year.

Object Literals

Next, we’ll turn to another approach we’ve used before: object literals. Let’s
start with our superclass, which in this style is instead called the delegate proto-
type. It’s just an object:

const word = {
 count(){
 return this.word.length;
 },
 lookUp(){
 return this.lookUpUrl + this.word;
 }
};

Let’s Wreck Our Hierarchy

297

So how do we inherit from it? Here is where we get stuck. Should we rely on
constructor functions for the subclasses?

We don’t have to. Here is the simplest approach:

const englishWord = Object.create(word);
englishWord.word = 'dog';
englishWord.language = 'English';
englishWord.lookUpUrl = 'https://en.wiktionary.org/wiki/';

const japaneseWord = Object.create(word);
japaneseWord.word = '犬';
japaneseWord.language = 'Japanese';
japaneseWord.lookUpUrl = 'http://jisho.org/search/';

That seems a little clunky, though. We create a copy of the word object with
Object.create, but then we have to assign all of our new properties in an
awkward way.

Let’s try using ES2015’s Object.assign:

const englishWord = Object.assign(Object.create(word),
 {word: 'dog',
 language: 'English',
 lookUpUrl: 'https://en.wiktionary.org/wiki/'});

const japaneseWord = Object.assign(Object.create(word),
 {word: '犬',
 language: 'japanese',
 lookUpUrl: 'http://jisho.org/search/'});

That’s a little better because now we have one simple statement that com-
bines objects, rather than updating them. Changing values of variables (even
members of arrays and objects) is problematic, as we saw earlier, so this ap-
proach is preferable. By the way, that is also why we’re using Object.cre-
ate(word) instead of just word as the first argument. The first parameter of
Object.assign is actually intended to be the “target” object. If we just put
word in there, it would clobber our original, rather than giving us a fresh copy to
augment.

This will pass all of our interface tests, but only one of the internal tests:

// interface tests
wish(japaneseWord.word === "犬");
wish(japaneseWord.lookUp() === "http://jisho.org/search/犬");
wish(japaneseWord.count() === 1);

wish(englishWord.word === "dog");
wish(englishWord.lookUp() === "https://en.wiktionary.org/wiki/dog");

CHAPTER 8: Refactoring Within a Hierarchy

298

wish(englishWord.count() === 3);

// internal tests
wish(typeof japaneseWord === 'object');
console.log(Object.getPrototypeOf(japaneseWord));
// prints { count: [Function: count], lookUp: [Function: lookUp] }

We can also see that the value of japaneseWord’s prototype is different
now.

Factory Functions

The object literal option might seem pretty good as far as simplicity goes, but if
we’re creating a lot of words, it might be clunky compared to using the new key-
word with either class or a constructor function. We’ll explore one more alter-
native now.

We can use factory functions like this:

const word = {
 count(){
 return this.word.length;
 },
 lookUp(){
 return this.lookUpUrl + this.word;
 }
}
const englishWordFactory = (theWord) => {
 return Object.assign(Object.create(word),
 {word: theWord,
 language: 'English',
 lookUpUrl: 'https://en.wiktionary.org/wiki/'})
};

const japaneseWordFactory = (theWord) => {
 return Object.assign(Object.create(word),
 {word: theWord,
 language: 'Japanese',
 lookUpUrl: 'http://jisho.org/search/'})
};

const englishWord = englishWordFactory('dog');
const japaneseWord = japaneseWordFactory('犬');

// interfaces tests
wish(japaneseWord.word === "犬");
wish(japaneseWord.lookUp() === "http://jisho.org/search/犬");
wish(japaneseWord.count() === 1);

Let’s Wreck Our Hierarchy

299

wish(englishWord.word === "dog");
wish(englishWord.lookUp() === "https://en.wiktionary.org/wiki/dog");
wish(englishWord.count() === 3);

Revisiting our entire reason for subclassing to begin with, we had two main
purposes. First, we didn’t want to have to repeat code. Second, we wanted to
get rid of the if statement. This accomplishes both of those goals. Plus, our in-
terface tests are still passing.

So what’s the downside?
When we sever the link to some prototype (either through constructor func-

tions or classes), we lose the ability to add attributes to many objects at once.
With a class or constructor function, we can do this:

const japaneseWord = new JapaneseWord("犬"); // old code

// new code
Word.prototype.reportLanguage = function(){
 return `The language is: ${this.language}`;
}
console.log(japaneseWord.reportLanguage());

We can do this even after we create the individual words. With object literals
created directly or through factory functions, the objects are unavailable for
these kinds of late extensions because they have no prototype chain. Note that
this ability to track prototypes broke when we started using factory functions,
not as a part of us using Object.create or Object.assign.

If we want that mechanism with objects that lack a prototype, we can add
the prototype directly:

japaneseWord.prototype = word;
englishWord.prototype = word;

word.reportLanguage = function(){
 return `The language is: ${this.language}`;
};

console.log(japaneseWord.reportLanguage());
console.log(englishWord.reportLanguage());

But for many objects, that would get tedious. Instead, we can do this with
factory functions, like this:

const wordFactory = function(){
 return {count(){
 return this.word.length;

CHAPTER 8: Refactoring Within a Hierarchy

300

 },
 lookUp(){
 return this.lookUpUrl + this.word;
 }
 };
};

const englishWordFactory = (theWord) => {
 let copy = Object.assign(wordFactory(),
 {word: theWord,
 language: 'English',
 lookUpUrl: 'https://en.wiktionary.org/wiki/'})
 return Object.setPrototypeOf(copy, wordFactory);
};

const japaneseWordFactory = (theWord) =>{
 let copy = Object.assign(wordFactory(),
 {word: theWord,
 language: 'Japanese',
 lookUpUrl: 'http://jisho.org/search/'})
 return Object.setPrototypeOf(copy, wordFactory);
};
const englishWord = englishWordFactory('dog');
const japaneseWord = japaneseWordFactory('犬');

wordFactory.reportLanguage = function(){
 return `The language is: ${this.language}`;
};
console.log(japaneseWord.reportLanguage());
console.log(englishWord.reportLanguage());

It’s not strictly necessary to use a factory function for word, but this does
avoid the extra step of creating a prototype (and possibly an arbitrary one) for
it. Although it might seem like a hassle to manually set the prototype inside of
the specific language factory functions, the alternative of manually setting
them for each instance of a word would be worse if there are too many objects.

Evaluating Your Options for Hierarchies

To wrap up this section, recall that we looked at four ways to build a hierarchy:

• Classes
• Constructor functions
• Object literals
• Factory functions

Let’s Wreck Our Hierarchy

301

Which one you choose in a given situation is up to you. Constructor func-
tions are probably the worst option. Because they have been a perennial at-
tempt at classes, many variants exist, and it is hard to find great documentation
on them (a web search will show you ways to do them from five, six, and seven
years ago—all different). If you’re considering them, just go for classes instead.

Factory functions give you a bit more control (including possibilities for es-
tablishing a prototype chain) as compared with object literals. But for simple
cases, object literals are easier to work with.

Your team or codebase (including libraries you use) might be dedicated to
certain methods of establishing a hierarchy. In those cases, sticking to what’s
there is a decent option. You could encounter two pathological approaches,
however. The first is an overreliance on manipulating and inspecting prototype,
constructor, and associated utilities. For that, the remedy is to keep things su-
perficial as much as you can. Keep testing at an interface level and focus your
concerns there.

The rest of this chapter is dedicated to handling the second case: an over-
commitment to hierarchies and OOP.

Inheritance and Architecture

So far, we’ve seen a few different patterns for copying data, ranging from the
classiest (pseudo-) classical to the factory function that happily ignores most of
the ideas around prototypes, constructors, and any other lines we’d need to
draw from box to box in a UML diagram.

To recap, we know that we can make solitary objects using:

• Object literals

• Classes (uses new)

• Constructor functions (uses new)
• Factory functions (just returns an object)

• Object.assign and Object.create
• Libraries (like mori and Immutable.js)

Additionally, when it’s preferable to objects, we can make more specific con-
tainers as we need them, such as:

• Set

• Map

• Array

• String

• Function

CHAPTER 8: Refactoring Within a Hierarchy

302

• Other JavaScript types

It’s already a lot of options, but in order to round out the discussion, let’s ad-
dress architectural concerns a bit more deeply, centered on answering the fol-
lowing questions:

• Why do some people hate classes?
• What about multiple inheritance?
• Which interfaces do you want?

Why Do Some People Hate Classes?

The first argument that some people latch onto is that new, this, super, and
anything else having to do with classical OOP style detracts from their preferred
mechanism of sharing data and behavior between JavaScript objects (hurting
the purity and making things confusing)—but some of these criticisms are of
object-oriented programming itself. They argue that it promotes bad practices
like tight coupling of components, and encourages deep hierarchies and muta-
ble state.

The class keyword is a hard blow to those who have been advocates for
avoiding class-based OOP in JavaScript for a long time.

On the pro side of things, people have always struggled awkwardly to force
JavaScript to behave this way. If it is what Douglas Crockford might call a “foot-
gun,” then at the very least, condoning and standardizing the “footwounds” will
make problems easier to search for and fix. There’s some degree of herd im-
munity if we’re all suffering from the same disease.

Also on the pro side, as features grow around classes, richer APIs become
available for reflection and inspecting your code. For example, error messages
can be more detailed by default.

Additionally, having a sanctioned standard for something makes it easier to
learn once (adapting with the spec as necessary), rather than chasing the latest
and greatest way to avoid mostly benign “syntactic sugar” for constructor func-
tions.

The criticisms of classical OOP itself should be taken very seriously, howev-
er. A deeply nested hierarchy will be difficult to debug and maintain. Critics are
not wrong to say that the extends keyword encourages a deep hierarchy (e.g.,
class Dog extends Pet extends Animal extends Organism), but it does not nec-
essarily demand it. They’re also not wrong to feel that parent/child classes tend
to be tightly coupled.

Inheritance and Architecture

303

What About Multiple Inheritance?

When people discuss multiple inheritance, they mean a child class inheriting
from multiple parents. If we had a clean solution for this in JavaScript, it would
probably mean allowing for extends to take multiple base classes as parents.

Although this type of mechanism is supported in some languages (Python,
for example), it can create some confusion. If class A gets all its properties from
classes B and C, how does it resolve conflicts when a property exists in both pa-
rents? It depends on the language.

If JavaScript had a class-based mechanism for multiple inheritance, it might
look something like this:

class Barky{
 bark(){ console.log('woof woof')};
};
class Bitey{
 bark(){ console.log('grrr')};
 bite(){ console.log('real bite')};
};
class Animal{
 beFluffy(){ console.log('fluffy')};
 bite(){ console.log('normal bite')};
};

// this is not possible:
class Dog extends (Animal, Barky, Bitey) { };
dog = new Dog;
dog.bite();
dog.beFluffy(); // this won't work

But it doesn’t. Dog will bite like a Bitey but has no idea how to be fluffy like
an Animal. This isn’t multiple inheritance. Dog extends Bitey. It’s as simple as
that. This is not a mechanism for multiple inheritance at all. Rather, (Animal,
Barky, Bitey) just evaluates to Bitey. Check out the following:

// try this in the console:
(1, 4, 3, 7);

What do you expect this to evaluate to? Well, the answer is 7. In some lan-
guages this expression would be an array or list literal. In others it would throw
an error. In JavaScript, we get this questionable behavior of returning the last
value inside the parentheses. This is what happened with our earlier attempt at
multiple inheritance. This weird mechanism does not make class-based multi-
ple inheritance possible. Dog extends Bitey, and Bitey alone. End of story.

CHAPTER 8: Refactoring Within a Hierarchy

304

JavaScript doesn’t have a class-based way to do multiple inheritance. For
that you need some other approach. Other languages would term this a mod-
ule, interface, or mixin.

What does that look like in JavaScript? Here’s one option that we’ve seen
earlier in the chapter:

const barky = {
 bark(){ console.log('woof woof')}
};
const bitey = {
 bark(){ console.log('grrr')},
 bite(){ console.log('real bite')}
};
const animal = {
 beFluffy(){ console.log('fluffy')},
 bite(){ console.log('normal bite')}
};
const myPet = Object.assign(Object.create(animal), barky, bitey);
myPet.beFluffy();
myPet.bark();
myPet.bite();

This will give us access to all three functions (bark, bite, and beFluffy).
But if we dig a little deeper, we’ll see that this is not as simple as we might ex-
pect:

console.log(myPet);
{ bark: [Function: bark], bite: [Function: bite] }
console.log(Object.getPrototypeOf(myPet));
{ beFluffy: [Function: beFluffy], bite: [Function: bite] }

Our myPet object is actually relying on its prototype, the animal, for the be-
Fluffy function. These are linked, so if we alter our beFluffy function on an-
imal, it will update on myPet as well:

animal.beFluffy = function(){ console.log('not fluffy')}
myPet.beFluffy();
// prints "not fluffy"

We can even add new attributes to that animal to make changes to myPet
on the fly:

animal.hasBankAccount = false;
console.log(myPet.hasBankAccount); // prints false

What if we try to augment the bite function?

Inheritance and Architecture

305

bitey.bite = function(){
 console.log("don't bite");
}
myPet.bite();
// prints "real bite"

There are two implications here. First, the bite function is attached directly
to myPet from bitey. Even though myPet’s prototype (animal) also has a bite
function, it is overruled by the function directly attached to myPet that comes
from bitey. Second, it is an actual copy. There is no linkage between bitey
and myPet.

As far as our last function, bark, does myPet inherit this from bitey or bar-
ky?

Let’s look again at how we created myPet:

const myPet = Object.assign(Object.create(animal), barky, bitey);

It turns out that, as parameters to Object.assign, the properties of objects
to the right will overrule those to the left:

myPet.bark();
// prints "grrr"

bitey’s bark beats barky’s bark because bitey was last.

IS-A VERSUS IS-JUST-A RELATIONSHIPS

With simple, one-parent inheritance, it is generally obvious when we intend to say

that something is a subtype of something else (for example, a Person is a subtype of

Organism).

But what if a Person is also a subtype of DatabaseRecord or (shudder) Resource?

In those cases, our model of a person is not “just” an organism, so multiple inheri-
tance makes more sense. We just attach relevant behaviors.

It isn’t always easy to guess how a program will evolve, and inheritance hierarchies
tend to be inflexible. If you want some inspiration for other ways to model object
relationships, we’ll cover has-a later in this chapter, but you might also want to in-
vestigate database normalization, as well as entity-component systems, which tend
to be used heavily in game development.

CHAPTER 8: Refactoring Within a Hierarchy

306

Which Interfaces Do You Want?

There’s more to the story here. Although we showed earlier that a factory func-
tion can sever the prototypal link in the Object.create pattern, there is an-
other option. Before, we used this:

const myPet = Object.assign(Object.create(animal), barky, bitey);

That creates a prototypal link between myPet and animal. This can be use-
ful because we can add functionality to animal and have it inherited by myPet
(as well as other objects that were created through a similar mechanism).

But if we want a new object with the existing behavior, but without the bag-
gage of a prototype, we could do this instead:

const myPet = Object.assign({}, animal, barky, bitey);

Now animal acts just like barky and bitey. We can add properties to them,
but myPet is unaffected:

animal.hasBankAccount = false;
console.log(myPet.hasBankAccount); // prints undefined

Another way to look at this is that myPet’s prototype is now {}, rather than
animal:

console.log(Object.getPrototypeOf(myPet));
// prints "{}"

Also notice that beFluffy (the function inherited from animal) is defined
directly on myPet:

console.log(myPet);

// prints
{ beFluffy: [Function: beFluffy],
 bite: [Function: bite],
 bark: [Function: bark] }

Most of the time, your primary concern will just be whether or not an object
has a particular function or other property attached to it. In other words, “Can I
call this function on this object?” is a question that is absolutely fundamental in
defining your API. As such, it is worth documenting, testing, manipulating, and
refactoring.

Inheritance and Architecture

307

But there is another broad and confusing set of interfaces underneath every
JavaScript program. Do you want to use Object.getPrototypeOf? What
about Object.is? .__proto__? .prototype? .constructor? .keys? Re-
flect.ownKeys? Reflect.has? typeof? instanceof?

Let’s call this “JavaScript’s deep, dark underbelly.”
Are you confident that these all behave as you expect? Are the desired prop-

erties enumerable when you want to loop through an object? When you create
a new object, are you exposing either your new or old objects to side effects?

You’re likely to encounter projects that favor one style or another. You might
even see a codebase with a dual personality, perhaps with half of it in a classi-
cal style and the other half using factory functions. Whatever your preferred
style is, rewriting the “wrong” style is likely to be painful, and possibly confus-
ing and insulting to other team members.

Although it is best to promote confidence early in a project by having an-
swered Chapter 2’s question of “Which JavaScript are you using?” with a style
guide (and better yet, a linter that runs in your editor to enforce this automati-
cally), you won’t always be so lucky.

On a project that lacks opinions on a given style, and hurts confidence in
that second interface (that of inspection and reflection), what should you do?

If you are not confident in a piece of code, write a test. For example, for this
code:

const myPet = Object.assign({}, animal, barky, bitey);

use characterization tests to develop confidence in things like Ob-
ject.keys(myPet), myPet.__proto__, Object.getOwnProperty-

Names(myPet), Object.getPrototypeOf(myPet), and any other members
of this deeper interface of JavaScript. As we practiced in Chapter 4, use
wish(value, true) or assert(value === null). Then use the output of
that characterization test to fill in the test: wish(value === valueFromOut-
put) or assert(value === valueFromOutput).

Aren’t these values already tested within JavaScript browser implementa-
tions? Yes, absolutely; they already have tests covering them. Are they “imple-
mentation details,” which many argue against writing tests for? Definitely. Will
these tests be brittle if you change from classes to factory functions or from fac-
tory functions to classes? Yes.

But if they cause confusion in your code, should you test these functions in
spite of that?

Without a doubt. It does not matter how much a piece of code is external to
your codebase or how much of an implementation detail it is. You can use tests
to clear up your confusion (you won’t be the only one on the team who’s con-
fused anyway) and have more confidence in your code. Additionally, you may

CHAPTER 8: Refactoring Within a Hierarchy

308

be relying on JavaScript’s deep, dark underbelly more than you think. For in-
stance, what seems like it should be a cosmetic change might be affecting a
property’s enumerability or an object’s prototype.

If letting your code break in tests instead of in production is your goal, creat-
ing characterization tests like these can add a layer of confidence that rigidly
only testing the public interface may not give you. Additionally, if you’re moving
between factory functions, constructor functions, object literals, and classes,
it’s not a bad idea to have a sense of what is changing, even at a deeper level
than the interface you directly care about.

Has-A Relationships

So far in this chapter, we’ve been looking at multiple objects from the perspec-
tive of “is-a” (or “is a subtype of”) relationships. For simple inheritance, an
EnglishWord is a Word. This is true even when dealing with mixins/multiple in-
heritance/modules: myPet is-a animal, but myPet is-a bitey and myPet is-a
barky also.

We saw how these is-a relationships may imply a prototypal link between
child and parent, but according to stylistic choices within JavaScript, that link
may be severed despite any adopted similarities of interface between the ob-
jects. We also saw how establishing or severing that link can impact many inter-
faces within JavaScript’s deep, dark underbelly.

What we haven’t talked about is that composing objects does not necessarily
imply inheriting properties.

Is a HorseWithABriefCase a subtype of Horse? That sounds awfully spe-
cific. Maybe it’s a subtype of HorseWithObject, or should it be a subtype of
BusinessHorse? We could put all of our horses into a hierarchy of some form,
but then we’ll need an object (and/or class) that ends up describing every at-
tribute, lest our SickHorse cannot get the antibiotics she needs because Doc-
torHorseWithoutAnyMedicine is perfectly unhelpful in that scenario.

Obviously, we already have a way to deal with this by storing properties (of
arbitrary types) on objects. In Chapters 6 and 7, we dealt with a classifier
that has-a songList. In our Object.create/Object.assign mixin-based in-
heritance from earlier in the chapter, we were copying properties from one ob-
ject to another. By contrast, in our classifier, we had to specifically drill
down into the songList via classifier.songList.addSong (until we wrote
the delegate function to drill down for us, allowing us to instead write classi-
fier.addSong).

As for our horses, we could start by doing something like this:

Has-A Relationships

309

const horse = {
 inventory: ["briefcase"],
 profession: "hippo jockey",
 healthy: true
}

As our program grew in complexity, we might need a lot of horses, so we’d
use a class, a constructor function, Object.create, or a factory function to
help us get more horses. If we needed to add behaviors to the horses, we would
add functions as properties.

If inventory or briefcase or other properties needed to be more compli-
cated, we’d spin them out as their own objects (as we did with songList in
Chapter 7). If they needed some behavior to be attached, we’d add functions to
those objects.

The reason for glossing over a general approach for how to grow JavaScript
objects without a hierarchy is that it is not usually how things go wrong in Java-
Script programs. Although building a complex, deep, or complicated hierarchy
of JavaScript classes/objects is possible and may become more of a wide-
spread problem as OOP with classes becomes more popular, as of this writing
the worst JavaScript codebases are much more likely to suffer from a lack of
structure than from too much structure of the wrong kind.

That said, next we’ll address a few structural mistakes that you might see
from time to time.

Inheritance Antipatterns

Here we’ll look at two issues that can come up when the wrong kind of struc-
ture is in place. Here are the antipatterns we’ll address:

• Hyperextension (hierarchy is too deep)
• Goat and cabbage raised by a wolf (parent and children have nothing in

common)

In both cases, the motivation likely comes from a good place. Programmers
don’t like to just copy and paste code with minor variations. This is called “car-
go cult” coding, and is a brand new programmer’s best friend.

To avoid that, you create new aspects of a hierarchy instead of extracting
functions and subobjects that could be shared or held independently.

CHAPTER 8: Refactoring Within a Hierarchy

310

Hyperextension

Here we have an example of a hierarchy that is too deep. SpecificClientRe-
port inherits from ClientReport, which inherits from GenericReport, which
inherits from Report:

class Report{
 constructor(params){
 this.params = params;
 }
 printReport(params){
 return params;
 }
}
class GenericReport extends Report{
 constructor(params){
 super(params);
 this.params = params;

 }
 printReport(params){
 return super.printReport(Object.assign(this.params, params));
 }

}
class ClientReport extends GenericReport{
 constructor(params){
 super(params);
 this.params = params;

 }
 printReport(params){
 return super.printReport(Object.assign(this.params, params));
 }

}
class SpecificClientReport extends ClientReport{
 constructor(params){
 super(params);
 this.params = params;
 }
 printReport(params){
 return super.printReport(Object.assign(this.params, params));
 }

}
const report =
new SpecificClientReport({whatever: 'we want', to: 'add'});
console.log(report.printReport({extra: 'params'}));

Inheritance Antipatterns

311

If there were ever a good reason not to just pass the word params, object, or
options around, here it is. Imagine this code, but with more functions, and alter-
ations of params and this.params all along the way.

If we had function calls to other members of this hierarchy, we would ad-
dress them too, but here we’ll just focus on SpecificClientReport. First, we
need a test instead of a logging statement. Create a characterization test by
adding these lines to the bottom:

const wish = require('wish');
const deepEqual = require('deep-equal');
wish(report.printReport({extra: 'params'}), true);

We run it and get an error:

WishCharacterization: report.printReport({extra: 'params'})
 evaluated to {"whatever":"we want","to":"add","extra":"params"}

That object is exactly what we need to replace our characterization test:

wish(deepEqual(report.printReport({extra: 'params'}),
 {whatever:"we want", to:"add", extra:"params"}));

And our test passes. Now we can safely refactor.
There are two approaches we could take. First, we could assume that there’s

nothing special about our SpecificClientReport and try this instead:

const report = new Report({whatever: 'we want', to: 'add'});
wish(deepEqual(report.printReport({extra: 'params'}),
 {whatever:"we want", to:"add", extra:"params"}));

Note that we’re just changing the report variable here (and in the next snip-
pet). The test is the same. We get an error, so we could try moving down one
level:

const report = new GenericReport({whatever: 'we want', to: 'add'});
wish(deepEqual(report.printReport({extra: 'params'}),
 {whatever:"we want", to:"add", extra:"params"}))

This works fine. That means (assuming there are no other places using
them) we can delete SpecificClientReport and ClientReport. If they both
have other places using them, we should see if we could move those places up
in the hierarchy to try to prune any leaves we can.

The second way to handle this is to see if we can inline the superclass’s func-
tionality. Because SpecificClientReport and GenericReport behave the

CHAPTER 8: Refactoring Within a Hierarchy

312

same way (according to our tests), it’s fine to start where we just left off. If the
last approach was difficult for your codebase, you might start with this techni-
que instead (before climbing the superclasses).

In any event, we’re left with this:

class Report{
 constructor(params){
 this.params = params;
 }
 printReport(params){
 return params;
 }
}
class GenericReport extends Report{
 constructor(params){
 super(params);
 this.params = params;

 }
 printReport(params){
 return super.printReport(Object.assign(this.params, params));
 }

}
const wish = require('wish');
const deepEqual = require('deep-equal');
report = new GenericReport({whatever: 'we want', to: 'add'});
wish(deepEqual(report.printReport({extra: 'params'}),
 {whatever:"we want", to:"add", extra:"params"}));

To get a little clarity, we can start by removing the constructor function
from GenericReport (assuming that we are the only consumer), as it is redun-
dant with what happens in super. As for the printReport function, all super
does is return what it is given (the params, not the this.params). That means
we don’t have to call super at all, making our new GenericReport look like
this:

class GenericReport extends Report{
 printReport(params){
 return Object.assign(this.params, params);
 };
};

The test passes. We’re almost ready to free this child class. However, if we
remove extends Report now, we’ll get an error, because this.params was

Inheritance Antipatterns

313

never assigned. That means we need our constructor back first. After that,
we’re free to remove the link to the parent:

class GenericReport{
 constructor(params){
 this.params = params;
 };
 printReport(params){
 return Object.assign(this.params, params);
 };
};

And everything works. If GenericReport was the only thing using Report,
we could remove it (Report) now. After that, the ugliest things in here are the
nonspecific names: params should be something more specific (see Chap-
ter 6), and GenericReport could possibly be called Report now.

If you decide to prune a hierarchy like this, it is crucial to have version con-
trol and tests in place that can check all of the consumers (object makers/func-
tion callers) of the classes along the hierarchy.

It’s unlikely to go as smoothly as this. Ultimately, the goal is to carve off inde-
pendent leaves and extract shared functions when you can. Don’t try to “refac-
tor” a complex hierarchy like this (but with many more side effects, attributes,
and functions) all at once, especially not without tests in place.

Goat and Cabbage Raised by a Wolf

In this case, the children look nothing like the parent or each other. All the par-
ent does is cause confusion and add a layer of indirection:

class Agent{
 constructor(name, type){
 this.name = 'name';
 if(Math.random() > .5){
 this.type = 'user';
 }else{
 this.type = 'project';
 }
 };
 static makeProjectOrUser(agent){
 if(agent.type === 'user'){
 return Object.assign(Object.create(new User), agent);
 }else{
 return Object.assign(Object.create(new Project), agent);
 }
 };
};

CHAPTER 8: Refactoring Within a Hierarchy

314

class User extends Agent{
 sayName(){
 return `my name is ${this.name}`;
 }
};

class Project extends Agent{
 sayTheName(){
 return `the project name is ${this.name}`;
 }
};
const agent = new Agent('name');
const projectOrUser = Agent.makeProjectOrUser(agent);

For this code, imagine that this is basically as common as it gets between
the two objects, and there are thousands of lines backing up the difference be-
tween them (all requiring tests and type checking, aka conditionals).

First, we need to get some characterization tests in place. Add these lines to
the end:

const wish = require('wish');
if(projectOrUser.type === 'user'){
 wish(projectOrUser.sayName(), true);
}else{
 wish(projectOrUser.sayTheName(), true);
}

We’ll have a 50/50 chance of getting one of these:

WishCharacterization: projectOrUser.sayName() evaluated to
 "my name is name"

// or

WishCharacterization: projectOrUser.sayTheName() evaluated to
 "the project name is name"

Now we can just replace our characterization tests with these:

if(projectOrUser.type === 'user'){
 wish(projectOrUser.sayName() === "my name is name");
}else{
 wish(projectOrUser.sayTheName() === "the project name is name");
}

We will always have problems as long as the following two lines are in place:

Inheritance Antipatterns

315

const agent = new Agent('name');
const projectOrUser = Agent.makeProjectOrUser(agent);

Right now, these create a project or a user, based on a coin toss in the
constructor. Since that is where the whole problem stems from, let’s move the
coin toss into a function:

function coinToss(){
 return Math.random() > .5;
};

class Agent{
 constructor(name, type){
 this.name = name;
 if(coinToss()){
 this.type = 'user';
 }else{
 this.type = 'project';
 }
 };
...
};

Next, because coinToss is always called, we can move that to our calling
code, outside the constructor:

class Agent{
 constructor(name, type){
 this.name = name;
 this.type = type;
 };
};

and move our coinToss to be used before our agent is given an identity:

let agent;
if(coinToss()){
 agent = new Agent('name', 'user');
}else{
 agent = new Agent('name', 'project');
}
// replaces
// const agent = new Agent('name');

Now, we want to “push down” the constructor into the subtypes:

class User extends Agent{
 constructor(name, type){

CHAPTER 8: Refactoring Within a Hierarchy

316

 super();
 this.name = name;
 this.type = type;
 };
 sayName(){
 return `my name is ${this.name}`;
 };
}

class Project extends Agent{
 constructor(name, type){
 super();
 this.name = name;
 this.type = type;
 };
 sayTheName(){
 return `the project name is ${this.name}`;
 };
};

Annoyingly, as long as we’re extending Agent, in JavaScript we must call its
constructor (with super) in order to access this and assign properties in our
subtypes. Note that we don’t care about passing arguments to super because
we’re assigning the properties we need anyway.

Okay, here’s the exciting part. Now we can call those constructors directly:

let agent;
if(coinToss()){
 agent = new User('name', 'user');
}else{
 agent = new Project('name', 'project');
}

Now we can delete a lot of code, leaving us with just the following:

function coinToss(){
 return Math.random() > .5;
};

class User{
 constructor(name, type){
 this.name = name;
 this.type = type;
 };
 sayName(){
 return `my name is ${this.name}`;
 };
};

Inheritance Antipatterns

317

class Project{
 constructor(name, type){
 this.name = name;
 this.type = type;
 };
 sayTheName(){
 return `the project name is ${this.name}`;
 };
};

let agent;
if(coinToss()){
 agent = new User('name', 'user');
}else{
 agent = new Project('name', 'project');
}

const wish = require('wish');
if(agent.type === 'user'){
 wish(agent.sayName() === "my name is name");
}else{
 wish(agent.sayTheName() === "the project name is name");
}

No more super. No more extends. Now we’re free to rename the variable
agent to anything we like. You might notice another potential refactoring in
unifying the interface of the functions sayName and sayTheName. By all means,
go ahead, as long as it won’t tempt you to subclass these again.

If you think the coin toss to decide on a type of object is a bit far-fetched,
you’re totally correct. The point is, however, that ambivalent constructors—
which could be based on date, time, or any other dynamic situation—could lead
to this scenario. Or such a scenario could be the result of one ambiguous object
creation slowly spreading throughout the codebase. I’ve seen it happen.

Also note, as we’ve discussed before, that having our test suite rely on ran-
domness like this is not great. Really, we’d want the following tests as well:

wish(new User('name', 'user').sayName() === "my name is name");
wish(new Project('name', 'project').sayTheName()
 === "the project name is name");

Since our coin toss is just representing some (probably very confusing) way
that the objects come into being, there’s no clear way to remove that condition-
al. However, note that instead of passing an explicit type variable into the con-
structor, we could rely on the class instead:

CHAPTER 8: Refactoring Within a Hierarchy

318

class User{
 constructor(name){
 this.name = name;
 };
...
class Project{
 constructor(name){
 this.name = name;
 };
...
if(agent instanceof User){
 wish(agent.sayName() === "my name is name");
}else{
 wish(agent.sayTheName() === "the project name is name");
}
...

