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We present a general model for the growth of weighted networks in which the structural growth is coupled
with the edges’ weight dynamical evolution. The model is based on a simple weight-driven dynamics and a
weights’ reinforcement mechanism coupled to the local network growth. That coupling can be generalized in
order to include the effect of additional randomness and nonlinearities which can be present in real-world
networks. The model generates weighted graphs exhibiting the statistical properties observed in several real-
world systems. In particular, the model yields a nontrivial time evolution of vertices’ properties and scale-free
behavior with exponents depending on the microscopic parameters characterizing the coupling rules. Very
interestingly, the generated graphs spontaneously achieve a complex hierarchical architecture characterized by
clustering and connectivity correlations varying as a function of the vertices’ degree.
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I. INTRODUCTION

Networked structures appear in a wide array of systems
belonging to domains as diverse as biology, ecology, social
sciences, or large information infrastructures such as the In-
ternet and the World Wide Web [1–4]. In recent years, many
empirical findings have uncovered the general occurrence of
a complex topological organization underlying many of these
networks, triggering the interest of the research community.
In particular, small-world properties [5] and large fluctua-
tions in the connectivity pattern identifying the class of
scale-free networks [1] have been repeatedly observed in
real-world networks. These findings triggered a wealth of
theoretical and empirical studies devoted to the characteriza-
tion and modeling of these features. These studies have
pointed out the importance of the evolution and growth of
networks [3,4,6] and led to the formulation of a long list of
models aimed at studying the architecture of complex net-
works and the dynamical processes which are taking place
on their structure [7–10].
So far the research activity on networks has been mainly

focused on graphs in which links are represented as binary
states, i.e., either present or absent. More recently, however,
the gathering of more complete data has allowed one to take
into account the variation of the strength of the connections
between nodes (i.e., the weights of the links), providing a
more complete representation of some networked structures
in terms of weighted graphs. Indeed, this diversity in the
interaction intensity is of crucial interest in real networks.
Studies of congestion phenomena on the Internet implies the
knowledge and the characterization of its traffic [4] and the
number of passengers in the airline networks is obviously
basic information to assess the importance of an airline con-
nection [2,11,12]. In the case of ecological networks [13],
recent studies (see [14] and references cited therein) high-
lighted the importance of the strength of the predator-prey
interaction in ecosystem stability. Metabolic reactions also
carry fluxes that are essential to the understanding of meta-

bolic networks, as shown in [15]. Finally, sociologists [16]
showed already some time ago the importance of weak links
in social networks. Very interestingly, the analysis of some
paradigmatic weighted networks have revealed that in addi-
tion to a complex topological structure, real networks display
a large heterogeneity in the capacity and intensity of the
connections. In particular, broad distributions and nontrivial
correlations between weights and topology were observed in
different networks [11,12,17].
From the previous discussion, it appears clearly that there

is a need for a modeling approach to complex networks that
goes beyond the purely topological point. In this paper, we
analyze in detail a general model for the evolution of
weighted networks that couples the topology and weights
dynamical evolution. Vertices entering the system draw new
edges with an attachment dynamics driven by the weight
properties of existing edges and vertices. In addition, in con-
trast with previous models [18,19] for which weights are
statically assigned, we allow for the dynamical evolution of
weights during the growth of the system. This dynamics is
inspired by the evolution and reinforcements of interactions
in natural and infrastructure networks. We provide a detailed
analytical and numerical inspection of the model, consider-
ing different specific mechanisms—homogeneous, heteroge-
neous, nonlinear—for the evolution of weights. (A short re-
port of the simplest linear and homogeneous case appeared
in Ref. [20].) The obtained networks display heavy-tailed
distributions of weight, degree, and strength. We determine
analytically the exponents of the corresponding power laws
showing that they depend on the unique parameter defining
the model’s dynamics. Interestingly, the model generates
graphs that spontaneously develop a structural organization
in which vertices with different degrees exhibit different lev-
els of local clustering and correlations. These correlations
can be shown to emerge as a direct consequence of the cou-
pling between topology and dynamics. While the model we
introduce here is possibly the simplest one in the class of
weight-driven models, it generates a very rich phenomenol-
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ogy that captures many of the complex features emerging in
the analysis of real networks. In this perspective it can be
considered as a general starting point for more realistic mod-
els aimed at the representation of specific networks.
The paper is structured as follows. In Sec. II we review

the necessary definitions and tools for the characterization of
complex weighted networks. The general formulation of the
model is reported in Sec. III. Section IV discusses the homo-
geneous reinforcement rules and reports the corresponding
analytical and numerical analysis. In Sec. V, the dynamics is
generalized in order to include the effect of local random-
ness. A further generalization to more complicated nonlinear
reinforcement mechanisms for the weights’ evolution is dis-
cussed and analyzed in Sec. VI.

