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On the Gap Distribution of Prime Numbers.

Yasuo Yamasaki and Aiichi Yamasaki

Abstract. A “theoretical” distribution of prime number gaps is proposed and compared

with the actual distribution. Some probabilistic discussions are given.

1. Introduction

Let p, be the n-th prime number and for z > 0 , put 7n(z) = Max{n|p, < z}.

z

ez or equivalently p, ~ nlogn.

The prime number theorem tells us that m(x) ~
We call d,, = pp41 — pn the n-th prime gap. On the order of the growth of d,, we

have two conjectures.

—  d
1.2 : ‘ lim —— =1,
(12 (log py)?

or more weakly
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The conjecture (1.1) is the famous twin prime conjecture, which has long been believed
to be true, though not yet proved. Put my(z) = #{nlp, <z and d, = 2}, then (1.1) is

equivalent to lim my(z) = co. Much stronger Hardy-Littlewood conjecturel!l says that
r—0o0

xr

(1.3) wo(x) ~ 2c(1—()g—$—)2

with

> 1
c= ]— — ) =0.66016--- .
(-5

Some experiments on counting twin prime numbers by computers!?/(3l seem to suggest
that (1.3) is correct (at least up to z = 10'!)

Later we shall investigate (1.3) more closely.

Also the conjecture (1.2) has long been believed to be truel[Bll6] but the established
results are much weaker: d, = O(p%), 0 < 30 < 1. The best record at present is
6 = 1 — - = 0.5473. [, Again by computers, (1.2) seems to be consistent with
experiments up to p, ~ 1014,

Historically the studies on d, have concentrated on the following two points: namely
the frequency ;)f twin primes and the occurrences of large gaps. In this paper, we shall
discuss the distribution of d,, as a whole. There exists a belief (with no justification) that
prime numbers distribute mutually independently except obvious inter-relations, such as
dn(n > 2) must be even integers for instance. Under this “independence hypothesis”, we
can derive a “theoretical” distribution of d,, and compare it with the actual distribution
obtained by counting them by computers. This is the purpose of the present paper. Espe-
cially, we show that the conjectures (1.2) and (1.3) are true with probability 1 under our
“theoretical” distribution hypothesis.

2. Exponential distribution

Discussions in this section are not rigorous mathematically, but the authors’ excuse



is that the aim of this section is to find a simple and plausible “theoretical” distribution
of d,, not to prove something.
Consider the exponential distribution on Ry = [0,00). It is the probability measure

@ given by E([a, 00)) = e~?%, or equivalently by

(2.1) | WE) = a /E e~ dt

for a Borel set E of [0, 00). This is the distribution of the first- occurrence time of the event
which occurs with probability oAt in an infinitesimal time interval At, independently of
t.

Thanks to the “independence hypothesis”, we shall assume that the exponential dis-
tribution can be applyed to the gaps of prime numbers. But the gaps are always even
integers, so do not distribute continuously on [0,00). Our excuse is that the smallest gap
d, = 2 may be regarded infinitesimal compared with the mean value < d,, >~ logn after
n primes. So, we shall apply the exponentiél distribution (of a continuous variable) to the
gap distribution of prime numbers assumed to be sufficiently large.

However, “obvious inter-relations” should be taken into account. We observe that
d, = 6 is twice as frequent as d,, = 2 or d"‘ = 4. The reason is as follows: if d, = 2, then
we must have 3 { p, and 3 { p,+2, thus p, =2 ( mod 3 ), whileif d, = 6, then 3 ¢ p,
assures automatically 3 { p, + 6, whether p, =1 or = 2. Therefore, d,, = 6 is twice as
probable as d, = 2 or 4. Similar discussions can be applyed to d,, = 2k, and we see that

d, = 2k is c; times as probable as d,, = 2,where

~1 ,
(2.2) o =T 2==

the product being taken over all odd primes dividing k.

How should we include this effect in the exponential distribution? Suppose that we
are challenging to some trial with success probability «. The probability that we succeed
for the first time after n trials is a(1 — a)”. If a player is allowed to try twice after other
person’s n trials, the probability that he becomes the first succéss is a(1—a)"+a(l—a)™ .

This consideration suggésts that in the case of the gap distribution of prime numbers, in
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order to include the above effect in the exponential distribution, it will suffice to take the
time interval as cy At instead of At.

Thus, we obtain the following “theoretical” distribution of d,.

