Уран-235

Ура́н-235 (англ. uranium-235), историческое название актиноура́н (лат. Actin Uranium, обозначается символом AcU) — радиоактивный нуклид химического элемента урана с атомным номером 92 и массовым числом 235. Изотопная распространённость урана-235 в природе составляет 0,7200(51) %[2]. Является родоначальником радиоактивного семейства 4n+3, называемого рядом актиния. Открыт в 1935 году в США Артуром Демпстером[3][4][5].

Уран-235
Название, символ Уран-235, 235U
Альтернативные названия актиноура́н, AcU
Нейтронов 143
Свойства нуклида
Атомная масса 235,0439299(20)[1] а. е. м.
Дефект массы 40 920,5(18)[1] кэВ
Удельная энергия связи (на нуклон) 7 590,907(8)[1] кэВ
Изотопная распространённость 0,7200(51) %[2]
Период полураспада 7,04(1)⋅108[2] лет
Продукты распада 231Th
Родительские изотопы 235Pa (β)
235Np (ε)
239Pu (α)
Спин и чётность ядра 7/2[2]
Канал распада Энергия распада
α-распад 4,6783(7)[1] МэВ
SF
20Ne, 25Ne, 28Mg
Таблица нуклидов
Логотип Викисклада Медиафайлы на Викискладе

В отличие от другого, наиболее распространённого изотопа урана 238U, в 235U возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии.

Активность одного грамма данного нуклида составляет приблизительно 80 кБк.

Именно этот изотоп использовался в бомбе «Малыш» при ядерной бомбардировке Хиросимы.

Образование и распад

править

Уран-235 образуется в результате следующих распадов:

 
  • K-захват, осуществляемый нуклидом 235Np (период полураспада составляет 396,1(12)[2] дня):
 
  • α-распад нуклида 239Pu (период полураспада составляет 2,411(3)⋅104[2] лет):
 

Распад урана-235 происходит по следующим направлениям:

 
 
 
 

Вынужденное деление

править
 
Кривая выхода продуктов деления урана-235 для различных энергий делящих нейтронов

В начале 1930-х годов Энрико Ферми проводил облучение урана нейтронами, преследуя цель получить таким образом трансурановые элементы. Но в 1939 году О. Ган и Ф. Штрассман смогли показать, что при поглощении нейтрона ядром урана происходит вынужденная реакция деления. Как правило, ядро делится на два осколка, при этом высвобождается 2—3 нейтрона (см. схему)[6].

В продуктах деления урана-235 было обнаружено около 300 изотопов различных элементов: от Z = 30 (цинк) до Z = 64 (гадолиний). Кривая зависимости относительного выхода изотопов, образующихся при облучении урана-235 медленными нейтронами, от массового числа — симметрична и по форме напоминает букву «M». Два выраженных максимума этой кривой соответствуют массовым числам 95 и 134, а минимум приходится на диапазон массовых чисел от 110 до 125. Таким образом, деление урана на осколки равной массы (с массовыми числами 115—119) происходит с меньшей вероятностью, чем асимметричное деление[6], такая тенденция наблюдается у всех делящихся изотопов и не связана с какими-то индивидуальными свойствами ядер или частиц, а присуща самому механизму деления ядра. Однако асимметрия уменьшается при увеличении энергии возбуждения делящегося ядра, и при энергии нейтрона более 100 МэВ распределение осколков деления по массам имеет один максимум, соответствующий симметричному делению ядра.

 
Один из вариантов вынужденного деления урана-235 после поглощения нейтрона (схема)

Осколки, образующиеся при делении ядра урана, в свою очередь являются радиоактивными, и подвергаются цепочке β-распадов, при которых постепенно в течение длительного времени выделяется дополнительная энергия. Средняя энергия, выделяющаяся при распаде одного ядра урана-235 с учётом распада осколков, составляет приблизительно 202,5 МэВ = 3,244⋅10−11 Дж, или 19,54 ТДж/моль = 83,14 ТДж/кг[7].

Деление ядер — лишь один из множества процессов, возможных при взаимодействии нейтронов с ядрами, именно он лежит в основе работы любого ядерного реактора[8].