II. WEIGHTED NETWORKS

The topological properties of a graph are fully encoded in
its adjacency matrix aij, whose elements are 1 if a link con-
nects node i to node j, and 0 otherwise. The indices i , j run
from 1 to N where N is the size of the network and we use
the convention aii=0. Similarly, a weighted network is en-
tirely described by a matrix W whose entry wij gives the
weight on the edge connecting the vertices i and j (and wij
=0 if the nodes i and j are not connected). In the following
we will consider only the case of symmetric weights wij
=wji while the directed case is considered in [21].
Important examples of weighted networks have been re-

cently characterized. The first example is the worldwide air-
port network (WAN) [11,12,22] where the weight wij is the
number of available seats on direct flight connections be-
tween the airports i and j. A second important case study is
the scientific collaboration network (SCN) [24,25] where the
nodes are identified with authors and the weight depends on
the number of co-authored papers [12,24]. These two cases,
which are paradigms of, respectively, large infrastructure and
social networks, display complex features characterized by
heavy tailed distributions for topological and weighted quan-
tities. Another very important example of a weighted net-
work is the biochemical network of metabolic reactions. For
this network, the nodes are biochemical elements (enzymes,
etc.) and a link between two nodes denotes the existence of
an individual chemical reaction between them. The weight of
a link can be characterized by the flux of this chemical reac-
tion. A very recent study [15] has provided the first analysis
of the weighted graph of a metabolic network, bringing fur-
ther evidence for the heterogeneous complex aspect of
weighted networks.
In the following we introduce a set of general quantities

whose statistical analysis allows the mathematical character-
ization of the complex and heterogeneous nature of a
weighted graph.

A. Weights and strength

The most commonly used topological information about
vertices is their degree and is defined as the number ki of
neighbors

ki =!
j
aij . "1#

A natural generalization in the case of weighted networks is
the strength si defined as [12,18]

si =!
j
wij . "2#

Indeed, the strength of a node combines the information
about its connectivity and the intensity of the weights of its
links. In the case of the worldwide airport network, the
strength si corresponds to the total traffic going through a
vertex i and is therefore an indication of the importance of
the airport i. In the case of the scientific collaboration net-
work, the strength gives the number of papers authored by a
given scientist (excluding single-author publications, see
e.g., [12]).
A natural characterization of the statistical properties of

networks is provided by the probability P"k# that any given
vertex has a degree k. Many studies have revealed that net-
works display a heavy tailed probability distribution P"k#
that in many cases is well approximated by a power-law
behavior P"k#$k−" with 2#"#3. This has led to the intro-
duction of the class of scale-free networks [6], as opposed to
the regular graphs with Poissonian degree distribution. Simi-
lar information on the statistical properties of weighted net-
works can be gathered at first instance by the analysis of the
strength and weight distributions P"s# and P"w# which de-
note the probability of a vertex to have the strength s and of
a link to have the weight w, respectively. Also for these
distributions, recent measurements on weighted networks
have uncovered the presence of heavy tails and power-law
behaviors [11,12,15,17,22,23]. The heavy-tailed behavior of
these distributions is an extremely relevant characteristic of
complex networks indicating the presence of statistical fluc-
tuations diverging with the graph size. This implies that the
average values %k&, %w&, and %s& are not typical in the network
and there is an appreciable probability of finding vertices
with very high degree and strength. In other words, we are
generally facing networks which are very heterogeneous. It
is worth stressing that the correlations between the weight
and topological properties are encoded in the statistical rela-
tions among these quantities. Indeed, si, which is a sum over
all neighbors of i, is correlated with its degree ki. In the
simplest case of random, uncorrelated weights wij with aver-
age %w&, the strength is s$%w&k. In the presence of correla-
tions between weights and topology, we may observe a more
complicated behavior with s$Ak$ with $!1 or with $=1
and A! %w&.

B. Clustering and correlations

Complex networks display an architecture imposed by the
structural and administrative organization of these systems
that is not fully characterized by the distributions P"k# and
P"s#. Indeed, the structural organization of complex net-
works is mathematically encoded in the various correlations
existing among the properties of different vertices. For this
reason, a set of topological and weighted quantities are cus-
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tomarily studied in order to uncover the network architec-
ture. A first and widely used quantity is given by the cluster-
ing of vertices. The clustering of a vertex i is defined as

ci =
1

ki"ki − 1#!j,h aijaihajh "3#

and measures the local cohesiveness of the network in the
neighborhood of the vertex. Indeed, it yields the fraction of
interconnected neighbors of a given vertex. The average over
all vertices gives the network clustering coefficient C which
describes the statistics of the density of connected triples.
Further information can be gathered by inspecting the aver-
age clustering coefficient C"k# restricted to classes of verti-
ces with degree k:

C"k# =
1

NP"k# !
i/ki=k

ci. "4#

In many networks, the degree-dependent clustering coeffi-
cient C"k# is a decreasing function of k which shows that
low-degree nodes generically belong to well interconnected
communities while high-degree sites are linked to many
nodes that may belong to different groups which are not
directly connected [26,27]. This is generally the signature of
a nontrivial architecture in which hubs, high degree vertices,
play a distinct role in the network.
Another important source of information lies in the corre-

lations of the degree of neighboring vertices [28,29]. Since
the whole conditional distribution P"k! 'k# that a given site
with degree k is connected to another site of degree k! is
often difficult to interpret, the average nearest-neighbor de-
gree has been proposed to measure these correlations [28]

knn,i =
1
ki
!
j=1

N

aijkj . "5#

Once averaged over classes of vertices with connectivity k,
the average nearest-neighbor degree can be expressed as

knn"k# =!
k!

