
ASYMPTOTIC EXPANSIONS OF THE GAMMA FUNCTION ASSOCIATED
WITH THE WINDSCHITL AND SMITH FORMULAS

CHAO-PING CHEN

Abstract. In this paper, we develop the Windschitl and Smith formulas for the gamma

function to complete asymptotic expansions and provide explicit formulas for determining

the coefficients of these asymptotic expansions. Furthermore, we establish new asymptotic

expansions for the ratio of gamma functions Γ(x + 1)/Γ(x + 1
2
).

1. Introduction

Stirling’s formula

n! ∼
√

2πn
(n

e

)n

, n ∈ N := {1, 2, . . .} (1.1)

has many applications in statistical physics, probability theory and number theory. Actually it

was first discovered in 1733 by the French mathematician Abraham de Moivre (1667–1754) in

the form

n! ∼ constant · √n(n/e)n

when he was studying the Gaussian distribution and the central limit theorem. Afterwards, the

Scottish mathematician James Stirling (1692–1770) found the missing constant
√

2π when he

was trying to give the normal approximation of the binomial distribution.

Stirling’s series for the gamma function is given (see [1, p. 257, Eq. (6.1.40)]) by

Γ(x + 1) ∼
√

2πx
(x

e

)x

exp

( ∞∑
m=1

B2m

2m(2m− 1)x2m−1

)
(1.2)

=
√

2πx
(x

e

)x

exp
(

1
12x

− 1
360x3

+
1

1260x5
− 1

1680x7
+ · · ·

)

as x →∞, where Bn (n ∈ N0 := N ∪ {0}) are the Bernoulli numbers (see, for example, [?, Section

1.7]). The following asymptotic formula is due to Laplace

Γ(x + 1) ∼
√

2πx
(x

e

)x
(

1 +
1

12x
+

1
288x2

− 139
51 840x3

− 571
2 488 320x4

+ · · ·
)

(1.3)

as x → ∞ (see [1, p. 257, Eq. (6.1.37)]). The expression (1.3) is sometimes incorrectly called

Stirling’s series (see [10, pp. 2–3]). Stirling’s formula is in fact the first approximation to the

2010 Mathematics Subject Classification. Primary 33B15; Secondary 41A60.

Key words and phrases. Gamma function; Windschitl’s formula; Smith’s formula; Asymptotic expansion.

1

sever
Typewriter
Received 12/08/14



2 C.-P. CHEN

asymptotic formula (1.3). Stirling’s formula has attracted much interest of many mathematicians

and has motivated a large number of research papers concerning various generalizations and

improvements (see [4, 5, 7, 11, 12, 13, 14, 17, 18, 19, 21, 22] and the references cited therein).

See also an overview at [16].

Windschitl (see [3, p. 128], [23] and [24]) presented that

Γ(x + 1) =
√

2πx
(x

e

)x
(

x sinh
1
x

)x/2 (
1 + O

(
1
x5

))
, x →∞. (1.4)

Inspired by (1.4), Alzer [2] proved that for all x > 0,

√
2πx

(x

e

)x
(

x sinh
1
x

)x/2 (
1 +

α

x5

)
< Γ(x+1) <

√
2πx

(x

e

)x
(

x sinh
1
x

)x/2 (
1 +

β

x5

)

(1.5)

with the best possible constants α = 0 and β = 1/1620.

Very recently, Lu et al. [12] extended Windschitl’s formula as follows:

Γ(n + 1) ∼
√

2πn
(n

e

)n
(

n sinh
(

1
n

+
a7

n7
+

a9

n9
+

a11

n11
+ · · ·

))n/2

, (1.6)

where

a7 =
1

810
, a9 = − 67

42 525
, a11 =

19
8505

, . . . . (1.7)

However, the authors did not give the general formula for the coefficients aj (j ≥ 7) in (1.6).