Цепная ядерная реакция

править

При распаде одного ядра 235U обычно испускается от 1 до 8 (в среднем – 2,416) свободных нейтронов. Каждый нейтрон, образовавшийся при распаде ядра 235U, при условии взаимодействия с другим ядром 235U, может вызвать новый акт распада, это явление называется цепной реакцией деления ядра.

Гипотетически, число нейтронов второго поколения (после второго этапа распада ядер) может превышать 3² = 9. С каждым последующим этапом реакции деления количество образующихся нейтронов может нарастать лавинообразно. В реальных условиях свободные нейтроны могут не порождать новый акт деления, покидая образец до захвата 235U, или будучи захваченными как самим изотопом 235U с превращением его в 236U, так и иными материалами (например, 238U, или образовавшимися осколками деления ядер, такими как 149Sm или 135Xe).

Если в среднем каждый акт деления порождает ещё один новый акт деления, то реакция становится самоподдерживающейся; это состояние называется критическим (см. также Коэффициент размножения нейтронов).

В реальных условиях достичь критического состояния урана не так просто, поскольку на протекание реакции влияет ряд факторов. Например, природный уран лишь на 0,72 % состоит из 235U, 99,2745 % составляет 238U[2], который поглощает нейтроны, образующиеся при делении ядер 235U. Это приводит к тому, что в природном уране в настоящее время цепная реакция деления очень быстро затухает. Осуществить незатухающую цепную реакцию деления можно несколькими основными путями[6]:

  • увеличить объём образца (для выделенного из руды урана возможно достижение критической массы за счёт увеличения объёма);
  • осуществить разделение изотопов, повысив концентрацию 235U в образце;
  • уменьшить потерю свободных нейтронов через поверхность образца с помощью применения различного рода отражателей;
  • использовать вещество — замедлитель нейтронов для повышения концентрации тепловых нейтронов.

Изомеры

править

Известен единственный изомер 235mU со следующими характеристиками[2]:

  • Избыток массы: 40 920,6(1,8) кэВ
  • Энергия возбуждения: 76,5(4) эВ
  • Период полураспада: 26 мин
  • Спин и чётность ядра: 1/2+

Распад изомерного состояния осуществляется путём изомерного перехода в основное состояние.

Применение

править
  • Уран-235 используется в качестве топлива для ядерных реакторов, в которых осуществляется управляемая цепная ядерная реакция деления;
  • Уран с высокой степенью обогащения применяется для создания ядерного оружия. В этом случае для высвобождения большого количества энергии (взрыва) используется неуправляемая цепная ядерная реакция.

См. также

править

Примечания

править
  1. 1 2 3 4 5 Audi G., Wapstra A. H., Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A. — 2003. — Vol. 729. — P. 337—676. — doi:10.1016/j.nuclphysa.2003.11.003. — Bibcode2003NuPhA.729..337A.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 Audi G., Bersillon O., Blachot J., Wapstra A. H. The NUBASE evaluation of nuclear and decay properties // Nuclear Physics A. — 2003. — Т. 729. — С. 3—128. — doi:10.1016/j.nuclphysa.2003.11.001. — Bibcode2003NuPhA.729....3A. 
  3. Dempster A. J. New Methods in Mass Spectroscopy (англ.) // Proceedings of the American Philosophical Society. — 1935. — Vol. 75, no. 8. — P. 755–767. Архивировано 21 мая 2021 года.
  4. Гофман К. Можно ли сделать золото? — 2-е изд. стер. — Л.: Химия, 1987. — С. 130. — 232 с. — 50 000 экз. Архивировано 9 января 2009 года. Архивированная копия. Дата обращения: 26 декабря 2009. Архивировано 9 января 2009 года.
  5. Today in science history. Дата обращения: 26 декабря 2009. Архивировано 13 июня 2002 года.
  6. 1 2 3 Фиалков Ю. Я. Применение изотопов в химии и химической промышленности. — Киев: Техніка, 1975. — С. 87. — 240 с. — 2000 экз.
  7. Table of Physical and Chemical Constants, Sec 4.7.1: Nuclear Fission. Kaye & Laby Online. Дата обращения: 26 декабря 2009. Архивировано из оригинала 5 марта 2010 года.
  8. Бартоломей Г. Г., Байбаков В. Д., Алхутов М. С., Бать Г. А. Основы теории и методы расчета ядерных энергетических реакторов. — М.: Энергоатомиздат, 1982. — С. 512.