k!P"k!'k# , "6#

providing a probe on the degree correlation function. If de-
grees of neighboring vertices are uncorrelated, P"k! 'k# is
only a function of k! and thus knn"k# is a constant. When
correlations are present, two main classes of possible corre-
lations have been identified: assortative behavior if knn"k#
increases with k, which indicates that large degree vertices
are preferentially connected with other large degree vertices,
and disassortative if knn"k# decreases with k [30].
While the above quantities provide clear signatures of the

structural organization, they are defined solely on topological
grounds and the inclusion of weights and their correlations
might be extremely important for a full understanding of the
networks’ architecture. For instance, Fig. 1 clearly shows
that very different situations in terms of weights can have the
same topological clustering: if the existing triples are formed
by links with small weights, the (geometrical) clustering co-
efficient will overestimate their relevance in the network’s
organization. For this reason, generalizations of clustering

and correlations measurements to weighted networks have
been put forward in [12].
The weighted clustering coefficient of a vertex is defined

as [12]

ci
w =

1
si"ki − 1#!j,h

"wij + wih#
2

aijaihajh. "7#

This quantity combines the measure of the existence of
triples around vertex i with the intensity of the links emanat-
ing from i and participating to these triples. As we show in
Fig. 1, ci

w describes more accurately than ci the relevance of
these triples. The normalization si"ki−1# corresponds to the
maximum possible value of the numerator and thus ensures
that ci

w! (0,1). The average over all sites, or over sites of a
given degree k, define, respectively, the global weighted
clustering coefficients Cw and Cw"k#. For random or uniform
weights, these averages coincide with their geometrical
counterparts. On the other hand, the comparison between C
and Cw [and also between C"k# and Cw"k#] conveys informa-
tion on the repartition of weights. A larger weighted cluster-
ing Cw%C signals that links with large weights have a ten-
dency to form triples while the opposite case Cw&C signals
a lower relevance of the triangles.
Analogously, high degree vertices could be connected

mainly to small degree vertices with a small intensity of
connections and to a few large degree vertices with large
weights: a topological disassortative character is therefore
emerging while in terms of interactions one would conclude
to an assortative behavior. In the same spirit as for the clus-
tering, one can therefore define the weighted average
nearest-neighbor degree as [12]

FIG. 1. Examples of local configurations whose topological and
weighted quantities are different. Top: In both cases the central
vertex (filled) has a very strong link with only one of its neighbors.
Bottom: opposite situation. The weighted clustering and the
weighted average nearest-neighbors degree (values in the figure
correspond to the central vertex) capture more precisely than their
topological counterparts the effective level of cohesiveness and af-
finity due to the actual interaction intensity as measured by the
weights.

MODELING THE EVOLUTION OF WEIGHTED NETWORKS PHYSICAL REVIEW E 70, 066149 (2004)

066149-3



knn,i
w =

1
si
!
j=1

N

wijkj . "8#

This quantity is the natural generalization of the usual assor-
tativity knn,i and balances the nearest-neighbor degree with
the normalized weight of the connecting edge wij /si. It re-
duces to knn,i for uniform or random weights. Comparing
knn,i
w with knn,i informs us if the larger weights point to the
neighbors with larger degree (if knn,i

w %knn,i) or on the con-
trary to the ones with smaller degree (see Fig. 1). The behav-
ior of knn

w "k# thus measures the effective affinity to connect
with high or low degree neighbors according to the magni-
tude of the actual interactions.
In the following we will make use of all these quantities

in order to provide a thorough characterization of the
weighted graphs generated by our model and to assess the
relevance of the weights in their structural organization.

III. THE MODEL

Previous models of weighted growing networks [18,19]
were considering the growth as driven by the topological
features only, with weights statically assigned to the links;
i.e., wij is chosen at the creation of the link i-j and does not
evolve afterwards. This mechanism leads to topological het-
erogeneities, however, it lacks any dynamical feature of the
network’s weights. Indeed, it is rather intuitive to consider
that the addition of new vertices and links will perturb, at
least locally, the existing weights. This phenomenon can be
easily understood by considering the example of the airline
network: a new airline connection arriving at airport A will
generally modify (increase) the traffic activity between air-
port A and its neighboring airports. Passengers brought by
the new connection will eventually get on connection flights,
increasing the passenger flow on the other routes. In the In-
ternet as well, it is easy to realize that the introduction of a
new connection to a router corresponds to an increase in the
traffic handled on the other router’s links. Indeed in many
technological, large infrastructure and social networks we are
generally led to think about a reinforcement of the weights
due to the network’s growth. In this spirit we consider here a
model for a growing weighted network that takes into ac-
count the coupled evolution in time of topology and weights
[20] and leaves room for accommodating different mecha-
nisms for the reinforcement of interactions.
The definition of the model is based on two coupled

mechanisms: the topological growth and the weights’
dynamics.

(i) Growth. Starting from an initial seed of N0 vertices
connected by links with assigned weight w0, a new vertex n
is added at each time step. This new site is connected to m
previously existing vertices (i.e., each new vertex will have
initially exactly m edges, all with equal weight w0), choosing
preferentially sites with large strength; i.e., a node i is chosen
according to the probability

'n→i =
si

! j sj
. "9#

This rule, of strength driven attachment, generalizes the
usual preferential attachment mechanism driven by the topol-
ogy, to weighted networks. Here, new vertices connect more
likely to vertices which are more central in terms of the
strength of interactions.