Subsequently, Chen [5] gave a recurrence relation formula for determining the coefficient of 1
nj

(j ∈ N) in (1.6). Also in [5], Chen developed Windschitl’s approximation formula to a new

asymptotic expansion:

Γ(x + 1) ∼
√

2πx
(x

e

)x
(

x sinh
1
x

)x/2+
P∞

j=0 rjx−j

, x →∞, (1.8)

and provided a recurrence relation for determining the coefficients rj in (1.8).

Smith [23, Eq. (43)] presented the following analogous result to (1.4):

Γ
(

x +
1
2

)
=
√

2π
(x

e

)x
(

2x tanh
1
2x

)x/2 (
1 + O

(
1
x5

))
, x →∞. (1.9)

The first aim of this paper is to develop the Windschitl and Smith formulas for the gamma

function to complete asymptotic expansions and provide explicit formulas for determining the

coefficients of these asymptotic expansions. More precisely, we provide explicit formulas for

determining the coefficients λj , µj , αj , and βj (j ∈ N) such that

Γ(x + 1) ∼
√

2πx
(x

e

)x
(

x sinh
1
x

)x/2

exp




∞∑

j=1

λj

xj


 ,



ASYMPTOTIC EXPANSIONS OF THE GAMMA FUNCTION 3

Γ(x + 1) ∼
√

2πx
(x

e

)x
(

x sinh
1
x

)x/2

1 +

∞∑

j=1

µj

xj


 ,

Γ
(

x +
1
2

)
∼
√

2π
(x

e

)x
(

2x tanh
1
2x

)x/2

exp




∞∑

j=1

αj

xj




and

Γ
(

x +
1
2

)
∼
√

2π
(x

e

)x
(

2x tanh
1
2x

)x/2

1 +

∞∑

j=1

βj

xj




as x →∞.

The problem of finding new inequalities and asymptotic formulas for the gamma function Γ

and in particular about the Wallis ratio

Γ(n + 1)
Γ(n + 1

2 )
=

1√
π
· (2n)!!
(2n− 1)!!

for n ∈ N (1.10)

has attracted the attention of many researchers (see [8, 9, 20] and references therein).

From (1.4) and (1.9), we derive

Γ(x + 1)
Γ

(
x + 1

2

) ∼ √
x

(
cosh

1
2x

)x (
1 + O

(
1
x5

))
, x →∞.

This fact motivated us to establish new asymptotic expansions for the ratio of gamma functions
Γ(x+1)

Γ(x+ 1
2 )

, which is the second aim of this paper. More precisely, we provide explicit formulas for

determining the coefficients θj and ϑj such that

Γ(x + 1)
Γ

(
x + 1

2

) ∼ √
x

(
cosh

1
2x

)x

exp




∞∑

j=1

θj

xj




and

Γ(x + 1)
Γ

(
x + 1

2

) ∼ √
x

(
cosh

1
2x

)x

1 +

∞∑

j=1

ϑj

xj




as x →∞.

2. Lemmas

The following lemmas are required in our present investigation.

Lemma 1 (see [6]). Let a0 = 1 and

g(x) ∼
∞∑

n=0

anx−n
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be a given asymptotic expansion. Then the composition ln(g(x)) has asymptotic expansion of the

following form

ln(g(x)) ∼
∞∑

n=1

bnx−n,

where

bn = an − 1
n

n−1∑

k=1

kbkan−k, n ∈ N.

Lemma 2 (see [6]). Let

g(x) ∼
∞∑

n=1

anx−n, x →∞.

be a given asymptotic expansion. Then the composition exp(g(x)) has asymptotic expansion of

the following form

exp(g(x)) ∼
∞∑

n=0

bnx−n, x →∞,

where

b0 = 1, bn =
1
n

n∑

k=1

kakbn−k, n ∈ N.