(2.3) Prob(d, = 2k) = exp(—atg—1) — exp(—aty)

k .
where t; = ZC]', a:some constant > 0.
i=1

Now, we must determine the value of a. The prime number theorem implies that the

expectation value < d,, > of d,, under our “theoretical” distribution should be of the order

of logn. From (2.3), we have
(2.4) <dp,>= 2a/ k(t)e™*'dt
0

where k(t) =k for tx—y <t < tg.
We shall evaluate the order of k(t), or equivalently the order of ;. Again applying rough
discussions, we shall suppose t; ~ ck. Here c is the mean of ¢;. For a given p, p{j is

(p — 1)-times as probable as p | j, so that
p—1 1p—1> (p—1)°

c= + -
I;I( p  pp—2 Hp(p 2)

the product being taken over all odd primes.

(The discussions of this part can be made rigorous, namely we can prove that

From t; ~ ck, we have k(t) ~ £, so that

2a
<d,>~— t““dt:—
C 0 CcQ

2
clogn*®

Combining this with < d,, > ~ log n,lwe have a ~

1 _
Note that = = 3(2—33)=H(1—_“1'—5)-
A PRSI LGP
Thus we have determined our “theoretical” distribution as follows:

(2.5) Prob(d, = 2k) = exp(—a,tr—1) — exp(—anti),



k

-1
tk:ZCj y G5 = P_ ’
— - p— 2

J=1 ply

2c 1
=t N0 5o)

3. Conjectures (1.2) and (1.3)

Let X,(n =1,2, .) be mutually independent random variables whose distributions
are given by (2.5), replacing d, with X,. In this situation, we shall prove that both
conjectures (1.2) and (1.3) are true with probability 1.

Theorem 1

— X,
fim (logn)?

=1 almost surely.

Proof

Since Prob(X,, > 2k) = exp(—ayt;), Borel-Cantelli’s lemma implies that

Prob(lim 22((:2) >1)=11if ;exp(—antk(n)) =00

— X, .
Prob(lim 2% (n) <1l)=1if zn:exp(—antk(n)) < oo.

Put k(n) = [B(logn)?], where 8 > 0 and [ ] is Gauss’ symbol. Since tx ~ 1k , we

have antg(n) ~ lozﬁ% (logn)? = 2B(logn) so that exp(—anty(ny) ~ n~2#. Thusif 8 < 1,
then lim ——— > 28 almost surely, and if 8 > %, then im ——— < 23 almost surely.
(log n)? (log n)?

Combining these, we have lim =1 almost surely.

Xn
(logn)?
Theorem 2 (Probabilistic version of prime number theorem).

Forz > 0, let m(x) be a random variable defined by w(z)-= Max{n| Z Xr < z}. Then
k=1

w(x) ~ ﬁ almost surely.
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(Remark m(z) ~ o7 18 equivalent to ZXk ~nlogn ).
. k=1

Proof

Put Y, then Y,(n = 1,2,...) are mutually independent random variables

logn7

whose means and variances are bounded So we can apply the strong law of large numbers.

Since <Y, >~ 1, we have lim — Z Y: =1 almost surely. But lim — Z Y = 1 implies

n—oo 1 n—oo N
k=1 k=1

Z X ~ nlogn as proved below.

k=1
Since Y; = ’lg{gkk > logn for £ < n, we have —ZYk nlogn ZX’“ so that
1
lim ZXk < 1. On the other hand, since Y <
nlogn
k%a Y < log[n"‘ ng forany 0 < o < 1.
n [n"‘] -1
Th — hl -
e left hand side is equal to Z Y: Z Y%, so that nll_rgo - Z Yr = 1, thus we have
k=1 k=1 k=[n=]
1 n
lim —— Z Xk > 1. Letting a — 1, we obtain the desired result.
anlogn —
Theorem 3

For z >0, let m2(z) be a random variable defined by ma(z) = #{n|n < n(z), X, = 2}.

Then mo(x) ~ —:c)2 almost surely.

Proof

Put
0, if X,, # 2;
Y =

[1—exp(—an)]™t, if X, =2.