(ii) Weights’ dynamics. The weight of each new edge "n , i#
is initially set to a given value w0. The creation of this edge
will introduce variations of the traffic across the network.
For the sake of simplicity we limit ourselves to the case
where the introduction of a new edge on node i will trigger
only local rearrangements of weights on the existing neigh-
bors j!V"i#, according to the rule

wij → wij + (wij , "10#

where in general (wij depends on the local dynamics and
can be a function of different parameters such as the weight
wij, the connectivity or the strength of i, etc. In the following
we focus on the case where the addition of a new edge with
weight w0 induces a total increase )i of the total outgoing
traffic and where this perturbation is proportionally distrib-
uted among the edges according to their weights [see Fig. 2]

(wij = )i
wij
si
. "11#

This rule yields a total strength increase for node i of )i
+w0, implying that si→si+)i+w0. After the weights have
been updated, the growth process is iterated by introducing a
new vertex, i.e., going back to step (i) until the desired size
of the network is reached.
The mechanisms (i) and (ii) have simple physical and

realistic interpretations. Equation (9) corresponds to the fact
that new sites try to connect to existing vertices with the
largest strength. This is a plausible mechanism in many real-
world networks. For instance, in the Internet new routers
connect to routers that have larger bandwidth and traffic han-
dling capabilities. In the case of the airport’s networks, new
connections are generally established to airports with a large
passenger traffic. In contrast to the connectivity preferential
attachment of the “rich get richer” type, the mechanism here
relies on the importance of the traffic and could be more
adequately described as “busy get busier.” At the same time,
the weights’ dynamics Eqs. (10) and (11) couples the addi-

FIG. 2. Illustration of the construction rule. A new node n con-
nects to a node i with probability proportional to si /! jsj. The
weight of the new edge is w0 and the total weight on the existing
edges connected to i is modified by an amount equal to )i.
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tion of new edges and vertices with the evolution of weight
and strength and corresponds to different scenarios according
to the value of )i.

(1) For )i&w0, the new link does not have a large influ-
ence. This may be the case for scientific collaborations where
the birth of a new collaboration (co-authorship) is very likely
not going to strengthen the activity on previous collabora-
tions.

(2) )i*w0 corresponds to situations for which the new
created traffic (on the new link n-i) is transferred onto the
already existing connections in a “conservative” way.

(3) )i%w0 is an extreme case in which a new edge gen-
erates a sort of multiplicative effect that is bursting the
weight or traffic on neighbors.
We have considered only the case of a reinforcement

mechanism, i.e., )i%0. In certain particular cases, like, e.g.,
a network of power distribution, the addition of a new link
could in fact decrease the traffic of other links. This would
correspond to possibly negative )i and would imply the defi-
nition of more complicated rules to ensure positivity of traf-
fic. We will not consider these cases in this paper, leaving
them for future investigations.
The quantity w0 sets the scale of the weights and we can

therefore use the rescaled quantities wij /w0, si /w0, and
)i /w0, or equivalently set w0=1. The model then depends
only on the dimensionless parameter )i. The generalization
to arbitrary w0 is simply obtained by replacing )i, wij, and si,
respectively, by )i /w0, wij /w0, and si /w0 in all results.
The model is very general and the properties obtained for

the generated networks will strongly depend on the kind of
coupling between topology and weights as specified by the
parameter )i and its variations depending on the vertex’ prop-
erties. In the following we will provide analytical and nu-
merical inspections of three prototypical situations that can
be used as starting points for further generalizations.

IV. HOMOGENEOUS COUPLING

In this section, we will focus on the simplest form of
coupling with )i=)=const. This case amounts to a very ho-
mogeneous system in which all the vertices have an identical
coupling between the addition of new edges and the corre-
sponding weights’ increase. Such a growing model can be
analytically studied through the time evolution of the aver-
age value of si"t# and ki"t# of the ith vertex at time t, neglect-
ing fluctuations and thus working at a “mean-field” level. In
addition, we use numerical simulations in order to provide a
direct statistical analysis of the generated graph and substan-
tiate the analytical findings.

A. Evolution of strength and weights

The network growth starts from an initial seed of N0
nodes and continues with the addition of one node per unit
time, until a size N is reached. When a new vertex n is added
to the network, an already present vertex i can be affected in
two ways: (i) It is chosen with probability (9) to be con-
nected to n; then its connectivity increases by 1, and its
strength by 1+). (ii) One of its neighbors j!V"i# is chosen

to be connected to n. Then the connectivity of i is not modi-
fied but wij is increased according to the rule Eq. (10), and
thus si is increased by )wij /sj. This dynamical process modu-
lated by the respective occurrence probabilities si"t# /!lsl"t#
and sj"t# /!lsl"t# is thus described by the following evolution
equations for si and ki:

dsi
dt
= m

si"t#

!l sl"t#
"1 + )# + !

j!V"i#
m

sj"t#

!l sl"t#
)
wij"t#
sj"t#

,

dki
dt
= m

si"t#

!l sl"t#
, "12#

where we have considered the continuous approximation that
treats k, s, and the time t, as continuous variables [1,3].
These equations may be written in a more compact form by
noticing that the addition of a node results in the addition of
m links obtaining that the total degree at time t is given by
!i=1
t ki"t#*2mt. Similarly, each added link increases the total
strength by an amount equal to 2+2), so that !i=1

t si"t#
*2m"1+)#t. By plugging this result into the equations (12),
and integrating the resulting equations with initial conditions
ki"t= i#=si"t= i#=m, we obtain

si"t# = m+ ti,"2)+1#/"2)+2#
, ki"t# =

si"t# + 2m)