3. Main results

Theorem 1. The gamma function has the following asymptotic expansion:

Γ(x + 1) ∼
√

2πx
(x

e

)x
(

x sinh
1
x

)x/2

exp




∞∑

j=1

λj

xj


 , x →∞ (3.1)

with the coefficients λj given by

λj =
Bj+1

j(j + 1)
− qj+1

2
, j ∈ N, (3.2)

where

qj = cj − 1
j

j−1∑

k=1

kqkcj−k, j ∈ N

with

c2j =
1

(2j + 1)!
and c2j+1 = 0, j ∈ N0.

Here, Bn are the Bernoulli numbers, and an empty sum (as usual) is understood to be nil.
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Proof. Write (3.1) as

ln
(

Γ(x + 1)√
2πx(x/e)x

)
− x

2
ln

(
x sinh

1
x

)
∼

∞∑

j=1

λj

xj
, x →∞. (3.3)

It follows from (1.2) that

ln
(

Γ(x + 1)√
2πx(x/e)x

)
∼

∞∑

j=1

Bj+1

j(j + 1)
1
xj

, x →∞. (3.4)

It is well-known (see [1, p. 85, Equation (4.5.62)]) that

sinh z =
∞∑

j=0

z2j+1

(2j + 1)!
, |z| < ∞. (3.5)

Let the sequence (cj) be defined by

c2j =
1

(2j + 1)!
and c2j+1 = 0, j ∈ N0.

Then, the formula (3.5) can be written as

sinh z =
∞∑

j=0

cjz
j+1, |z| < ∞.

By Lemma 1, we have

ln
(

x sinh
1
x

)
= ln


1 +

∞∑

j=1

cj

xj


 ∼

∞∑

j=1

qj

xj
, x →∞, (3.6)

with

qj = cj − 1
j

j−1∑

k=1

kqkcj−k, j ≥ 1,

where an empty sum (as usual) is understood to be nil. Substituting (3.4) and (3.6) into (3.3)

yields
∞∑

j=1

Bj+1

j(j + 1)
1
xj
−

∞∑

j=0

qj+1

2xj
∼

∞∑

j=1

λj

xj
, x →∞. (3.7)

Noting that q1 = c1 = 0, it follows from (3.7) that
∞∑

j=1

(
Bj+1

j(j + 1)
− qj+1

2

)
1
xj
∼

∞∑

j=1

λj

xj
, x →∞. (3.8)

Equating coefficients of the term x−j on both sides of (3.8) yields

λj =
Bj+1

j(j + 1)
− qj+1

2
, j ∈ N.

The proof of Theorem 1 is complete. ¤
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Here, from (3.1), we give the following explicit asymptotic expansion:

Γ(x + 1) ∼
√

2πx
(x

e

)x
(

x sinh
1
x

)x/2

× exp
(

1
1620x5

− 11
18900x7

+
143

170100x9
− 2260261

1178793000x11
+ · · ·

)
(3.9)

as x →∞.

Using ex =
∑∞

j=0
xj

j! , from (3.9) we deduce that

Γ(x + 1) ∼
√

2πx
(x

e

)x
(

x sinh
1
x

)x/2

×
(

1 +
1

1620x5
− 11

18900x7
+

143
170100x9

+
1

5248800x10
− · · ·

)
(3.10)

as x →∞.

Even though as many coefficients as we please in the right-hand side of (3.10) can be obtained

by using Mathematica, here we aim at giving a formula for determining these coefficients. Using

Lemma 2 and Theorem 1, we immediately obtain the following

Theorem 2. The gamma function has the following asymptotic expansion:

Γ(x + 1) ∼
√

2πx
(x

e

)x
(

x sinh
1
x

)x/2



∞∑

j=0

µj

xj


 , x →∞ (3.11)

with the coefficients µj given by

µ0 = 1, µj =
1
j

j∑

k=1

kλkµj−k, j ∈ N, (3.12)

where λj (j ∈ N) are defined by (3.2).