The lesson here is that if you have two classes that share some state or be-
havior, subclassing may not be a great way to remove duplication, and it could
lead your team down a path of lots and lots of type checking. Sometimes, you
just need a type attribute (we’ll look at a way to avoid a conditional check with
these in Chapter 9). Other times, you might be able to extract the duplication
into functions or another object. In any case, refactoring duplication is very
easy and safe compared to dismantling a “goat and cabbage raised by a wolf”
inheritance issue.

Wrapping Up

In this chapter, we looked at a few ways to build up as well as break down a
hierarchy. It’s worth noting that for some people, object-oriented programming
is more trouble than it’s worth. If you’re one of those people, you’ll probably
like learning about functional programming in Chapter 11. If you like OOP, the
next chapter will give you a few more tools (patterns) to apply to your work.

Whatever your stance on OOP, you’re likely to see code that could benefit
from the kind of organization that it provides. On the other hand, you might
find that misapplied OOP itself is the cause of complexity in some codebases. In
any case, none of this suggests that objects or classes are inherently bad to use.

Wrapping Up

319

1 Disclaimer: Life changes may be somewhat subtle.

Refactoring to OOP Patterns 9

It is tempting to treat software design patterns as checklists to learn. There’s
something so nice about the idea that if we just “memorize those 23 things,”
we’ll be all set. The bad news is that, as mentioned in Chapter 2, even learning
the latest in JavaScript should keep you busy until the free and open web fails
or the sun goes supernova.

Additionally, patterns have a mixed reputation. On the one hand, they can
help to handle complexity. On the other hand, they can create complexity
where it is not needed. Sometimes, extracting functions, extracting objects,
breaking code up into modules, and depending on a framework (which itself
likely exposes and documents patterns of its own) are simpler choices. Keeping
the YAGNI (“Ya ain’t gonna need it”) principle in mind and considering the inter-
face you want for your code are the best guidelines when deciding when to im-
plement (or remove) a design pattern.

The good news is that these patterns aren’t that hard to learn and are easy
to reference so you don’t have to memorize every detail. Additionally, we’ll fo-
cus on just seven of them here, chosen by their likelihood to solve real prob-
lems in legacy code. Just learn these seven patterns, and it will change your
life!1 Here they are:

• Template method
• Strategy
• State

• null object
• Decorator (“Wrapper” section)
• Adapter (“Wrapper” section)
• Facade

As we’re describing fairly high-level changes for most of these patterns, it’s
likely that the specific interfaces will change. And we should be aware that
when changing an interface, we might not be “refactoring.” Sometimes, pat-

321

terns are presented with mechanics to provide a safe path between code before
and after a pattern is applied. In lieu of those, the practical steps for applying
every pattern presented are:

1. Save and check the code into version control.
2. Make a small change.
3. Repeat steps 1 and 2 until you’re done.

Follow that process, and write tests as you see fit. We’ve already explored a
few ways to do that, including test-driven development (TDD), characterization
tests, end-to-end tests, and unit tests.

We are striving for code we can be confident in. That means in addition to
code being well tested, it should also provide sensible interfaces. That is the
priority in this chapter.

Template Method

The template method pattern is useful for when you have two algorithms that
serve the same purpose, with minor variations. The basic mechanics require
moving some part of two subclass functions into the parent class.

Although the refactoring itself is fairly simple, in this section we’ll talk about
how you might get to the point of wanting to do it, as well as what you might do
instead.

Let’s say you have a Person class. As the saying goes, there are 10 types of
people: those who understand binary numbers, and those who don’t. To start
out, our Person manages this knowledge in a boolean type variable:

class Person{
 constructor(binaryKnower){
 this.binaryKnower = binaryKnower;
 };
 whatIs(number){ return number };
 whatIsInBinary(number){ return Number('0b' + number) };
};

const personOne = new Person(true);
const personTwo = new Person(false);

[personOne, personTwo].forEach(person => {
 if(person.binaryKnower){
 console.log(person.whatIsInBinary(10));
 } else{
 console.log(person.whatIs(10));
 }
});

CHAPTER 9: Refactoring to OOP Patterns

322

Our personOne knows binary, so we’ll get 2 (which is one, zero in binary in
case you missed the joke) logged first. Our personTwo just assumes that one,
zero is 10, so that’s logged second.

This works fine, but it leaves our interrogation of binary knowledge up to our
client code (e.g., our interface, tests, or whatever code might use this as a mod-
ule). Consequently, we’re stuck with an if statement any time we want to get
all of our people to interpret a number. Generally speaking, we want to elimi-
nate conditionals where it is sensible and also push complexity away from the
API (which you might think of as “the public interface,” “the inputs and outputs
for the tests,” or “the way we use the code”). It’s generally better if we can let
the deeper parts of the code handle complexity.

Let’s move that conditional into the Person object, and while we’re at it,
let’s use a string for binary knowledge instead of a boolean:

class Person{
 constructor(typeOfPerson){
 this.typeOfPerson = typeOfPerson;
 }
 whatIs(number){
 return number;
 };
 whatIsInBinary(number){
 return Number('0b' + number);
 };
 log(number){
 if(this.typeOfPerson === "binary knower"){
 console.log(this.whatIsInBinary(10));
 } else{
 console.log(this.whatIs(10));
 }
 };
};

const personOne = new Person("binary knower");
const personTwo = new Person("binary oblivious");

[personOne, personTwo].forEach(person => {person.log(10)});

Now our conditional is neatly tucked away in the log function of the Person
object. Next, instead of just having a type variable to let the logging function
know what to do, let’s use subclasses and get rid of the conditional altogether:

Template Method

323

class Person{}

class BinaryKnower extends Person{
 log(number){
 console.log(this.whatIsInBinary(number));
 };
 whatIsInBinary(number){
 return Number('0b' + number);
 };
};

class BinaryOblivious extends Person{
 log(number){
 console.log(this.whatIs(number));
 };
 whatIs(number){
 return number;
 }
};
const personOne = new BinaryKnower();
const personTwo = new BinaryOblivious();
[personOne, personTwo].forEach(person => person.log(10));

Now our log function is looking a little repetitive. Let’s bring it into the Per-
son object:

class Person{
 log(number){
 console.log(this.whatIs(number));
 };
};

class BinaryKnower extends Person{
 whatIs(number){ return Number('0b' + number) };
};

class BinaryOblivious extends Person{
 whatIs(number){ return number };
};
const personOne = new BinaryKnower();
const personTwo = new BinaryOblivious();
[personOne, personTwo].forEach(person => person.log(10));

Notice that we had to give our functions (whatIs and whatIsInBinary) the
same name to make that change.

CHAPTER 9: Refactoring to OOP Patterns

324

WHEN DID WE APPLY THE TEMPLATE METHOD PATTERN?

In case it’s unclear, it was in this last step of moving the log function
from the subclasses into Person. The template method is really simple, so
you might accidentally stumble into doing it just by moving functions
around between objects. It is a specialized form of what is sometimes
called the “pull-up method” of refactoring,where functions (or meth-
ods, depending on the context) are brought into the superclass. What
makes it the template method pattern is that some of the implementa-
tion (in this case, the whatIs function) creates variation from the sub-
classes.

A Functional Variant

For a function as basic as ours, you might wonder if it justifies the superclass.
We could also have done this:

function log(person, number){
 console.log(person.whatIs(number));
};
class BinaryKnower{ whatIs(number){ return Number('0b' + number) } };
class BinaryOblivious{ whatIs(number){ return number } };
const personOne = new BinaryKnower();
const personTwo = new BinaryOblivious();
[personOne, personTwo].forEach(person => { log(person, 10) });

Now we’re passing two explicit arguments to the function, and must explicit-
ly reference the person object rather than this. In the previous code snippet,
we had one implicit parameter and one explicit one. You might prefer either ap-
proach, but making a choice is important, as you’ll likely want to have one
dominant style in the codebase. Objects help to group and namespace func-
tions, but there is additional complexity in sharing functions between objects.

If you’re tending toward an object-oriented codebase, what we had before is
preferable. If your codebase is intended to be functional, you would probably
opt for this, keeping in mind that you must keep the scope of the function small
(likely through creating modules) in order to prevent name collisions. Addition-
ally, you might wonder if the BinaryKnower and BinaryOblivious classes
are needed. It is easy to make the case against them if they only contain one
function:

function log(fun, number){
 console.log(fun(number));
};
function whatIsInBinary(number){return Number('0b' + number)};
function whatIs(number){return number};

Template Method

325

[whatIsInBinary, whatIs].forEach(fun => { log(fun, 10) });

Presumably, in a real application, we’d have a bit more to our Person ob-
jects, which might justify using a class (or at least an object) rather than just the
function as we did here. However, it’s also entirely possible to organize your
code as a series of functions and return values. Look for opportunities to do
both.

Since this chapter is primarily for the purpose of illustrating object-oriented
patterns, we’ll ignore the functional variant for now.

Strategy

The template method pattern allowed us to remove a conditional through sub-
classing. The strategy pattern allows us to remove the subclasses by attaching a
strategy (function) to the parent object.

Let’s take a look at what we have now:

class Person{
 log(number){ console.log(this.whatIs(number)) };
};

class BinaryKnower extends Person{
 whatIs(number){ return Number('0b' + number) };
};

class BinaryOblivious extends Person{
 whatIs(number){ return number };
};

const personOne = new BinaryKnower();
const personTwo = new BinaryOblivious();
[personOne, personTwo].forEach(person => person.log(10));

As we took a critical eye to the Person class in the last section, now let’s
consider whether we need the subclasses. We could avoid them by setting a
type value in the constructor and recreating the conditional in the whatIs func-
tion that we had earlier in the “test” code (logging output):

class Person{
 constructor(knowsBinary){
 this.knowsBinary = knowsBinary;
 };
 log(number){ console.log(this.whatIs(number)) };
 whatIs(number){

CHAPTER 9: Refactoring to OOP Patterns

326

 if(this.knowsBinary){
 return Number('0b' + number);
 } else{
 return number;
 }
 };
};

const personOne = new Person(true);
const personTwo = new Person(false);

[personOne, personTwo].forEach(person => { person.log(10) });

We could eliminate this type check by adding functions to our personOne
and personTwo objects after they are created:

class Person{
 log(number){ console.log(this.whatIs(number)) };
};

const personOne = new Person();
personOne.whatIs = (number) => Number('0b' + number);
const personTwo = new Person(number => number);
personTwo.whatIs = (number) => number;

[personOne, personTwo].forEach(person => { person.log(10) });

Alternatively, we can eliminate the type check by supplementing the object
with a function on construction:

class Person{
 constructor(whatIs){ this.whatIs = whatIs }
 log(number){console.log(this.whatIs(number)) }
};

const personOne = new Person(number => Number('0b' + number));
const personTwo = new Person(number => number);

[personOne, personTwo].forEach(person => { person.log(10) });

If we wanted, we could name and extract these functions to simplify the con-
structor:

function binaryAware(number){
 return Number('0b' + number);
};
function binaryOblivious(number){
 return number;

Strategy

327

};

const personOne = new Person(binaryAware);
const personTwo = new Person(binaryOblivious);

Now that the functions are extracted, we can easily test them independently
and without creating any Person objects.

You might be tempted to move these functions into the Person object, pos-
sibly as static functions like this:

class Person{
 constructor(whatIs){
 this.whatIs = whatIs;
 };
 log(number){
 console.log(this.whatIs(number));
 };
 static binaryAware(number){
 return Number('0b' + number);
 };
 static binaryOblivious(number){
 return number;
 };
};

const personOne = new Person(Person.binaryAware);
const personTwo = new Person(Person.binaryOblivious);

However, this is a level of coupling between the person (“context”) and bina-
ry awareness (“strategy”) that we’re trying to avoid. Binary awareness is poten-
tially a strategy we’d like to give to other objects (e.g., dolphins, androids, and
aliens) later, so it’s best to keep them separate.

Instead of that coupling, we can create a new object that contains the strate-
gies, making the full code listing the following:

class Person{
 constructor(whatIs){ this.whatIs = whatIs };
 log(number){ console.log(this.whatIs(number)) };
};

const binary = {
 aware(number){ return Number('0b' + number) },
 oblivious(number){ return number }
};

const personOne = new Person(binary.aware);
const personTwo = new Person(binary.oblivious);

CHAPTER 9: Refactoring to OOP Patterns

328

[personOne, personTwo].forEach(person => { person.log(10) });

Now our strategies are neatly tucked away in an object, which we pass to
our new Person constructor. This is convenient, because if we create a new
function representing a different interpretation of a number (say, octal or hexa-
decimal), it won’t require a whole new subclass.

You might notice that our “functional variant” from the template method
section applies here as well. If we’re willing to drop objects and classes, we
have a different (and usually shorter) type of code.

State

The state pattern is a bit more involved than the strategy pattern, but can flow
naturally from it. Let’s assume that “awareness of binary” actually indicates
knowledge of the binary operations read, and, and xor (exclusive or) as well.
(There are other binary operations, but three are sufficient to demonstrate the
pattern.) To continue to use the strategy pattern for this case, we would need to
expand our constructor to include all of the new knowledge strategies:

class Person{
 constructor(readKnowledge, andKnowledge, xorKnowledge){
 this.read = readKnowledge;
 this.and = andKnowledge;
 this.xor = xorKnowledge;
 };
};

const binary = {
 readAware(number){
 return Number('0b' + number);
 },
 readOblivious(number){
 return number;
 },
 andAware(numberOne, numberTwo){
 return numberOne & numberTwo;
 },
 andOblivious(numberOne, numberTwo){
 return "unknown";
 },
 xorAware(numberOne, numberTwo){
 return numberOne ^ numberTwo;
 },
 xorOblivious(numberOne, numberTwo){
 return "unknown";

State

329

 }
};

const personOne = new Person(binary.readAware,
 binary.andAware,
 binary.xorAware);
const personTwo = new Person(binary.readOblivious,
 binary.andOblivious,
 binary.xorOblivious);

[personOne, personTwo].forEach(person => {
 console.log(person.read(10));
 console.log(person.and(2, 3));
 console.log(person.xor(2, 3));
});

If we run this with node state.js (assuming we saved the file as state.js),
we’ll see the following output:

2
2
1
10
unknown
unknown

This expansion of the strategy pattern can get messy quickly. The easiest
remedy to that is to allow two objects to contain all of the “obliviousness” or
“awareness” of binary:

class Person{
 constructor(binaryKnowledge){
 this.binaryKnowledge = binaryKnowledge;
 }
};

const binaryAwareness = {
 read(number){
 return Number('0b' + number);
 },
 and(numberOne, numberTwo){
 return numberOne & numberTwo;
 },
 xor(numberOne, numberTwo){
 return numberOne ^ numberTwo;
 }
};

CHAPTER 9: Refactoring to OOP Patterns

330

const binaryObliviousness = {
 read(number){
 return number;
 },
 and(numberOne, numberTwo){
 return "unknown";
 },
 xor(number){
 return "unknown";
 }
};

const personOne = new Person(binaryAwareness);
const personTwo = new Person(binaryObliviousness);

[personOne, personTwo].forEach(person => {
 console.log(person.binaryKnowledge.read(10));
 console.log(person.binaryKnowledge.and(2, 3));
 console.log(person.binaryKnowledge.xor(2, 3));
});

This simplifies the constructor calls and allows the binaryKnowledge to be
independent of the person. Before we move on to fully implementing the state
pattern, there are two additional possibilities worth consideration. The first is a
potential shortcoming of all three functions being contained in the same knowl-
edge objects. Is it possible for a person to know how to read binary, but not
execute an xor operation? Sure, why not? This design doesn’t offer a flexible
approach to that situation, but we’ll address that after completing the state
pattern.

A second thing to consider is whether or not to add delegation from the
person object directly to the binaryKnowledge functions, allowing for an in-
terface like person.read or person.xor. There is a possible convenience in
that, but it also has weaknesses. Tying those functions together in the construc-
tor (using statements like this.read = binaryKnowledge.read) would
mean any new functions added to the binaryKnowledge objects would also
need new references in the Person constructor. Additionally, the client code
then masks the interfaces of the binaryKnowledge objects. Whether to dele-
gate or not is going to come down to a matter of taste, but in general, the more
dynamic and complex the delegate objects (binaryKnowledge in this case),
the more overhead and confusion you will have when delegating individual
functions.

State

331

THE BINARY OBJECT’S FUNCTIONS CAN BE CHANGED!

Although it’s convenient to attach objects directly to other objects like
this, it is worth considering that although const will protect the value of
binary from being reassigned, it does not prevent our aware or oblivious
functions from being reassigned. Furthermore, if multiple person objects
may reference the same function, redefining a function on a given person
object will redefine the function for other objects as well. Adding the fol-
lowing code to the end should demonstrate this:

const personOne = new Person(binaryAwareness);

const personTwo = new Person(binaryAwareness);

personTwo.binaryKnowledge.read = () => `

redefined on both objects`;

[personOne, personTwo].forEach(person => {

 console.log(person.binaryKnowledge.read(10));

});

The easiest path to having immutable objects is to have new objects. We’ll
address this toward the end of this section.

What makes this not quite yet the state pattern is that we haven’t defined
the transitions between our objects. Let’s do that now:

class Person{
 constructor(binaryKnowledge){
 this.binaryKnowledge = binaryKnowledge;
 };
 change(binaryKnowledge){
 this.binaryKnowledge = binaryKnowledge;
 };
};

const binaryAwareness = {
 read(number){
 return Number('0b' + number);
 },
 and(numberOne, numberTwo){
 return numberOne & numberTwo;
 },
 xor(numberOne, numberTwo){
 return numberOne ^ numberTwo;
 },
 forget(person){
 person.change(binaryObliviousness);
 }
}
const binaryObliviousness = {
 read(number){

CHAPTER 9: Refactoring to OOP Patterns

332

 return number;
 },
 and(numberOne, numberTwo){
 return "unknown";
 },
 xor(number){
 return "unknown";
 },
 learn(person){
 person.change(binaryAwareness);
 }
};

const personOne = new Person(binaryAwareness);
const personTwo = new Person(binaryObliviousness);

[personOne, personTwo].forEach(person => {
 console.log(person.binaryKnowledge.read(10));
 console.log(person.binaryKnowledge.and(2, 3));
 console.log(person.binaryKnowledge.xor(2, 3));
});

personOne.binaryKnowledge.forget(personOne);
personTwo.binaryKnowledge.learn(personTwo);

[personOne, personTwo].forEach(person => {
 console.log(person.binaryKnowledge.read(10));
 console.log(person.binaryKnowledge.and(2, 3));
 console.log(person.binaryKnowledge.xor(2, 3));
});

This requires one new function (change) to be defined on Person, as well as
a forget function defined on binaryAwareness and a learn function defined
on binaryObliviousness. For our tests (just logging statements) we flip the
binary knowledge states of our two person objects and should see the output
reversed when it prints the second time.

There are two things about this code that are suspect. First, it is awkward to
pass a person object into the forget and learn functions. Second, as the
warning text previously indicated, our binaryKnowledge objects are not safe
from being redefined.

We could address the second problem by making factory functions, con-
structor functions, or classes that would return our binaryKnowledge objects.
However, a simpler solution is just to wrap our assignment to binaryKnowl-
edge in the Person constructor with an Object.create. To make our change
function safe, we can wrap it as well:

State

333

class Person{
 constructor(binaryKnowledge){
 this.binaryKnowledge = Object.create(binaryKnowledge);
 };
 change(binaryKnowledge){
 this.binaryKnowledge = Object.create(binaryKnowledge);
 };
};

To solve the first problem (the awkwardness of duplicating our references to
person in the learn and forget functions), we can use Object.assign in the
Person constructor to establish a two-way link between binaryKnowledge
and the person object. Then we can remove the parameter from both forget
and learn, and change the references to that parameter to instead use
this.person:

class Person{
 constructor(binaryKnowledge){
 this.binaryKnowledge = Object.create(
 Object.assign(
 {person: this},
 binaryKnowledge));
 };
 change(binaryKnowledge){
 this.binaryKnowledge = Object.create(
 Object.assign(
 {person: this},
 binaryKnowledge));
 };
};

const binaryAwareness = {
...
 forget(){
 this.person.change(binaryObliviousness);
 }
}
const binaryObliviousness = {
...
 learn(){
 this.person.change(binaryAwareness);
 }
};

const personOne = new Person(binaryAwareness);
const personTwo = new Person(binaryObliviousness);

...

CHAPTER 9: Refactoring to OOP Patterns

334

personTwo.binaryKnowledge.forget();
personTwo.binaryKnowledge.read = () => 'will not assign both';
[personOne, personTwo].forEach(person => {
 console.log(person.binaryKnowledge.read(3));
});

The last five lines of this code snippet should confirm that the new reference
to read stays within its own object and forget (as well as learn) no longer
requires an explicit argument for person.

Alternatively, we could define both forget and learn on the Person class
(the original design pattern does not specify where transitions are defined), but
the issue raised earlier about delegating functions to Person also applies now:
if we add information about states to Person, then Person becomes more
complex and less focused. That said, it may be worth it in some cases in order
to centralize transition information.

STATE PATTERN VERSUS STATE MACHINE

There is a bit of crossover between the state pattern and the state machine. Although
the ideas are related, state machines tend to focus on the states themselves and
transitions between them, rather than providing a unified interface for common
functions. Although you gain some simplicity by virtue of having just one class/
object controlling all of your states and transitions (and typically callback functions

to execute during transitions as well), you lose the simplicity of a unified interface

while in any given state. That means more type checking (if statements), and is a
likely place for complexity to accumulate over time.

And now, some unfortunate news about the state pattern.
Here, we had a fairly simple example of the pattern, with only two states.

Although it scales fairly well, refactoring to use the state pattern just for the
sake of removing conditional checks is fairly aggressive once a codebase has
headed down the path of lots and lots of type checking (whether with or
without a state machine in place). And adding a lot of new objects/classes (one
for each state) might not be a popular idea among your teammates.

You can also encounter problems if your states are complex. Picture a
branching structure where “knowing xor” is a substate of “knowing binary,”
which is a substate of “knowing math,” which is a substate of “understanding
the universe.” If your states branch out like that, you’ll be overwhelmed with

State

335

classes/objects very quickly. Put another way, it’s possible that your states may
have nothing to do with one another. Do you make a state for every combina-
tion of “knowing binary,” “knowing English,” and “having a pet”? Do you intro-
duce another full-blown state pattern implementation for each independent
type of state? Hopefully, the answer is no, and simplicity wins over competing
types of states for one type of object.

One final thing that the classical state pattern comes with is some contract
that a certain interface is implemented by each state class/object. We have
made no such guarantee in our usage. In JavaScript, without compile-time
checks for such contracts, we have a couple of options. We could use assertions
inside of constructors for our states or our context (Person). We could create a
BaseState object that contains stubs of functions (and possibly throws an er-
ror if they are not overwritten). Or we could do nothing to enforce that type of
contract. Given our options, this isn’t that bad. We’ll get TypeError: someOb-
ject.whatever is not a function errors, which is probably as descriptive
as any error we would throw in the BaseState or an AssertionError we
would get from failed assertions in the constructors. Another option is using a
language that compiles to JavaScript and has these features (like TypeScript).
Hopefully, the appeals to simplicity in this chapter make it clear that it is not
advisable to rewrite your entire program in a different language and complicate
your build process for the sake of fully realizing a design pattern.

THE POWER OF HAS-A

At the core of the state pattern is a willingness to move part of what may
be thought of as “belonging to” an object into another. There is a ten-
dency in OOP to prioritize hierarchies over delegate objects. The state
pattern is a relatively complex version of delegation, but simpler dele-
gate objects should not be overlooked.

null Object

The null object pattern, unlike the others discussed here, was not one of the
original 23 patterns defined in the Gang of Four’s book Design Patterns: Ele-
ments of Reusable Object-Oriented Software—and is probably the most under-
used of all. Consider how many conditional checks in your code are executed
against null, undefined, or the existence of a particular variable or function.
Odds are, that type of checking makes up a large portion of your if statements.
And worse, the absence of those type checks likely accounts for a large portion
of your errors.

CHAPTER 9: Refactoring to OOP Patterns

336

A (NON-)VALUE NOT EVEN A FATHER COULD LOVE

Tony Hoare invented the null reference in 1965. In 2009, he called it his “billion
dollar mistake” because of all the damage it has caused. Considering not only run-

time errors, but all of the extra time spent coding type checks for null values across
every language that has implemented it, a billion dollars is probably an understate-
ment.

In fact, according to research (http://insight.jbs.cam.ac.uk/2013/research-by-
cambridge-mbas-for-tech-firm-undo-finds-software-bugs-cost-the-
industry-316-billion-a-year/) from Cambridge University in 2013 (admittedly spon-
sored by a bug-hunting software vendor), bugs cost the world $316 billion dollars

every year. Surely, not all of those derive from improper handling of null condi-
tions, but from my personal experience with web applications, I would guess that it
accounts for a significant portion. If I was hard-pressed for a percentage, I’d esti-
mate somewhere around half, assuming no static typing tools are in place. It’s cer-

tainly more than 1 in 316, and we’re talking about annually here.

Hoare’s career is a distinguished one, so this is not brought up to criticize him. The

point is that “null is a billion-dollar mistake” is not common enough knowledge

for people to avoid using it. It (and undefined) didn’t make Crockford’s list of “bad

parts” (Appendix B in JavaScript: The Good Parts), and it is returned by so many APIs
in so many libraries.

Let’s start with something that might return null:

class Person {
 constructor(name){
 this.name = name;
 }
};
class AnonymousPerson extends Person {
 constructor(){
 super();
 this.name = null;
 }
};

personOne = new Person("tony");
personTwo = new AnonymousPerson("tony");
console.log(personOne.name);
console.log(personTwo.name);

null Object

337

http://insight.jbs.cam.ac.uk/2013/research-by-cambridge-mbas-for-tech-firm-undo-finds-software-bugs-cost-the-industry-316-billion-a-year/

One unfortunate distraction in this code is the call to super in the construc-
tor of the subclass. If you don’t call super, you’ll get a ReferenceError:
this is not defined, which not only is an unclear error, but also demon-
strates how null or undefined can come from core parts of the language, not
just libraries.

Regardless, the output doesn’t look so bad:

tony
null

But let’s say we want to do something with those values:

function capitalize(string) {
 return string[0].toUpperCase() + string.substring(1);
};

console.log(capitalize(personOne.name));
console.log(capitalize(personTwo.name));

Now our trouble starts with:

TypeError: Cannot read property '0' of null

We might be inclined to try to solve this by using an empty string instead of
null:

class AnonymousPerson extends Person {
 constructor(){
 super();
 this.name = "";
 }
};

This time, we’ll get a new error:

TypeError: Cannot read property 'toUpperCase' of undefined

It’s just as bad as the first one, so we might as well put our null back. Now
we’re stuck doing some type checking inside of capitalize:

function capitalize(string) {
 if(string === null){
 return null;
 }else{
 return string[0].toUpperCase() + string.substring(1);

CHAPTER 9: Refactoring to OOP Patterns

338

 }
};

Because we didn’t have a good way out of the empty value we got from the
AnonymousPerson name property (we’re pretending we don’t know about
null objects), we’re stuck with some kind of nonsensical type check like this (it
could just as easily be "" or undefined). And the consequence for not type
checking is that our program will throw an error at runtime.

So what do we do if the string is null? We might as well return another
null. Now say we want to tigerify our tonys:

function tigerify(string) {
 return `${string}, the tiger`;
};
console.log(tigerify(capitalize(personOne.name)));
console.log(tigerify(capitalize(personTwo.name)));

Now our output is:

Tony, the tiger
null, the tiger

Well, it’s not an error, but that’s not a value we want to display. Let’s try this:

function tigerify(string) {
 if(string === null){
 return null;
 }else{
 return `${string}, the tiger`;
 }
};

Now we’ll get just plain null for the string, which isn’t really a better value
to display than before. We don’t really want to make our tigerify function re-
sponsible for the final output (it’s nice that capitalize and tigerify have
the same interface, as we can call both in either order, or one without the oth-
er), so let’s create a display function to handle the finalized output:

function display(string){
 if(string === null){
 return '';
 }else{
 return string;
 }
};

null Object

339

FIGURE 9-1

A display of null in
the wild

Then we run another null check so that we can display a blank string.

BUT NO ONE WOULD ACTUALLY DISPLAY NULL, RIGHT?

Yeah, they would. I’m not going to say what website I saw Figure 9-1 on, but they

have over $40 million in funding. Also, they created the null here, not me.

Hopefully, the antipattern is becoming clear: either check for null, or sub-
ject people to errors and other awkward interactions. It takes one null to kick
off a codebase full of conditional checks and sadness. Not only does every func-
tion that calls something that could return a null value likely need a null
check, but your tests are necessarily more complex as well, because any func-
tions you test will have at least two branches.

So how do we fix it? The answer is we start treating our names like objects,
rather than strings and nulls. Then we can begin to implement functions that
have a mirror interface:

class Person {
 constructor(name){
 this.name = new NameString(name);
 }
};
class AnonymousPerson extends Person {
 constructor(){
 super();
 this.name = new NullString;
 }
};

class NullString{
 capitalize(){
 return null;
 }

CHAPTER 9: Refactoring to OOP Patterns

340

};

class NameString extends String{
 capitalize() {
 return new NameString(this[0].toUpperCase() + this.substring(1));
 };
 tigerify() {
 if(this === null){
 return null;
 }else{
 return new NameString(`${this}, the tiger`);
 }
 };
 display(){
 if(this === null){
 return '';
 }else{
 return this.toString();
 }
 };
}

personOne = new Person("tony");
personTwo = new AnonymousPerson("tony");
console.log(personOne.name.capitalize().tigerify().display());
console.log(personTwo.name.capitalize());

The biggest change here is the addition of two new classes: NameString
and NullString. The Person and AnonymousPerson constructors create
these objects. Notice that we’re now chaining functions instead of nesting
them, and that display now calls toString so that console doesn’t print the
type information. NameString implements our functions as before (except for
the type check we could remove from capitalize, but NullString only has
capitalize implemented right now).

Why is that?
Because the traditional way to implement the null object pattern is to re-

turn null. We hit the null wall and can’t do anything else with personTwo
without type checking. It’s worth stopping there for a minute to think about
how unfortunate that is.

Now let’s do something better. We’ll implement a NullString that not only
has mirror functions, but also returns mirror values to the NameString.

null Object

341

WHY DIDN’T WE JUST OVERWRITE STRING.PROTOTYPE?

Overwriting base objects is considered a likely bad idea unless you’re sure
that the changes are desirable for some scope that’s easy to contain.
Most of the time, other programmers (also you, after you’ve forgotten
that you overwrote parts of String) will assume that it is the same String
that they’re used to. Although subclassing is usually worse than other
options for extracting an object, it is very useful for creating copies of
native objects like String and Array.

Our code looks like this with mirror interfaces:

// with null object
class Person {
 constructor(name){
 this.name = new NameString(name);
 }
};

class AnonymousPerson extends Person {
 constructor(){
 super();
 this.name = new NullString;
 }
};

class NullString{
 capitalize(){
 return this; // same as new NullString in this case
 };
 tigerify() {
 return this; // same as new NullString in this case
 };
 display() {
 return '';
 };
};

class NameString extends String{
 capitalize() {
 return new NameString(this[0].toUpperCase() + this.substring(1));
 };
 tigerify() {
 return new NameString(`${this}, the tiger`);
 };
 display(){
 return this.toString();
 };
}

CHAPTER 9: Refactoring to OOP Patterns

342

personOne = new Person("tony");
personTwo = new AnonymousPerson("tony");
console.log(personOne.name.capitalize().tigerify().display());
console.log(personTwo.name.capitalize().tigerify().display());

Some people claim that this is more complicated than the equivalent ver-
sion. Let’s look at the other for reference:

// without null object
class Person {
 constructor(name){
 this.name = name;
 };
};
class AnonymousPerson extends Person {
 constructor(){
 super();
 this.name = null;
 };
};

function capitalize(string) {
 if(string === null){
 return null;
 }else{
 return string[0].toUpperCase() + string.substring(1);
 }
};

function tigerify(string) {
 if(string === null){
 return null;
 }else{
 return `${string}, the tiger`;
 }
};

function display(string){
 if(string === null){
 return '';
 }else{
 return string;
 }
};

personOne = new Person("tony");
personTwo = new AnonymousPerson("tony");

null Object

343

console.log(display(tigerify(capitalize(personOne.name))));
console.log(display(tigerify(capitalize(personTwo.name))));

It’s actually about the same number of lines. Is it better to have a conditional
in every function or to have two functions in different classes? Now that we see
them side by side, let’s talk about the pros and cons of using the null object
pattern:

Pros:

• You can use console.log and actually find out something about your
values.