2) + 1
. "13#

The strength and degree of vertices are thus related by the
following expression

si = "2) + 1#ki − 2m) "14#

that implies for large degree a proportionality between
strength and degree. It is worth noticing, however, that this
relation indicates the existence of correlations that are not
present in the case of randomly assigned weights. Indeed, at
each new link created the sum of weights is incremented by
1+) and therefore %w&=1+). As previously mentioned, a
random assignment of weights would then lead to si=ki"1
+)#. Equation (14) instead reveals a different proportionality
factor signaling correlations between the two quantities. The
proportionality relation s$k also indicates that the weight-
driven dynamics generates in Eq. (9) an effective degree
preferential attachment. This model thus displays a micro-
scopic mechanism accounting for the presence of the prefer-
ential attachment dynamics in growing networks.
In order to check the analytical predictions we performed

numerical simulations of networks generated by using the
present model with different values of ), minimum degree m
and varying network size N. The analytically predicted be-
havior is recovered (see [20]).
The time evolution of the weights wij can also be com-

puted analytically along the lines used for the study of si"t#
and ki"t#. Indeed, wij evolves each time a new node connects
to either i or j and the corresponding evolution equation can
be written as
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dwij
dt

= m
si

!l sl
)
wij
si
+ m

sj

!l sl
)
wij
sj
=

)

"1 + )#
wij
t
. "15#

The link "i , j# is created at tij=max"i , j# with initial condition
wij"tij#=1, so that

wij"t# = + ttij,
)/")+1#

. "16#

At fixed time t, this result implies that wij"t#
$min"i , j#)/")+1#, and since ki"t#$ i−"2)+1#/"2)+2#, we obtain

wij $min"ki,kj#2)/"2)+1#. "17#

In this case also, the numerical simulations of the model
reproduce the behaviors predicted by the analytical calcula-
tions. The time evolution of some randomly chosen weights
is displayed in Fig. 3 and compared with the prediction of
Eq. (16). Figure 3 also show the validity of Eq. (17) for the
correlation between wij and the connectivities of i and j.

B. Probability distributions

The knowledge of the time evolution of the various quan-
tities allows us to compute their statistical properties. Indeed,
the time ti= i at which the node i enters the network is uni-
formly distributed in (0, t) and the degree probability distri-
bution can be written as

P"k,t# =
1

t + N0
-
0

t

)„k − ki"t#…dti, "18#

where )"x# is the Dirac delta function. Using equation ki"t#
$"t / i#a obtained from Eq. (13) one obtains in the infinite
size limit t→* the distribution P"k#$k−" with "=1+1/a:

" =
4) + 3
2) + 1

. "19#

Since s and k are proportional, the same behavior P"s#
$s−" is obtained for the strength distribution. P"s# is dis-
played in Fig. 4, showing that the obtained graph is a scale-
free network both for topology and strength and described by
an exponent "! (2,3) that depends on the value of the pa-
rameter ). As expected, if the addition of a new edge does
not affect the existing weights ")=0#, we recover the
Barabási-Albert (BA) model [6] with the value "=3. As )
increases, the distributions get broader with "→2 when )
→*, i.e., in a range of values usually observed in the em-
pirical analysis of networked structures [1,3,4]. This result
could be an explanation of the lack in real-world networks of
any universality of the degree distribution exponent. Our
model indeed predicts that all the exponents will be nonuni-
versal and depend on the local processes which take place at
nodes receiving new links.
The weight distribution P"w# can be analogously calcu-

lated yielding the power-law behavior

P"w# $ w−+, + = 2 +
1
)
. "20#

The distribution P"w# therefore is even more sensitive to the
parameter ) and evolves from a delta function for )=0 (no
evolution of the weights) to a very broad power law as )
→*. The value )=1 corresponds to +=3, i.e., to the bound-
ary between finite and unbounded fluctuations of the
weights. In Fig. 4, the weight distributions obtained from
numerical simulations at different values of the parameter )
are reported along with the comparison between the values
of the measured exponent + and the analytical prediction.
The precise microscopic dynamics ruling the network’s
growth and the rearrangement of weights is therefore very
relevant to the final distribution of weights, even if it affects
only in a much milder way degree and strength.

FIG. 3. Top: Time evolution of wij during the growth of the
network, for different values of ). The functional behavior is con-
sistent with the predicted power law tb, b=) / "1+)#, shown as
dashed lines. Data are averaged over 200 networks with m=2 and
N=104. Bottom: wij vs min"ki ,kj#; the dashed lines are the theoret-
ical predictions (m=8, N=104, data averaged over 1000 samples).

FIG. 4. Top: Probability distribution P"s#. Data are consistent
with a power-law behavior s−". Bottom: Probability distribution of
the weights P"w#$w−+. In the insets we report the value of +
obtained by data fitting (filled circles) and the analytic expressions
"= "3+4)# / "1+2)# and +=2+1/) (solid lines). The data are aver-
aged over 200 networks of size N=105.
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C. Correlations and clustering
The previous analytical study of the model does not pro-

vide information on the correlations generated by the grow-
ing process. In order to have a direct inspection of these
properties we therefore consider the graphs generated by the
model for different values of ), m and N and measure the
quantities defined in Sec. II that characterize the clustering
and correlation properties.
The model exhibits also in this case properties which are

depending on the basic parameter ). More precisely, for
small ), the average nearest-neighbor degree knn"k# is quite
flat as in the BA model. The disassortative character emerges
as ) increases and gives rise to a power-law behavior of
knn"k# as shown in Fig. 5 [31]. Remarkably, the weighted
average nearest-neighbor degree displays for any ) a flat
behavior. We note that, in some recently studied weighted
real-world networks [12], topological and weighted knn show
a clear assortative behavior, opposite to what we find in the
present model. In other cases such as the Internet and the
World Wide Web, a disassortative behavior is instead found,
consistently with our results. Assortative behavior may be
originated in the community structure and geographical as-
pects intrinsic to the SCN and WAN, which are not consid-
ered in our model (inclusion of geography, i.e., space, in the
model is considered in [32]). Remarkably, however, our
model reproduces the important feature that the weighted
assortativity knn