In 2014, Lu et al. [12] showed by numerical computations that Windschitl’s approximation

formula

Γ(n + 1) ≈
√

2πn
(n

e

)n
(

n sinh
(

1
n

+
1

810n7

))n/2

:= νn (see [3, p. 128]) (3.13)

is stronger than other known formulas such as:

n! ≈
√

2πne−n


n +

1
12n− 1

10n+
− 2369

252
n




n

(Mortici [17]), (3.14)

n! ≈
√

2π

e

(
n + 1

e

)n+ 1
2

exp
(

1
12n

− 1
12n2

+
29

360n3
− 3

40n4

)
(Mortici [21]), (3.15)

n! ≈
√

2π

e

(
n + 1

e

)n (
n3 +

5
4
n2 +

17
32

n +
172
1920

)1/6

(Mortici [18]), (3.16)
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n! ≈
√

2πn
(n

e

)n
(

1 +
1

12n2 − 1
10

)n

(Nemes [22]). (3.17)

Very recently, Chen [5] showed by numerical computations that the following approximation

formula:

n! ≈
√

2πn
(n

e

)n
(

n sinh
1
n

)n
2 + 1

270n3

:= λn (Chen [5]) (3.18)

is a little stronger than the formula (3.13).

It follows from (3.9) and (3.10) that

n! ≈
√

2πn
(n

e

)n
(

n sinh
1
n

)n/2

exp
(

1
1620n5

− 11
18900n7

)
:= un (3.19)

and

n! ≈
√

2πn
(n

e

)n
(

n sinh
1
n

)n/2 (
1 +

1
1620n5

− 11
18900n7

)
:= vn. (3.20)

It is observed from Table 1 that, for n ≥ 2, the formulas (3.19) and (3.20) are stronger than

the formula (3.18).

Table 1. Comparison among approximation formulas (3.18) to (3.20).

n n!−λn

n!
n!−un

n!
n!−vn

n!

2 3.29× 10−6 1.0981761× 10−6 1.0982847× 10−6

10 5.532× 10−11 8.22120727× 10−13 8.22139422× 10−13

100 5.613× 10−18 8.40490272× 10−22 8.40492177× 10−22

1000 5.433× 10−25 8.40680034× 10−31 8.40680224× 10−31

Theorem 3. The gamma function has the following asymptotic expansion:

Γ
(

x +
1
2

)
∼
√

2π
(x

e

)x
(

2x tanh
1
2x

)x/2

exp




∞∑

j=1

αj

xj


 , x →∞ (3.21)

with the coefficients αj (j ∈ N) given by

αj = − (1− 2−j)Bj+1

j(j + 1)
− pj+1

2
, j ∈ N, (3.22)

where

pj = ωj − 1
j

j−1∑

k=1

kpkωj−k, j ∈ N (3.23)

with

ωj =
4(2j+2 − 1)Bj+2

(j + 2)!
, j ∈ N. (3.24)

Here, Bn are the Bernoulli numbers, and an empty sum (as usual) is understood to be nil.
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Proof. Write (3.21) as

ln
(

Γ(x + 1
2 )√

2π (x/e)x

)
− x

2
ln

(
2x tanh

1
2x

)
∼

∞∑

j=1

αj

xj
, x →∞. (3.25)

The logarithm of gamma function has asymptotic expansion (see [15, p. 32]):

ln Γ(x + t) ∼
(

x + t− 1
2

)
lnx− x +

1
2

ln(2π) +
∞∑

n=1

(−1)n+1Bn+1(t)
n(n + 1)

1
xn (3.26)

as x → ∞, where Bn(t) denotes the Bernoulli polynomials defined by the following generating

function:

xetx

ex − 1
=

∞∑
n=0

Bn(t)
xn

n!
. (3.27)

Note that the Bernoulli numbers Bn (for n ∈ N0) are defined by (3.27) for t = 0. It is well-known

(see [1, p. 805]) that

Bn( 1
2 ) = −(1− 21−n)Bn, n ∈ N0.