• You can do anything you want in the function body.

• You can have the null object inherit and override functions (from Name-
String).

• It’s very easy to forget to do a null check. Having a complete API to du-
plicate may seem more straightforward to you.

Cons:

• You might have the classes in two separate files by convention, creating
overhead in searching the project.

• You might buck the convention of separating them by having them in the
same file. This also creates overhead in searching the project.

• You might have teammates who don’t like the idea of null objects, don’t
understand the idea of null objects, or just don’t care about null ob-
jects (this is the case with pretty much every pattern or quality concern in
general).

• Since null and undefined are so commonly returned, your codebase is
unlikely to be completely null/undefined free. That means you will
probably end up with inconsistencies and some confusion from people
unfamiliar with the patterns you implement.

• Because returning null/undefined is so common, if you want consistent
expectations for not returning null/undefined, you’ll likely need to
adapt a lot of your codebase as well as third-party APIs.

• You have to implement a function on the null object every time you cre-
ate a new function call that might call the null object instead of its mir-
rored real one. Since it’s likely that you’d have to add and might forget a
null check (if you’re not using null objects), I think this one is a wash.

• You can’t insist that third-party code follow sane practices for returning
real values. If you’re stuck with a library that returns the billion-dollar
mistake, you’ll need to wrap that interface with a new functionality,
which could be confusing to people used to working with the basic inter-
face.

CHAPTER 9: Refactoring to OOP Patterns

344

• You might want different null object functions depending on the eventu-
al context of how the value will be used. Will it be saved to the database?
Logged? Used to create a new value? These all suggest different terminal
functionality (such as our display function).

• When working with native object types such as strings and arrays, you’ll
face overhead in extending them to build subclasses to mirror the null
objects.

Overall, in application development, the null object pattern provides an al-
ternative to null checks (and the errors caused when you forget to check for
null). If you’re writing a library, framework, or module, however, it is worth con-
sidering this pattern in order to avoid “null-poisoning” the codebases of any-
one who uses your code.

If you’re trying to avoid all of the subclasses involved in this pattern, you can
try combining it with the techniques presented in the sections for the state and
strategy patterns. Also, in Chapter 11, we’ll look at a functional alternative to
the null object pattern called Maybe. As for the next section, we’ll double
down on the null object pattern by combining it with a wrapper.

Wrapper (Decorator and Adapter)

There are a few ways to implement the decorator pattern. One thing that
should not be surprising based on earlier sections in this chapter is that Java-
Script does not naturally fit in well with interfaces, abstract classes, and other
object-oriented language features that tend to be a part of the classical pattern.

Before moving on, install tape with npm install tape. It’s a more light-
weight test framework than mocha. We’ll use it again in Chapter 10.

Most of the time for the decorator pattern, you’ll see an example like this:

class Dog{
 constructor(){
 this.cost = 50;
 }
 displayPrice(){
 return `The dog costs $${this.cost}.`;
 }
};

const test = require('tape');
test("base dog price", (assert) => {
 assert.equal((new Dog).displayPrice(), 'The dog costs $50.');
 assert.end();
});

Wrapper (Decorator and Adapter)

345

THIS IS NOT THE SAME ASSERT AS BEFORE

tape has a special callback parameter that has an assertion syntax built
in. It’s also responsible for ending the test and counting the test cases. If
we use a different assertion library in tape, we have to add an extra as-
sert.pass() line, which is awkward:

const test = require('tape');

const wish = require('wish');

test("base dog price", (assert) => {

 wish((new Dog).displayPrice()

=== 'The dog costs $50.');

 assert.pass();

 assert.end();

});

If we don’t add that line, the tests won’t fail, but tape won’t count them
as passing, or even as tests(!), in its output. We’ll stick with tape’s assert
in this chapter.

The decorator is useful in a couple of cases. First, it’s good if we’re pulling
the dog class in from a module we don’t own and don’t want to (or can’t) ma-
nipulate it directly. Second, it’s good to keep us from a sprawling mass of sub-
classes. To illustrate that second point, consider if our price was based on
whether the dog was cute, trained, robotic, friendly, or a show dog. All of those
traits could affect the price, but they are not mutually exclusive, so comprehen-
sive subclassing would have to collect every attribute (e.g., class Friendly-
NotCuteTrainedNonRoboticNonShowDog extends Dog).

To decorate the dog with a particular trait, we can add a factory function
that takes a dog as input:

function Cute(dog){
 const cuteDog = Object.create(dog);
 cuteDog.cost = dog.cost + 20;
 return cuteDog;
};

test("cute dog price", (assert) => {
 assert.equal((Cute(new Dog)).displayPrice(), 'The dog costs $70.');
 assert.end();
});

Adding another trait is as simple as adding a new factory function:

function Trained(dog){
 const trainedDog = Object.create(dog);
 trainedDog.cost = dog.cost + 60;

CHAPTER 9: Refactoring to OOP Patterns

346

 return trainedDog;
};
test("trained/cute dog price", (assert) => {
 assert.equal(Trained(Cute(new Dog)).displayPrice(),
 'The dog costs $130.');
 assert.end();
});

We can add new decorators like this quite easily.

DO WE HAVE TO NEST THE FACTORY FUNCTIONS?

You might be wondering if we could get away with an interface like this
instead:

(new Dog).Cute().Trained();

The answer is “yes, we absolutely could do that.” However, can we do
that without adding new functionality to the original class? No. One ma-
jor point of this pattern is that we either can’t or don’t want to alter the
original class.

The “cost of something” decorator focuses on adding traits to an existing in-
terface. In other cases, we want to adapt an interface by applying another
wrapper. Let’s try addressing the problem of an API that returns nulls, “billion-
dollar mistakes” that they are (see the previous section if you need some back-
ground on null objects). Here is some code similar to what we looked at in the
previous section (before we made the null objects):

class Person {
 constructor(name){
 this.name = new NameString(name);
 }
};

class AnonymousPerson extends Person {
 constructor(){
 super();
 this.name = null;
 }
};

class NameString extends String{
 capitalize() {
 return new NameString(this[0].toUpperCase() + this.substring(1));
 };
 tigerify() {
 return new NameString(`${this}, the tiger`);

Wrapper (Decorator and Adapter)

347

 };
 display(){
 return this.toString();
 };
};

const test = require('tape');

test("Displaying a person", (assert) => {
 const personOne = new Person("tony");
 assert.equal(personOne.name.capitalize().tigerify().display(),
 'Tony, the tiger');
 assert.end();
});

This works fine, but if we want to test AnonymousPerson objects, we’re
stuck handling the null checks in our test. To be explicit, add this test:

test("Displaying an anonymous person", (assert) => {
 const personTwo = new AnonymousPerson("tony");
 assert.equal(personTwo.name.capitalize().tigerify().display(),
 '');
 assert.end();
});

We’ll quickly hit this error:

TypeError: Cannot read property 'capitalize' of null

In our null object example from the last section, we dealt with this by al-
lowing AnonymousPerson to return a NullString for name and then added
some functions to NullString. It would be convenient if we could add the fol-
lowing code (changing AnonymousPerson and adding NullString):

class AnonymousPerson extends Person {
 constructor(){
 super();
 this.name = new NullString; // this line is the problem
 }
};
class NullString{
 capitalize(){
 return this;
 };
 tigerify() {
 return this;
 };

CHAPTER 9: Refactoring to OOP Patterns

348

 display() {
 return '';
 };
};

Let’s say that we can’t touch AnonymousPerson, but we have no problem
adding the NullString class for the sake of applying this decorator pattern.

With what we need to add, our code becomes the following:

class Person {
 constructor(name){
 this.name = new NameString(name);
 }
};

class AnonymousPerson extends Person {
 constructor(){
 super();
 this.name = null;
 }
};

class NameString extends String{
 capitalize() {
 return new NameString(this[0].toUpperCase() + this.substring(1));
 };
 tigerify() {
 return new NameString(`${this}, the tiger`);
 };
 display(){
 return this.toString();
 };
};

// this is new
class NullString{
 capitalize(){
 return this;
 };
 tigerify() {
 return this;
 };
 display() {
 return '';
 };
};

// this is new
function WithoutNull(person){

Wrapper (Decorator and Adapter)

349

 personWithoutNull = Object.create(person);
 if(personWithoutNull.name === null){
 personWithoutNull.name = new NullString;
 };
 return personWithoutNull;
};

const test = require('tape');

test("Displaying a person", (assert) => {
 const personOne = new Person("tony");
 assert.equal(personOne.name.capitalize().tigerify().display(),
 'Tony, the tiger');
 assert.end();
});

test("Displaying an anonymous person", (assert) => {
 const personTwo = new AnonymousPerson("tony");
// wrapping with WithoutNull is new
 assert.equal(WithoutNull(personTwo)
 .name.capitalize().tigerify().display(),
 '');
 assert.end();
});

And both tests pass. We just had to add the WithoutNull function and use
it to wrap personTwo. All it does is prevent name from being null. Because it
does not convert the name unless it is null, we can happily wrap any person
object with WithoutNull, anonymous or not. Notice that we use a simple fac-
tory function that returns an object, but we could have used a class or construc-
tor function instead. The disadvantage of those approaches is that they implic-
itly return an object, and here, it’s easier to explicitly return a new one that we
construct manually. With a class or constructor function, the implicitly returned
class would be of type WithoutNull, which is odd, and overriding it (returning
a different object in the constructor function of the class or from a constructor
function called with new) reads as a bit confusing.

Two other things are worth considering here. First, it won’t always be the
case that we can decide what type of person object we have. It’s possible that
we’d only have one type of Person and we would not be able to determine
ahead of time whether or not it had a name (or any other attributes that we
might wrap with WithoutNull). For example, we might be receiving objects
from the database with a function like (db.get({person: {id: 17}})). Our
WithoutNull wrapper would be excellent for providing a consistent interface
to name and other attributes just by wrapping the call like this: without-

CHAPTER 9: Refactoring to OOP Patterns

350

Null(db.get({person: {id: 17}})). It’s very likely that we would not
want to change the database API itself, but rather wrap values that it returns.

Second, if our API returned a string instead of a real object for name in the
normal Person case (rather than a NameString), we would have had much
more difficulty in setting up a parallel function structure for NullString
without directly extending our “untouchable” Person and AnonymousPerson
classes, overwriting String.prototype, or compromising our fairly simple
wrapping API.

We’ve seen two possible interfaces so far:

Cute(dog);
WithoutNull(personTwo);

As we noted earlier, we could have used a class/constructor function instead
of a factory function, which would give us an interface like:

new Cute(dog);
new WithoutNull(personTwo);

The reason we didn’t do that is that it is odd to explicitly return something
from a constructor function (which carries the expectation of returning the type
of object named by the constructor or class).

From the perspective of an interface, what is a new Cute? What is a new
WithoutNull? These are traits, and don’t really make sense to instantiate. So
it’s not only the implementation, but also the interface, that suggests a factory
function.

For another take on this, let’s look at a very simple adapter that uses a class:

class Target{
 hello(){
 console.log('hello');
 };
 goodbye(){
 console.log('goodbye');
 };

};
class Adaptee{
 hi(){
 console.log('hi');
 };
 bye(){
 console.log('bye');
 };
};

Wrapper (Decorator and Adapter)

351

const formal = new Target;
formal.hello();
formal.goodbye();

const casual = new Adaptee;
casual.hi();
casual.bye();

class Adapter{
 constructor(adaptee){
 this.hello = adaptee.hi;
 this.goodbye = adaptee.bye;
 };
};
const adaptedCasual = new Adapter(new Adaptee);
adaptedCasual.hello();
adaptedCasual.goodbye();

So we have casual and formal objects with different interfaces (hi versus
hello, and bye versus goodbye). If we need to support the same interface,
Adapter can remap the functions to new ones. This is the same problem that
WithNull helped us solve earlier.

For the same reasons as with the decorators, Adapter would probably be
best as a factory function. But if we use a factory function for the adapter, what
is the difference between an adapter and a decorator?

THE “DECORATOR” TC39 PROPOSAL

There are, as of this writing, a few proposals for JavaScript features that
use the term decorator. Although they are distinct from our discussion
here, they involve similar ideas of altering existing behavior.

The difference is one of emphasis and likely usage. A decorator is more likely
to have nested wrappers to add a few disparate traits. An adapter is more of a
mapping of interfaces between one object and another. Imagine our WithNull
implementing a conversion of every property to not allow for null. In a decora-
tor scenario, we might prefer to nest as in WithoutNullName(WithoutNull-
Phone(person))). For an adapter, we would be more likely to apply the inter-
face transformation as a necessary and single step. So the dog example was
probably more of a decorator, while the “without null” example was more of
an adapter. But does it matter? Not really. In all cases, we’re using wrapper
functions to add properties to objects. It’s tempting to think of patterns in
terms of “interfaces” (the OOP term) and “abstract classes,” subclasses and pri-
vate/public methods and members, but JavaScript isn’t Java. UML diagrams to

CHAPTER 9: Refactoring to OOP Patterns

352

describe these complex relationships can be a useful starting point for design,
but for JavaScript, your best option is to start with the interface (the test/client
code) you want to write and then figure out how to implement it.

When should we avoid decorators and adapters? Well, if we have control
over the entire implementation (i.e., we own our own libraries), we might get
the same utility from altering the base code rather than complicating our inter-
faces with wrapping possibilities. Additionally, as with applying any pattern, en-
sure that the result is actually simpler and more understandable than the origi-
nal (unpatterned) code. Before using the adapter function, first try extracting
objects and functions. If you still want to apply the pattern, this will probably
just make the process easier.

Facade

After the more challenging wrapper patterns, the facade is extremely simple.
We have some complex API, but instead of interacting with it directly, we use an
interface. When you play a piano, you’re not physically pushing the hammers
into the strings. When you drive a car, you’re probably focused on the destina-
tion or next high-level step, occasionally thinking about your controls, and rare-
ly (if ever) thinking about the internal components.

Basically, a facade is an interface that contains a curated subset from one or
more APIs with the intention of streamlining and simplifying the code one
needs to write.

As for a more specific software example, let’s consider how JavaScript inter-
acts with native web APIs. The number of properties available on document
and window alone is huge, and it can hardly be recommended that a beginner
just read the documentation in order to get a handle on how they work.

Let’s create a facade that demonstrates the kinds of things you can do with
JavaScript. Since we’ll be interacting with a browser, we can start with an HTML
page and save it as facade.html:

<html>
 <head>
 <meta http-equiv="content-type" content="text/html;
 charset=utf-8" />
 <title></title>
 <script type="text/javascript" src='facade.js'></script>
 </head>
 <body>
 </body>
</html>

In the same directory, we can add a file for facade.js:

Facade

353

const page = {
 say(string){
 console.log(string);
 },
 yell(string){
 alert(string);
 },
 addNewLine(){
 document.body.appendChild(document.createElement("br"));
 },

 addButton(text){
 const button = document.createElement("button");
 button.appendChild(document.createTextNode(text));
 document.body.appendChild(button);
 },
 addText(text){
 const span = document.createElement("span");
 span.appendChild(document.createTextNode(text));
 document.body.appendChild(span);
 },
 changeBackground(color){
 document.body.style.background = color;
 },
 now(asNumber = false){
 if(asNumber === false){
 return new Date().toLocaleTimeString();
 }else{
 return new Date().getTime();
 }
 },
 timeOnPage(){
 return ((this.now(true) - this._start) / 1000) + " seconds";
 },
 loadTime(){
 return ((this._start - this._loaded) / 1000) + " seconds";
 },
 eventsSoFar(){
 console.info(this._events);
 },
 _events: [],
 _start: 'nothing yet',
 _loaded: 'nothing yet'
};

window.onload = function(){
 page._start = page.now(true);
 page._loaded = performance.timing.navigationStart;
 document.onclick = function(event) {
 page._events.push(event.target + " clicked at " + page.now());

CHAPTER 9: Refactoring to OOP Patterns

354

 };
};

In this file, we’re making the following functions available:

• say (console.log)

• yell (alert)

• addNewLine (adds
 tag)

• addButton (adds a button)

• addText (adds a paragraph)

• changeBackground (changes background to a color)

• now (prints the current time, nicely formatted with default parameter)

• timeOnPage (how many seconds someone has been on the page)

• loadTime (how long it took the page to load)

• eventsSoFar (what the visitor has clicked on)

If you want to try it out, open facade.html in a browser. We have black box
functions on an object called page. All it does is put together a limited subset of
how you might interact with a website, including the basics of logging, analyt-
ics, page interactions, and performance monitoring. This could be useful for
someone unfamiliar with browser APIs or the browser console.

When should you not use a facade? Any time the direct interactions with an
API are simple enough or understood well enough by you or other people inter-
acting with it. In those cases, adding a facade is a bad idea, because it either
will not be used, or will be used sometimes, leading to learning/supporting/
understanding/maintaining two disparate interfaces.

Facades are widely used for tasks like simplifying complex APIs. ORMs (ob-
ject relational mappers) can be useful for simplifying database interactions.
And jQuery is arguably a very large facade for frontend JavaScript and all the
APIs it interacts with. Once you get to the ORM or framework level, you’ve got a
lot more going on than a simple “facade,” but the intention is the same.

It is tempting to think of interfaces strictly in terms of public/private (which
in JavaScript could mean prepended with _, completely hidden, or a couple of
other things). However, exposing a smaller subset of an API is underutilized.
Consider that we’ve already seen one clear example of why we might use a less
feature-rich API over a complex one (tape versus mocha). Whether for conve-
nience or learning, exposing a core/popular set of features independently from
a large API could make documentation and coding easier on beginners (and
“forgetters”)—which, considering how massive the JavaScript landscape is, in-
cludes practically everyone.

Facade

355

WHAT DOES THE ALPHABET HAVE TO DO WITH APIS?

Even without the creation of a distinct, smaller interface for an API through a fa-

cade, people deserve better than documentation organized only alphabetically.
What are the most useful functions? What are the most popular?

These are not impossible questions to answer. By providing a subset of documenta-
tion or allowing functionality to be ranked by something more practical than the al-
phabet, advice to “RTFM” would be a lot more useful, albeit just as rude.

Wrapping Up

We’ve left out the majority of the patterns from the seminal design pattern
book, Design Patterns: Elements of Reusable Object-Oriented Software (also
known as the “Gang of Four” or “GoF” book for its four authors), as well as a
good number of those that have popped up throughout the years. Since this is a
refactoring book and not a patterns book, we had to draw the line somewhere,
especially given that the term pattern is used as freely and casually as refactor-
ing can be. Additionally, our goal is turning bad (and likely to be seen) code into
good code. Sometimes, there is simply not a plausible form that code could
take as a “before” case. In other instances, applying a pattern is done for the
sake of optimization, rather than to achieve a better interface. Another reason
some patterns are not included is that they’re built into JavaScript itself.

With those thoughts in mind, a few additional patterns worth exploring are:

Composite
This pattern is good for traversing trees of data, such as JSON/objects/docu-
ment nodes.

Builder
Used for complex object creation, this pattern is good for generating test da-
ta.

Observer
This pattern can be seen in things like publish/subscribe, events, and ob-
servables.

Prototype
This pattern is built into JavaScript.

CHAPTER 9: Refactoring to OOP Patterns

356

Iterator
Building your own iterator is an unlikely choice given the wealth of native
options for iteration (including loops, array comprehension functions, and
generators).

Proxy
We actually see an example of this in action in Chapter 10 when we use the
testdouble framework, which allows “faking out” the real function call as
well as asserting that the function was called. Note that there is also a native
proxy object in JavaScript, and it is another possible approach to wrapping
an object with withoutNull, as we covered earlier.

The GoF book doesn’t have a monopoly on design patterns, nor do object-
oriented languages or web applications. In some languages or problem do-
mains, a pattern might be very popular or easy to implement. JavaScript, given
that it spans so many paradigms and applications, has a large pool of architec-
tural ideas to draw from. If you are looking for some new patterns to think
about, embedded programming, operating systems, databases, concurrency,
functional programming, and game development might be of interest.

In this chapter, we looked at some of the best that object-oriented architec-
ture has to offer, through a JavaScript lens. For the sake of refactoring, and cod-
ing generally, the advice from the GoF to “program to an interface, not an im-
plementation” rings true. Between (our) JavaScript’s lack of a distinct compila-
tion step and some keywords that didn’t cross over from Java, SmallTalk, and
the like, this is not only practical advice, but the only possible approach for im-
plementing many patterns.

Ultimately, even if perfectly implementing UML diagrams from other lan-
guages were possible with JavaScript, the patterns presented in this chapter
are intended to address likely architectural problems. Specifically, we ad-
dressed maintenance issues that arise with code complexity (exemplified by the
proliferation of conditionals and subclasses), learned how to avoid “billion-
dollar mistakes” from external code, and provided an example of how to create
a small, friendly API.

In the next two chapters, we will be exploring JavaScript’s more functional
side.

Wrapping Up

357

Asynchronous Refactoring 10

In this chapter, we’ll discuss asynchronous (aka “async”) programming in Java-
Script, by covering the following topics:

• Why async?
• Fixing the “pyramid of doom”
• Testing async code
• Promises

Why Async?

Before we get into how to make asynchronous JavaScript better through refac-
toring, it’s worth discussing why we need it. Why shouldn’t we just use a “sim-
pler” synchronous style and not worry about async at all?

As a practical concern, we want our programs to be performant. Despite our
focus in this book being interfaces rather than performance, there is another is-
sue, even if we thought it was okay to hold up our whole program for a web
request or data processing task that could take seconds, minutes, or even
longer: sometimes async is the only option for a given module or library.

Async has become the norm for many APIs. For example, one coming from a
mostly synchronous paradigm (language or style) might expect node’s http
module to behave like this:

const http = require('http');
const response = http.get('http://refactoringjs.com');
console.log(response.body);

But this will print undefined. The reason is that our response constant is
actually named a bit optimistically. The return value of http.get is a Clien-
tRequest object, not a response at all. It describes the request, but not the re-
sult.

359

There are good reasons to use asynchronous remote HTTP calls. If our re-
mote call were synchronous, it would necessarily “stop the world” (STW) and
keep our program waiting. Still, when we look at the immediate alternative,
this compromise may feel frustratingly complex:

http.get('http://refactoringjs.com', (result) => {
 result.on('data', (chunk) => {
 console.log(chunk.toString());
 });
});

WHY TOSTRING()?

chunk is a Buffer of characters. Try leaving off the toString(), and you’ll
see something like <Buffer 3c 21 44 4f 43 ... >.

This is clearly a more complicated process than our idea of how a synchro-
nous HTTP API would function. It forces not only the asynchronous style, but
the functional paradigm as well. We have two inner asynchronous functions. If
you try to cling to using synchronous-style coding beyond this initial call, your
frustration won’t stop:

let theResult = [];
http.get('http://refactoringjs.com', (result) => {
 result.on('data', (chunk) => {
 theResult.push(chunk.toString());
 });
});
console.log(theResult);

Now we can get an array of the chunks of the response, right? Nope. This
prints an empty array: [].

The reason is that the http.get function returns right away, and con-
sole.log is evaluated before the chunks are pushed onto the array in the call-
back. In other words:

http.get('http://refactoringjs.com', (result) => {
 result.on('data', (chunk) => {
 console.log('this prints after (also twice)');
 });
});
console.log('this prints first');

The last line prints before the innermost function has a chance to execute
the third line (incidentally, it prints that logging statement twice). So if it’s just a

CHAPTER 10: Asynchronous Refactoring

360

matter of waiting, and we want to do something with the chunks, we should
just be able to wait, right? But how long do we wait? Is 500 milliseconds enough
time?

let theResult = [];
http.get('http://refactoringjs.com', (result) => {
 result.on('data', (chunk) => {
 theResult.push(chunk.toString());
 });
});
setTimeout(function(){console.log(theResult)}, 500);

It’s hard to say. Using this approach, we might end up with an empty array,
or an array with one or more elements. If we really want to be sure that the data
is in place before we log it (or do anything else with it), we’ll end up waiting too
much, and tying up our program too. If we wait too little, we’ll miss some data.
So this solution isn’t very good. Not only is it unpredictable, but it involves set-
ting state through a side effect.

SETTIMEOUT AND THE EVENT LOOP

It is worth noting that setTimeout(myFunction, 300) doesn’t necessarily execute my-

Function after 300 milliseconds. What it does is first return (in node, if you assign

with x = setTimeout(myFunction, 300), you’ll see that it returns a Timeout object),
and then add the function to the event loop to be executed after 300 milliseconds
has passed.

There are two questions to keep in mind with this type of situation. First, will the
event loop be stuck doing something else at 300 milliseconds? Maybe.

Second, does code execute immediately when given a timeout of 0 milliseconds? In
other words, what executes first?

setTimeout(() => {console.log('the chicken')}, 0);
console.log('the egg');

In this case, "the egg" will get printed first.

What about this?

setTimeout(() => {console.log('the chicken')}, 2);
setTimeout(() => {console.log('the chicken 2')}, 0);
setTimeout(() => {console.log('the chicken 3')}, 1);
setTimeout(() => {console.log('the chicken 4')}, 1);
setTimeout(() => {console.log('the chicken 5')}, 1);
setTimeout(() => {console.log('the chicken 6')}, 1);

Why Async?

361

setTimeout(() => {console.log('the chicken 7')}, 0);
setTimeout(() => {console.log('the chicken 8')}, 2);
console.log('the egg');

The egg wins again, but the chickens are all over the place. Try running it in differ-
ent browser consoles and on node. As of this writing, the order on Chrome and Fire-
fox is different but consistent. The order on node varies from run to run.

With the problems of the setTimeout approaches, it looks like we’re better
off going back to our first async method (the code snippet directly before “Why
toString()?”), but is that really the best way to write it?

Fixing the Pyramid of Doom

If you’re unfamiliar with the term “pyramid of doom” or the often-related “call-
back hell,” they can both refer to code in the following form:

levelOne(function(){
 levelTwo(function(){
 levelThree(function(){
 levelFour(function(){
 // some code here
 });
 });
 });
});

The “pyramid of doom” refers to the shape where code creeps to the right
with many levels of indentation. “Callback hell” is less about the shape of the
code, and more of a description of code that follows many layers of callback
functions.

Extracting Functions into a Containing Object

Let’s get back to the code from the last section. Clearly, we’re going to want
some asynchronous form here, but how do we manage the complexity and
nesting required with something like this?

const http = require('http');
http.get('http://refactoringjs.com', (result) => {
 result.on('data', (chunk) => {
 console.log(chunk.toString());

CHAPTER 10: Asynchronous Refactoring

362

 });
});

Note that this could be much more complicated with many more levels of
nesting. This is callback hell and the pyramid of doom in action. There’s no
strict line for how much indentation constitutes a pyramid of doom or how
many callbacks put you in “hell.”

We already have a strategy for this from previous parts of the book. We sim-
ply de-anonymize and extract a function like this:

const http = require('http');
function printBody(chunk){
 console.log(chunk.toString());
};

http.get('http://refactoringjs.com', (result) => {
 result.on('data', printBody);
});

And we could even name and extract another:

const http = require('http');
function printBody(chunk){
 console.log(chunk.toString());
};

function getResults(result){
 result.on('data', printBody);
};

http.get('http://refactoringjs.com', getResults);

Now we’re left with two named functions and the last line as a piece of client
or calling code.

Because this is a streaming API, delivering “chunks” of data rather than the
full HTML body at once, our code would currently put a line break between
chunks. Let’s avoid that with an array to capture the results:

const http = require('http');
let bodyArray = [];
const saveBody = function(chunk){
 bodyArray.push(chunk);
};
const printBody = function(){
 console.log(bodyArray.join(''))
};
const getResults = function(result){

Fixing the Pyramid of Doom

363

 result.on('data', saveBody);
 result.on('end', printBody);
};

http.get('http://refactoringjs.com', getResults);

Note that we had to add a new event handler for the 'end' event, and we
no longer need the toString because our join function is smart enough to co-
erce the buffers into one string.

Now that we have extracted our functions and are printing properly, we
might be tempted to further change the code by moving this into an object, ex-
porting a module, and defining our public interface by some combination of
pseudoprivate functions (prefixed with an underscore), classes, factory func-
tions, or constructor functions. Depending on what you liked from the previous
chapters (especially Chapters 5, 6, and 7) and your own style, any of these op-
tions might seem overkill or prudent.

If you do decide to move things into an object, one thing to be aware of is
how easily the this context will get dropped:

const http = require('http');
const getBody = {
 bodyArray: [],
 saveBody: function(chunk){
 this.bodyArray.push(chunk);
 },
 printBody: function(){
 console.log(this.bodyArray.join(''))
 },
 getResult: function(result){
 result.on('data', this.saveBody);
 result.on('end', this.printBody);
 }
};

http.get('http://refactoringjs.com', getBody.getResult);

This code will lead to the following error:

TypeError: "listener" argument must be a function

This means that in the last line, getBody.getResult is not a function.
Changing that last line gets us a bit further:

http.get('http://refactoringjs.com', getBody.getResult.bind(getBody));

But we still get an error from pushing onto the bodyArray:

CHAPTER 10: Asynchronous Refactoring

364

TypeError: Cannot read property 'push' of undefined

To get everything passing around this properly to the callbacks, we’ll need
our code to bind this for the callbacks of the events in getResult as well:

const http = require('http');
const getBody = {
 bodyArray: [],
 saveBody: function(chunk){
 this.bodyArray.push(chunk);
 },
 printBody: function(){
 console.log(this.bodyArray.join(''))
 },
 getResult: function(result){
 result.on('data', this.saveBody.bind(this));
 result.on('end', this.printBody.bind(this));
 }
};

http.get('http://refactoringjs.com', getBody.getResult.bind(getBody));

Is it worth putting this in an object? Is it worth disabling what was a fairly
shallow pyramid of doom? Did we eliminate callback hell? Maybe not, but it’s
good to have options. We’ll stick with this form to start the next section.

Before moving on, though, there are two critical things for us to notice.
First, by relying on callbacks to do the real work of our program, we’re also

counting on side effects. We’ve left the simple world of returning values. We’re
not even just returning values from functions. We’re running them (and return-
ing right away with nothing of value), but the callbacks will run sometime. Our
fundamental basis for achieving confidence relies on knowing what’s happen-
ing in our code, and async in JavaScript, as we know it so far, completely under-
mines this.

Second, and related to the first point, we don’t have any tests! But what
would we test anyway? Let’s start with our old assumptions about how testing
works, and try to test some known value. We know that after the function is ex-
ecuted, the bodyArray should have some data in it. In other words, its length
should not be equal to zero.

Testing Our Asynchronous Program

With that in mind, let’s work with the testing library from Chapter 9 called tape.
It is a bit simpler than mocha, and you can run it just by running node

Fixing the Pyramid of Doom

365

whatever-you-call-the-file.js. You can install it with npm install

tape.
The following test will fail:

const http = require('http');
const getBody = {
...
}
const test = require('tape');
test('our async routine', function(assert){
 http.get('http://refactoringjs.com',
 getBody.getResult.bind(getBody));
 assert.notEqual(getBody.bodyArray.length, 0);
 assert.end();
});

Why? Because it is executed before bodyArray has a chance to be updated!
You might instinctively want to crawl back into a comfortable synchronous

world with an update to the test like this:

test('our async routine', function(assert){
 http.get('http://refactoringjs.com',
 getBody.getResult.bind(getBody));
 setTimeout(() => {
 assert.notEqual(getBody.bodyArray.length, 0);
 assert.end();
 }, 3000);
});

Here we get a passing test, but it takes 3 seconds to execute.
So how can we delay our assertion until after the bodyArray gets popula-

ted?
Because we are testing a side effect, and our code is not very “callback-

friendly,” we’re stuck with setTimeout unless we rewrite the code or add some
odd machinations to our tests. In an ideal case, printBody would take a call-
back that would run to indicate that everything is all done.

