
Simon Brown

Five things every developer

should know about

software architecture

1. Is that what we’re going to build?

2. Is it going to work?

1. Software architecture isn't
about big design up front

Historically there’s been

a tendency towards

big design up front

“ ”I believe in this concept, but the
implementation described above

is risky and invites failure.
Managing the development of large software systems

Dr Winston W. Royce

“ ”Responding to change

over

following a plan

vs
Software

Architecture
Document

Big design

up front

No design

up front

“ ”Big design up front is dumb.

Doing no design up front

is even dumber.
Dave Thomas

How much up front design

should you do?

0% 100%

Sometimes requirements are known,

and sometimes they aren’t

(enterprise software development vs product companies and startups)

“ ”just enough

Evolutionary Design

Beginning With A Primitive Whole

Evolutionary Design

Beginning With A Primitive Whole

“ ”
Architecture represents the

significant decisions, where significance

is measured by cost of change.

Grady Booch

Curly braces on the same or next line

Whitespace vs tabs

Programming languages

Technologies and platforms

Monolith, microservices or hybrid approach
Architecture

Design

Implementation

We’re not trying to

make every decision

“ ”I think there is a role for a broad starting point architecture. Such things as
stating early on how to layer the application, how you'll interact with the

database (if you need one), what approach to use to handle the web server.

Martin Fowler

https://martinfowler.com/articles/designDead.html

A starting point

adds value

1. Is that what we’re going to build?

2. Is it going to work?

“ ”
Base your architecture on
requirements, travel light

and prove your architecture

with concrete experiments.

Agile Architecture: Strategies for Scaling Agile Development

Scott Ambler

Concrete experiment

Proof of concept, prototype, spike, tracer, vertical slice,

walking skeleton, executable reference architecture, …

Identify and mitigate

your highest priority risks

Risk-storming

A visual and collaborative technique for identifying risk

Threat modelling

(STRIDE, LINDDUN, Attack Trees, etc)

How much up front design
should you do?

Up front design is an iterative and
incremental process; stop when:

You understand the significant
architectural drivers (requirements,

quality attributes, constraints).

You understand the context and scope
of what you’re building.

You understand the

significant design decisions

(i.e. technology, modularity, etc).

You have a way to communicate your
technical vision to other people.

You are confident that your design
satisfies the key architectural drivers.

You have identified, and are
comfortable with, the risks associated

with building the software.

Techniques: Workshops, interviews, Event Storming, Impact Mapping, domain modelling, OOAD, CRC, DDD,
architecture reviews, ATAM, architecture dry runs, Risk-storming, concrete experiments, C4 model, ADRs, etc.

Up front design is not

necessarily about creating a

perfect end-state or

complete architecture

Enough up front design

to create a good

starting point and direction

Some Design Up Front

+ Evolutionary Design

2. Every team needs

technical leadership

“ ”Software development teams

don’t need architects

Software development teams

do need technical leadership

Chaos

Big ball of mud, spaghetti code, inconsistent
approaches to solving the same problems,
quality attributes are ignored, deployment

problems, maintenance issues, etc

Architectural drivers

Understanding the goals;

capturing, refining and
challenging the requirements

and constraints.

Designing software

Creating the technical

strategy, vision and roadmap.

Technical risks

Identifying, mitigating and

owning the technical risks to
ensure that the architecture

“works”.

Technical
leadership

Continuous technical
leadership and ownership of
the architecture throughout

Quality assurance

Introduction and adherence to

standards, guidelines,
principles, etc.

The software architecture role

(technical leadership, and responsible for the technical success of the project/product)

Every team needs

technical leadership

3. The software architecture
role is about coding, coaching

and collaboration

Software development

is not a relay sport

Software

Architecture

Document

AaaS

Architecture as a Service

Continuous

technical

leadership

Different types of teams need
different leadership styles

Pair architecting

Soft skills

(leadership, communication, presentation, influencing,

negotiation, collaboration, coaching and mentoring,

motivation, facilitation, political, etc)

Should software architects

write code?

Production code, prototypes,
frameworks, foundations, code

reviews, experimenting, etc

Good software architects

are typically

good software developers

The people designing software must
understand technology …

all decisions involve trade-offs

1. Is that what we’re going to build?

2. Is it going to work?

The software architecture role

is multi-faceted

(technical depth, technical breadth, soft skills)

4. You don't need to use UML

In my experience, optimistically,

1 out of 10 people use UML

#2 “Not everybody else on the team knows it.”

#3 “I’m the only person on the team who knows it.”

#36 “You’ll be seen as old.”

#37 “You’ll be seen as old-fashioned.”

#66 “The tooling sucks.”

#80 “It’s too detailed.”

#81 “It’s a very elaborate waste of time.”

#92 “It’s not expected in agile.”

#97 “The value is in the conversation.”

1. Is that what we’re going to build?

2. Is it going to work?

Teams need a ubiquitous language

to communicate effectively

Zoom in

Zoom in

Level 1

Context
Level 2

Containers
Level 3

Components
Level 4

Code

Zoom in

The C4 model for visualising

software architecture

c4model.com

Diagrams are maps

that help software developers navigate a large and/or complex codebase

A set of hierarchical
abstractions

(software systems, containers,
components, and code)

A set of hierarchical
diagrams

(system context, containers, components,

and code)

Notation independent

The C4 model is…

Tooling independent

c4model.com

(for more information about software architecture diagrams)

5. A good software
architecture enables agility

Agile is about moving fast,

embracing change, releasing often,

getting feedback, …

Agile is about a mindset of

continuous improvement

A good architecture

enables agility

A good architecture rarely

happens through

architecture-indifferent design

Monolithic

big ball of mud

Modular

monolith

Microservices

Distributed

big ball of mud

Number of deployment units

M
od

ul
ar

ity

Agility is a

quality attribute

Simon Brown

Five things every developer should
know about software architecture

1. Software architecture isn't about big design up front

2. Every team needs technical leadership

3. The software architecture role is about coding, coaching and collaboration

4. You don't need to use UML

5. A good software architecture enables agility