Setting t = 1
2 in (3.26) yields

ln
(

Γ(x + 1
2 )√

2π (x/e)x

)
∼

∞∑

j=2

−(1− 21−j)Bj

j(j − 1)xj−1
, x →∞. (3.28)

The Maclaurin series of tanh(z) (see [1, p. 85, Equation (4.5.64)])

tanh z =
∞∑

j=2

2j(2j − 1)Bj

j!
zj−1, |z| < π

2

yields

2x tanh
1
2x

∼ 1 +
∞∑

j=1

ωj

xj
, x →∞,

where

ωj =
4(2j+2 − 1)Bj+2

(j + 2)!
, j ∈ N.

By Lemma 1, we have

ln
(

2x tanh
1
2x

)
∼ ln


1 +

∞∑

j=1

ωj

xj


 ∼

∞∑

j=1

pj

xj
, x →∞, (3.29)

with

pj = ωj − 1
j

j−1∑

k=1

kpkωj−k, j ∈ N,
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where an empty sum (as usual) is understood to be nil. Substituting (3.28) and (3.29) into (3.40)

yields
∞∑

j=2

−(1− 21−j)Bj

j(j − 1)xj−1
−

∞∑

j=1

pj

2xj−1
∼

∞∑

j=1

αj

xj
, x →∞. (3.30)

Noting that p1 = ω1 = 0, it follows from (3.30) that
∞∑

j=1

(−(1− 2−j)Bj+1

j(j + 1)
− pj+1

2

)
1
xj
∼

∞∑

j=1

αj

xj
, x →∞. (3.31)

Equating coefficients of the term x−j on both sides of (3.31) yields

αj = − (1− 2−j)Bj+1

j(j + 1)
− pj+1

2
, j ∈ N.

The proof of Theorem 3 is complete. ¤

Here, from (3.21), we give the following explicit asymptotic expansion:

Γ
(

x +
1
2

)
∼
√

2π
(x

e

)x
(

2x tanh
1
2x

)x/2

× exp
(
− 31

51840x5
+

1397
2419200x7

− 10439
12441600x9

+
4626754267

2414168064000x11
− 26820782411

4184557977600x13
+ · · ·

)
(3.32)

as x →∞.

Using ex =
∑∞

j=0
xj

j! , from (3.32) we deduce that

Γ
(

x +
1
2

)
∼
√

2π
(x

e

)x
(

2x tanh
1
2x

)x/2

×
(

1− 31
51840x5

+
1397

2419200x7
− 10439

12441600x9

+
961

5374771200x10
+

4626754267
2414168064000x11

− · · ·
)

(3.33)

as x →∞.

Using Lemma 2 and Theorem 3, we immediately obtain Theorem 4 below. Theorem 4 gives a

recurrence relation for determining the coefficients in (3.33).

Theorem 4. The gamma function has the following asymptotic expansion:

Γ
(

x +
1
2

)
∼
√

2π
(x

e

)x
(

2x tanh
1
2x

)x/2



∞∑

j=0

βj

xj


 , x →∞ (3.34)

with the coefficients βj (j ∈ N) given by

β0 = 1, βj =
1
j

j∑

k=1

kαkβj−k, j ∈ N, (3.35)



10 C.-P. CHEN

where αj (j ∈ N) are defined by (3.22).

Theorem 5. The following asymptotic expansion holds:

Γ(x + 1)
Γ

(
x + 1

2

) ∼ √
x

(
cosh

1
2x

)x

exp




∞∑

j=1

θj

xj


 (3.36)

with the coefficients θj (j ∈ N) given by

θj =

(
1− (−1)j+1(2−j − 1)

)
Bj+1

j(j + 1)
− rj+1, j ∈ N, (3.37)

where

rj = dj − 1
j

j−1∑

k=1

krkdj−k, j ∈ N (3.38)

with

d2j =
1

22j(2j)!
and d2j+1 = 0, j ∈ N0. (3.39)

Here, Bn are the Bernoulli numbers, and an empty sum (as usual) is understood to be nil.