Trading one blunt tool for another, we can eliminate our reliance on setTi-
meout by overwriting the existing function that indicates when things are done:

test('our async routine', function (assert) {
 getBody.printBody = function(){
 assert.notEqual(getBody.bodyArray.length, 0);
 assert.end();
 }
 http.get('http://refactoringjs.com',

CHAPTER 10: Asynchronous Refactoring

366

 getBody.getResult.bind(getBody));
});

This might seem outrageous, for a couple of reasons. First, it overwrites a
function that we may want to test later (will we have to restore the original im-
plementation?). Second, changes to printBody’s implementation could lead to
some complexity later. Without introducing mocking, or trying to feed a call-
back all the way through each function and event, we could do slightly better:

const getBody = {
...
 printBody: function(){
 console.log(this.bodyArray.join(''))
 this.allDone();
 },
 allDone: function(){}
}

test('our async routine', function (assert) {
 getBody.allDone = function(){
 assert.equal(getBody.bodyArray.length, 2);
 assert.end();
 }
 http.get('http://refactoringjs.com',
 getBody.getResult.bind(getBody));
});

Here, we create a function whose only responsibility is running when
printBody runs. Because there is no default implementation, overwriting it for
the test is no big deal. We’ll just need to reset it in future tests. Here is an addi-
tional test that ensures that setting the bodyArray to [] allows a clean slate:

test('our async routine', function (assert) {
 getBody.allDone = function(){
 assert.equal(getBody.bodyArray.length, 2);
 assert.end();
 }
 http.get('http://refactoringjs.com',
 getBody.getResult.bind(getBody));
});

test('our async routine two', function (assert) {
 getBody.bodyArray = [];
 getBody.allDone = function(){ };
 http.get('http://refactoringjs.com',
 getBody.getResult.bind(getBody));
 assert.equal(getBody.bodyArray.length, 0);

Fixing the Pyramid of Doom

367

 assert.end();
});

Additional Testing Considerations

Considering that we also need to reset our bodyArray to an empty array (and
revert any other side effects, such as would appear in a database), one addi-
tional upkeep step shouldn’t trouble us too much. We can even refactor these
steps into simple functions:

function setup(){
 getBody.bodyArray = [];
}
function teardown(){
 getBody.allDone = function(){ };
}

test('our async routine', function (assert) {
 setup();
 getBody.allDone = function(){
 assert.equal(getBody.bodyArray.length, 2);
 teardown();
 assert.end();
 }
 http.get('http://refactoringjs.com',
 getBody.getResult.bind(getBody));
});

test('our async routine two', function (assert) {
 setup();
 http.get('http://refactoringjs.com',
 getBody.getResult.bind(getBody));
 assert.equal(getBody.bodyArray.length, 0);
 teardown();
 assert.end();
});

Note that mocha and other more fully featured frameworks try to handle
setup and teardown on your behalf. They do okay most of the time, but having
explicit setup and teardown functions (as in the last example) gives you more
control.

CHAPTER 10: Asynchronous Refactoring

368

TEST PARALLELIZATION

No framework will save you from tests running in parallel and clobbering
shared state. The solution to this is to run tests that share state serially
(as a tape test file will do). And for disparate aspects of the code, splitting
these into modules and giving each its own chance to run independently
and in parallel will still let you have speedy, parallel test runs.

Architecturally, splitting your code into modules is probably what you
wanted to do anyway, right?

If that sounds like too much work, go with mocha or something else that
handles setup/teardown. But don’t be surprised if you still have an occa-
sional parallelization problem (most likely resulting in test failures).

Let’s take care of that function reassignment using the testdouble library
(npm install testdouble):

const testDouble = require('testdouble');

function setup(){
 getBody.bodyArray = [];
}
function teardown(){
 getBody.allDone = function(){ };
}
test('our async routine', function (assert) {
 getBody.allDone = testDouble.function();
 testDouble.when(getBody.allDone()).thenDo(function(){
 assert.notEqual(getBody.bodyArray.length, 0)
 assert.end()
 });
 http.get('http://refactoringjs.com',
 getBody.getResult.bind(getBody));
});

When we make a test double like this for our function (we could also do it for
whole objects), our code can now just “fake” the call to allDone. More typical-
ly, doubles are used to avoid performing expensive or otherwise slow opera-
tions (such as calling an external API), but be wary of using this technique too
much, as it is possible to fake everything, which results in useless tests. One
thing to notice is how convenient our teardown is. It’s easy to reassign this one
empty function, but if we were creating doubles of more functions (mocking,
stubbing, spying, etc.), our teardown could get pretty complicated.

How about this for isolation?

function setup(){
 return Object.create(getBody);

Fixing the Pyramid of Doom

369

};

test('our async routine', function (assert) {
 const newBody = setup();
 newBody.allDone = testDouble.function();
 testDouble.when(newBody.allDone()).thenDo(function(){
 assert.notEqual(newBody.bodyArray.length, 0)
 assert.end()
 });
 http.get('http://refactoringjs.com',
 newBody.getResult.bind(newBody));
});

Instead of having to reset our object, we can just use a new one with our test
runs. Our setup function might not be specific enough for every situation, but
it’s perfect for this.

DID WE TEST ENOUGH?

Depending on our confidence, we can pretty much always add more tests.
In this case, we might have opted to return the HTML string from print-
Body and test that (probably with a regex rather than a full match). We
could have made a double for this call:

result.on('data', this.saveBody.bind(this));

And made it always produce a simple HTML fragment.

Additionally, we could test the fact that a function was called at all, or
that it was called and did not produce an error.

In a lot of asynchronous code, the return values are not as interesting (or
confidence-producing) as knowing what functions were called and what
other side effects took place.

In this section, we created objects and explored some lightweight testing
options for asynchronous code. You might lean toward heavier tools like mocha
(as we used earlier) for testing and Sinon.JS (which we haven’t looked at) for
doubles. Or you might try out simpler tools like tape and testdouble. You might
even want to just scrape by with setTimeout and assert or wish statements
from time to time.

As we discussed in Chapter 3, you have many options for tooling and test-
ing. If something feels overly complex or doesn’t do what you need it to, you
can always tool down or tool up as needed. Flexibility and clarity are more im-
portant than hitting a screw with a hammer until it drives into the wall.

CHAPTER 10: Asynchronous Refactoring

370

Callbacks and Testing

From the last section, we have a new approach to fixing the pyramid of doom,
but it doesn’t really get us out of callback hell. In fact, by naming and extracting
functions, we may actually reduce the clarity of our code in some cases. Rather
than callbacks being nested, they could be spread across the file or multiple
files.

Creating an object helped with keeping callbacks somewhat organized, but
that isn’t our only option. Part of what led us to that solution was the utility of
having a container to store our side effect array. We had to do some aggrega-
tion based on the streaming/event-emitting nature of node’s http library and
our desire to print the entire HTML body at once. If we were adding something
to a page or saving a file, we might consider allowing the file or DOM to be the
aggregate itself, and just pass the results of the stream to it instead of getting
them into an intermediate form (the array).

We’ve seen that passing a (callback) function into another function is useful
for asynchronous programming, but it completely changes how we’ve been
working in the earlier parts of this book. Instead of returning something valua-
ble and acting on it, we’re letting the inner function call the shots (and its inner
function [and its inner function]). This is a property of continuation passing style
(CPS) called inversion of control (IoC), and while useful, it has some drawbacks:

• It’s confusing. You have to think backward until you get used to it.
• It makes function signatures complex. Instead of function parameters act-

ing as “inputs,” they now may be responsible for outputs as well.
• Callback hell and the pyramid of doom are both likely without organizing

code into objects or other high-level containers.
• Error handling is more complicated.

Additionally, asynchronous code in general is hard:

• It makes testing more difficult (although part of this is just the nature of
asynchronous programming).

• It’s hard to mix with synchronous code.
• Return values are likely no longer important throughout the sequence of

callbacks. This makes us rely on testing of callback arguments to deter-
mine intermediate values.

Basic CPS and IoC

Let’s look at an example of the most basic usage of callbacks in a function, sim-
ply to see this inversion of control in action. It doesn’t even have to be asyn-

Callbacks and Testing

371

chronous. Here’s an example of a noncallback (aka “direct style”) version of our
function:

function addOne(addend){
 console.log(addend + 1);
};
addOne(2);

And when we use callbacks to do the same thing:

function two(callback){
 callback(2);
};
two((addend) => console.log(addend + 1));

The weight of the algorithm is now in the callback, rather than the two func-
tion, which merely gives up control and passes a 2 to the callback. As we have
done before, we can name and extract the anonymous function, giving us this:

function two(callback){
 callback(2);
};
function addOne(addend){
 console.log(addend + 1);
};
two(addOne);

The value of the calling function (two) is that it supplies a variable to the
callback. In this case, that is all it does. If the two function needed its value to
come from some longer-running task, we’d want a callback (CPS) version. How-
ever, because two can immediately return, the direct style is fine, if not prefera-
ble.

Let’s add a three function that does need to work asynchronously:

function three(callback){
 setTimeout(function(){
 callback(3);
 },
 500);
};
three(addOne);

If we tried doing the same synchronously:

function three(){
 setTimeout(function(){

CHAPTER 10: Asynchronous Refactoring

372

 return 3
 },
 500);
}
function addOne(addend){
 console.log(addend + 1);
};
addOne(three());

We end up printing NaN (“Not a Number”) because addOne finishes execut-
ing before three gets a chance to return. In other words, we’re trying to add 1
to undefined (the addend in addOne), resulting in NaN. So we’ll need to go
back to our previous version:

function addOne(addend){
 console.log(addend + 1);
};
function three(callback){
 setTimeout(function(){
 callback(3);
 },
 500);
};
three(addOne);

Note that we could also have written our addOne function to take a callback,
like this:

function addOne(addend, callback){
 callback(addend + 1);
};
function three(callback){
 setTimeout(function(){
 callback(3, console.log);
 },
 500);
};
three(addOne);

Let’s stick with this form for the tests.

Callback Style Testing

The example from the last section might seem redundant with our earlier use of
the http.get function, but there are four reasons we introduced it:

Callbacks and Testing

373

• The motivation in the first part of this chapter was the need to work with
an asynchronous library. In this example, the motivation is that we need
to work with an asynchronous function (just one).

• The earlier example is more complex because the callback of get leads to
other callbacks in multiple result.on functions.

• Our earlier example did not use CPS the whole way through. We relied on
a nonlocal object to do some of the dirty work.

• A simple example, where we write both the interface and the implementa-
tion code, is needed because we’ll increase the complexity when we in-
troduce promises.

Before we get to promises, we need tests for this code. Earlier, we cheated a
bit by relying on a global variable for the value we were testing. We could do the
same here, or rely on some kind of test double for console.log to check if it is
called with the right argument (a viable approach for an end-to-end test), but
that’s not where we’re headed. This time, we’ll try doing things a bit more
async-like by relying only on the resulting parameters from our callbacks. Since
addOne is simpler, let’s start there:

const test = require('tape');

test('our addOne function', (assert) => {
 addOne(3, (result) => {
 assert.equal(result, 4);
 assert.end();
 });
});

For the sake of testing, we’re basically treating result like we would a re-
turn value. Instead of testing the return value, we’re testing the parameter that
is passed to the callback. As for reading this, we could say this:

1. addOne takes two arguments: a number and a callback.
2. We’re passing in a callback as the second (actual) argument. It is an

anonymous function.

3. That anonymous function has a (formal) parameter we call result. We
are declaring the function in the test.

4. That anonymous function is called inside of addOne, with the argument
(result) being the addition of 1 and whatever was passed as the first ar-
gument to addOne.

5. We test that result against the numerical literal 4.
6. We end the test.

CHAPTER 10: Asynchronous Refactoring

374

Look at how different the addOne function and its test would be if we were
just returning the result:

function addOneSync(addend){
 return addend + 1;
};
...
test('our addOneSync function', (assert) => {
 assert.equal(addOneSync(3), 4);
 assert.end();
});

Callbacks and Testing

375

Here we:

1. Pass 3 to the addOne function and get the return value.

2. Test that return value against the numerical literal 4.
3. End the test.

One of those processes is way simpler, but we’re living in an async world a
lot of the time. Also, as we saw earlier, our three function doesn’t have the
luxury of having a usable synchronous analog. Here is our test:

test('our three function', (assert) => {
 three((result, callback) => {
 assert.equal(result, 3);
 assert.equal(callback, console.log);
 });
 assert.end();
});

The three function takes only one argument. That is a function, which
we’ve left anonymous. That anonymous function takes two parameters, which
are supplied as arguments when the anonymous function is called inside of
three. One is the result and the other is the callback. Our tests confirm that
result is 3 and callback is console.log.

If we want an end-to-end test, our best bet is using the testdouble library to
see if console.log is called with 4:

const testDouble = require('testdouble');
test('our end-to-end test', (assert) => {
 testDouble.replace(console, 'log')
 three((result, callback) => {
 addOne(result, callback)
 testDouble.verify(console.log(4));
 testDouble.reset();
 assert.end();
 });
});

There are a couple of things worth noting here. First, the testdouble.re-
place function replaces the console.log function with a double that we can
check later when we call verify. Following that, testdouble.reset restores
console.log to its former self. Recall earlier when we were talking about cre-
ating a teardown function. We could use testdouble.reset to put our dou-
bles back, meaning that after we do that, we could use console.log as nor-
mal.

So now that we have tests in place, let’s get to promisifying.

CHAPTER 10: Asynchronous Refactoring

376

Promises

If you like being able to write asynchronous JavaScript, but don’t like the mess
that comes along with inversion of control, promises are for you. Let’s recap
what we’ve seen so far. In direct style, you return values from functions and use
those return values in other functions. In CPS (continuation passing style), you
invert control by the calling code supplying (and often defining inline) a call-
back to be executed by the function that is called. Return values become little
better than meaningless, and instead the arguments passed from the callback
(one is conventionally called result) become the focus of tests and subse-
quent callbacks.

Although using callbacks opens up the possibility of asynchronous code
(without using some kind of polling), we introduce some complexity both in the
way we structure our functions and in the way we call them.

Promises shift this complexity to the function definition side of things, leav-
ing the function calling code with a relatively simple API. For most situations,
promises are a better choice than CPS. And where they aren’t the right choice,
CPS probably isn’t either. In those cases, you might be looking for stream han-
dling, observables, or some other high-level pattern.

The Basic Promise Interface

So how do we use promises? We’ll cover their implementation soon, but for
now, let’s see what the promise interface looks like:

// promises
four()
.then(addOne)
.then(console.log);

This is pretty straightforward. We have a function that returns a 4 (wrapped
in a promise), acted on by addOne (which itself returns a promise), which in
turn is acted on by console.log.

If we’re looking to compose functions, promises are much easier to work
with. Callbacks have us stuck either hardcoding function names (and/or func-
tion literals for callbacks) in the function declarations, passing them in as extra
parameters in the function, or using some other nontrivial and somewhat con-
fusing alternatives.

With promises, we are just chaining values together. We have a value (wrap-
ped in a promise), and then unwraps it by waiting (when necessary), then pass-
es that value as a parameter to the promise or function. To illustrate a bit more
of the interface, we could also write form 2:

Promises

377

// form 1
four()
.then(addOne)
.then(console.log);

// form 2
four()
.then((valueFromFour) => addOne(valueFromFour))
.then((valueFromAddOne) => console.log(valueFromAddOne));

In these forms, we have a function literal or reference. Both the function defi-
nitions and the function calls of addOne and console.log happen elsewhere.
Form 1 is preferable when possible (it is also known as “point-free,” a style we’ll
discuss more in the next chapter).

Moving from form 2 to form 1 has a similar feel to naming and extracting an
anonymous function. In both cases, the function calls happen elsewhere, and
may even be implicit or outside of your codebase (i.e., you won’t be able to
“grep” for them). In the case of moving from form 2 to form 1, however, the
function definitions (along with their names) already exist, so we only need to
drop the anonymous wrapping function.

THE FLEXIBILITY OF PROMISES

If you’re still not sure about the utility of promises over callbacks, take a
look at this:

four()

.then(addOne)

.then(addOne)

.then(addOne)

.then(addOne)

.then(addOne)

.then(console.log);

We can chain as many addOnes as we want. It’s basically a fluent interface
if you ignore the then calls, and it’s async-friendly. You can do this with
CPS, but you’re headed for the pyramid of doom (and hard-to-test inter-
mediate results).

Creating and Using Promises

Now that we have a good idea of why promises are often a good choice over
callbacks, let’s take a look at how we actually implement them:

four()
.then(addOne)

CHAPTER 10: Asynchronous Refactoring

378

.then(console.log);

function addOne(addend){
 return Promise.resolve(addend + 1);
};

function four(){
 return new Promise((resolve, _reject) => {
 setTimeout(() => resolve(4), 500);
 });
};

The first three lines should be very familiar by now. So how do the new func-
tions work? It might seem complex inside the function bodies, but notice that
we’re no longer passing callbacks, which can get very confusing. Also, we get
our return statements back!

Unfortunately, what we are returning are promises, which may seem hard to
understand. But they aren’t. It’s just like making toast:

1. You start with a toaster.
2. You put your bread in it along with some input on how to toast it.
3. The toaster determines when the bread is toasty enough and pops it up.
4. After it’s ready, you get your toast and consume it how you see fit.

The same four steps are true of promises:

1. You start with a promise (usually created with new Promise, but the pre-
vious example also shows that you can create one with Promise.re-
solve).

2. You put a value or the process to create a value (which may be asynchro-
nous) into the promise.

3. After a timer or receiving the result of some asynchronous function, the
value is set by resolve(someValue).

4. This value is returned wrapped in a promise. You pull it out of the toaster
—er, promise—with the then function, and consume the value as you see
fit.

DO YOU HATE METAPHORS?

No? Good. We’ll be discussing burritos in Chapter 11. They’re kind of like making
toast.

But isn’t a promise a high-level functional structure like a functor or monad or
similar? Maybe, but that’s a huge topic, and we can’t get into all of it in this book.

Promises

379

Chapter 11 gives a good introduction to practical functional coding, but we’ll leave
the theory out of it and focus on using good coding interfaces.

Back to our example, our addOne function returns a promise created with
Promise.resolve(addend + 1). This is fine for cases where we only need a
value, but using the new Promise constructor function and supplying a call-
back (the executor) that calls resolve or reject (the two functions named by
the signature of the callback of the constructor, the executor) provides more
flexibility.

SOME CONSIDERATIONS ABOUT THEN

There is something to note about our addOne function:

function addOne(addend){
 return Promise.resolve(addend + 1);
}

It would work just as well if the second line were this:

 return addend + 1;

Why? Because then will accept a promise or a function (or two, actually: the first for
fulfillment and the second for rejection). Try this:

four()
.then(() => 6)
.then(console.log);

In this case, 6 will be printed. The first then’s callback throws away the 4 and just

passes 6 along.

However, note that four cannot be a simple function returning a simple value, even

without considering the setTimeout aspect of it. The first function in a promise chain

must be “then-able”—that is, return an object that supports the .then(fulfill-

ment, rejection) interface. That said, you could start off just by having a resolved
promise:

Promise.resolve()
.then(() => 4)

CHAPTER 10: Asynchronous Refactoring

380

.then(() => 6)

.then(console.log);

A resolve will make the value available inside of the then function. The
reject function will create a rejected promise object. There is a catch function
that will catch some errors (and miss others, so be careful). There are also
Promise.all and Promise.race functions to, respectively, return when all
promises complete and return the first promise that completes.

In some ways, it is a fairly small API, but the variations around error handling
and setting promises up can make for a tricky experience. Still, the interface it
provides makes the upfront work worth it.

Testing Promises

To finish things up neatly, let’s see how the tests adapt to this new interface:

function addOne(addend){
 return Promise.resolve(addend + 1);
}

function four(){
 return new Promise((resolve, _reject) => {
 setTimeout(() => resolve(4), 500);
 })
}

const test = require('tape');
const testdouble = require('testdouble');

test('our addOne function', (assert) => {
 addOne(3).then((result) => {
 assert.equal(result, 4);
 assert.end();
 });
});

test('our four function', (assert) => {
 four().then((result) => {
 assert.equal(result, 4);
 assert.end();
 });
});

test('our end-to-end test', (assert) => {

Promises

381

 testdouble.replace(console, 'log')
 four()
 .then(addOne)
 .then(console.log)
 .then(() => {
 testdouble.verify(console.log(5));
 assert.pass();
 testdouble.reset();
 assert.end();
 }).catch((e) => {
 testdouble.reset();
 console.log(e);
 })
});

The first two tests, which are low-level, are relatively unchanged. The end-
to-end test has changed quite a bit. After replacing console.log so that we
can monitor it, we kick off the promise chain with our promise-returning four
function. We chain our addOne and console.log callbacks with then func-
tions. And then we have another then, with an anonymous function as the only
argument. Inside of that anonymous function, we verify that console.log
was called with 5. Following that, we call assert.pass so that our test output
will confirm three instead of two passing tests. We need that because verify
isn’t part of tape and doesn’t produce a passing assertion. Then we do the tear-
down with testdouble.reset and assert.end.

You might be wondering what we’re doing with the catch. Well, unfortu-
nately, after we replace console.log, our errors will no longer print anything!
catch allows us to put console.log back with testdouble.replace before
printing the error with console.log(e).

IS CHANGING CALLBACK-STYLE CODE INTO PROMISES
“REFACTORING?”

Probably not, unless you aren’t concerned with unit testing at all and consider your
“interface” to be some very high-level interactions with the code. The value in
promises is that they change interfaces, and those are probably where you would
want your testing to be.

So why spend so much time on promises in Refactoring JavaScript?

There are three reasons. First, you’ll probably hear someone at some point talk
about “refactoring to use promises.” You’ll know this actually means supporting
new interfaces, and writing new code with new tests. See the diagram in Chapter 5
on what tests to write (Figure 5-1). The second reason is that knowing where you

CHAPTER 10: Asynchronous Refactoring

382

are in the testing cycle (testing before new code, increasing coverage, or refactor-
ing) is the most important thing to have a handle on when developing confidence in

a codebase. Third, there are tons of cool things in JavaScript (canvas, webvr, webgl,
etc.) that make somewhat niche applications possible, but asynchronous program-
ming with promises is increasingly important for JavaScript developers of all kinds.

Wrapping Up

Async is a huge and active area of development in JavaScript, and we only
scratched the surface. Other things worth exploring are web workers, streams,
observables, generators, async/await, and nonnative async/promise utilities.

For the most part, using any of these features will involve dramatically
changing code and not refactoring as we define it. But having a base knowledge
of the interfaces involved in your code, as well as how to test them, is crucial
before any refactoring can take place.

Despite “refactoring to use promises” not really fitting our concept of refac-
toring, the interface is one that we should prefer (at least until async and
await become more widely available), because it generates useful return val-
ues rather than relying on calling other functions (side effects). By the same to-
ken, async and await are interesting because they allow us to write
synchronous-looking code just by adding a few keywords. However, as of this
writing, their spec and implementations are not yet realized.

In Design Patterns: Elements of Reusable Object-Oriented Software, the Gang
of Four’s advice to “code to an interface, not an implementation” must be pre-
dicated on the capacity to choose what interface you want. Following that, you
can develop confidence through writing tests and refactoring. Here, we’ve ex-
plored a few more options for interfaces.

Wrapping Up

383

Functional Refactoring 11

Of all the styles of JavaScript you can write, this one probably draws from the
deepest well. Functional programming is older than object-oriented program-
ming and even imperative programming. We’re going to take a few drinks from
this well, but try to avoid falling in. FP has so much history and theory behind it
that we have to set some boundaries.

There is an expression that “farmers don’t want to own all the land, just all
the land their land touches.”

Learning functional programming in JavaScript has this same temptation.
Here is a list of statements that might hold true for some people, but are not
what we’re dealing with in this chapter:

• To learn functional programming, you need to learn Scheme/Haskell.
• To do “real” functional programming in JavaScript, you need to compile

to JS from PureScript, TypeScript, ClojureScript, or something else.
• To learn functional programming, you need to learn the lambda calculus.
• To learn functional programming, you need to learn category theory.

A CONFESSION

An implicit statement in the above is:

Evan needs to write this chapter as a 900-page book from the perspective of a Math/CS dual
PhD (which he isn’t).

Sorry to disappoint, but that’s not going to happen in this chapter.

385

The focus here is entirely on the practical concern we’ve had all along: build-
ing confidence through developing and maintaining the interfaces of our code.
To that end, we’ll be covering five main topics:

• The restrictions and benefits of functional programming
• The basics of FP
• More basics of FP
• Burritos
• Moving from OOP to FP

The Restrictions and Benefits of Functional
Programming

Generally speaking, programming within a functional paradigm requires a bit
more structure than a typical JavaScript programmer might be used to. With
that structure comes certain guarantees and challenges. In this section, we’ll
explore some of the basic trade-offs in attempting a functional style.

Restrictions

Here’s a common piece of code that is often trotted out to denigrate program-
ming in a nonfunctional style:

x = 1;
x = x + 1;

That’s it. It might seem pretty innocent, but there are many problems here.
Many JavaScript programmers will be fine with this. Some would just be both-
ered by the first assignment not being preceded by a var to scope it within a
function. Other people would want a let to scope at the block level. As we’ve
discussed earlier in the book, what we really want here is a const, which would
prevent the reassignment on the second line. On a chalkboard in a math class,
this would look especially ludicrous.

We covered earlier how reassignment makes programs more complicated to
deal with. But reassignment goes a bit deeper than the strictly practical.

If we were thinking of both of these statements as mathematical facts, is x
equal to 1 or does x somehow equal 1 and 1 + 1? Apparently it depends where
you are in the program, right? So we can’t look at these statements as facts
about x anymore. We have variable assignments instead of facts (values in func-
tional terms). Values shouldn’t change. When they do, our programs look less
like math and more like sequences of instructions.

CHAPTER 11: Functional Refactoring

386

Okay, so we should be able to solve anyone’s objections like this, right?

const x = 1
const y = x + 1

The second problem, and this might seem strange, is that just by having as-
signments to begin with, we’ve introduced the concept of time into our pro-
gram. There is a time before these values exist, and another one after. Yes, our
JavaScript programs are steps of execution no matter how we go about it. How-
ever, in declarative programming (of which FP is one type), we seek to deem-
phasize those mechanics, describing what a program should do rather than
how it should do it. Moreover, assignments in and of themselves are worthless
unless they’re actually applied to a function (including one that just prints the
value of the assignment).

SPREADSHEETS AS DECLARATIVE PROGRAMMING

As a simple example of declarative programming, consider a spreadsheet program.
Some cells contain data (facts/values). Other cells contain functions to manipulate
and use those calculations. Other cells have functions that use the results of exe-
cuting other functions.

When using a spreadsheet program, we don’t really think about the flow of execu-
tion of the program. Are the numbers displayed in the cells before they are used in
other calculations? If a number is used in multiple calculations, which calculation is
executed first?

By the way, if you want to try out a declarative programming language that’s espe-
cially distant from JavaScript, you should look into Prolog.

If worrying about reassignments and even assignments seems really intense,
I have bad news, good news, better news, and then some more bad news. The
first bit of bad news is that you might find a number of restrictions in a given
functional programming language, such as:

• Variables don’t exist. They may be called values, which are constants.
• There is no shared global state (without some difficulty).
• Assignment itself is more complex. Values tend to come from or go into

functions.
• Functions should always return something.

• if statements without else branches are invalid.

The Restrictions and Benefits of Functional Programming

387

• Functions are declared along with a type signature that specifies inputs
and outputs.

• There is a compilation step where types need to line up properly (more
on this later).

• The language makes it difficult to use side effects that may be trivial in
other languages.

• There’s no concept of null.

You may find that not everything in this list applies to every functional
language.

Benefits

The good news is that with those restrictions come a ton of benefits. When val-
ues exist only in a small scope and can’t change, you can trust that a function
called with the same arguments always returns the same result. This is also
called idempotence, which is half of what makes a pure function. The other half
is not producing side effects.

By this point in the book, functions returning something is a goal we’ve been
striving for anyway, but what’s the benefit of restricting else? If you look at
code for an if without an else, you might notice that it will either change the
returned value, throw an error, or have some other kind of side effect. In other
words, it’s a vector for impurity to sneak into our functions.

Because type signatures (we cover them more later, but just think about how
we talked about input and output types like string and number in Chapter 5)
establish what types of values get passed around where, functional purity can
be protected at a compilation stage if you have one (and it’s nice to discover
errors, including type errors, then rather than at runtime). In a stricter function-
al programming language like Haskell, you can have impure functions, but they
can be complicated to set up. They could very well take the “fun” out of
“functional” for many and make the code just “ctional.”

As far as the last item in the bulleted list in the previous section, as we talked
about before, avoiding null saves us a billion dollars. Of all the restrictions,
this is the best. You won’t feel restricted while swimming in your Scrooge
McDuck vault of gold.

And now for the better news. The implications of using pure functions range
from convenient to quite compelling. In a stateless world, there is no longer a
question of when something happened. If two processing cores of a machine
(or more) run the same function, they get the same result, and it doesn’t matter
which finishes first. In other words, you can avoid race conditions.

CHAPTER 11: Functional Refactoring

388

Additionally, if functions always return the same thing when called with the
same arguments, they are referentially transparent, which means we can substi-
tute the evaluation of the expression with the value produced. Following from
that, we (through minor effort in setting up) never have to evaluate a function
twice in a row.

The Restrictions and Benefits of Functional Programming

389

BY THE WAY, RECURSION

If you’ve read this far into the book, you’re either familiar with recursion or com-
pletely capable of understanding it. We haven’t done much with it so far, but it de-
serves a brief explanation.

If you have a loop, you could likely use recursion instead. For instance, finding an
element can be defined iteratively like this:

function find(toFind, array){
 let found = "not found";
 array.forEach((element) => {
 if(element == toFind){
 found = "found";
 };
 });
 return found;
};
console.log(find(3, [3, 9, 2])); // found
console.log(find(3, [2, 9, 3])); // found
console.log(find(3, [2, 9, 2])); // not found

But we could also have a recursive find:

function find(toFind, array){
 if (array[0] === toFind) {
 return "found";
 } else if(array.length === 0){
 return "not found";
 } else{
 return find(toFind, array.slice(1));
 }
};
console.log(find(3, [3, 9, 2])); // found
console.log(find(3, [2, 9, 3])); // found
console.log(find(3, [2, 9, 2])); // not found

Both options have performance implications, which we won’t get into here, and

neither is necessarily the best version of find. This is just to illustrate a couple of
things you need for recursive functions.

First, you need a call to a function inside of its declaration (e.g., find calls find()
inside of itself). Second, you need a “base case” code path (usually prescribed by a

conditional) where the function won’t call itself. In this case, we have two terminal

CHAPTER 11: Functional Refactoring

390

branches where the function returns "found" or "not found". If you don’t have a
base case (or something like a timeout), you will end up with an infinite loop.

Let’s explore the idea of referential transparency with everyone’s favorite re-
cursive function, factorial:

function factorial(number){
 if(number < 2){
 return 1;
 } else {
 return(number * factorial(number - 1));
 }
};
factorial(3); // returns 6

That’s all well and good, but since we have a pure function (the outputs de-
pend only on the input), we have an opportunity to memoize it:

const lookupTable = {};
function memoizedFactorial(number){
 if(number in lookupTable){
 console.log("cached");
 return lookupTable[number];
 }
 else{
 console.log("calculating");
 var reduceValue;
 if(number < 2){
 reduceValue = 1;
 } else {
 reduceValue = number * memoizedFactorial(number - 1);
 }
 lookupTable[number] = reduceValue;
 return reduceValue;
 }
};
console.log(memoizedFactorial(10)); // calculating 10 times
console.log(memoizedFactorial(10)); // cached 1 time
console.log(memoizedFactorial(11)); // calculating (once) and cached

If we run this example, we’ll see that any time we calculate a value, we add it
(along with the number parameter) to the lookup table. The first call, memoi-
zedFactorial(10), has to do a bit of work. The second call only needs to ref-

The Restrictions and Benefits of Functional Programming

391

erence the lookup table. The third call still has to calculate for 11, but 10 is al-
ready a solved problem, so it just pulls that from the lookupTable.