Then Y,(n = 1,2,...) are mutually independent random variables with means 1. Since

<Y?Z>=[1- exp(—an)]_l L —logn we can apply the strong law of large numbers

Qy 2c

to obtain lim — Z Y; = 1 almost surely. But lim — Z Yir = 1 implies ma(z) ~

n—oo n n—oo N (log rc)2
k=1
as proved below.
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- //
Since lim 7(z) = oo almost surely , we have

— 00

1 2¢ \]7°
lim [1 — exp (— )] =1 almost surely.
z—oo T(T) kg:(x) log k
X =2

This can be rewritten as

Jim, W(lx) Oz [1 —exp <—log2;(t))] i) =1

almost surely , we have

Since 7(z) ~

z
log

| ‘1
lim —8% / Ogtdm(t) =1 almost surely.
o :

r— 00 x 2C

Replacing log t with log z, we get

2 pr 2
i CEEE [ ) = tim (2 ) 21
cx 0 2cx

Replacing logt with log 2%, we get

/ P8 dra(t) 2 S () — male™)

The left hand side is equal to

/ 1°gtd7r2(t)_/ lgtdm(t)
0 2 0

so that ~ —%— thus we get

lim a(l;*gx)z (m2(x) - m(z%)) < 1.

cx
1 2
Since my(z) < w(z) < 7, we have lim (log 2) ———m(z%) =0 for a < 1.
I — 00 T
a(log z)?

Therefore lim ma(z) < 1. Letting a — 1, we obtain the desired result.

cT

4. Comparison with the actual distribution
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In the following Table 1, mak(z) = #{n| pay1 < @, dy = 2k} is given for z =
10%,10%,10%,10%,107 and 10®. This is obtained by determining all prime numbers below
.

The corresponding expected value 7ok (2) under our “theoretical” distribution is given

by

w(z)
2¢tr_q 2¢t
(4.1) mok(z) = [exp (— Togn ) — exp (—logn>] :

But since the derivation of the distribution (2.5) is not so rigorous, it does not seem

necessary to carry out this complicated summation to check the validity of our “theoret-
ical” distribution. Instead, we shall assume that all d,(1 < n < 7(z)) follow the same

distribution as that of n = n(z)/2, thus we get

(4.2) mor(z) = m(z) [exp (—atr—,) — exp (—aty)],
2c
where o = W.

Hereafter 7o () means the right hand side of (4.2). In the Table 1,we shall use the same

notation mex(z) to denote its integral approximation, namely [ﬂ'zk(:z:) + ().5] .
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Table 1. Actual and Expected Number of Gaps.

2k mor(z) mor(x)

2 35 43
4 40 32
6 44 42
8 15 13
10 16 12
12 7 11
14 7 4
16 0 3
18 1 3
20 1 1
22 1
24 1
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z = 10*

2k mok(z) mok(z)

2 205 228
4 202 186
6 299 275
8 101 100

10 119 105
12 105 113

14 54 48
16 33 32
18 40 48
20 15 22
22 16 15
24 15 19
26 3 8
28 ) 7
30 11 10
32 1

3
2
36 1 3
1
1
1



z = 10°

mok(z) mak(z)
1384
1184
1880

1224
1215
1940
773
916
964
484
339
514
238
223
206
88
98
146
32
33
54
19
28

742
826

957

447
313

498

255
176
249
106
98
162
45

41

61
25
27

2k mok(z) mok(z)

19

== == T = T N~ RN~ = S ~SRTS 1 SJC I NS

36
13
10

Jry
ot

- O O N = = Ot W s 00 Ot o
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x = 108

2k mor(z) mor(z)

2 8169 9211
4 8143 8130
6 13549 13511

8 5569 5501
10 7079 6448
12 8005 7866
14 4233 3859
16 2881 2802
18 4909 4657
20 2401 2518
22 2172 1801
24 2682 2674
26 1175 1200
28 1234 1145
30 1914 2006
32 550 596
34 557 559
36 767 867
38 330 378
0 424 411
42 476 587
4 202 218
46 155 179
48 196 284
50 106 153

2k
52

54

56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100

mor(z) mok(2) |

77
140
93
o4
96
16
24
48
13
22
13
12
6

—t
w

N =N O - R - R O Ol W

108
163
80
60

123

38
32

99

23
29
29
12
11
19
9

—
MO)

- O G NN =T

2k
102
104
106
108
110
112
114

162

mor(z) mak(z)

— = O O O O O

2

—_ O = = e



z = 107

2k

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
o4

mok(2)
58980
58621
99987
42352
54431
65513

35304

25099
43851
22084
19451
27170
12249
13255
21741
6364
6721
10194
4498
5318
7180
2779
2326
3784
2048
1449
2403