Proof. Write (3.36) as

ln
(

Γ(x + 1)√
xΓ(x + 1

2 )

)
− x ln

(
cosh

1
2x

)
∼

∞∑

j=1

θj

xj
, x →∞. (3.40)

From (3.26), we obtain, as x →∞,

[
Γ(x + t)
Γ(x + s)

]1/(t−s)

∼ x exp


 1

t− s

∞∑

j=1

(−1)j+1
(
Bj+1(t)−Bj+1(s)

)

j(j + 1)
1
xj


 . (3.41)

Setting (s, t) = ( 1
2 , 1) and noting that

Bn(0) = (−1)nBn(1) = Bn and Bn

(
1
2

)
= (21−n − 1)Bn for n ∈ N0

(see [1, p. 805]), from (3.41) we obtain, as x →∞,

ln
(

Γ(x + 1)√
xΓ(x + 1

2 )

)
∼

∞∑

j=1

(
1− (−1)j+1(2−j − 1)

)
Bj+1

j(j + 1)
1
xj

. (3.42)

The Maclaurin series of cosh z (see [1, p. 85, Equation (4.5.63)])

cosh z =
∞∑

j=0

z2j

(2j)!
, |z| < ∞

yields

cosh
1
2x

=
∞∑

j=0

1
22j(2j)!x2j

, x 6= 0. (3.43)
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Let the sequence (dj) be defined by

d2j =
1

22j(2j)!
and d2j+1 = 0, j ∈ N0.

Then, the formula (3.43) can be written as

cosh
1
2x

=
∞∑

j=0

dj

xj
, x 6= 0. (3.44)

By Lemma 1, we have

ln
(

cosh
1
2x

)
= ln


1 +

∞∑

j=1

dj

xj


 ∼

∞∑

j=1

rj

xj
, x →∞, (3.45)

where

rj = dj − 1
j

j−1∑

k=1

krkdj−k, j ∈ N.

Substituting (3.42) and (3.45) into (3.40) yields
∞∑

j=1

(
1− (−1)j+1(2−j − 1)

)
Bj+1

j(j + 1)
1
xj
−

∞∑

j=1

rj

xj−1
∼

∞∑

j=1

θj

xj
, x →∞. (3.46)

Noting that r1 = d1 = 0, it follows from (3.46) that
∞∑

j=1

((
1− (−1)j+1(2−j − 1)

)
Bj+1

j(j + 1)
− rj+1

)
1
xj
∼

∞∑

j=1

θj

xj
, x →∞. (3.47)

Equating coefficients of the term x−j on both sides of (3.47) yields

θj =

(
1− (−1)j+1(2−j − 1)

)
Bj+1

j(j + 1)
− rj+1, j ∈ N.

The proof of Theorem 5 is complete. ¤

Here, from (3.36), we give the following explicit asymptotic expansion:

Γ(x + 1)
Γ

(
x + 1

2

) ∼ √
x

(
cosh

1
2x

)x

× exp
(

7
5760x5

− 187
161280x7

+
48763

29030400x9
− 29383393

7664025600x11
+ · · ·

)

(3.48)

as x →∞.

Using ex =
∑∞

j=0
xj

j! , from (3.48) we deduce that

Γ(x + 1)
Γ

(
x + 1

2

) ∼ √
x

(
cosh

1
2x

)x

×
(

1 +
7

5760x5
− 187

161280x7
+

48763
29030400x9

+
49

66355200x10
− · · ·

)
(3.49)

as x →∞.
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Using Lemma 2 and Theorem 5, we immediately obtain Theorem 6 below. Theorem 6 gives a

recurrence relation for determining the coefficients in (3.49).

Theorem 6. The following asymptotic expansion holds:

Γ(x + 1)
Γ

(
x + 1

2

) ∼ √
x

(
cosh

1
2x

)x



∞∑

j=0

ϑj

xj


 (3.50)

with the coefficients ϑj (j ∈ N) given by

ϑ0 = 1, ϑj =
1
j

j∑

k=1

kθkϑj−k, j ∈ N, (3.51)

where θj (j ∈ N) are defined by (3.37).
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