But now our function relies on something other than explicit parameters! It
has become impure! How can we avoid this? We need to make the lookupTa-
ble an explicit parameter:

function memoizedFactorial(number, lookupTable = {}){
 if(number in lookupTable){
 console.log("cached");
 return lookupTable[number];
 }
 else{
 console.log("calculating");
 var reduceValue;
 if(number < 2){
 reduceValue = 1;
 } else {
 reduceValue =
 number * (memoizedFactorial(number - 1, lookupTable))['result'];
 };
 lookupTable[number] = reduceValue;
 return {result: reduceValue, lookupTable: lookupTable};
 }
};
console.log(memoizedFactorial(10)['result']);
console.log(memoizedFactorial(10)['result']);

If you run this, you’ll notice that the cache misses on the second call. This
shouldn’t be too surprising when you look at what we’re calling. We have a de-
fault explicit parameter for lookupTable that is an empty object, and we never
actually pass it in. No cache means no cache hits.

If we add the following code, we’ll see the cache is activated for the second
call:

const lookup = memoizedFactorial(10)['lookupTable'];
console.log(memoizedFactorial(10, lookup));

There are other ways we could wrap memoization in using functions. Some
memoization functions are made to wrap arbitrary functions, but we won’t get
into that here. In any case, memoization is a useful tool for some situations, but
the setup does have some overhead.

CHAPTER 11: Functional Refactoring

392

The Future (Maybe) of Functional Programming

Let’s get back to some more bad news about FP. Some functional concepts are
difficult, and yet, in the long term, the functional people are probably right. Of
all the committees, frameworks, and paradigms influencing JavaScript, the
functional ideas are showing a lot of promise, because not only are they based
on practical software quality principles, but they are also a lens into the state of
hardware today and in the future: memory is cheap and computers are parallel-
izing with multiple cores to keep up with Moore’s law. But in order to make use
of hardware with multiple processors (or distributed systems), we need code
that doesn’t care about order of execution so that it can execute in parallel.

It’s not hard to see how performance is beginning to become a quality con-
cern. I don’t have a crystal ball here, but “You’re not writing referentially trans-
parent, pure, functional, concurrent code with compile-time type checking?”
becoming the new “You don’t write unit tests?” doesn’t seem too far-fetched.

The best news, however, is that throughout the earlier parts of this book, we
have already made significant efforts toward many of the good parts of func-
tional programming. Not reassigning variables is definitely something we’ve
been through. Keeping variables scoped tightly and converting between func-
tions and variables are both things we’re pretty handy with at this point too.
And not every other aspect is terribly difficult. For example, separating pure
and impure functions is not too hard if we’re already good at extracting func-
tions.

The Basics

In JavaScript, the benefits and restrictions of programming in functional style
are not as simple as a switch that can be flipped on and off. This is partly be-
cause functional style is not rigorously enforced in JavaScript, and also because
at a basic level, many of the restrictions we can adhere to and the benefits we
can enjoy look generically like “better code” rather than “steps toward func-
tional programming.” Let’s look at a few of those now.

Avoiding Destructive Actions, Mutation, and Reassignment

When we see a reassignment, we should seek better solutions. For the following
trivial example, we would just use const x = 2. A preference of const to let
also speaks to this intention:

let x = 1;
x = x + 1;

The Basics

393

AVOIDING REASSIGNMENT IN CONDITIONAL TESTS

Reassignment comes up a lot in conditionals too. Instead of this form:

function func(x){
 if(x >= 2){
 x = x + 7;
 }
 return x;
};

we can do this:

function func(x){
 if(x >= 2){
 return x + 7;
 } else {
 return x;
 }
};

// or

function func(x){
 return x >= 2 ? x + 7 : x;
};

You might also see (re)assignments in the conditionals themselves:

function func(x){
 if((x = x + 7) >= 9){
 return x;
 } else {
 return x;
 }
};

This is a tough one. Reassignment is bad enough, but in conditionals, any
assignment can make things a bit more confusing. Not only that, but our else
branch returns the original value of x plus seven. In other words, both code
paths are the same. Was that obvious to you? Maybe it was, but for me, it took a
minute to realize. Anyway, let’s assume that we have tests in place, and our
else branch does execute how we want it to.

Where do we go from here? We can start to deal with this by not changing
the value of x:

CHAPTER 11: Functional Refactoring

394

function func(x){
 if((x + 7) >= 9){
 return x + 7;
 } else {
 return x + 7;
 }
};

So now we have repetition, which is ugly, but would be especially bad if in-
stead of + 7, we had some more expensive call that we had to execute twice.
However, we have made something else clear by being explicit with the condi-
tionals. We’re returning the same thing regardless of input (assuming x is a
number), so our function can become this:

function func(x){
 return x + 7;
};

Did you immediately see this when we had the reassignment in the condi-
tional? If so, awesome. Not everyone will see that clearly, though.

Here’s another case that is even worse to deal with:

function func(x, y){
 if (x > 1000){
 return x;
 } else if((x = x + 7) >= 9){
 return x;
 } else {
 return y;
 }
};

This one is tricky, but let’s first remove the reassignment:

function func2(x, y){
 if (x > 1000){
 return x;
 } else if((x + 7) >= 9){
 return x + 7;
 } else {
 return y;
 }
};

This has three effects. First, our else if case’s return is complicated. Sec-
ond, we’re now doing the + 7 operation twice. That’s not a big deal here, but if
the calculation was more expensive, we would expect to take a performance

The Basics

395

hit. Third, the else case has the original value of x as it was passed in. Even
though we’re not using it, it’s good to be aware of that.

To avoid running the function twice, we could set a newX variable immedi-
ately:

function func3(x, y){
 const newX = x + 7;
 if (x > 1000){
 return x;
 } else if(newX >= 9){
 return newX;
 } else {
 return y;
 }
};

This prevents us having to execute the + 7 operation twice, but now we’re
doing it once, even when the if branch is the one we’re executing (which
doesn’t need newX or x). One way of handling this is by introducing a nested if
statement:

function func4(x, y){
 if (x > 1000){
 return x;
 } else {
 const newX = x + 7;
 if(newX >= 9){
 return newX;
 } else {
 return y;
 }
 }
};

Now we have three code paths, but we’re only doing the x + 7 operation
once. Even with the extra complexity, you might find this clearer than burying
an assignment inside of a conditional. By the way, in a more complex/expensive
operation than + 7, instead of our const we might prefer a memoized func-
tion, like this:

function func5(x, y){
 if (x > 1000){
 return x;
 } else {
 if(memoizedAddSeven(x) >= 9){
 return memoizedAddSeven(x);

CHAPTER 11: Functional Refactoring

396

 } else {
 return y;
 }
 }
};

So we could have a cache-aware function instead of a cache variable. This
would also let us revert to our simpler form:

function func6(x, y){
 if (x > 1000){
 return x;
 } else if (memoizedAddSeven(x) >= 9){
 return memoizedAddSeven(x);
 } else {
 return y;
 }
};

Of course, all of what we’ve done so far has been fairly mechanical. If we ac-
tually understand the code, another refactoring would save us from having to
mess around with caching variables/functions and ensure we take the perfor-
mance hit (albeit a very, very small one for addition in this case) only once:

function func7(x, y){
 if (x > 1000){
 return x;
 } else if (x >= 2){
 return x + 7;
 } else {
 return y;
 }
};

This change might have been obvious from the start, but refactorings that
avoid actually understanding the code are easier to apply in many cases. All
that said, odds are if we ended up with a function like this, there’s some deeper
problem elsewhere in the code. (By the way, in this form, we still have three
magic numbers, and our names for parameters and the function are not de-
scriptive, searchable, or unique.)

The Basics

397

HOW OVERRATED IS UNDERSTANDING CODE?

It might sound like heresy, but hear me out.

It’s completely possible to refactor (with tests in place, of course) without having a
good understanding of what the code actually does. “Digging in” (especially while
debugging) is a tremendously important skill, but quality improvements through
refactoring do not always demand it. As in our last example, you may hit a point
where without having further context, you’re stuck, but this is not always the case.

Similarly, when you have a failed test build (or a bad deployment, eek), it’s tempt-
ing to “dig in” and see what exactly went wrong, but sometimes, it’s much faster to
just go back to a version of the code that behaved properly and work from there.

Understanding the code (which includes tracing the execution path, and examining
variables and other state at various points in time) is useful but can be tedious. It’s
important to recognize that it’s not the only strategy that works.

AVOIDING REASSIGNMENT IN LOOPS

Next, let’s talk about loops (which frequently have a “loop counter” variable
that updates). Instead of using them, we should prefer using forEach, at mini-
mum:

[3, 4, 2].forEach((element) => console.log(element));

This is fine for when we have a simple side effect we want to run, but rather
than using a loop (or forEach) to change values inside of an array, we can use
map to create a new array with new values:

[3, 4, 2].map((element) => element * 2);

When we want to filter an array to kick some elements out, we can use fil-
ter, rather than creating a new array and pushing on the elements that are
okay:

[3, 4, 2].filter((element) => (element % 2 == 0));

When we need to transform an array into some other type of value (object,
number, etc.), we’re likely going to want reduce:

CHAPTER 11: Functional Refactoring

398

[3, 4, 2].reduce((element, accumulator) => element + accumulator);

In a for loop, any of these functions would tend to work with the index of
the loop, as well as an outer variable that reassigns to itself over time. An atom-
ic creation of a new variable makes tests easier and keeps values the same.

If you’re looking for a good jumping-off point for higher-order functions like
these, the Array docs (http://developer.mozilla.org/en-US/docs/Web/Java-
Script/Reference/Global_Objects/Array) are a good place to start.

The Basics

399

http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

BUT YOU CAN DO ANYTHING WITH A FOR LOOP!

Yes, you can. You can loop through all of your values and build up some other value.

You can implement all these with a for loop or forEach:

• every

• filter

• find

• forEach (itself)

• map

• reduce/reduceRight

• some

You could also implement them all with reduce, but why would you do either? Use

the right tool for the right job. map gives you a new array of transformed elements.

every, filter, find, and some return something based on a test conditional you pro-
vide.

reduce gives you some new value based on your array. It’s a bit harder to use than
the others, but if you want to get back some accumulated value—a sum/product/

object/string/array (that won’t work with map)—reduce is what you want. For an
easy test of what you want, look above where your loop starts. If it’s not the same
type as what you’re looping through (a number or an empty object usually), you

probably want to use reduce.

Using these functions means using functions that take functions as parameters. It
might not seem exotic at this point in the book, but it’s a good entry point toward
exploiting JavaScript’s support for first-class functions (functions as input and out-
put to other functions). Some may argue that that’s not “real” functional program-
ming, but will still admit that we’re moving closer to a declarative style in contrast

to an imperative style. Think of this as telling the computer what to do, instead of

how to do it.

AVOIDING REASSIGNMENT IN CONDITIONAL BODIES

Although we generally have tried to reduce if statements (through polymor-
phism of subclasses, or through delegation to properties, or extracting them to
their own named function as a first step), there are places where they will show
up in your code. When that happens, try to provide an else case and new vari-
ables. So instead of this:

CHAPTER 11: Functional Refactoring

400

let emailSubject = "Hi";
if(weKnowName){
 emailSubject = emailSubject + " " + name;
};
sendEmail(emailSubject, emailBody);

try to do this:

if(weKnowName){
 let emailSubject = `Hi ${name}`;
} else {
 let emailSubject = "Hi";
};
sendEmail(emailSubject, emailBody);

This is much more flexible, as we perceive a few transformations:

function emailSubject(){
 if(weKnowName){
 let subject = `Hi ${name}`;
 } else {
 let subject = "Hi";
 };
 return subject;
};
sendEmail(emailSubject(), emailBody);

Then it is clear that we don’t need the assignment at all:

function emailSubject(){
 if(weKnowName){
 return `Hi ${name}`;
 } else {
 return "Hi";
 };
};
sendEmail(emailSubject(), emailBody);

Now, we can simplify the statement with ternary syntax:

function emailSubject(){
 return weKnowName ? `Hi ${name}` : "Hi"
};
sendEmail(emailSubject(), emailBody);

AVOIDING DESTRUCTIVE FUNCTIONS

Another source of mutating values is through using “destructive” functions.

The Basics

401

Let’s look at splice first:

const x = [1, 2, 3, 4];
x.splice(1);

splice (with one argument) will start at the index of that argument (the
second element in this case) and return the rest of the array. But it also updates
your array, leaving you with [1]. And because this isn’t a reassignment, const
doesn’t save you from splice’s destruction.

CHAPTER 11: Functional Refactoring

402

Instead of splice, slice will behave itself:

const z = [1, 2, 3, 4];
z.slice(1);

This returns [2, 3, 4] also, but doesn’t clobber the original z array.
Arrays have destructive functions, including fill, push, and pop. Object

has defineProperties. Numbers and strings as variables have + and = to, re-
spectively, add and concatenate. Arrays have functions (and syntactic sugar,
e.g., x[0] = "something") to alter values at particular indices. Objects have
Object.assign, which mutates the first argument object you give it (you can
avoid this by giving it a {} as the first argument), as well as dot (.prop =) and
bracket ([prop] =) syntax to alter or create properties.

It might seem crazy to avoid direct assignment and a good number of func-
tions just because they are destructive. But you might find it’s easier to work
with this discipline than to track down a few (or many) rogue global variables
that mutate throughout thousands of lines of code.

AVOIDING DESTRUCTION IN GENERAL

Not all functions and convenience syntaxes (such as =) come with a safe ver-
sion, and const doesn’t protect you from mutations (only assignments). So if
you want to avoid variables varying, create new variables to pass along. If you
want to reassign something, odds are you’re wanting its updated value, not just
a copy, right? It might as well be a new variable with a new name.

As far as destructive actions (and yes, this includes reassignment and even
just assignment when the scope is too large), avoid not only using them (when
possible), but also creating functions that are destructive. It is somewhere be-
tween odd and worrisome that “global variables are evil” is seen as common
knowledge, but “reassigning variables” doesn’t share that reputation, even
though they are two sides of the same coin.

DATABASES ARE A GIANT GLOBAL VARIABLE

For some reason, most people give databases a free pass as far as global
variables go, although there are some promising approaches that treat
each moment in time as a distinct “value” for the entire database. Time
will tell if those systems become common wisdom at some point.

The Basics

403

Not everyone considers the same things “destructive.” For some people, as-
signments are fine. For other people, reassigning is fine (ugh). For other people,
adding or changing the contents of an array or object is fine. For some people,
it’s an issue of scoping. Even if loop counter variables are unnecessary noise
(and we can at least use forEach or other iterable comprehensions instead),
some people are fine with variables that update within a loop. Others are fine
with reassignments if the variable is only scoped to the function.

AN AWESOME INDICATOR OF DESTRUCTION

Ruby has a convention (taken from Scheme) to indicate destructive functions with

a ! after the function name (also, ? is appended for functions that return a boolean).
Although it’s not used with terrific consistency, it’s a very good idea.

Unfortunately, we don’t have that convention, and the interpreters don’t allow for
it anyway. But given that it is a convention in Ruby that is so widely ignored, its
greatest value might be your realization that you (should you happen to be working
on Ruby code) have a capacity to care about something that others seem not to.
That’s not the same as “mastery” or “intelligence,” and certainly not something to
berate someone about. But it might be helpful to see which library authors care and
don’t care about these ideas.

Interestingly enough, ! and ? are used for completely different purposes in the Swift
programming language.

For this chapter, we’re taking a deliberate, hard line and saying destructive
actions are not okay. If you really want to avoid state, and have all of the nice
things (idempotent, pure functions that can be tested, cached, and parallelized
easily), this is the price of admission. It might seem like an expensive ticket, but
if your choice is between this and a compiles-to-JS language, this approach is
easier. Definitely try out a functional compiles-to-JS or standalone functional
language at some point, though, if you’re interested in going from self-
discipline to compiler-enforced discipline.

Don’t return null

Let’s look at some code from the last section:

function emailSubject(){
 return weKnowName ? `Hi ${name}` : "Hi"

CHAPTER 11: Functional Refactoring

404

};
sendEmail(emailSubject(), emailBody);

If someName and nullName were both objects with a defined toHi function,
we could write this as:

const someName = {
 value: "some name",
 toHi(){return `Hi ${this.value}`};
};
const nullName = {
 value: "",
 toHi(){return "Hi"};
};
// assuming getName will get someName or nullName
sendEmail(getName().toHi(), emailBody);

For further cleanup, in Chapter 9 we discussed how we might wrap an ob-
ject with a null object. We’ll cover a similar but better (albeit initially some-
what esoteric) idea later in this chapter called Maybe, and its friend Either.

Referential Transparency and Avoiding State

Can data always be the result of a function call? Yes, but any functions relying
on or manipulating nonlocal inputs (free variables) cannot be replaced by their
return value without extra consideration. As we briefly covered earlier in this
chapter, the ability to replace a function call with its return value (without
changing the program’s behavior) is called referential transparency.

As an example, emailBody in the last section could instead have been a call
to an emailBody() function, right?

What about this?

x = 5;

That could be:

function five(){ return 5 };
five();

Or we could just call it right away:

(() => 5)()

Or we could return what we pass in instead:

The Basics

405

((x) => x)(5)

We can do a similar transformation for functions that actually calculate
things. For example, this:

3 + 5

could be:

(() => 3)() + (() => 5)();

The first function returns 3. The second returns 5. Then they’re added. Here
a 3 is passed into the first function, which is returned. A 5 is passed into the sec-
ond function, which is returned. Then the results of those are calculated:

((x) => x)(3) + ((y) => y)(5);

If we combine the two expressions, we get this:

((x, y) => x + y)(3, 5);

This might look odd, but it has a few features worth noting. First, the argu-
ments we passed in are scoped only inside of this line. Second, this anonymous
IFFE is starting to look a bit like Lisp with a few extra bits of syntax. Third, if we
assign to what is returned here, we are assigning a numerical value:

const result = ((x, y) => x + y)(3, 5);

result is 8, the number. It’s not a function. It’s the result of a function call. If
we’re living in a stateless, side effect–free world (although it’s also guaranteed
by us using only explicit inputs), that means that we can replace any of the pre-
vious calculations that return 8 with just an 8. And that means that we can re-
place any instances of result with 8. We never have to do this calculation
again with these parameters.

This is referential transparency in action.
Why should the parameters change anyway? Well, let’s say we have this sit-

uation:

const recentLogins = ((x, y) => x + y)(db.loginsToday,
 db.loginsYesterday);

Now we’re looking to the outside world to provide us with values that up-
date in the database. We have a huge ball of state called a database. We don’t

CHAPTER 11: Functional Refactoring

406

have to use a database as a place to put lots and lots of variables. Just like in
our program, we could be creating new values, rather than updating them:

const today = // some specific date
const yesterday = // some specific date
const recentLogins = ((x, y) => x + y)(db.logins(today),
 db.logins(yesterday));

Disk storage is incredibly cheap, and lookups shouldn’t be too bad if you can
index by time in your database (especially given that you should only have to
do the lookup once!). Additionally, if you’re not overwriting (aka updating, aka
throwing away) database information, you should be able to play back the
state of your application given a particular query (this also assumes being able
to retrieve the version of the code at the same time).

The Basics

407

1 Just kidding—websites are mostly prioritized to serve ads, load a large “hero” graphic (or
video! how neat!) after a few seconds, and break your ability to fluidly scroll through the
content of a page.

AREN’T WE JUST HARDCODING VARIABLES? WHAT ABOUT MY
DYNAMISM?

Whenever we introduce a state change, we’re creating a concept of time as well.
There’s a world before the state change, and a world after. Once you destroy infor-
mation, it’s much harder to consider what might have gone wrong or restore to a
previous state.

Additionally, in high-traffic websites, real-time queries and page loads are opti-
mized for the speed of interface availability,1 not the speed of the delivery of every
new version of every piece of information in the database. That’s why caching ex-
ists. Trade-offs are made between delivering something that is fast enough, and

something that is recent enough. We’re not going to get into making recentLogins

cache-aware, but the point is that by parameterizing the calls to logins and setting

our database up with time in mind, we’ve giving recentLogins the opportunity to be
cached by virtue of it being referentially transparent (for a certain time period). In
reality, we’d probably want this to run more than once a day, but letting this (or

something much more complex) block showing someone something (even if it’s a
little stale) would not make for a good experience.

We got a little off track there, but the main point is that nothing has to be in
a variable (other than the global defaults) for a program to work. Instead of cre-
ating objects, we can have functions that store values. Our entire program
could be functions wrapping other functions, all kicked off by a single parame-
ter to start the data flowing.

Our program could look a lot like Lisp. Our program could look a lot like XML
with parentheses. This is the central concept in Lisp, by the way. The abstract
syntax tree (AST) to describe how the program works is, in most languages, in a
somewhat different form than the source code. In Lisp, it’s the same. This is
called homoiconicity.

JavaScript does not share this feature with Lisp, but you can get far closer
with some coding styles than others. In any case, there is clearly some link be-
tween state, interface, functional programming, and lots of parentheses. The
main point of this section is that we have a lot of options and flexibility when it
comes to how data enters and is used by our program, and these variations
matter beyond syntax.

CHAPTER 11: Functional Refactoring

408

Handling Randomness

In Chapter 4, we dealt with randomness mostly by avoiding thinking about or
testing it. We’re not going to go too in-depth here either, but in the context of
functional programming, we need to address that randomness makes our func-
tions impure (meaning we cannot rely on them to yield the same output when
given the same explicit input). In JavaScript, we call Math.random and we get a
“random” value. But what we’re actually getting is a “pseudorandom” number,
which is calculated based on some “seed” value, usually having something to
do with time. Unfortunately, this seed value cannot be set in our native
Math.random function.

If it could be set with a seed, we could generate the same “random” value
sequence. For instance, it could work like this (but not in native JavaScript):

const mySeed = 3;
let rng = setRng(myseed);
rng.gimmeRandom();
// returns 2593
rng.gimmeRandom();
// returns 8945

rng = setRng(myseed);
rng.gimmeRandom();
// returns 2593
rng.gimmeRandom();
// returns 8945

That means that even functions that appear random are actually determinis-
tic. This is handy, because you can have random-like numbers that you can test
against. It is possible that for your application (or just your tests), this kind of
randomness is enough.

Keeping the Impure at Bay

There are three functions in here (not including tests). Can you pick out the im-
pure ones?

const test = require('tape');
const testdouble = require('testdouble');
var x;

function add(addend1, addend2){
 return addend1 + addend2;

The Basics

409

};

function setGlobalFromAddition(addend1, addend2){
 x = add(addend1, addend2);
}

function readAddition(addend1, addend2, done){
 console.log(add(addend1, addend2));
 done();
}

test('addition', (assert) => {
 assert.equal(add(2, 3), 5);
 assert.end();
});

test('setting global', (assert) => {
 setGlobalFromAddition(2, 3);
 assert.equal(x, 5);
 assert.end();
});

test('setting global again', (assert) => {
 setGlobalFromAddition(2, 8);
 assert.equal(x, 10);
 assert.end();
});

test('calling console', (assert) => {
 testdouble.replace(console, 'log');
 readAddition(2, 3, () => {
 testdouble.verify(console.log(5));
 assert.pass();
 testdouble.reset();
 assert.end();
 });
});

addition is pure because it relies only on its inputs, and returns an output
without having any side effects. It is also completely trivial to test. Good job,
addition.

As for the other two functions, we decided to test them even though they’re
impure. setGlobalFromAddition seems easy enough to test. The second and
third tests run fine. But what if instead of a “dreaded evil global variable,” this
was a value in a database? And what if other people were testing their code us-
ing the same database? Obviously, we should expect occasional failures if we’re
depending on global shared state and all trying to use the same datastore,
right? More realistically, whether it’s global state in code or a database, if the

CHAPTER 11: Functional Refactoring

410

number of tests we need to run is large enough, we’re going to want to parallel-
ize our test suite. And then, we will see failures. Impure functions rely on some-
thing other than their explicit inputs, and that includes not just nonlocal vari-
ables (and functions if they themselves are impure), but also databases and the
implicit this argument (if it is not immutable). That last point bears repeating,
as it is a pretty big shift from how object-oriented programming tends to work:
in functional style, we should prefer using explicit inputs and outputs to access-
ing and modifying a this value.

All in all, functions like setGlobalFromAddition will make our testing
more difficult. Maybe not immediately, but even without a more complex pro-
gram that mutates x in multiple places, we already can see tests that cannot be
trusted to run in parallel.

The third function, readAddition, makes a call to console.log, so it is an
impure function with a side effect in it. The complexities of testing this were ex-
plored in the previous chapter, but in the context of this chapter we have anoth-
er reason, beyond the mechanics of testing, for why working with this is incon-
venient: I/O calls are side effects and make impure functions. Impure functions
are hard to test.

If you like, you could try namespacing your impure functions (don’t forget to
namespace the function calls as well). A simple object would work:

const impure = {
 setGlobalFromAddition(addend1, addend2){
 x = add(addend1, addend2);
 },
 readAddition(addend1, addend2, done){
 console.log(add(addend1, addend2));
 done();
 }
};

If you find doing this separation annoying, you really wouldn’t like the mach-
inations you have to do to mix pure and impure code in some functional lan-
guages (like Haskell).

Hopefully, this section has made three things clear. First, it is easy to tell
pure from impure functions. If you know that something will always run the
same way, with the same input, and not produce a side effect (meaning any-
thing that doesn’t simply return a value), then it is pure. Second, impure func-
tions are harder to test. Third, the simpler (in terms of bulk, inputs, and out-
puts) your functions are, the better chance they have at being pure.

At this point, we’ve talked over some of the basic hygienic processes you can
enact in your code to make it more functional, and also discussed some of the
benefits of doing so, including purity, referential transparency, and easier test-

The Basics

411

ing. The approaches we’ve taken and our goals for the code are not unlike those
found in the rest of the book. We’ve already covered a preference for less bulky
functions with few inputs and one clear return value. We’ve also covered why
array comprehensions make more sense than for loops. Reassigning variables
has been discouraged plenty of times earlier.

Now that we have a new perspective on some of our earlier concepts, it’s
time to branch out. Next we’ll be looking at some features that can give us more
functional interfaces.

Advanced Basics

In this section, we’ll be exploring some fundamental aspects of functional pro-
gramming that are still foreign to many JavaScript programmers:

• Currying
• Partial application
• Function composition
• Types

WHAT YOU CAN’T GET FROM JUST PLAIN JAVASCRIPT

Having a compilation step and a type safety system in place (which Java-
Script doesn’t) is actually pretty handy. Using a compiles-to-JS language
like TypeScript or Flow will help you realize some of those benefits. Al-
ternatively, you could just go straight for Haskell, Clojure, or Scala.

Currying and Partial Application (with Ramda)

One functional concept that you can exploit to make your code more flexible is
using currying and partial application. Before explaining those terms in the
text, let’s look at a bit of code:

function add(numberOne, numberTwo){
 return numberOne + numberTwo;
};
add(1, 2);
// 3

This is our favorite addition function so far. It works beautifully. But some
(FP rapscallions) would have you believe that this one is better:

function add(numberOne, numberTwo){
 return function(numberOne){

CHAPTER 11: Functional Refactoring

412

 numberOne + numberTwo;
 };
};

There is some weirdness here:

console.log(add(1, 2));
// [Function]

Did we break our perfectly good addition function? Yes.
Now it just makes a function that doesn’t care about that second argument

(2) at all. Or does it?
We can still use add like this:

console.log(add(1)(2));
// 3

We just replace the , with)(, and then we’re good. But that doesn’t explain
how it works or why we’d want to do that.

Well, the first thing to notice in our second addition function is that it returns
a function. That means that when you run add(1), you get back a function that
is waiting for the 2 (or something else):

const incrementer = add(1);
incrementer(2);
// 3

Our incrementer is a partially applied function. We took our original func-
tion that took two arguments, and partially applied one argument that it need-
ed, creating a new function with reduced arity (the number of arguments some-
thing takes; e.g., a function with an arity of 1 takes one argument).

Currying is not the same thing as partial application. This was the partial ap-
plication part:

const incrementer = add(1);

We happened to assign it to a variable, but the partial application was when
we did this: add(1). Currying is what we did when we transformed our normal
two-parameter function (i.e., a binary function) into one that took one argu-
ment (i.e., a unary function). What we didn’t do, however, was use a curry
function to do that. We curried it manually. As of right now, we don’t have a way
to take any function of any arbitrary arity and curry it.

For that, we need Ramda. The underscore and lodash libraries do similar
things, but Ramda has the coolest name and graphic. Also, underscore doesn’t

Advanced Basics

413

have the curry function. Comparing and contrasting the libraries is an exercise
left to the reader, so let’s continue by installing Ramda:

npm install ramda

Next, let’s try it out:

R = require('ramda');

function add(numberOne, numberTwo){
 return numberOne + numberTwo;
};

const curriedAdd = R.curry(add);

console.log(curriedAdd(1));
console.log(curriedAdd(1)(2));
console.log(curriedAdd(1, 2));

It’s pretty easy to use. We just require it and write our binary function as we
normally would, and then R.curry does some magic to it:

[Function]
3
3

Our output is better than expected. Where our normal (uncurried) function
would choke on the first one (giving us NaN by adding 1 to undefined), this
gives us a partially applied function. Supplying (1)(2) as arguments gives us
3, just like we got from our manual currying process. As a bonus, the curried
function still works with our original arity of 2. Passing two arguments with (1,
2) still works fine!

Also, the following works as expected:

const increment = curriedAdd(1);
console.log(increment(3));

How would we have built increment if it wasn’t curried? Maybe like this?

function increment(addend){
 return add(addend, 1);
};
console.log(increment(3));

CHAPTER 11: Functional Refactoring

414

It’s only two more lines in this case, but what if we had increment, add-
Five, addTen, and so on? Or what if the implementation were more complex?

In case you’re not quite on board with currying, here’s another possibility.
You know that map function we’ve been praising throughout the book? What if I
told you it wasn’t that awesome?

Here’s something that works okay:

const square = (thing) => thing * thing;

console.log([2, 4, 5].map(square));

But what if you want to reuse a mapSquares function? Our data is stuck in
front of the dot (.), so what should we do? Altering Array.prototype is
strictly a no-no. We could create a new class that extends Array, alter that
prototype, and make our [2, 4, 5] an instance of that subclass.

Or we could let Ramda do some work:

R = require('ramda');
const square = (thing) => thing * thing;

const mapSquares = R.map(square);
console.log(mapSquares([2, 4, 5]));

console.log(R.map(square, [2, 4, 5]));

Ramda’s map function is already curried, so we can partially apply square to
make mapSquares, later applying the data. But it also allows for a convenient,
two-argument version if we feel like “fully applying” the function all at once.

That’s only two of Ramda’s functions (curry and map), and we’re already
seeing more flexible, reusable, and shorter interfaces.

WHAT ABOUT THIS?!

Isn’t this the most important keyword in JavaScript? And now, Ramda is just

throwing it away? Without a doubt, this generates more confusion, questions, and
blog posts than nearly any other topic, with the possible exceptions of “Prototypes
are good/bad” and “What library should I use for X?”

But that’s not the same as being “important.” If we can get this kind of flexibility

and clarity, then this is our sacrifice. Not only is determining what this is a bit con-
fusing, but it also ties up what could be explicit arguments. Ramda just acts like a
namespace, which is closer to how “real” functional programming works.

Advanced Basics

415

I might even go as far as saying that using this makes your functions “impure.” If

you don’t want to, that’s okay, but isn’t the this context just shared mutable state?

Function Composition

Okay, so we saw that Ramda was pretty awesome, but you might be thinking
that lodash and underscore will work just as well for composing functions.

Let’s give that a shot with the last example (after you run npm install lo-
dash):

_ = require('lodash');
const square = (thing) => thing * thing;

const mapSquares = _.map(square);
console.log(mapSquares([2, 4, 5]));
console.log(_.map(square, [2, 4, 5]));

Kaboom:

TypeError: mapSquares is not a function

We can still do this just fine:

console.log(_.map([2, 4, 5], square));

It works, but wait a second...that’s backward!
Yes, it is—and traditional. And that tradition of putting data before the call-

back is an impedance to composing functions. We can fix it:

function mapSquares(data){
 return _.map(data, function(toSquare){
 return toSquare * toSquare;
 });
}
console.log(mapSquares([2, 4, 5]));

Admittedly, we can refactor to:

function mapSquares(data){
 return _.map(data, square);
};

And to:

CHAPTER 11: Functional Refactoring

416

const mapSquares = (data) => _.map(data, square);

But ugh...before, we got away with just this:

const mapSquares = R.map(square);

POINT-FREE PROGRAMMING

In this chapter, we’re aiming for “point-free” style most of the time. That means
not working directly with your inputs. You can apply functions to them, but if you

give the input a name (like data) and work with it directly, you’ve created a point.