w "k# is significantly larger than knn"k#, as in
real networks (see Fig. 5): the larger weights contribute to
the links towards vertices with larger connectivities.
Analogous properties are obtained for the clustering spec-

trum. At small ), the clustering coefficient of the network is
small and C"k# is flat. As ) increases, however, the global
clustering coefficient increases and C"k# becomes a decreas-
ing power law similar to real networks data [33]. Figure 6
clearly shows that the increase in clustering is determined by
small k vertices. The weighted clustering Cw also increases
and is larger than the topological C, with an essentially flat
Cw"k#. Especially at large k, it is clear that the usual cluster-
ing coefficient underestimates the importance of triples in the
network since, for the hubs, the edges with the highest
weights belong in great part to the interconnected triples. In
other words, interconnected vertices are joined by edges

that have weights larger than the average value found in the
network.
Interestingly, correlations and clustering spectrum can be

qualitatively understood by considering the dynamical pro-
cess leading to the formation of the network. Indeed, vertices
with large connectivities and strengths are the ones that en-
tered the system at the early times as shown by Eq. (13).
Newly arriving vertices attach to preexisting vertices with
large strength which on their turn are reinforced by the rear-
rangement of the weights. This process naturally builds up a
hierarchy among the nodes: “old” vertices have neighbors
that are more likely to be “young,” i.e., with small connec-
tivity. On the contrary, newly arriving vertices have neigh-
bors with high degree and strength, generally leading to a
disassortative behavior. This effect gets stronger as ) in-
creases and P"k# broadens leading to disassortative proper-
ties. As well, edges among “old” vertices are the ones that
gets more reinforced by the weights dynamics indicating that
the edges between older nodes, with large connectivities, will
be typically stronger than the average. This means that the
weighted assortativity will be larger than the topological as-
sortativity, leading to knn

w "k#%knn"k#, especially for large k.
Similarly, the increase of C with ) is also directly related

to the mechanism which rearranges the weights after the ad-
dition of a new edge. Since vertices with large strength and
degree are generally connected among them, a new vertex
has more probability to attach to the extremities of a given
edge. Triangles will typically be made of two “old” nodes
and a “young” one. Therefore C"k# increases faster for
“younger” (low degree) nodes when ) increases generating
the observed spectrum. On the other hand, the edges between
“old” and “young” vertices are the most recent ones and do
not have large weights. This feature implies that for low
degree vertices ci and ci

w are rather close. In contrast, high
degree vertices are connected to each other by edges with
large weights, leading to a weighted clustering coefficient
larger than the topological one.
These qualitative arguments confirm the importance of

considering weighted correlations since topological correla-
tions do not fully reveal the intrinsic coupling between to-
pology and weights that may lead to very different behavior
of the correlation and clustering spectrum.

FIG. 5. m=2; top: knn"k# and knn
w "k# for )=2; bottom: m=2;

evolution of knn"k# for increasing ).
FIG. 6. m=2; top: C"k#, Cw"k# for )=2; bottom: C"k# for vari-

ous ).
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V. HETEROGENEOUS COUPLING

In the model described in the previous section as well as
in most models of growing networks, connectivities and
strengths of different vertices grow with the same exponent
[see Eq. (13)]. Therefore vertices entering the system at the
early times have always the largest connectivities and
strengths. One can, however, imagine that a newly arriving
vertex has intrinsic properties which make it more attractive
than older ones so that its connectivity and strength could
grow faster than its predecessors. This feature is certainly
very important in many real systems where individuals are
not identical and has been put forward in the so-called fitness
model [34] (see also [35] for a static definition of a fitness
model). In a very similar spirit, we introduce here a node-
dependent )i implying that the perturbation of weights cre-
ated by any new edge attached to the node i will depend on
the very local properties of i. This amounts to introducing a
general heterogeneity in the dynamical properties of the ele-
ments of the system.
In this case, each vertex entering the system is tagged

with its own )i that we will assume are independent random
variables taken from a given distribution ,")# characterizing
the system’s heterogeneity. The preferential attachment [Eq.
(9)] is not modified and the redistribution of weights now
reads

(wij = )i
wij
si
. "21#

A large value of )i does not favor immediately the attractive-
ness of the vertex but the addition of a new link to i modifies
its total strength by a large amount,

si → si + w0 + )i. "22#

In the long run, larger )i yield therefore larger increases (si
when i is chosen for the addition of a new edge. Since the
model’s dynamics is driven by a strength driven attachment
the vertices with larger )i will be progressively favored in the
establishment of new connections, therefore achieving a
faster degree and strength growth as time goes by.
Similarly to the homogeneous model of the previous sec-

tion, the evolution equations of si and ki can be written as

dsi
dt
= m

si"t#

!l sl"t#
"1 + )i# + !

j!V"i#
m

sj"t#

!l sl"t#
) j
wij"t#
sj"t#

,

dki
dt
= m

si"t#

!l sl"t#
, "23#

where now the explicit dependence from the specific )i of
each vertex is properly considered. For each newly added
edge from the vertex n to the existing vertex i, ! jsj is in-
creased by 2+2)i. On the average it is therefore natural to
consider that the total strength is increasing linearly with
time as

!
i=1

t

si"t# . 2m"1 + )!#t . "24#

We assume that )! is a well-defined constant, which is cer-
tainly the case if ,")# is bounded. It is worth remarking that
)!! %)& since during the growth process, vertices with larger
)i will be preferentially chosen. The quantity )! will be de-
termined self-consistently by the general solution.
We use Eq. (24) in the evolution Eqs. (23) and since