Tok(2)
65554
99087
101265
43270
51129
64568
32772
24357
41744
23383
17159
26311
12208
11924
21733
6719
6438
10307
4649
5172
7683
2958
2493
4069
2279
1644
2570

2k
56
o8
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108

Tok(2)
1072
1052
1834
543
559
973
358
524
468
218
194
362
165
100
247
66
71
141
37
39
65
29
36
34
21
12
26

ok ()

1304
1003
2135
631
593
1116
451
589
611
268
248
432
220
150
294
105
102
201
65
57
95
48
47
63
27
23
38

2k

110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154
156

158

160

162

Tok(2)

= o= O N E OO NN N =R Ot = N0 W

mok(2)

Lo o o — — bt \V] — — [\V] — N = N N O ot H~
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z =108

2k

10
12
14
16
18
20
22
24
26
28
30
32
34
36

38

40
42
44
46

48

50
52
54

mok()
440312
440257
768752
334180
430016
538382
293201
215804
384738
202922
175945
257548
119465
129567

222847

68291
71248
114028
51756
60761
86637

34881

29327
49824
27522
20595

33593

mak(z)
489399
447828
784766
343127
412597
534172
277833
209958
367927
211398

158024

247981
117814
117075
219546
69824
67955
111305
51397
58215
88902
35167
30126
50285
28892
21223
33953

2k
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108

mok()
16595
14611
28439
8496
8823
15579
6200
8813

8453 -

4316
3580
6790
3281
2362
4668
1597
1637
3337
1083
971
1641
851
878
1059
494
404
711

7T2k($l?)

17659
13817
30204
9922
8763
16900
7002
9334
9950
4469
4194
7492
3913
2710
5456
1997
1971
4007
1332
1186
2031
1056
1049
1440
638
543
932
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mok(z) Tor(z)

2k
166
168

mok(z) mok(x)

2k
110
112

10
20

991
425
648
276

454
330
487
191
181
433

10

170
172

114
116

11

174
176

247

118
120

950

178
180
182
184
186
188

178
165
329

131

122
124
126
128
130
132

10

145
204

118
154

200
79

76

78
132

190

50

134
. 136

192

76

40

194
196
198
200
202

129
84
47
82

93

138

o7

140
142
144
146
148
150

30
ol

36

22

204
206

33

34
37

74
25

208
210

20
13
23
10
11

152
154
156

28
39

212
214
216
218

16
19
24
11

158

160
162

220
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From the Table 1, we observe that the expected number m is in good accordance
with the actual one mqi(z), at least qualitatively. Though the accordance is not good
numerically for some k, the tendencies of both distributions coincide, thus we ascertain
the exponential feature of the actual distribution of d,. The number of twin primes 7(x) is

about 10% smaller than m5(z). The maximum gap Iila(x)dn, which is given in the Table 2,
shows remarkably good accordance, intensifying the belief that the conjecture (1.2) should

be true.

Table 2, Maximum gap below z.

z = actual expected

103 20 24
104 36 42
10° 72 78
10¢ 114 114
107 154 162
108 220 216
10° 282 282
10'® 354 360

1011 464 450
1012 540 546
103 674 660
104 804 762

(Actual value for z > 10° is cited from [8]. Expected value is computed by (4.2).)



Our “theoretical” distribution (2.5) is rather simple. More elaborate and complicated
“theoretical” distribution may be useful to obtain better accordance. From the Table 1, we
observe that for small k and large k, we have m > mak(z), while for the medium value
of k, we have mor(z) > m This does not seem to be accidental, and suggests that we
shoixld replace the exponential distribution with some other one to get better accordance.

The following Figure 1 is the graphs of myi(z)/m2k(z) as the functions of a(z)?t for

z = 10%,10%,107 and 108, where a(z) = 2¢/ log(n(z)/2)

_Figure 1, mop(z)/mop(z) as functions of a?ty.

Tok(2)/mai ()
T + z=10°
x z=10°
u) :1:=107
o m=108
+
x
‘ # 0.,
FRIRLE ¥ ok T L
emux a8 080 R NN 3
T e =
=) X R
ﬂ%mm(%))%
a
i o ©
X+t
0 ot ' : : + — | a(z)ty,
0 0.2 0.4 0.6 0.8

We observe that these graphs seem to converge to some curve as £ — 0o, but the limit
is apparently not the constant 1. Note also that the absissa is a?t;, not aty. The reason

for this deviation is not known, but some effect depending on (log 7(z))? seem to exist. -
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