The word “point” is related to topology, and not the dot (.) in JavaScript.

In the preceding example of mapSquares, this one is “pointed”:

const mapSquares = (data) => _.map(data, square);

And this is point-free:

const mapSquares = R.map(square);

It’s difficult (maybe impossible) to make all of your functions point-free, but at-
tempting to do so should help shorten a lot of your function definitions.

It’s worth noting, however, that not everything will be easy.

Earlier, we had this bit of code:

[3, 4, 2].forEach((element) => console.log(element));

It might look like we could just do this instead:

[3, 4, 2].forEach(console.log);

But this is actually different. Although we only want to print the number, we’ll end
up printing:

3 0 [3, 4, 2]
4 1 [3, 4, 2]
2 2 [3, 4, 2]

That’s the number, the index, and the full array. forEach will supply three parame-

ters to a callback function if it wants them. console.log will happily print as many

arguments as it is passed, but we can make a new function based on log that only
uses its first argument:

Advanced Basics

417

const logFirst = (first) => console.log(first);
[3, 4, 2].forEach(logFirst);

This topic goes pretty deep. There are functions to turn any function into a unary
function (as we did here), as well as functions of another arity. You can reorder pa-
rameters as they come in, and create functions that are partially applied with place-
holder arguments in arbitrary positions in the function signature.

The bottom line is, if you do a lot of function composition and strive for point-free,
odds are that you’ll end up fiddling with your parameters a bit.

Hopefully, everyone will get together and decide that data first is a problem.
But in the meantime, it’s just one level of working with data directly when we
have the wrong argument order, right? At first, yes. But as with conditionals,
null returns, and every kind of bulk in the code, complexity seems to breed
when no one’s watching. More practically, you’ll see more nesting (and data
variables) if you compose your functions with a data-first library.

As you add functionality, you’ll either be making your code more complex (in
the function calls or the function definitions) or composing new functions. Let’s
see that in action. If we wanted to raise everything to the fourth power, we
could complicate the function call and be done:

R = require('ramda');
console.log(R.map(square, R.map(square, [2, 4, 5])));

Or we could do something like this:

function fourthPower(thing){
 return square(thing) * square(thing);
};
console.log(R.map(fourthPower, [2, 4, 5]));

But Ramda has another trick up its sleeve, called compose. Check this out:

const fourthPower = R.compose(square, square);
console.log(R.map(fourthPower, [2, 4, 5]));

And we could combine that with map into a new mapFourthPower as well:

const mapFourthPower = R.map(fourthPower);
console.log(mapFourthPower([2, 4, 5]));

CHAPTER 11: Functional Refactoring

418

And yes, we could actually compose with console.log too (if we wanted to
log the elements, rather than the array):

const printFourthPower = R.compose(console.log, square, square);
R.map(printFourthPower, [2, 4, 5]);

// or because map is curried, this works too
R.map(printFourthPower) ([2, 4, 5]);

So we can choose tiny function definitions and tiny function calls. At worst,
we might end up with a few extra function calls around. Although it might be
tempting to just have one long chain of compose and map calls, debugging
those can be tough. Ramda helps make functions very easy to create and com-
pose. Even though it’s easy to chain things together too, it’s worth striking a
balance of how complex your composed functions should be. Smaller composi-
tion functions (just like any smaller function) are easier to test and reuse.

MEMOIZE REVISITED WITH RAMDA

By the way, this is what a memoized factorial function looks like in Ram-
da:

var factorial =

 R.memoize(n => R.product(R.range(1, n + 1)));

Apologies if you spent much time trying to learn the long version.

Another function you’ll see from time to time is called pipe. It works like
this:

var factorial = R.memoize(n => R.product(R.range(1, n + 1)));
var printFact = R.compose(console.log, factorial);
printFact(3);

// is the same as

var factorial = R.memoize(n => R.product(R.range(1, n + 1)));
var printFactPipe = R.pipe(factorial, console.log);
printFactPipe(3);

All in all, Ramda is great, and it exposes the types of functions that make cer-
tain interfaces very simple. If you look at the docs (http://ramdajs.com/docs/),
however, you might be surprised at a few things. One is how gigantic it and oth-
er functional libraries are. A facade (Chapter 9) extracted for beginners would
be nice.

Advanced Basics

419

http://ramdajs.com/docs/

Types: The Bare Minimum

Before we get to types, one thing that might seem scary about functional code
is that if you don’t extract any functions, you could write something like this to
accomplish the same work we did in the previous chapter:

console.log(R.map((thing) =>
 thing * thing, R.map((thing) =>
 thing * thing, [2, 4, 5])));

And Ramda or not, we’ve recreated another callback hell (with an unfortu-
nate reuse of a bad variable name and two traversals of the array to boot).

Fortunately, we know how to extract functions, whether we’re doing FP,
OOP, or plain old imperative coding. Extracting functions (maybe after decent
naming) is our first line of defense against confusing and untestable code.

THE CASE FOR TYPES

Functional programming has another defense against confusing code: types.
When you pass functions to other functions, and sometimes they return the ex-
ecution of that function and other times they return a function literal, things
can get confusing. If you were writing Haskell, you’d deal with this confusion up
front. Unlike JavaScript, Haskell actually cares what arity and types you call
functions (or compose them) with. So if you try to compose two functions
where one would pass a string to the other, which expects a number for input,
you’d get a compilation (type) error. The same goes if you try to do something
else weird, like this:

console.log(Math.random("beaver"));
// returns 0.21801069199039524 (at least this time, apparently)

Why didn’t this raise an error? It was almost as if an occult hand threw away
that argument. This is fine in JavaScript. It’s normal. No compilation means no
compilation error. And there’s no runtime error either, because JavaScript func-
tions just don’t care what you give them, unless their function bodies have
some opinion.

The inconsistencies in basic operations of JavaScript are well documented,
and opinions vary on whether all of the weirdness is a comedy or a tragedy. The
reliance on either third-party specs or a far too dense, huge, and abstract offi-
cial spec doesn’t help matters.

In any case, what good library writers and third-party documenters of core
functionality do is list and describe objects, functions, and other random bits,

CHAPTER 11: Functional Refactoring

420

maybe with a tutorial or two sprinkled in. The most crucial piece of this is de-
scribing inputs and outputs for functions.

One could argue that this documentation should be done anyway, and
therefore, having types of inputs and outputs enforced by the language itself
would be a good thing. Since someone has to write it, it might as well be writ-
ten in the code itself, right?

In Haskell, and more and more frequently in documentation by JavaScript
library writers who might wish JavaScript were a little more like Haskell, types
are described by the Hindley–Milner type system. Most JavaScript documenta-
tion doesn’t use this system, but it does show up in the docs for Ramda and
Sanctuary (we’ll cover this library later).

It looks something like this:

add :: Number -> Number -> Number

There is much more to it, but these are the most popular parts. add is the
function name, followed by two inputs of type Number, and one output Number.
But wouldn’t it be clearer like this?

add :: (Number, Number) -> Number

In a way it would, but assuming add is curried (which is a good assumption
for Haskell and aspirational JavaScript as used in Ramda), we should think of
applying (calling the function with) the first Number as producing a new func-
tion that waits for the second number. For example, if we applied a 1, we could
have a new function with the type:

addOne :: Number -> Number

We covered this earlier when our addition function turned into an addOne
function after we gave it only one parameter (a 1) instead of two parameters
right away. If we give addOne another number, it will output a number.

So there are two points here. The first is that in some programming, the as-
sumed arity (how many parameters are passed in) is 1, because things are un-
derstood to be curried by default.

The second point is that type declarations don’t just document what func-
tions do, they also indicate how functions can collaborate with functions. So if
you know that a function produces a number, and you use its output as input to
a function that takes a string, then you shouldn’t be surprised if something goes
wrong (a compilation or runtime error in some languages and libraries, or
maybe just a confused result in JavaScript).

Advanced Basics

421

LESS INTUITIVE ASPECTS OF TYPES

On the seemingly less awesome side of type documentation (and code itself),
the functional style prefers short variable names, which can be a bit of a shock.
Take a look at the type signature for Haskell’s map function (specifically for
lists):

map :: (a -> b) -> [a] -> [b]

The grouping of the parentheses (a -> b) indicates that map takes a func-
tion as its first argument, which itself takes one input (a) and has one output
(b). map also takes an array of [a]. Then it outputs an array of [b]. The a and b
seem like excellent candidates for very bad names (short and nondescriptive),
but there is a logic behind them.

map’s first parameter is a function that transforms an a into a b. It applies
that function to a list full of as, and transforms it into a list of bs, which it re-
turns. All it’s describing is what needs to remain the same, and what may be
different. A function that transforms a number into a boolean must be used to
transform a list of numbers into a list of booleans. But map doesn’t care what
type a and b are specifically.

When you declare a variable or constant, that is different because you’re la-
beling a concept of an actual specific value. Here, the type variables are just in-
dicating what is the same and what is different. This is common with higher-
order functions like map, where the types a and b actually apply to many types.
By contrast, note that in the previous add function, the inputs and outputs were
specific to a Number type.

It can get a little complicated. This is the type description from the concat
function of Maybe in Sanctuary:

Maybe#concat :: Semigroup a => Maybe a ~> Maybe a -> Maybe a

The Maybe# indicates the this object (an object of type Maybe) that has the
concat function available. The Maybe a parts describe normal inputs and out-
puts, and a type variables could be anything, but they’re all the same and wrap-
ped up in Maybes. This is kind of like what we saw before when list items were
wrapped up in arrays with [a] and [b].

We have two types of arrows in Maybe a ~> Maybe a -> Maybe a,
though. Working from the right, the last arrow is ->, which isn’t new. It’s just
indicating input headed for output. The first one is ~> (squiggly arrow), indicat-
ing that an implicit parameter (the this) is also in the mix.

CHAPTER 11: Functional Refactoring

422

BUT ISN’T THIS BAD?

Unlike in OOP, in functional programming, it’s much more common to
avoid this in favor of passing explicit parameters. Where we use this in
this chapter, it is done mostly as a way to namespace functions. That
goes for R (for Ramda functions) and S (for Sanctuary functions and ob-
jects).

One key thing to note is that these variables provide a namespace and
utility functions, but they aren’t intended to hold state “variables” that
are changed.

In OOP, stateful objects (with mutable values) are arguably better than
scattered nonlocal variables, but in FP, we should consider R and S to pro-
vide the same utility as modules, rather than classes or objects.

The Semigroup a => bit is new too. That just means that this function
(concat of Maybe) is implementing a function from the Semigroup typeclass.
We’re not going to get into typeclasses. There is no decent analogous structure
for a typeclass in JavaScript. It could be thought of as an interface in some OOP
languages, or as a contract that must be fulfilled. In Chapter 9, we discussed
empty parent classes as a faulty but possible demonstration of this idea.

Anyway, if you spend some time in functional corners of JavaScript, you’ll
hear types discussed and see functions notated with their type signatures from
time to time.

Burritos

This section might be about burritos. It might be about something else. I can’t
explain everything about burritos in a few pages. They’re too complex and eat-
ing too many at once is a mistake. Indigestion and regurgitation full of new
metaphors are both common results.

For the sake of your future investigations, burritos might involve any of the
following:

• Monoids
• Functors
• Applicatives
• Monads
• Maybe more?!

Wow. I get a red underline marking all of those as misspellings. We’re in seri-
ous jargon territory, apparently. They’re complicated, and if this is your first
time with them, no explanation is going to work better than some actual code.
And this is why people are so quick to explain these things by analogy, and

Burritos

423

FIGURE 11-1

Haskell burritos

often call anything related to them “burritos.” Sometimes this approach comes
from someone who doesn’t want to explain everything that leads to the practi-
cal stuff they want to cover (like me), or as an out for people who feel they don’t
know enough about functional programming or deep mathematical category
theory to really do the topic justice (like me).

The real problem is, people can “get” the concept of a “queue” (for instance)
without much difficulty. It’s just one thing that’s conceptually easy, and the
real-life analogs (e.g., lines of people waiting for something) are both clear and
indicated by the name of the thing. The same goes for “stack.” This is, however,
less the case for “linked lists” and “Bloom filters.”

If you try to understand every burrito-like thing (functional abstract data
types, or ADTs) at once, you’re up against something like Figure 11-1.

Monads are usually the burrito in question. And yes, you could try to start
there, but all those arrows in the diagram point from “simple thing” to “more
complex thing,” which indicates that monads are pretty complex. So if you want
a deep dive into this stuff, try starting at the functor (Figure 11-2). You can defi-
nitely understand that one as easily as a queue or a stack. Basically, a functor
has a map function and some rules. In fact, since you’re certainly already using
map with arrays, you’re not starting from scratch here.

CHAPTER 11: Functional Refactoring

424

FIGURE 11-2

The Fantasy Land
specification for
burritos in JS

AN ACTUAL EXPLANATION

So there are these words that fly around, like functors and monads.
They’re intimidating at first because they’re abstract, and it’s common
to see them explained in terms of other things you might not under-
stand. They are abstract data types (ADTs), just like linked lists and
stacks. They are defined by the operations you can perform on them and
rules for how they can be used.

A stack isn’t a thing you use directly, but you can build something that
implements a stack interface (i.e., it has push and pop functions), accord-
ing to the rules of how a stack should behave (i.e., it stores things in a
“last in, first out” kind of way).

Similarly, you can create all the scary-seeming functional ADTs (probably
using objects in JavaScript’s case, but maybe just collections of func-
tions) that implement the interface of “abstract data types” according to
their rules.

My apologies if this is a letdown, but the goal of this section of this chapter is
to give you some concrete experience with useful functional APIs. If you want
some further reading on functional programming and functional ADTs, I’ll keep
a list (http://github.com/evanburchard/burritos) updated with some videos, tu-
torials, and books about burritos as I find them.

Introducing Sanctuary

Speaking of a useful API, install Sanctuary on the command line:

Burritos

425

http://github.com/evanburchard/burritos

npm install sanctuary

Then in your program, do this:

const {create, env} = require('sanctuary');
const S = create({checkTypes: true, env: env});

You’re left with an S object. Like other functional libraries, Sanctuary has a
massive interface that might be intimidating. As of this writing, there are over a
hundred properties defined on S. A lot of them (compose, inc, pluck, etc.)
should look familiar after our time with Ramda. There is a bit of a difference,
however. With Ramda, adding "hello" and 3 just returns NaN:

R = require('ramda');
R.add("hello", 3);
// NaN

With Sanctuary:

const {create, env} = require('sanctuary');
const S = create({checkTypes: true, env: env});
S.add("hello", 3);

you get this:

TypeError: Invalid value
add :: FiniteNumber -> FiniteNumber -> FiniteNumber
 ^^^^^^^^^^^^
 1
1) "hello" :: String
The value at position 1 is not a member of 'FiniteNumber'.

And with a stack trace. Sanctuary has runtime type-checking errors (for the
functions it has defined). That’s pretty awesome, but possibly not what you’d
want in production. If that’s the case, you can initialize it without type checking
like this:

const {create, env} = require('sanctuary');
const S = create({checkTypes: false, env: env});

Now Sanctuary won’t type-check its functions, but be careful:

S.add('hello', 3)
// 'hello3'

CHAPTER 11: Functional Refactoring

426

That’s default JS behavior, but Ramda and Sanctuary not being in agree-
ment on nonstandard behavior could cause some confusion if you’re using
both. Also, just like lodash and Ramda have different interfaces (Ramda sensi-
bly puts the function first), Ramda and Sanctuary also don’t always have the
same functions or the same interfaces for those functions that they share.

Regardless, Sanctuary has a lot of functions that are good for functional pro-
gramming (like Ramda), and it even has a type checker if we want one. Awe-
some. Also like Ramda, the parameters for its higher-order functions (like find
and reduce) follow the “function-first” idea, so it’s easy to compose functions
like this:

const getAThree = S.find(x => x === 3);

Or point-free:

const getAThree = S.find(R.equals(3));

Either way, we can apply the array to getAThree:

getAThree([3, 4]);

And then something weird happens. We don’t just “get a three,” we get:

Just(3)

And for an array without a 3 in it:

getAThree([8, 4]);

we get:

Nothing()

SANCTUARY’S MOTTO

Sanctuary’s motto is “Refuge from unsafe JavaScript.” It prefers giving
Nothing and Just rather than null. This might seem awkward to handle,
but it’s much better than being surprised by “undefined method” errors.

The null Object Pattern, Revisited!

These Nothing and Just values from Sanctuary should remind us of some-
thing. We’re actually working with a similar concept to null objects (covered in

Burritos

427

Chapter 9). Just and Nothing will remain a mystery for just a bit longer, but
let’s see how they might apply to our Person/AnonymousPerson code.

Let’s see what we had when we used a decorator to wrap our null objects:

class Person {
 constructor(name){
 this.name = new NameString(name);
 }
};
class AnonymousPerson extends Person {
 constructor(){
 super();
 this.name = null;
 }
};
class NameString extends String{
 capitalize() {
 return new NameString(this[0].toUpperCase()
 + this.substring(1));
 };
 tigerify() {
 return new NameString(`${this}, the tiger`);
 };
 display(){
 return this.toString();
 };
};
class NullString{
 capitalize(){
 return this;
 };
 tigerify() {
 return this;
 };
 display() {
 return '';
 };
};
function WithoutNull(person){
 personWithoutNull = Object.create(person);
 if(personWithoutNull.name === null){
 personWithoutNull.name = new NullString;
 };
 return personWithoutNull;
};

Not bad. It cost us quite a few lines, but we kept the billion-dollar mistake
(null) at bay.

CHAPTER 11: Functional Refactoring

428

But using Just and Nothing provide a really easy way to do this. Here’s
what our new implementation looks like:

const {create, env} = require('sanctuary');
const S = create({checkTypes: false, env: env});

class Person {
 constructor(name){
 this.name = S.Just(name);
 }
};
class AnonymousPerson extends Person {
 constructor(){
 super();
 this.name = S.Nothing();
 }
};
const capitalize = (string) => string[0].toUpperCase()
 + string.substring(1);
const tigerify = (string) => `${string}, the tiger`;
const display = (string) => string.toString();

Starting from the bottom three functions, instead of messing around with
specialty forms of string objects with functions implemented on them, we opt
for functions that don’t rely on an implicit this, and we’ll pass our strings as
explicit inputs.

We completely got rid of our String extended classes. Instead of setting the
names of our Person and AnonymousPerson to new instances of those exten-
ded classes, our constructors assign name to what we can think of as a wrapped
name (for Person) or a wrapped null (for AnonymousPerson).

Unsurprisingly, our original tests will fail:

Burritos

429

test("Displaying a person", (assert) => {
 const personOne = new Person("tony");
 assert.equal(personOne.name.capitalize().tigerify().display(),
 'Tony, the tiger');
 assert.end();
});
test("Displaying an anonymous person", (assert) => {
 const personTwo = new AnonymousPerson(null);
 assert.equal(WithoutNull(personTwo).name.capitalize().tigerify()
 .display(), '');
 assert.end();
});

The first failure we get is:

assert.equal(personOne.name.capitalize().tigerify().display(),
 ^

TypeError: personOne.name.capitalize is not a function

This is because we no longer have a “fluent interface” of string functions re-
turning strings to chain with another function. We need a way to apply a func-
tion to a Just or Nothing, then rewrap the value and pass it along. To do this,
we use map:

test("Displaying a person", (assert) => {
 const personOne = new Person("tony");
 assert.equal(personOne.name.map(capitalize).map(tigerify)
 .map(display), 'Tony, the tiger');
 assert.end();
});
test("Displaying an anonymous person", (assert) => {
 const personTwo = new AnonymousPerson(null);
 assert.equal(personTwo.name.map(capitalize).map(tigerify)
 .map(display), '');
 assert.end();
});

This is the hard part. When you call map on a Just or a Nothing, the func-
tion will apply to the values inside of Just, but Nothing will pay no attention
to the function applied through map. Nothing will just pass along another
Nothing.

CHAPTER 11: Functional Refactoring

430

WHAT? I THOUGHT MAP WAS FOR ARRAY!

That is definitely the case in most programming you’ll likely do in Java-
Script. However, in the functional world, map has another role of applying
a function to objects of various kinds. It might be hard to unify the ideas
of “mapping over an iterable” and “mapping over Just or Nothing,” but
after working with it a bit, you should find it clearer.

If that doesn’t make sense, don’t worry. For now, it’s okay if you think of
it as a completely new type of map that has nothing to do with the map that
works on iterables. This new kind “unwraps, applies a function, and re-
wraps” Just and Nothing.

There’s another explanation here, and if it doesn’t sink in yet, that’s
okay. One list-based type signature for map is this:

map :: (a -> b) -> [a] -> [b]

And the signature for map as related to Just and Nothing could be the fol-
lowing:

map :: (a -> b) -> Maybe a -> Maybe b

We’ll discuss this in a bit, but Just and Nothing are both types of Maybe.

We’re getting closer, but our tests now fail like this:

// for personOne
expected: 'Tony, the tiger'
actual: Just("Tony, the tiger")

// for personTwo
expected: ''
actual: Nothing()

Interestingly enough, our display function no longer actually does anything.
Mapping over a Just('String') with toString still gives us
Just('String'), and Nothing() stays as Nothing() as well. The tests are
still failing, but we have a bit less code to deal with:

...
assert.equal(personOne.name.map(capitalize).map(tigerify),
 'Tony, the tiger');
...
assert.equal(personTwo.name.map(capitalize).map(tigerify), '');
...

So how do we unwrap our Just and Nothing? We can use the S.maybeTo-
Nullable function from Sanctuary:

Burritos

431

test("Displaying a person", (assert) => {
 const personOne = new Person("tony");
 assert.equal(S.maybeToNullable(
 personOne.name.map(capitalize).map(tigerify)),
 'Tony, the tiger');
 assert.end();
});
test("Displaying an anonymous person", (assert) => {
 const personTwo = new AnonymousPerson(null);
 assert.equal(S.maybeToNullable(
 personTwo.name.map(capitalize).map(tigerify)),
 '');
 assert.end();
});

This gets us closer. Our first test passes, but our personTwo test fails like
this:

expected: ''
actual: null

While S.maybeToNullable unwraps the Just without a problem, it gives us
the billion-dollar mistake for our Nothing. If you look at what’s actually hap-
pening, it’s not too surprising:

S.maybeToNullable(S.Nothing());

We should expect that to return null. We will take care of the failing test in a
minute, but first, “maybeToNullable”? What’s a Maybe anyway? Try these:

Object.getPrototypeOf(S.Just());
Object.getPrototypeOf(S.Nothing());

They both return this for their prototype:

Maybe {
 '@@type': 'sanctuary/Maybe',
 ap: [Function],
 chain: [Function],
 concat: [Function],
 empty: [Function],
 equals: [Function],
 extend: [Function],
 filter: [Function],
 map: [Function],
 of: [Function],
 reduce: [Function],

CHAPTER 11: Functional Refactoring

432

 sequence: [Function],
 toBoolean: [Function],
 toString: [Function],
 inspect: [Function: inspect] }

So Just and Nothing are both some kind of Maybe? Is that a perfect aca-
demic description? No, but it’s a workable one. Now let’s fix the tests:

test("Displaying a person", (assert) => {
 const personOne = new Person("tony");
 assert.equal(S.fromMaybe('',
 personOne.name.map(capitalize).map(tigerify)),
 'Tony, the tiger');
 assert.end();
});
test("Displaying an anonymous person", (assert) => {
 const personTwo = new AnonymousPerson("tony");
 assert.equal(S.fromMaybe('',
 personTwo.name.map(capitalize).map(tigerify)),
 '');
 assert.end();
});

Now our tests should be passing again!

Functional Refactoring with Maybe

Instead of S.maybeToNullable, we used S.fromMaybe to return a blank string
('') if the Maybe (Nothing or Just) is a Nothing. If it is a Just, it unwraps the
value.

So if both names are actually Maybe all along, can we create the wrapper
based on the input? Yes. And if the only difference between a Person and an
AnonymousPerson is that they have different name values, we don’t actually
need the subclass anymore:

class Person {
 constructor(name){
 this.name = S.toMaybe(name);
 };
};

And in our tests, we can declare both objects as a new Person:

...
 const personOne = new Person("tony");
...

Burritos

433

 const personTwo = new Person(null);
...

So what does our code look like now?

const {create, env} = require('sanctuary');
const S = create({checkTypes: false, env: env});

class Person {
 constructor(name){
 this.name = S.toMaybe(name);
 };
};
const capitalize = (string) => string[0].toUpperCase()
 + string.substring(1);
const tigerify = (string) => `${string}, the tiger`;
const display = (string) => string.toString();

const test = require('tape');
test("Displaying a person", (assert) => {
 const personOne = new Person("tony");
 assert.equal(S.fromMaybe('',
 personOne.name.map(capitalize).map(tigerify)),
 'Tony, the tiger');
 assert.end();
});
test("Displaying an anonymous person", (assert) => {
 const personTwo = new Person(null);
 assert.equal(S.fromMaybe('',
 personTwo.name.map(capitalize).map(tigerify)),
 '');
 assert.end();
});

As far as refactoring, we can compose the capitalize and tigerify func-
tions, which simplifies our assertions:

...
const capitalTiger = S.compose(capitalize, tigerify);
...
assert.equal(S.fromMaybe('', personOne.name.map(capitalTiger)),
 'Tony, the tiger');
...
assert.equal(S.fromMaybe('', personTwo.name.map(capitalTiger)), '');
...

But we have more possibilities. In order to not break the second test, we ap-
ply this only to the first assertion:

CHAPTER 11: Functional Refactoring

434

assert.equal(personOne.name.map(capitalize).chain(tigerify),
 'Tony, the tiger');

Instead of using two map functions and then wrapping with a fromMaybe, we
can use chain to get an unwrapped value back from tigerify. Note that if
tigerify itself returned a Maybe, that wouldn’t work.

Better yet, we can use chain in combination with our composed capital-
Tiger:

assert.equal(personOne.name.chain(capitalTiger), 'Tony, the tiger');

By the way, in case you’re wondering why we can’t just call person-
One.name as an argument to the capitalTiger function, here’s the issue:

...
assert.equal(capitalTiger(personOne.name), 'Tony, the tiger');
...

// leads to this error

 expected: 'Tony, the tiger'
 actual: 'Just("tony"), the tiger'

capitalTiger is supposed to take a string, not a Maybe. Also, note that the
type checker wouldn’t save you here, because capitalTiger doesn’t have its
type declarations registered like the S. functions do.

Anyway, if we want to allow capitalTiger to access the Maybe, we can
lift it, instead of mapping with personOne.name.map(capitalTiger):

...
assert.equal(S.lift(capitalTiger, personOne.name), 'Tony, the tiger');
...

This has the same result as the earlier map, but is conceptually a little differ-
ent. Instead of mapping over the Maybe with an ordinary function, you’re pro-
moting your function to work with the Maybe. You can think of it as making your
function special (“lifted”) rather than passing it as a dumb argument to map
(which itself is already special).

In either case, you can also call .value on the Just to unwrap the value:

// take your pick

// map
assert.equal(personOne.name.map(capitalTiger).value,

Burritos

435

 'Tony, the tiger');

// chain (unwraps the value, so no need for .value)
assert.equal(personOne.name.chain(capitalTiger), 'Tony, the tiger');

// lift
assert.equal(S.lift(capitalTiger, personOne.name).value,
 'Tony, the tiger');

As for the second test, we could create another function (probably com-
posed with capitalTiger) that would test for Nothing and give us the empty
string, but a better option is just using the lowercase S.maybe function.

It takes a value, a function, and a Maybe, and returns the value when the
Maybe is not a Just. Otherwise, it returns the result of the function applied to
the Maybe’s value. It’s perfect for what we want:

assert.equal(S.maybe('', capitalTiger, personTwo.name), '');

But reduce would also work:

assert.equal(personTwo.name.reduce(capitalTiger, ''), '');

It ignores the function (because it is a Nothing) and returns ''.
It’s okay if the interfaces provided by Ramda and Sanctuary don’t make per-

fect sense or are overwhelming. We covered a lot of ground here. What’s nice is
that you can incrementally add this style of programming to your JavaScript.
Aside from the type signatures (which are good to know how to read, but you
don’t need to write), there’s no new syntax to learn, and no compilation step
necessary.

Functional Refactoring with Either

If you’re not too confused by Maybe, you might be interested in Either. This
section won’t go into too much depth on it, but as far as motivation, our last
test had this line:

assert.equal(S.fromMaybe('', personTwo.name.map(capitalTiger)), '');

The second '' makes sense, as that’s what we’re testing against, but isn’t
the test a little bit late to be determining that our value should change from a
Nothing into an empty string? What if we wanted to test it again? Would we
have to keep specifying that value? Also, if we want to keep our tests symmetri-

CHAPTER 11: Functional Refactoring

436

cal, should we really have to specify the empty string for our personOne test as
well?

Fortunately, there’s a way to specify what we want our Nothing value to un-
wrap to before we’re unwrapping it. Unfortunately, how to do so is a little com-
plicated. Let’s look at the code we would need:

const {create, env} = require('sanctuary');
const S = create({checkTypes: false, env: env});
const R = require('ramda');

class Person {
 constructor(name){
 this.name = S.maybeToEither('', S.toMaybe(name));
 }
};

const capitalize = (string) => string[0].toUpperCase()
 + string.substring(1);
const tigerify = (string) => `${string}, the tiger`;

const capitalTiger = S.compose(capitalize, tigerify);

const test = require('tape');
test("Displaying a person", (assert) => {
 const personOne = new Person("tony");
 assert.equal(S.either(R.identity, capitalTiger, personOne.name),
 'Tony, the tiger');
 assert.end();
});
test("Displaying an anonymous person", (assert) => {
 const personTwo = new Person(null);
 assert.equal(S.either(R.identity, capitalTiger, personTwo.name),
 '');
 assert.end();
});

The new pieces here are:

• We’re requiring Ramda.

• We assign our name property by converting the value to a Maybe and then
an Either.

• Our tests are symmetrical and use S.either.

Let’s talk about those last two bullet points. First, this line:

this.name = S.maybeToEither('', S.toMaybe(name));

Burritos

437

As before, in the non-null case, S.toMaybe makes a Just that holds the
name value that we pass in. Then, that Just is converted (through S.maybe-
ToEither) into a Right that also holds the name.

In the null case for name, S.toMaybe creates a Nothing, which is the same
as before. Then, S.maybeToEither turns that Nothing into a Left, and unlike
Nothing, Left can hold a value. The value that it is set to hold is a blank string,
''.

Because the Left is holding that value from the beginning, we can pull it out
at the end in the same way we can pull out the value from the Right—namely,
with these in the tests:

assert.equal(S.either(R.identity, capitalTiger, personOne.name), '');
assert.equal(S.either(R.identity, capitalTiger, personTwo.name), '');

The S.either function says: if it’s a Left, apply the first parameter function
to it (R.identity), and if it’s a Right, apply the second parameter function to
it (capitalTiger). That’s okay, but it’s also a bit prescriptive.

With a bit better of an understanding, we can use map instead. Left and
Right are both Either subtypes. Left acts a little like Nothing, in that unlike
Right (or Just), it will ignore when you try to map functions to it. That means
our tests could also be the following:

assert.equal(personOne.name.map(capitalTiger).value, 'Tony, the tiger');
assert.equal(personTwo.name.map(capitalTiger).value, '');

This is more in line with how we expect Left and Right to behave. The
Right (our personOne.name) goes along with the map’s function (capital-
Tiger) in the same way a Just would. The Left (our personTwo.name) disre-
gards the map’s wishes, just like a Nothing would do with map. Unlike Nothing,
however, the Left is holding onto a value (just like a Just or a Right). That
means we can pull that attribute out with .value for both our Left and our
Right.

Note that we couldn’t use map followed by .value when personTwo.name
was a Nothing because a Nothing’s value is actually undefined in Sanctu-
ary.

As a final curiosity, you might think that this is a fairly complicated way to
get our Left value:

this.name = S.maybeToEither('', S.toMaybe(name));

CHAPTER 11: Functional Refactoring

438

First we convert to a Maybe, and then to an Either. The reason is that a
Left can hold a value, including null. To illustrate:

S.Either.of(null)
// returns Right(null) not Left(null)!