! j!V"i#wij) j is a sum over the neighbors of i that are chosen
by the strength driven dynamics, we assume that ) j.)! and
therefore ! j!V"i#wij) j.)!si. We then obtain

dsi
dt
=

)i + )! + 1
2)! + 2

si"t#
t
,

dki
dt
=

si"t#
2"1 + )!#t

. "25#

The integration of these equations with the initial conditions
ki"t= i#=si"t= i#=m yields

si"t# = m+ ti,ai, "26#

ki"t# =
si"t# + m")i + )!#

)i + )! + 1
. "27#

The strength and degree of the vertices therefore grow as
power laws, with an exponent that depends on their ability to
redistribute weights:

ai =
1 + )i + )!
2"1 + )!#

. "28#

Nodes arriving later but having large )i will thus grow faster
and overcome older nodes with smaller ) values. Equation
(27) also shows that also in the heterogeneous model the
strength and connectivity are proportional for large degree,
with a coefficient depending on )i,

si = ki"1 + )i + )!# − m")i + )!# . "29#

The knowledge of the time behavior of si"t# makes it pos-
sible to obtain the probability distribution of connectivities
and strengths. For example, the distribution of strengths can
be written as

Ps"s,t# =- d),")#
1

t + N0
-
0

t

)„s − si"t#…dti, "30#

where )(s−si"t#) is the Dirac delta function (not to be con-
fused with the heterogeneity parameter). Since si"t#
- "t / ti#a")# we obtain

P"s# -- d)
,")#
a")#+1s ,1/a")#+1

, "31#

which shows that the precise form of P"s# depends on ,")#.
Finally, the proportionality of ki and si ensures that their
distributions have the same form.
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Along the same lines we can obtain the dynamical evolu-
tion of the weights. Indeed, wij grows each time a new node
connects to either i or j, its evolution equation being

dwij
dt

= m
si

!l sl
)i
wij
si
+ m

sj

!l sl
) j
wij
sj
=

)i + ) j
2"1 + )!#

wij
t
.

"32#

This readily implies that wij"t#- tbij with

bij =
)i + ) j
2"1 + )!#

. "33#

The behavior of the model depends explicitly on the value
)! that has to be self-consistently determined. The consis-
tency of the solution is obtained using Eqs. (26)–(28) which
give

!
i=1

t

si"t# * - d),")#-
1

t

dt0m+ tt0,
a")#
= m- d),")#

t − ta")#

1 − a")#
,

"34#

with a")#= "1+)+)!# / (2"1+)!#). Since si cannot grow faster
than t, a")# has to be less than 1 and using Eq. (24), we
obtain from Eq. (34) in the large time limit

2m"1 + )!# = m- d),")#

1 −
1 + ) + )!
2"1 + )!#

"35#

or

- d),")#
1 + )! − )

= 1, "36#

which determines the value of )!. Finally, we note that these
results are valid only if the quantity )i is bounded: if it is not
the case, the basic assumption that !isi grows linearly is no
longer true [34].
It is clear from the above solution that the graph’s prop-

erties will depend upon the particular form of the coupling
distribution ,")#. In order to compare with numerical simu-
lations of the model we analyze the specific case of a uni-
form distribution ,")# in the interval between )min and )max.
The equation for )! can be explicitly solved, obtaining

)! =
")max − 1#exp")max − )min# + 1 − )min

exp")max − )min# − 1
. "37#

We are therefore in the position to provide an explicit value
of the exponent a")# for the evolution of s and k during the
growth of the network. Similarly, the strength probability
distribution can be written as

P"s# - -
amin

amax da
a +ms ,1+1/a, "38#

whose behavior at large s is

P"s# -
1

s1+1/amax log"s#
, "39#

where amax= "1+)max+)!# / (2"1+)!#) is the largest possible
value of the exponent a")#.
A test of the analytical results is obtained by the direct

inspection of networks obtained by numerical simulations
of the model in the case of heterogenous coupling. In par-
ticular we consider networks generated by uniform distri-
bution of the coupling constants in specific intervals as re-
ported in the figure captions. The striking agreement of the
analytical predictions [Eqs. (26), (28), and (37)] with the
numerical results is shown in Figs. 7 and 8. In particular,
various curves cross in Fig. 8 since nodes arriving later may
have a larger ability to redistribute weights and thus over-
come older nodes in the long run. It is worth noticing the
remarkable agreement shown in these figures, obtained with-
out any free parameter. The statistical distributions of the
quantities of interest are also in good agreement with the

FIG. 7. Model with random )i: evolution of si /m for a given
node i with various values of its redistribution parameter )i. m=2,
N=104, average over 1000 networks with the same realization of
) j! (0;2) "j! i#. The dashed lines correspond to the predicted
power laws "t / i#a")i#.

FIG. 8. Model with random )i: evolution of si for various nodes
"i=100,200,300,500,800#. m=2, N=104. Symbols: results of nu-
merical simulations, average over 1000 networks with the same
realization of ) j! (1;3). Nodes arriving later can overcome older
nodes. Lines are the prediction (26) with the exponent given by
Eqs. (28) and (37).
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analytical prediction as shown in Fig. 9 for the strength dis-
tribution. Finally, as shown in Fig. 10, the correlation and
clustering properties are nontrivial as well. As in the case of
the homogeneous coupling the average nearest-neighbors de-
gree and the clustering coefficient have a clear structure with
a hierarchical ordering of high and low degree vertices (we
only display knn and knn

w in Fig. 10 since the clustering prop-
erties are very similar to the ones displayed in Fig. 6). Also
in this situation the inclusion of weights in the characteriza-
tion of correlations provide additional information on the
structure of the network. While more cumbersome because
of the heterogeneous nature of the coupling, a general under-
standing of the observed properties can be obtained along the
reasoning reported for the homogeneous coupling model; in
all cases, the dynamical growth process itself is at the origin
of the complex architecture and structure of the generated
networks.