// vs.

S.toMaybe(null)
// returns Nothing()

As of this writing, you’ll need to first get a Nothing, and then convert it to a
blank string containing Left via:

S.maybeToEither('', S.toMaybe(name));

Based on what’s in the main branch of Sanctuary, we should be seeing a
more direct option that would let us do: S.toEither('', name), but for now
(Sanctuary version 0.11.1), we’re stuck with the workaround. That said, if you’re
interested in checking out other functional libraries, Folktale (http://folkta-
lejs.org) has an Either.fromNullable function (http://bit.ly/2mBZL1I) that
would be perfect for this.

Before we leave this example completely, notice how short our Maybe and
Either versions are in comparison to the null object wrapping code we made
in Chapter 9. Admittedly, it’s not quite a fair fight, because in the null object
wrapper we had the artificial restriction of not touching certain parts of the
code.

Learning and Using Burritos

You might be thinking that there are an enormous number of ways to use
Maybe and Either. And that is true. APIs as big as Maybe’s can be intimidating.
If you look at the Sanctuary documentation (https://sanctuary.js.org/), you’ll
see that Maybe implements the following ADTs from the “Fantasy Land” func-
tional JS specification: monoid, monad, traversable, extend, setoid, and alter-
native. Implementing these also means that functor, apply, applicative, chain,
foldable, and semigroup are implemented according to the dependency rules
of the Fantasy Land spec.

The good news is, if you like that sort of thing, Maybe and Either have
friends. A promise is similar to what is typically called a future or task. List is not
unlike how you might use an array. There are a ton of other structures that im-
plement these ADTs.

Learning and Using Burritos

439

http://folktalejs.org
http://bit.ly/2mBZL1I
https://sanctuary.js.org/

A public service announcement: monads (and their friends from Figures
11-1 and 11-2 and the previous paragraph) are at risk of being fetishized in a
way that has been the case for design patterns, data structures, algorithms, and
even math itself. Not knowing all of the trivia (let alone the deep mathematical
basis) of monadic laws should not stop you from using useful objects and func-
tions when you find them. “I’m not a math person” and a terribly architected
website-producing company interviewing with “How do you reverse a linked
list?” are evil twins.

Just because in some contexts, blocks of knowledge are unfairly treated as a
binary of known or unknown does not mean we should perpetuate that. If you
worked through the last section and used the Maybe and Either interfaces,
you’ve used a monad, as well as some other good abstractions. You will never
have to make your own (when is the last time you implemented a linked list in
JavaScript because arrays weren’t good enough?), but you could. And if you did
make your own, you could make them correct by someone’s definition. You
could add a few functions that you like even if they don’t fit in with other peo-
ple’s ideas. You could leave stuff out. And you could call them burritos if you
wanted.

The thing is, you can have objects and functions that don’t conform to pre-
cise definitions but are still useful. If you’re creating them, then the interfaces
and laws of what makes a functor versus an applicative versus a monad should
be important to you. If you’re just using them, try things out, but focus on the
interfaces and don’t get hung up on every definition and law. If you’re interes-
ted in writing or using something that conforms to the interfaces and rules of
high-level functional programming abstractions, however, you should look into
the aforementioned Fantasy Land spec (https://github.com/fantasyland/
fantasy-land), which breaks things down into digestible pieces and provides
links to implementations (https://github.com/fantasyland/fantasy-land/blob/
master/implementations.md) of the spec (that means code you can use).

What’s awesome about Haskell (and Lisp, and Prolog, and other opinionated
languages) is that they force you into a certain frame of mind. The same goes
for spreadsheets, calculators, calendars, and so on. What’s awesome about
JavaScript is that we have a massive platform and can write in so many differ-
ent ways. We used a couple of really great high-level abstractions, and cut
down on earlier code significantly.

CHAPTER 11: Functional Refactoring

440

https://github.com/fantasyland/fantasy-land
https://github.com/fantasyland/fantasy-land/blob/master/implementations.md

DEEPER INTO FUNCTIONAL PROGRAMMING

If you’re looking to get deeper into FP, you might find yourself hitting a wall by only
using JS directly or with libraries that don’t require a compilation step. For
compiles-to-JS languages, you have some interesting options:

• TypeScript
• PureScript
• ClojureScript
• Elm

If you want to explore FP on its own, without worrying about compiling to Java-
Script, then you could look into these:

• Haskell
• Scheme/Clojure (Lisp variants)
• Erlang
• Scala

As of this writing, there are many other choices out there in both categories, and
many more are bound to be developed. The point is that you shouldn’t feel restric-
ted by only working in JavaScript. Good ideas come from everywhere. It’s not un-
common to see a standard way of working in one language appear as an innovation
in another.

Moving from OOP to FP

As mentioned before, if you’re jumping paradigms like OOP to FP, it’s probably
much too large of a change to be called refactoring anymore. Despite that, it’s
likely that you will find working through a similar process helpful: make small
steps, keep code changes under version control, keep a passing test suite.

Return of the Naive Bayes Classifier

Let’s briefly return to our NBC example from Chapters 6 and 7. It would be great
to show the full process of “restructuring” (or perhaps “refactoring,” if you’re
taking a broad view of the term), but there are so many changes that, instead,
after the code sample I’ll offer some general advice if you ever decide to change
the code this radically. Here’s the functional version of our NBC:

Moving from OOP to FP

441

// naive_bayes_functional.js
R = require('ramda');

const smoothing = 1.01;

function wordCountForLabel(testWord, relevantTexts){
 const equalsTestword = R.equals(testWord);
 return R.filter(equalsTestword, _allWords(relevantTexts)).length;
};

function likelihoodOfWord(word, relevantTexts, numberOfTexts){
 return wordCountForLabel(word,
 relevantTexts) / numberOfTexts + smoothing;
};

function likelihoodByLabel(label, newWords, trainedSet){
 const relevantTexts = textsForLabel(trainedSet.texts, label)
 const initialValue = trainedSet.probabilities[label] + smoothing;
 const likelihood = R.product(
 newWords.map(newWord =>
 likelihoodOfWord(newWord,
 relevantTexts,
 trainedSet.texts.length))) * initialValue;
 return {[label]: likelihood}
}

function textsForLabel(texts, label){
 return R.filter(text => text.label === label)(texts);
}

function _allWords(theTexts){
 return R.flatten(R.pluck('words', theTexts));
};

function addText(words, label, existingText = []){
 return R.concat(existingText, [{words: words, label: label}]);
};

function train(allTexts) {
 const overTextLength = R.divide(R.__, allTexts.length);
 return {texts: allTexts,
 probabilities: R.map(overTextLength,
 R.countBy(R.identity,
 R.pluck('label', allTexts)))};
};

function classify(newWords, trainedSet){
 const labelNames = R.keys(trainedSet.probabilities);
 return R.reduce((acc, label) =>
 R.merge(acc, likelihoodByLabel(label, newWords, trainedSet))

CHAPTER 11: Functional Refactoring

442

 , {}, labelNames);
};

module.exports = {_allWords: _allWords,
 addText: addText,
 train: train,
 classify: classify}

And then the tests:

// naive_bayes_functional_test.js
const NB = require('./naive_bayes_functional.js');

const wish = require('wish');
describe('the file', () => {
 const english = NB.addText(['a', 'b', 'c', 'd', 'e', 'f', 'g',
 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q'],
 'yes')
 const moreEnglish = NB.addText(['a', 'e', 'i', 'o', 'u'],
 'yes', english)
 const allTexts = NB.addText(['あ', 'い', 'う', 'え', 'お',
 'か', 'き', 'く', 'け', 'こ'],
 'no', moreEnglish)

 var trainedSet = NB.train(allTexts);

 it('works', () => {
 wish(true);
 })
 it('classifies', () =>{
 const classified = NB.classify(['お', 'は', 'よ', 'う', 'ご', 'ざ', 'い',
 'ま', 'す'], trainedSet);
 wish(classified['yes'] === 1.833745640534112);
 wish(classified['no'] === 3.456713680099012);
 });
 it('number of words', ()=>{
 wish(NB._allWords(trainedSet.texts).length === 32);
 });

 it('label probabilities', ()=>{
 wish(trainedSet.probabilities['yes'] === 0.6666666666666666);
 wish(trainedSet.probabilities['no'] === 0.3333333333333333);
 });
});

There are major differences from what we had before. Here are some of
them:

Moving from OOP to FP

443

• The algorithm has been slightly altered, leading to different values for
“likelihoods,” but that should not affect the majority of classification out-
comes.

• Rather than exporting a class, we export individual functions.

• There is no this anywhere in the code.

• Because there is no this or other state variables, we have to “carry
around” all of the state that we need as return values.

• As a consequence of this, our train and classify functions are now
idempotent and pure: same input, same output. No side effects.

• Every function returns something useful.

• The addText function is also idempotent, but we’re passing the return
value of the early calls to the later ones. That is how we build the set of
data.

• It is shorter, but the Ramda functions make the code fairly dense in
places.

• We also dropped the sets and maps. It’s worth exploring them, but
they’re not as flexible as objects and arrays.

• The module becomes just a namespace. Nothing in it is meant to be mu-
table, so it doesn’t hold any state or data—just functions producing out-
put that is used as input to other functions.

• The FP code is shorter.
• In the end, you’ll have code that is focused on explicitly transforming

your data, “pipelining” it through different operations rather than having
multiple states on objects.

As far as getting to this point, the first thing to know is restructuring from
OOP to FP is not easy. Some steps may seem counterintuitive if most of your
experience is in moving from procedural to OOP.

In no particular order, here are some of the steps you may find yourself tak-
ing:

• Have good high-level tests in place. If something stops working, undo
your changes.

• Make every function that isn’t returning anything useful return the main
object, probably with return this at first.

• Change all of the this references to explicitly refer to the object, like
Classifier (in this case).

• Flatten out any objects and subobjects that you can.
• Move properties out of the objects.
• Replace state variables with queries.
• If you have trouble doing this, consider passing in the old state as part of

queries until the state eventually just turns into inputs to functions.

CHAPTER 11: Functional Refactoring

444

• You’ll probably make the code look worse before it looks better, as you
will want to bring things out of structure before creating new structure.
You might add duplication, pass around more parameters, and/or intro-
duce unnecessary functions and poorly named variables as you go.

WHY DIDN’T WE COMPOSE MORE FUNCTIONS?

There are plenty of ways to combine functions (e.g., R.compose, inlining, creating an
outer function that takes in all parameters), and it might seem obvious that we

could have combined the train function with either the addText function or the

classify function.

The first question is why do we need the individual functions as opposed to high-

level combined ones? The reason for not combining train and addText is that the in-

terface provided by addText is most useful if it’s used a few times to build a bigger
set of data. Training it at the same time would mean repetitious or more complicat-

ed calculation. The reason for not combining train and classify is that if the train-
ing data set were large enough, it could take a very long time to train. We want to
keep that separate, as it will be easier to do things like pass it off to a separate pro-
cess. Also, we were interested in just testing with one classified set. It’s useful to
not repeat the training step for every test.

But why we didn’t make those functions available anyway? To keep the API smaller
and simpler, and provide only one reasonable way to use the library.

All in all, it’s hard to move from structure to structure—possibly harder than
moving from unstructured to structured code (either OOP or FP). You can strike
a balance between the two approaches, but mutating high-level state (the
properties of instances of any objects, sets, maps, etc.) that you introduce is
very different than simply relying on input and output.

Rewrites

Keep in mind that moving from OOP to FP is just one type of restructuring. If
you’re intending to move from one framework to another, a “rewrite” is proba-
bly what you’ll end up doing. Although it’s possible to do this slowly and care-
fully through a strangler app that slowly takes more and more responsibilities
from the legacy app, it’s hard to not allow that to lead to a fractured user expe-
rience for quite a while.

Moving from OOP to FP

445

A full rewrite, where the old app is supported until the new one is “good
enough” (unfortunately, this is usually pretty ambiguous), is an especially diffi-
cult problem, for a few reasons:

• Feature parity for two apps in different frameworks is hard to define.
• It’s easy for design changes and new features to become “essential” to

the new app, increasing the scope from feature parity to something else.
• A solid (possibly “phased”) cutover plan/upgrade path for all customers

should be defined.
• If the new version demands new skills to build, your current team, though

experts on the old app, might not have great experience with the technol-
ogies required for the rewrite.

• “Business rules” that may be faithfully executed in the old app can be lost
in translation, mistaken for bugs or details that don’t matter.

• Progress can be very difficult to demonstrate.
• It’s very difficult to estimate how long a rewrite will take.

Overall, restructuring between paradigms and rewriting between frame-
works are both very hard. They’re not simple, mechanical processes like refac-
toring can be. On a multidisciplinary team with various working styles and pri-
orities, rewrites will mean very different things to different people.

The principles of moving in small, confident steps, backed up by tests and
version control, are helpful. Aside from that, the best thing to do is communi-
cate clearly how long things will take, including admitting when your estimates
carry assumptions that may prove to be incorrect. When in doubt, double your
estimate, and then triple it.

A REWRITE OF YOUR OWN

If you’re interested in a mini-rewrite project, try moving the NBC code from OOP to
FP style. Or try moving it to FP from the procedural version of the code (before the

classifier object sucked in all of the functions). See if your version is similar to
that of the previous section. Is it easier to start from scratch or move incremental-
ly? Take a guess at how long it will take, and see how accurate your guess was.

Wrapping Up

In this chapter, we discussed some of the benefits of functional programming,
and how a good portion of them are realized through practices we’ve been dis-

CHAPTER 11: Functional Refactoring

446

cussing all along: not reusing variables, avoiding shared state, extracting func-
tions, and preferring Array’s higher-order functions to for loops.

We also explored some interfaces and libraries (Ramda and Sanctuary) for
functional programming along with good old arrays, as well as Maybe, which
might be new to you but will hopefully find a place in your toolkit to help
squash null, the billion-dollar mistake.

Maybe functional programming will be your new favorite paradigm. If so, I’d
encourage you to try something stricter like Haskell, but if that gets intimidat-
ing or you miss working in the browser, remember that you can explore the con-
cepts and exploit the interfaces of FP in JavaScript with just a few require
statements. FP doesn’t have to be all or nothing.

It’s a huge topic, and in this chapter, we just skimmed the surface. As to what
a path toward learning FP could look like, I recommend the following sequence:

1. Get familiar with the native JS Array’s higher-order functions (they take a
function as input), such as forEach, map, filter, and reduce.

2. Try out a library like underscore or lodash, which have many more manip-
ulations than what is provided for in native JavaScript.

3. Get used to composing functions and manipulating arguments with Ram-
da and/or Sanctuary.

4. Use Sanctuary, ramda-fantasy, Folktale, or any of a number of other im-
plementations of the Fantasy Land spec that describe burrito-like things
from the earlier diagrams.

Along the way, try these out as well:

• Use Immutable.js or mori to enforce immutability beyond what const
and .freeze can easily offer.

• Try out functional languages that compile to JS.
• Try out functional languages that don’t compile to JS.

Wrapping Up

447

Conclusion 12

The topics we’ve covered have ranged from techniques as small as renaming
variables to those as large as applying paradigms like FP and OOP. Taking ac-
count of paradigms, architectures, libraries, frameworks, and even individual
style, your JavaScript might be wildly different from someone else’s. You might
even find yourself in two very different modes from one project to another. If
you’re just writing a simple three-line shell script in JavaScript, you might not
want tests or need to write any functions. You might completely leave off scop-
ing declarations, even a simple var. You might be working with a team that
thinks well in OOP. In that case, ES2015 classes and applying appropriate de-
sign patterns might be the way to go. For more functional (or just function-
curious) teams, FP is a great approach. It doesn’t have to be all or nothing, and
it doesn’t have to be scary. Turn your linter off every once in a while.

Whether you’re making decisions about small stylistic changes or large ar-
chitectural changes, ideally this book has provided you with a good basis for
making choices. The alternatives of simply using a framework, rewriting into
another framework, or putting up with JavaScript Jenga are comparatively ex-
pensive and demoralizing.

“JavaScript” is basically a mythological animal. “Your JavaScript” starts
with whatever styles, tools, platforms, paradigms, ideologies, and purposes you
decide to pursue. Having a well-developed “your JavaScript” opens up a tre-
mendous amount of possibilities.

Hopefully, this book has helped you craft your JavaScript, leading to the cre-
ation of more maintainable, confidence-inspiring codebases.

449

Further Reading and Resources A

This is a collection of books, tools, videos, and other resources for additional
background on the topics covered in Refactoring JavaScript.

If any of the links go dead, try them on the Wayback Machine (http://
archive.org/web/).

For sources without links, try searching the words given (with and without
surrounding quotes), and you should be able to find them.

Most resources are free, but some are available only for purchase (or with
clever searching). In the cases of nonfree resources, I have not provided a link
and have included the author name for easier searching.

Origins of Refactoring

• “Refactoring Object-Oriented Frameworks” by William F. Opdyke
• Refactoring: Improving the Design of Existing Code by Martin Fowler, Kent

Beck, John Brant, and William Opdyke (Addison-Wesley)
• Design Patterns: Elements of Reusable Object-Oriented Software (GoF

book) by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Addison-Wesley)

Baseline JavaScript(s)

• Speaking JavaScript: An In-Depth Guide for Programmers (http://speak-
ingjs.com/) by Axel Rauschmayer (O’Reilly)

• Exploring ES6: Upgrade to the Next Version of JavaScript (http://explor-
ingjs.com/) by Axel Rauschmayer (Leanpub)

451

http://archive.org/web/
http://speakingjs.com/
http://exploringjs.com/

• List of compiles-to-JS languages (http://github.com/jashkenas/coffee-
script/wiki/List-of-languages-that-compile-to-JS)

• JavaScript: The Good Parts by Douglas Crockford (O’Reilly)

Keeping Up with JavaScript

• node.green
• caniuse (http://caniuse.com)
• ESNext Compatibility Table (http://kangax.github.io/compat-table/

esnext/)
• TC39 Committee (proposal stages on GitHub) (http://github.com/tc39/

proposals)

JavaScript Reference

• Mozilla Developer Network (http://developer.mozilla.org/en-US/)
• Global Objects (http://developer.mozilla.org/en-US/docs/Web/Java-

Script/Reference/Global_Objects)
• Object (http://developer.mozilla.org/en-US/docs/Web/JavaScript/Refer-

ence/Global_Objects/Object)
• Array (http://developer.mozilla.org/en-US/docs/Web/JavaScript/Refer-

ence/Global_Objects/Array)
• Promise (http://developer.mozilla.org/en-US/docs/Web/JavaScript/

Reference/Global_Objects/Promise)
• node docs (http://nodejs.org/en/docs/)

Object-Oriented Programs/Patterns (Including
Anticlass Stances)

• Wikipedia: Software design pattern (http://en.wikipedia.org/wiki/Soft-
ware_design_pattern)

• Refactoring catalog (http://refactoring.com/catalog/)
• Learning JavaScript Design Patterns (http://addyosmani.com/resour-

ces/essentialjsdesignpatterns/book/) by Addy Osmani (O’Reilly)
• Game Programming Patterns (http://gameprogrammingpatterns.com/)

by Robert Nystrom (Gennever Benning)
• Classes reference (http://developer.mozilla.org/en-US/docs/Web/Java-

Script/Reference/Classes)
• Wikipedia: Tony Hoare (http://en.wikipedia.org/wiki/Tony_Hoare)

Appendix A, Further Reading and Resources452

http://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
http://node.green
http://caniuse.com
http://kangax.github.io/compat-table/esnext/
http://github.com/tc39/proposals
http://developer.mozilla.org/en-US/
http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
http://nodejs.org/en/docs/
http://en.wikipedia.org/wiki/Software_design_pattern
http://refactoring.com/catalog/
http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://gameprogrammingpatterns.com/
http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
http://en.wikipedia.org/wiki/Tony_Hoare

• Wikipedia: Null Object pattern (https://en.wikipedia.org/wiki/
Null_Object_pattern)

• JavaScript Factory Functions vs Constructor Functions vs Classes
(http://medium.com/javascript-scene/javascript-factory-functions-vs-
constructor-functions-vs-classes-2f22ceddf33e)

• You Don’t Know JS: This & Object Prototypes (http://github.com/getify/
You-Dont-Know-JS/tree/master/this%20%26%20object%20prototypes)
by Kyle Simpson

• Not Awesome: ES6 Classes (http://github.com/joshburgess/not-
awesome-es6-classes/)

• JavaScript Patterns by Stoyan Stefanov (O’Reilly)

Async

• Continuation passing style (http://www.2ality.com/2012/06/
continuation-passing-style.html)

• JavaScript Promises: An Introduction (http://
developers.google.com/web/fundamentals/getting-started/primers/
promises)

• Promises Pt. 1 (http://www.2ality.com/2014/09/es6-promises-
foundations.html)

• Promises Pt. 2 (http://www.2ality.com/2014/10/es6-promises-api.html)
• JavaScript with Promises by Daniel Parker (O’Reilly)

Functional

• Hey Underscore, You’re Doing It Wrong (http://www.youtube.com/
watch?v=m3svKOdZijA)

• JavaScript Allongé (http://leanpub.com/javascriptallongesix/read)
• Fantasy Land Specification (http://github.com/fantasyland/fantasy-

land)
• Professor Frisby’s Mostly Adequate Guide to Functional Programming

(http://drboolean.gitbooks.io/mostly-adequate-guide/content/)
• Hindley–Milner Type System (http://en.wikipedia.org/wiki/Hindley

%E2%80%93Milner_type_system)
• Learn You a Haskell for Great Good! (http://learnyouahaskell.com/

chapters)
• Constraints Liberate, Liberties Constrain (http://www.youtube.com/

watch?v=GqmsQeSzMdw)
• Functors, Applicatives, and Monads in Pictures (http://adit.io/posts/

2013-04-17-functors,_applicatives,_and_monads_in_pictures.html)

Async 453

https://en.wikipedia.org/wiki/Null_Object_pattern
http://medium.com/javascript-scene/javascript-factory-functions-vs-constructor-functions-vs-classes-2f22ceddf33e
http://github.com/getify/You-Dont-Know-JS/tree/master/this%20%26%20object%20prototypes
http://github.com/joshburgess/not-awesome-es6-classes/
http://www.2ality.com/2012/06/continuation-passing-style.html
http://developers.google.com/web/fundamentals/getting-started/primers/promises
http://www.2ality.com/2014/09/es6-promises-foundations.html
http://www.2ality.com/2014/10/es6-promises-api.html
http://www.youtube.com/watch?v=m3svKOdZijA
http://leanpub.com/javascriptallongesix/read
http://github.com/fantasyland/fantasy-land
http://drboolean.gitbooks.io/mostly-adequate-guide/content/
http://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
http://learnyouahaskell.com/chapters
http://www.youtube.com/watch?v=GqmsQeSzMdw
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

• Refactoring Ruby with Monads (http://codon.com/refactoring-ruby-
with-monads)

• Burritos (http://github.com/evanburchard/burritos)
• Functional-Light JavaScript (https://github.com/getify/functional-light-

js) by Kyle Simpson
• Functional JavaScript by Michael Fogus (O’Reilly)

Tools

• node (http://nodejs.org) (JavaScript outside of the browser)
• git (http://git-scm.com/) (source/version control management)
• npm (http://www.npmjs.com) (node package manager)
• yarn (http://yarnpkg.com) (npm alternative)

• node assert (http://nodejs.org/api/assert.html) and browser con-
sole.assert (http://developer.mozilla.org/en-US/docs/Web/API/
Console/assert)

• wish (http://github.com/evanburchard/wish) (assert alternative)
• mocha (http://mochajs.org/) (big testing library)
• tape (http://github.com/substack/tape) (smaller testing library)
• testdouble (http://www.npmjs.com/package/testdouble) (mocking/

stubbing framework)
• underscore.js (http://underscorejs.org/) (functional library)
• lodash (http://lodash.com/) (functional library)
• Ramda (http://ramdajs.com/) (better functional library)
• Sanctuary (http://sanctuary.js.org/) (FP with objects too)
• jQuery (http://jquery.com/) (JavaScript library)
• Trellus (http://www.trell.us/) (function diagramming)

Non-JS-Specific but Relevant Sources

• Refactoring to Patterns by Joshua Kerievsky (Addison-Wesley)
• Design Patterns in Ruby by Russ Olsen (Addison-Wesley)
• Refactoring: Ruby Edition by Jay Fields, Shane Harvie, Martin Fowler, and

Kent Beck (Addison-Wesley)
• The “Therapeutic Refactoring” presentation (http://confreaks.tv/

videos/cascadiaruby2012-therapeutic-refactoring) by Katrina Owen

Appendix A, Further Reading and Resources454

http://codon.com/refactoring-ruby-with-monads
http://github.com/evanburchard/burritos
https://github.com/getify/functional-light-js
http://nodejs.org
http://git-scm.com/
http://www.npmjs.com
http://yarnpkg.com
http://nodejs.org/api/assert.html
http://developer.mozilla.org/en-US/docs/Web/API/Console/assert
http://developer.mozilla.org/en-US/docs/Web/API/Console/assert
http://github.com/evanburchard/wish
http://mochajs.org/
http://github.com/substack/tape
http://www.npmjs.com/package/testdouble
http://underscorejs.org/
http://lodash.com/
http://ramdajs.com/
http://sanctuary.js.org/
http://jquery.com/
http://www.trell.us/
http://confreaks.tv/videos/cascadiaruby2012-therapeutic-refactoring

Me

• Compliments, complaints, questions, and so on (http://evanburch-
ard.com/contact)

Me 455

http://evanburchard.com/contact

Index

Symbols
!! for values in if statement, 158
() (parentheses), captures in regular ex-

pressions, 175
+ (plus sign), addition and string con-

catenation, 403
; (semicolon), in JavaScript code, 264
=== (equality) operator, 65
=> (arrow function), 183

passing this through, 232
replacing all functions used with

forEach, map, reduce, and filter,
255

? : (ternary syntax), 401
\ (escape character), breaking strings

with, 176
\n (new line character), 177
_ (underscore), prepended to private

functions and variables, 138, 275
` (backticks), using with strings, 173
{} (curly braces)

creating object literals, 118
using block on right side of assign-

ment statements, 269
with arrow function syntax, 258

A
abstract data types (ADTs), 425
abstract syntax tree (AST), 408
abstraction, 9, 278

density and, 238
acceptance testing, 31
actual parameters, 100
ad hoc approval test system, 29
adapter pattern, 351
Angular, 19
anonymous functions, 125

(see also IIFEs)

extracting and naming, 213-214
APIs

choosing API for classifier, 273-275
pushing complexity away from, 323

app/web frameworks, 19
applicatives, 423
apply function, 120, 231
approval tests, 29
architecture

deciding on type of interfaces, 307
questions about, 303

arguments (function), 100
(see also parameters)

arity (functions), 413, 421
arrays

alternatives to, in JavaScript, 190
bit fields, 198
objects, 191-193
sets, 191

Array class, higher-order functions,
399

creating, using map function, 398
destructive functions in, 403
equality tests for, 66
filtering with filter function, 398
indexes, 153
refactoring, 177-184

deciding which loop to use, 180
long lines, 178
using forEach function instead of

loops, 183
transforming to other types with re-

duce, 398
arrow function (=>), 183
assertions, 4

assertion/expectation syntax libra-
ries, 43

error in (example), 59
using node's assert library, 56

457

writing in mocha, 62
assignment

as destructive action, 403
destructuring, 106
in functional programming languag-

es, 387
reassignment, 386

avoiding, 393-401
AST (abstract syntax tree), 408
asynchronous refactoring, 359-383

callbacks and testing, 371-376
fixing the pyramid of doom, 362-370

extracting functions into contain-
er, 362-365

testing our asynchronous pro-
gram, 365-370

promises, 377-383
changing callback-style code into

promises, 382
reasons for examining async,

359-362
attributes, 194

getting and setting, 196
audio captcha, 34
automatic semicolon insertion (ASI),

264

B
backticks (`), using with strings, 173
base objects, overwriting, 342
behavior, preserving, 7
behavior-driven development (BDD), 39
bind function, 120, 231

binding this context for callbacks ,
365

bit fields, using as array alternative, 198
booleans

coercion with !! in conditionals, 158
using === operator on, 66

branches of code, 97
(see also code paths)

branding (team and personal), quality
processes as, 41

brittle tests, 29
browsers, 15

frameworks and, 18
JavaScript code in, 16
tracking natively available Java-

Script features in, 16
build/task/packaging tools, 43

builds, 16
bulk (functions), 95-99
burritos, 423-439

functional refactoring with Maybe,
433-436

learning and using, 439-441
null object pattern, 427-433
Sanctuary, introduction to, 425-427

C
caching variables/functions, 397, 408
call function, 120, 231
callback hell, 362, 420

(see also pyramid of doom, fixing)
callbacks, 106

and testing, 371-376
basic CPS and IoC, 371

binding this for, 365
changing callback-style code into

promises, 382
executor, 380
utility of promises versus, 377-378

captures in regular expressions, 175
chaining functions, 123, 168

(see also fluent interfaces)
characterization tests, 35, 78-82, 87

for classify function, 203
using to create confidence in code,

308
classes

class for classifier, 270-273
class-based multiple inheritance, no

mechanism in JavaScript, 304
criticisms of class-based OOP in

JavaScript, 303
exporting a class as a module, 276
in object-oriented languages versus

JavaScript, 194
objections to, 120
private methods, 137
pros and cons of, 273
removing duplication in, 319

classifier object, 216-280
bringing other functions and vari-

ables into, 246-253
chordCountForDifficulty func-

tion, 248
chordCountsInLabels, 246
likelihoodFromChord, 247

458

setLabelsAndProbabilities func-
tion, 246

songList, 252
converting code into a class,

270-273
extracting, 220

classify function
bringing into global classifier object,

227-239
characterization tests for, 203
converting classified object to map

in, 195
client or calling code, 363
Clojure, 412, 441
code

long lines of, 51
arrays, 178
fixing by adding variables, 164
solutions for long strings, 175

writing bad code and fixing it later,
76

code coverage (see coverage)
code paths, 229

base case, in recursion, 390
conditionals and reassignment, 394
in subclassing to avoid if state-

ments, 290
returns from, matching types, 110
sad paths, 106
testing, 97-99

code review, 39
coding standards, 36
coding style guides, 36
CoffeeScript, 17
comments

intended as future code, 156
usefulness for documentation, 157

compile-to-JS languages, 412, 441
compiled versus source JavaScript, 17
complexity, 25

design patterns and, 321
functions, 97
pushing away from the API, 323

compose function, 418
computed properties, 260
concat function (Maybe, in Sanctu-

ary.js), 422
concatenating strings, 173, 176
conditionals

avoiding reassignment in, 394-397,
400

avoiding through subclassing, 289,
323

useless code in, 160
duplication, 162

confidence, 25
strategy for, in naive Bayes classifier,

148-150
console.log statements, 51

from function side effects, 113
const keyword, 249, 386

no guarantee of immutability, 226
scoping declarations with, 225

constructor functions
building a hierarchy, 302
changing classes to, 277
class-based hierachical system,

293-297
creating new objects with, 262-265
properties (non-function) defined in,

271
subclass, 287
superclass, 285
superclass and subclass, 317
versus factory functions, 265-270

containers, 190
creating, 302
maps versus objects, 194

context
implicit input, 115-124
privacy, 124-142

continuation passing style (CPS), 371,
377

continuous integration, 44
counter variables, 247

using forEach function instead of,
398

with reduce function, 249
coverage, 25, 33

assessment by coverage tool, 93
coverage reporters, 44
sad paths and, 106

CRUD applications, 283
CSS, testing, 29
Cucumber.js, 31
curry function, 413
currying, 413
cyclomatic complexity (see complexity)

459

D
data, making independent from the

program, 224
database management systems, 283
databases

global variables, 403
state, 406

dead code, 80
finding in naive Bayes classifier, 155
removing, 91

debugging
catching bugs early with testing, 26
using debuggers and loggers, 45
using node debugger, 52
using regression tests, 35, 83-92

debugging/logging statements, 162
declarative programming, 387

spreadsheets as, 387
decorator pattern

using a factory function, 346
adapters versus, 352

using decorator to wrap null objects,
428

deep copy versus shallow copy, 241
deep-equal, 291
deepEqual function, 67
default parameters, 288
defineProperty function, 234
delegate prototype, 297
delegation, 331

state pattern, 336
density and abstraction, 238
deprecation warnings, 154
design patterns

exploring other patterns, 356
OOP, 321

(see also object-oriented pro-
gramming)

pros and cons of, 321
destructive actions, avoiding

destruction in general, 403
destructive functions, 401
indicator of desruction in Ruby, 404

destructuring, 106
developer happiness meetings, 37
dictionaries or hashes, 194
diff command (git), 193
do-nothing code, 158
do...while loops, 181
documentation

comments as, 157
making easier or improving, 355

documented manual testing, 28
domain-specific libraries, 43
duplication in conditionals, 162

E
ECMAScript specification, 14

checking implementations on a plat-
form, 16

versions and releases, 105
Either

functional refactoring with, 436-439
similar structures, 439

else branch (if statements), 228
(see also if-else statements)

Ember.js, 19
end-to-end tests, 31
engineering culure, discouraging test-

ing, 23
engineering quality meetings, 37
Erlang, 441
error handling, 229
escape character (\), breaking strings

with, 176
EVAN principles of code quality, 8
event loop, setTimeout function and,

361
executor, 380
exercised, 25
expectations (see assertions)
explicit inputs (explicit parameters),

100
extends keyword, 303

F
facade pattern, 353-356
factorial function, 391
factories and fixtures, 43
factory functions, 299-301

building a hierarchy, 302
constructor functions versus,

265-270
object literals created directly

through, losing prototype chain,
300

using in adapters, 352
using in decorators, 346

fake/faker, 43

460

falsey values in JavaScript, 158
feature tests, 35
features

feature parity for apps in different
frameworks, 446

new features versus new code from
scratch, 49

feedback loops, 25
not tight enough, 51
tighter loop with testing, 27

filter function, 249
using to filter arrays, 398

first-class functions, 400
floats, 159
fluent interfaces, 123, 169, 378, 430
for loops, 180

usng higher-order functions to avoid
reassignment, 399

for...in loops, 181
for...of loops, 182
forEach function, 183

accepting thisArg as a parameter,
231

assigning elements to arrays, 184
of Map, ordering of parameters, 196
using instead of loop counter vari-

able, 398
using with maps, 196

formal parameters, 100
flexibility in JavaScript, 104

FP (see functional programming)
frameworks, 18

acceptance test, 31
approval testing and, 30
deciding which framework to use,

14
drawbacks to, 284
for testing, disadvantages of, 33
libraries versus, 19
presentation of data, 283
quality issues and, 12
rewrites when moving to different

framework, 445
test, 42

free variables, 102
freezing objects, 226
frontend and backend JavaScript im-

plementations, 16
function calls, 215
function composition, 416-419

in naive Bayes classifier (example),
445

function keyword
eliminating in classifier global object

functions, 260
variables declared with, hoisting,

169
function literals, 215
function references, 215
functional programming (FP), 385-447,

449
burritos, 423-439

functional refactoring with Ei-
ther, 436-439

functional refactoring with
Maybe, 433-436

null object pattern, 427-433
forced by use of async HTTP API, 360
future of, 393
in JavaScript, advanced basics,

412-423
currying and parial application,

412-416
function composition, 416-419
types, 420-423

in JavaScript, basics of, 393-412
avoiding destructive actions, mu-

tation, and reassignment,
393-404

handling randomness, 409
impure functions, 409-412
not returning null, 404
referential transparency and

avoiding state, 405-408
increased importance in JavaScript,

244
learning and using burritos, 439-441
moving deeper into, options other

than JavaScipt, 441
moving from OOP to FP, 441-446

naive Bayes classifier (example),
441-445

rewrites, 445-446
restrictions and benefits of, 386-392
template method pattern (OOP),

functional variant, 325
versus OOP style for global classifier

object, 217
functions

as parameters in other functions,
104, 106

461

bulk, 96-99
components, exploration of, 95
context, implicit input, 115-124
default parameters, 288
destructive, 401

in Ruby, 404
diagramming with Trellus, 96
extracting, 207-216, 420

extracting and naming anony-
mous functions, 213

function calls and function liter-
als, 215

getting away from procedural
code, 207

inlining functions instead of, 213
into a containing object, 362-365

first-class, 400
hoisting, 170
impure, 409-412
in functional programming languag-

es, 387
inlining calls, 165
inputs, 100-108
methods versus, 141
ordering of function expressions, 50
outputs, 108-112
pull-up method of refactoring, 325
pure functions, 388
Ramda (R.) and Sanctuary (S.), 423
refactoring (see refactoring)
returning values rather than setting

values through side effects, 243
side effects, 112

functors, 124, 424

G
getting things done, balancing quality

and, 7
git diff command, 193
global variables, 102, 403

handling in global classifier object,
223

moving into a function and remov-
ing scoping declaration, 211

greenfield projects, testing in, 49

H
has-a relationships, 309

(see also is-a relationships)

power of, 336
hashes/dictionaries, 194, 196
Haskell, 388, 412, 441

burritos, 424
types, 420

hierarchy, refactoring within, 284-319
building a hierarchy, 284-293
evaluating options for hierarchies,

301
has-a relationships, 309
inheritance and architecture,

302-309
criticisms of class-based OOP,

303
interfaces, types of, 307
multiple inheritance, 304

inheritance antipatterns, 310-319
hyperextension, 311
parent and children having noth-

ing in common, 314
wrecking our hierarchy, 293-302

constructor functions, 293-297
factory functions, 299-301
object literals, 297-299

high-level and low-level tests, 25, 31
(see also end-to-end tests)
using high-level tests with unit tests,

200
higher-order functions (Array), 399
Hindley–Milner type system, 421
Hoare, Tony, 337
hoisting (variable), 169

function hoisting, 170
homoiconicity, 408
HTML, testing, 29
HTTP calls, asynchronous, 359
human readability as quality, 9
hyperextension, 311

I
idempotence, 274, 388
if statements, 97

avoiding through subclassing, 289
eliminating when possible, 323
nested, 396
useless code in, 160

if-else statements, 228, 387, 400
IIFEs (immediately invoked function ex-

pressions), 125, 209, 215, 266

462

as right side of assignment state-
ment, 269

immutability, 332
const keyword and, 226
path to immutable objects, 333

imperative programming, unstructured,
94

implementation details, 3
testing and, 308

implementations, 16
changing, 88

implicit parameters (see this)
impure functions, 409-412
indexes

array, 153
accessing with forEach function,

183
working wih, in loops, 181

inheritance, 302-309
and copying objects in JavaScript,

242
antipatterns, 310-319

hyperextension, 311
parent and children having noth-

ing in common, 314
in different interpretations of Java-

Script, 297
interface type and, 307
is-a versus is-just-a relationships,

306
multiple, 304
object composition and inheritance

of properties, 309
with object literals, 298

inlining function calls, 165
inlining functions, 213

setup function attached to global
classifier, 221

inlining variables, 184
advantages of, 238

inner functions, 98
inputs (function), 100-108

explicit inputs or parameters, 100
implicit inputs or parameters, 101,

115-124
nonlocal inputs (free variables), 102
recommendations for, 103, 107

installs, 16
instanceof operator, 286, 290
integers, 159
interfaces

JavaScript versus OOP, 352
private functions, 32
private properties, 275
public, 149, 172
public and private, 124-142, 273
simplifying, 8

interpolating JavaScript into strings,
173

inversion of control (IoC), 377
drawbacks to, 371
in action, 371-373

is-a relationships, 309
versus is-just-a relationships, 306

iterators, 196

J
JavaScript

diverse and complex ecosystem,
13-21
frameworks, 18
libraries, 19
platforms and implementations,

15
precompiled languages, 17
versions and specifications, 14

further reading and resources,
451-454

languages that compile to, 336
many different approaches to writ-

ing, 449
object-oriented programming (OOP)

in, relevance of, 187
spec-friendly versus purist versions,

297
JavaScript engines, 16
JavaScript Jenga, 95, 449
jQuery, 19

chaining functions on $ object, 168
reasons for using, 169

JSON, 195
JSX, 17
Just values (Sanctuary), 427

K
key/value pairs, 196

L
let keyword, 249

scoping declarations with, 225

463

libraries, 19
frameworks versus, 19

line length
breaking up long lines of code, 51
historical limit, 177
long lines in arrays, fixing, 178
long lines, strings comprising, 175

lines of code, number of (see bulk)
linters, 45, 144

assessing complexity and lines of
code, 97

Lisp, 408
List, 439
loaders, 44
lodash, 413, 416
loggers, 45
logging statements

as useless code, 162
removing console.log from classify

function, 204
lone-wolf programmers, 36
loops, 180-182

avoiding reassignment in, 398
do...while, 181
for, 180
for...in, 181
for...of, 182
using forEach function instead of,

183
while, 180

low-level tests, 25, 31
(see also unit tests)

M
magic numbers, 163
magic strings, 173
manual testing, 24, 28
map function

applying a function to various kinds
of objects, 431

assigning elements to arrays, 184
creating arrays, 398
in Haskell, type signature, 422
in Ramda, 415
using to inline classified variable in

classifier, 234
maps

assigning Map object to classified
variable, 236

using as object alternative, 194-198

reasons to avoid using maps, 195
weak version of Map, 198

Math.random function, 409
Maybe

concat function, 422
functional refactoring with, 433-436
similar structures, 439

memoization, 250, 391, 396
memoize function in Ramda, 419

methods versus functions, 141
minification, 17
mocha, 48, 61, 355

assertions in, 62
installing and using for tests, 201
mocha -g pattern command, 85
mocha -h command, 86
tip for, test file setup, 63
watcher, 64

mocking and stubbing, 25
in end-to-end tests, 31
in unit tests, 32
libraries for, 43

module pattern, 267
modules, 32

exporting classes as, 276
monads, 424

overemphasis on, 440
monoids, 423
mutation testing, 45

for sad paths, 106

N
naive Bayes classifiers, 143, 187

code, improved, 187-190
code, initial bad version, 145-148

refactoring variables, 162-173
refactoring, strategy for confi-

dence, 148-150
renaming things, 151-155

restructuring from OOP to FP,
441-445

streamlining the API with global
classifier object, 216-281

namespacing functions, 423
NBC (see naive Bayes classifiers)
new line characters (\n), 177
new operator, using with constructor

functions, 264
node, 15, 48

assert library, using, 56

464

node debug command, 52
nonfunctional testing, 6, 34
Nothing values (Sanctuary), 427
npm, 48

npm install with command, 59
null object pattern, 336-345, 427-433

pros and cons of, 344
nulls, 111

not returning, 404
returning from functions, 109

numbers
JavaScript handling of, 159
magic numbers, 163
not allowed in variable names, 151

numerical keys (array indexes), 153

O
Object class

create function, 242
functions for freeze/assign/seal, 242

object literals, 118, 264, 297-299
advantages of object creation with

constructor and factory functions
over, 270

building a hierarchy, 302
object shorthand, 262
object-oriented programming (OOP),

449
criticisms of, 303
in JavaScript, 187
moving from OOP to FP

rewrites, 445-446
moving to FP from, 441-446

naive Bayes classifier (example),
441-445

refactoring to OOP patterns,
321-357
design patterns, 321
facade pattern, 353-356
null object pattern, 336-345
state pattern, 329-336
strategy pattern, 326-329
template method, 322-326
wrapper (decorator and adapt-

er), 345-353
reliance on using this for implicit in-

put, 103
versus functional programming style

for global classifier object, 217
Object.assign function, 298

mutating values, 403
parameter order and inheritance,

306
preserving the prototypal link, 307

Object.create function, 119, 265
using for a factory function, 269

Object.defineProperties function, 403
Object.freeze function, 226
Object.getPrototypeOf function, 293
objects

alternatives to, in JavaScript
maps, 194-198

copying in JavaScript, 241
creating solitary objects, methods

of, 302
equality tests for, 66
implicit function inputs or parame-

ters, 101
renaming, 154
streamlining the API with a global

classifier object, 216-280
adapting classifier to new prob-

lem domain, 278-280
bringing classify function into,

227-239
bringing in other functions and

variables, 246-253
choosing our API, 273-275
class for the classifier, 270-273
constructor versus factory func-

tions, 265-270
extracting songList object, 222
extracting the classifier object,

220
getting new objects with con-

structor functions, 262-265
inlining setup function, 221
making data independent from

the program, 224
ojects with duplicate informa-

tion, 245
privacy, 275-277
scoping declarations var, let, and

const, 225
shorthand syntax, arrow, object

function, and object, 253-262
untangling coupled values,

239-244
using as array alternative, 191-193
using to create a new context, 118

Opdyke, William F., 48

465

outer functions, 98
outputs (function), 108-112

recommended approach to output
values, 111

P
pairing (pair programming), 37

variations on, 38
parallelization

multi-core computers, 393
tests, 369

parameters (function)
default parameters, 288
input, 100-108
passing in JavaScript, 104
rest parameter syntax and spread

operator, 275
partial application, 413
patterns (see object-oriented program-

ming, refactoring to OOP patterns)
performance

async programming and, 359
of JavaScript in loops, 184
refactoring and, 5

pipe function, 419
platforms, 15
point-free programming, 417
polyfills, 15
pomodoro technique, 37
precompiled languages, 17
private interfaces, 32, 124-142

privacy and JavaScript, 140
privacy in a class, 275-277
privacy in JavaScript

proposals for private fields and
methods, 142

private functions in classifier API,
273

underscore character (_) as pseudo-
private namespace, 138

procedural code, getting away from,
207-213

processes for quality, 36-41
promiscuous pairing, 38
promises, 377-383, 439

basic promise interface, 377
creating and using, 378-381
flexibility of, 378
testing, 381-382

properties

computed properties for objects,
260

inheritance of, 309
non-function, defining in a construc-

ture function, 271
prototypes, 292

adding directly to objects, 300
altering for arrays, 415
assigning, 295
losing ability to track, 300
manually setting in factory func-

tions, 300
prototypal link implied by is-a rela-

tionships, 309
prototypal link through Object.as-

sign, 307
public interfaces, 210

public functions in classifier API, 273
testing only public methods, 32

pull-up method of refactoring, 325
pure functions, 388

memoizing, 391
pyramid of doom, fixing, 362-370

Q
quality

and its relationship to refactoring, 7
balancing with getting things done,

7
deciding if code quality is bad, 93
difficulty of, 36
human readability as, 9
improving while preserving behav-

ior, 7
processes for, 36-41

as team and personal branding,
41

code review, 39
coding standards and style

guides, 36
developer happiness meetings,

37
pair programming, 37
test-driven development (TDD),

39
tools for, 42-46

assertion/expectation syntax li-
braries, 43

build/task/packaging tools, 43
continuous integration, 44

466

coverage reporters, 44
debuggers/loggers, 45
domain-specific libraries, 43
factories and fixtures, 43
loaders and watchers, 44
mocking/stubbing libraries, 43
staging/QA servers, 46
style checkers (or linters), 45
test frameworks, 42
test run parallelizers, 44

quality assurance (QA), 26
(see also quality)
developing a testing/QA plan, 28

R
Ramda, 413, 426

function composition, 418
functions in naive Bayes classifier

(example), 444
memoized function, 419
types in, 421

randomness, 409
testing, 77-82

probability of a test failure, 89
React, 19
reassignment, 386, 403

avoiding, 393-401
in conditional bodies, 400
in conditional tests, 394
in conditionals themselves, 394
in loops, 398

recursion, 390
red/green/refactor cycles, 39

about TDD and, 58
in testing new code from scratch

with TDD, 58-77
reduce function, 227, 249

transforming arrays into other types,
398

refactoring, 1-12
and unspecified and untested be-

havior, 4
as exploration, 10
asynchronous JavaScript (see asyn-

chronous refactoring)
basic goals of, 93

context and privacy, 124-142
function bulk, 96-99
function inputs, 100-108
function outputs, 108-112

relationship between testing and
refactoring, 93

side effects, 112
changing callback-style code into

promises, 382
functional (see functional program-

ming)
functions and objects, 187-281

array and object alternatives,
190-199

extracting functions, 207-216
naive Bayes classifier (example),

improved code, 187-190
streamlining the API wih a global

object, 216-280
testing changes so far, 199-207

further reading and resources,
451-454

impossibility of, without testing, 26
no final, pefect, refactored state for

code, 239
not caring about implemetation de-

tails, 3
performance and, 5
relationship to quality, 7
simple structures, 143-185

naive Bayes classifier, initial
code, 145-148

renaming things, 151-155
strategy for confidence, 148-150
strings, 173-177
useless code, 155-162
variables, 162-173
working with arrays, 177-184

to OOP patterns, 321-357
facade pattern, 353-356
null object pattern, 336-345
state pattern, 329-336
strategy pattern, 326-329
template method, 322-326
wrapper (decorator and adapt-

er), 345-353
versus other similar processes, 11
within a hierarchy, 283-319

building a hierarchy, 284-293
CRUD apps and frameworks, 283
has-a relationships, 309
inheritance and architecture,

302-309
inheritance antipatterns,

310-319

467

wrecking our hierarchy, 293-302
without changing behavior of code,

1
without good understanding of

code, 398
without tests (historical note), 48

Refactoring Object-Oriented Frame-
works (Opdyke), 48

references (function), 215
referential transparency, 389, 405-408

factorial function, 391
regression tests, 29, 35, 83-92
regular expressions

using on strings, 175
using to handle strings

regex versus string APIs, 175
relationships (object)

has-a relationships, 309
is-a relationships, 306

releases, 16
remote pairing, 38
renaming things in code, 151-155

making sure to rename all instances,
154

misspelled words, 151
objects, 154
searching for bad names, 151
variable names, 151

descriptive names indicating bad
code, 152

resources, defining people as, 38
rest parameter syntax, 275
return keyword

no value explicitly returned using,
109

omitted in function definitions, 108
revealing module pattern, 140, 267,

277
rewriting code, 445-446
Ruby, indicator of destruction, 404
runtimes, 16

S
S object (Sanctuary), 426
sad paths, 106
Sanctuary

concat function in Maybe, 422
functional refactoring with Either,

436-439

functional refactoring with Maybe,
433-436

introduction to, 425-427
runtime type-checking errors,

426
sanity tests, 4
Scala, 412, 441
Scheme, 441
scope, 124

variables in top-level scope, 115
scoping declarations

omitting in JavaScript, 449
omitting var scoping declaration

from global variables, 211
var, let, and const, 225

self variable, 231
(see also this)

Semigroup typeclass, 423
servers

server side of web apps, 16
staging/QA, 46

setLabelsAndProbabilities function,
209, 209

sets
assigning one set to another, 239
labelProbabilities, testing, 207
using as array alternative, 191

Set lacking in handy array func-
tions, 191

weak version of Set, 198
setSongs function, 210

removing from program and moving
into tests, 224

setTimeout function, event loop and,
361

setup function
moving into classifier object, 220

inlining setup, 221
setup test for function and object refac-

toring, 201
shims, 15
side effects, 80, 89

avoiding, 243
avoiding in functional programming,

388
from void functions, 109
in functional programming languag-

es, 388
of functions in classifier, 274
recommendation for, 114
uses in JavaScript, 112

468

siloed information, 36
slice function, 403
smoke tests, 29
smoothing, moving from classify() to

classifier, 233
specifications (JavaScript), 14
speculative code, 156
spiking (in TDD), 39
splice function, 402
spread operator, 275
spreadsheets as declarative program-

ming, 387
staging/QA servers, 46
state, 194, 423

avoiding, 406
state pattern, 329-336

refactoring to use, problems with,
335

versus state machine, 335
static functions, 271
strategy pattern, 326-329
streaming

node's http library, 371
streaming API, 363

strict mode, 15
enabling use strict with frameworks,

19
this keyword in, 116

string keys to an object, 153
String.prototype, overwriting, 342
strings

refactoring, 173-177
concatenating, magic, and tem-

plate strings, 173
long lines, 175
regex basics for handling strings,

174
using === operator on, 66

strongly typed languages, 111
stubbing, 25
stubs, 43

(see also mocking and stubbing)
style checkers (linters), 45
style guides, 36
subclasses, 285

putting more logic into, 296
reasons for subclassing, 300
removing using the strategy pattern,

326-329
using to eliminate conditionals, 323

super keyword, 287

superclasses, 285
Sweet.js, 17
switch statements, 97
synchronous style coding, 359

T
tape, 355, 365-368

assertions, 346
installing, 345

technical debt, 25
meetings to address, 37
paying off, 82

template method, 322-326
functional variant of, 325

template strings, 173, 177
ternary syntax (? :), 401
test coverage (see coverage)
test frameworks, 20, 42

mocha, 48, 61
assertions, 62

tape, 345
testdouble, 357, 369, 376
wish, 370

test harness, 78
test run parallelizers, 44
test-driven development (TDD), 39

soup-making analogy, 56
TDD cycle containing aother TDD cy-

cle, 41
TDD pairing, 38
testing new code from scratch,

57-77
testdouble library, 357, 369, 376
testing, 23-46

asynchronous program, 365-370
callbacks and, 371-376
debugging and regression tests,

83-92
developing confidence in code, 308
developing sense of confidence or

skepticism about a codebase, 24
difficulty of, 36
for function and object refactoring

characterization test of classify
function, 203

labelProbabilities, 206
testing welcomeMessage, 205

getting node, npm, and mocha for,
48

in refactoring, 11

469

many reasons for, 25
many ways of, 27-35

approval tests, 29
end-to-end tests, 31
feature, regression, and charac-

terization tests, 35
manual testing, 28
nonfunctional testing, 34
unit tests, 32-33

naive Bayes classifier restructured
from OOP to FP, 443

negative team attitudes toward, 23
new code from scratch, 49-57
new code from scratch with TDD,

57-77
of JavaScript itself versus library be-

havior, 3
promises, 381-382
refactoring and, 4
refactoring of functions and objects,

199-207
approaches to testing, 200
setup test, 201

test-driven development (TDD), 9
tools and processes, 35-46

processes for quality, 36-41
tools for quality, 42-46

untested code and characterization
tests, 77-83

whether to test flow chart, 56
that variables, 231
then function, 377, 378, 380
this, 115-124, 142, 216

binding for callbacks, 365
in functional programming, 422
in impure functions, 411
in strict mode, 116
in variables of global classifier ob-

ject, 221, 230
properties defined in a constructor

function, 271
referrring to implicit function pa-

rameters, 102
returning from functions, 109
sacrificing in Ramda, 415
using with variables in global classi-

fier object, 243, 251
timeouts, setTimeout() and the event

loop, 361
tools, 454

for quality, 42-46

train function, 274
trainAll function, 209

changing to add songs from song-
List, 223

moving setDifficulties, setup, and
setSongs function calls into, 211

moving setSongs function inside of,
210

setLabelProbabilities function, 248
training data, 143
transpilers, 15
Trellus, 96
truthy values in JavaScript, 158
type checks, null object pattern and,

336
type signatures, 388, 422
types, 420-423

and function parameters in Java-
Script, 104

case for, 420
function outputs in JavaScript, 112
less intuitive aspects of, 422
strongly typed languages, 111
type signature of functions, 152

U
undefined values, 70, 80, 108, 111

returned from functions, 108
this value, 117

underscore library, 413
unit tests, 32-33

using with high-level tests, 200
unstructured imperative programming,

94
useless code, 155-162

dead code, 155
debugging/logging statements, 162
do-nothing code, 158
speculative code and comments,

156
whitespace, 157

V
var keyword, 169

omitting in gloal variables moved in-
to functions, 211

omitting var scoping declaration
from global variables, 212

470

scoping declarations and global
classifier object, 225

variables
anonymous function literal assigned

to, 215
assigning class expression to, 271
extracting, 214
functional programming and, 387
inlining, 238
moving global variales into and re-

moving var scoping declaration,
211

names of, correcting, 151
reassigning, 244
refactoring, 162-173

fixing long lines by adding vari-
ables, 164

inlining function calls, 165
introducing a variable, 167-169

magic numbers, 163
variable hoisting, 169

varying, avoiding, 403
version control, 42

importance of using, 2
versions (JavaScript), 14
void functions, 109

W
watchers, 44

in mocha, 64, 202
web frameworks, 19
while loops, 180
whitespace in code, 157
wish tool, using, 59, 291, 370
wrapper patterns (decorator and adapt-

er), 345-353

471

About the Author

Evan Burchard is a web development consultant and the author of The Web
Game Developer’s Cookbook (Addison-Wesley). Offline, he has designed an
award-winning kinetic game involving stacking real ice cubes, and periodically
picks up his project to walk across the US.

Colophon

The animal on the cover of Refactoring JavaScript is a Russian desman (Desma-
na moschata), a small mammal distantly related to the mole. It is semiaquatic,
and lives in a habitat of lake and river basins throughout Russia, Ukraine, and
Kazakhstan. Desmans are generally only 7–8 inches long and 14–18 ounces in
weight.

The desman is functionally blind, but its distinctive two-lobed snout is
packed with specialized dermal bumps (known as Eimer’s organs, which are al-
so found in moles). These organs are highly sensitive to touch and are the ani-
mal’s primary source of sensory input. The desman also uses its long nose like a
periscope, to breathe and sniff for threats above the surface of the water. Des-
mans are adept swimmers, with webbed hind feet and laterally flat tails (which
help steer like a ship’s rudder). And indeed, though they dig dens on land in
which to sleep and raise their young, desmans spend much of their time in the
water; their dens even have underwater entrances. Their diet is made up of in-
sects, larvae, amphibians, and small fish, most of which they catch underwater.

Unfortunately, the Russian desman is endangered. Its soft, thick pelt—ideal
for life in cold water—made it highly sought after in the fur trade of the early
20th century and the species was greatly overhunted. In 1957, the Soviet gov-
ernment established a complete ban on hunting desmans. Despite this, other

factors like logging, water pollution, and wetland drainage have continued to
cause a steep population decline as viable habitat disappears. Recent conser-
vation efforts have had some success in establishing a healthy desman popula-
tion within wildlife reserves.

Many of the animals on O’Reilly covers are endangered; all of them are im-
portant to the world. To learn more about how you can help, go to ani-
mals.oreilly.com.

The cover image is from Natural History of Animals. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

http://animals.oreilly.com
http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Why This Book Exists
	Who This Book Is For
	How To Use This Book
	Some Words in This Book
	App, Application, Program
	Inclusivity Through Words and Diagrams
	Users
	Third-Party Libraries and Communities
	API, Interface, Implementation, “Client Code”
	Inputs (Nonlocal and Free Variables)

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. What Is Refactoring?
	How Can You Guarantee Behavior Doesn’t Change?
	Why Don’t We Care About Details of Implementation?
	Why Don’t We Care About Unspecified and Untested Behavior?
	Why Don’t We Care About Performance?

	What Is the Point of Refactoring if Behavior Doesn’t Change?
	Balancing Quality and Getting Things Done
	What Is Quality and How Does It Relate to Refactoring?
	Refactoring as Exploration

	What Is and Isn’t Refactoring
	Wrapping Up

	Chapter 2. Which JavaScript Are You Using?
	Versions and Specifications
	Platforms and Implementations
	Precompiled Languages
	Frameworks
	Libraries
	What JavaScript Do You Need?
	What JavaScript Are We Using?
	Wrapping Up

	Chapter 3. Testing
	The Many Whys of Testing
	The Many Ways of Testing
	Manual Testing
	Documented Manual Testing
	Approval Tests
	End-to-End Tests
	Unit Tests
	Nonfunctional Testing
	Other Test Types of Interest

	Tools and Processes
	Processes for Quality
	Tools for Quality

	Wrapping Up

	Chapter 4. Testing in Action
	New Code from Scratch
	New Code from Scratch with TDD
	Untested Code and Characterization Tests
	Debugging and Regression Tests
	Wrapping Up

	Chapter 5. Basic Refactoring Goals
	Function Bulk
	Inputs
	Outputs
	Side Effects
	Context Part 1: The Implicit Input
	this in Strict Mode

	Context Part 2: Privacy
	Is There Privacy in JavaScript?

	Wrapping Up

	Chapter 6. Refactoring Simple Structures
	The Code
	Our Strategy for Confidence
	Renaming Things
	Useless Code
	Dead Code
	Speculative Code and Comments
	Whitespace
	Do-Nothing Code
	Debugging/Logging Statements

	Variables
	Magic Numbers
	Long Lines: Part 1 (Variables)
	Inlining Function Calls
	Introducing a Variable
	Variable Hoisting

	Strings
	Concatenating, Magic, and Template Strings
	Regex Basics for Handling Strings
	Long Lines: Part 2 (Strings)

	Working with Arrays: Loops, forEach, map
	Long Lines: Part 3 (Arrays)
	Which Loop to Choose?
	Better Than Loops

	Wrapping Up

	Chapter 7. Refactoring Functions and Objects
	The Code (Improved)
	Array and Object Alternatives
	Array Alternative: Sets
	Array Alternative: Objects
	Object Alternative: Maps
	Array Alternative: Bit Fields

	Testing What We Have
	Our Setup Test
	Characterization Tests for classify
	Testing the welcomeMessage
	Testing for labelProbabilities

	Extracting Functions
	Getting Away from Procedural Code
	Extracting and Naming Anonymous Functions
	Function Calls and Function Literals

	Streamlining the API with One Global Object
	Extracting the classifier Object
	Inlining the setup Function
	Extracting the songList Object
	Handling the Remaining Global Variables
	Making Data Independent from the Program
	Scoping Declarations: var, let, and const
	Bringing classify into the classifier
	Untangling Coupled Values
	Objects with Duplicate Information
	Bringing the Other Functions and Variables into classifier
	Shorthand Syntax: Arrow, Object Function, and Object
	Getting New Objects with Constructor Functions
	Constructor Functions Versus Factory Functions
	A class for Our Classifier
	Choosing Our API
	Time for a Little Privacy?
	Adapting the Classifier to a New Problem Domain

	Wrapping Up

	Chapter 8. Refactoring Within a Hierarchy
	About “CRUD Apps” and Frameworks
	Let’s Build a Hierarchy
	Let’s Wreck Our Hierarchy
	Constructor Functions
	Object Literals
	Factory Functions
	Evaluating Your Options for Hierarchies

	Inheritance and Architecture
	Why Do Some People Hate Classes?
	What About Multiple Inheritance?
	Which Interfaces Do You Want?

	Has-A Relationships
	Inheritance Antipatterns
	Hyperextension
	Goat and Cabbage Raised by a Wolf

	Wrapping Up

	Chapter 9. Refactoring to OOP Patterns
	Template Method
	A Functional Variant

	Strategy
	State
	null Object
	Wrapper (Decorator and Adapter)
	Facade
	Wrapping Up

	Chapter 10. Asynchronous Refactoring
	Why Async?
	Fixing the Pyramid of Doom
	Extracting Functions into a Containing Object
	Testing Our Asynchronous Program
	Additional Testing Considerations

	Callbacks and Testing
	Basic CPS and IoC
	Callback Style Testing

	Promises
	The Basic Promise Interface
	Creating and Using Promises
	Testing Promises

	Wrapping Up

	Chapter 11. Functional Refactoring
	The Restrictions and Benefits of Functional Programming
	Restrictions
	Benefits
	The Future (Maybe) of Functional Programming

	The Basics
	Avoiding Destructive Actions, Mutation, and Reassignment
	Don’t return null
	Referential Transparency and Avoiding State
	Handling Randomness
	Keeping the Impure at Bay

	Advanced Basics
	Currying and Partial Application (with Ramda)
	Function Composition
	Types: The Bare Minimum

	Burritos
	Introducing Sanctuary
	The null Object Pattern, Revisited!
	Functional Refactoring with Maybe
	Functional Refactoring with Either

	Learning and Using Burritos
	Moving from OOP to FP
	Return of the Naive Bayes Classifier
	Rewrites

	Wrapping Up

	Chapter 12. Conclusion
	Appendix A. Further Reading and Resources
	Origins of Refactoring
	Baseline JavaScript(s)
	Keeping Up with JavaScript
	JavaScript Reference
	Object-Oriented Programs/Patterns (Including Anticlass Stances)
	Async
	Functional
	Tools
	Non-JS-Specific but Relevant Sources
	Me

	Index
	About the Author