VI. NONLINEAR COUPLING

In the previous sections we considered the coupling term
)i as independent of the topological and weight properties of

the vertex i. We can, however, think of different situations in
which the perturbation depends on the centrality of the node
as measured by its strength or degree. In the airline network,
for example, this might mimic the fact that the airport is
larger and the increase of traffic is larger with a much larger
response to the creation of a new connection compared to a
smaller airport. It is thus natural to investigate the conse-
quence of nonlinear coupling forms.
The simplest nonlinear coupling consists in considering

that )i is proportional to si. In order to avoid unrealistic di-
vergences a cutoff s0 is, however, needed to bound the cou-
pling, leading to the reinforcement rule

(wij = )
wij
si
/s0 tanh+ sis0,0

a
. "40#

This relation simply expresses that the larger the traffic on
the vertex i, the larger will be the traffic attracted to it during
the weights’ dynamics. The total change in si when a link is
added is now )(s0 tanh"si /s0#)a. For strength smaller than the

FIG. 9. Model with random )i: distribution of strengths P"s# for
uniform distributions ,")#, ) j! (0;1) and ) j! (0;4). Dashed lines
are the theoretical predictions (39) s−1−1/amax/ log"s#. N=105, m=2,
average over 1000 realizations.

FIG. 10. m=2; top: knn"k# and knn
w "k# for a uniform distribution

,")# with ) j! (0;0.4); bottom: knn"k# for uniform distributions ,")#
in various intervals ()min,)max).

FIG. 11. N=5000; s0=104. s vs k for a=0.2,0.4,0.6,0.8.
Dashed lines have slope 1.07, 1.21, 1.25, and 1.34 (from bottom
to top). For values of s larger than s0 there is a crossover towards
$=1.

FIG. 12. N=5000; s0=104. P"s# and P"k# for a=0.6, )=0.1. The
data for P"k# have been shifted vertically for clarity. Continuous
and dashed lines correspond to the power laws k−2.33 and s−2.1,
respectively.
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cutoff s0, this change grows as si
a and saturates to )s0

a for
very large strengths.
The nonlinear mechanism makes the analytical solution

very difficult to find and we rely on a numerical study of the
model to inspect its topological and weight properties. We
find that !si"t# now grows faster than t, seemingly like
exp"tb#. Analogously, we observe that vertices’ degree and
the strength grow faster than simple power laws. Very inter-
estingly, we observe that the strength grows as a power law
with the connectivity, s$k$ with $%1, as shown from the
numerical simulations reported in Fig. 11. The exponent $
increases with a but it is independent from ). This result
raises the possibility that some real-world networks, in which
a value $%1 is observed, are governed by local nonlinear
reinforcement processes. This could be the case for the air-
port network where $.1.5 is observed [12].
An interesting consequence is then observed for the de-

gree and strength probability distribution. While both distri-
butions still behave as power laws, P"k#$k−"k and P"s#
$s−"s, as shown in Fig. 12, they exhibit different exponents
"s and "k%"s in contrast with all the situations considered
previously where we found "s="k. This is obviously linked
to the fact that $!1 and it is not difficult to show that

"s =
"k
$
+

$ − 1
$

. "41#

The weight distribution P"w# is also power-law distributed
and in addition, all distributions get broader as either a or )
are increased. Finally, we note that the correlations and clus-

tering properties exhibit also in this case a nontrivial spec-
trum as a function of the degree k, very similar to the case of
linear coupling, as shown in Fig. 13, signaling the presence
of a hierarchical architecture also in the presence of a non-
linear coupling.
It is clear that the results obtained for nonlinear coupling

mechanisms are depending upon the detailed form of the
coupling and further studies are needed in order to under-
stand the variations of time behavior and distribution expo-
nents as a function of the various parameters defining the
reinforcement dynamics. Obviously, a detailed study of all
nonlinear coupling mechanisms is impossible and each mod-
eling effort must be driven by specific insights on the dynam-
ics of the real systems under examination.

VII. CONCLUSIONS

In this paper we have presented a general model of grow-
ing networks that considers the effect of the coupling be-
tween topology and weights’ dynamics. We investigated in
details several coupling mechanisms including the effect of
randomness and nonlinearity in the redistribution process.
The model produces graphs which display nontrivial com-

plex and scale-free behavior that depend on the detailed cou-
pling form. In particular, different quantities such as strength,
degree, and weights are distributed according to power laws
with exponents which are not universal and depend on the
specific parameters that control the local microscopic
weights’ dynamics. This result hints to a simple explanation
of the lack of any universality observed in real-world net-
works. In addition, the dynamics generates spontaneously a
nontrivial architecture in which nodes with different degrees
are arranged in a hierarchical way as indicated by the clus-
tering and correlation properties measured in the obtained
networks.
While many other parameters and dynamical features may

be entering the dynamics of real-world networks, we believe
that the present model might provide a general starting point
for the realistic modeling of several systems where the inter-
play of topology and traffic is a key point in the determina-
tion of the global network’s properties.
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