Modular monoliths

Simon Brown

Personal Banking

Acustomer of the bank, with
personal bank accounts.

Views account ~
balances, and
makes payments

| ~

Internet Banking System

[Software System]

E-mail System
__ Sends e-mail _ [Bothyars Systel
Allows customers to view using
information about their bank

accounts, and make payments.

The internal Microsoft Exchange
e-mail system.

Gets account
information from,
and makes
payments using

Mainframe Banking

System
(Software System]

Stores all of the core banking
information about customers,
accounts, transactions, etc.

System Context diagram for Internet Banking System
The system context diagram for the Internet Banking System.
Workspace last modified: Thu Apr 04 2019 13:09:10 GMT+0100 (British Summer Time)

Level 1
Context

The C4 model for visualising
software architecture

cdmodel.com

Personal Banking
Customer
{person)

A customer of the bank, with
personal bank accounts.

~
_ ~
~
g i Views account Views account ~)
B balances, and balances, and Sends e-mails to
g makes payments makes payments ~
- [HTTPS] N .
_ using ~
~
~
Web Application . . Mobile Aj
A e single-Page Application et E-mail System
Delivers to the [Container: Javascript and Angular] . [Software System]
Delivers the static content and the customer’s web —4 Provides a limited subset of the
\nternet banking single page browser Provides all of the Internet banking e R e e The internal Microsoft Exchange
application. functionality e‘g ;::‘Zf;\ffs via their customers via their mobile device. sl
‘web browser.
~
-~
~

\ /

Makes APl callsto Makes API calls to
USON/HTTPS] USON/HTTPS]
/

R} ¥

Mainframe Banking
Database API Application System
[T ——— [Container:Java and Spring MVC] (Sofware System]

_ Readsfromand __
Stores user registration information,
hashed authentication credentials,

access logs, etc.

Provides Internet banking
functionality via a JSON/HTTPS API.

Stores all of the core banking
information about customers,
accounts, transactions, etc.

5]

Internet Banking System
(Software System)

The container diagram for the Internet Banking System.
Workspace last modified: Thu Apr 04 2019 13:09:10 GMT+0100 (British Summer Time)

Mobile App

[Container: Xamarin]

Single-Page Application

[Container: Javascript and Angular]

Provides a limited subset of the
Internet banking functionality to
customers via their mobile device.

Provides all of the Internet banking
functionality to customers via their
web browser.

Makes API calls to
[ISON/HTTPS).

Makes API calls to
—— USONMTTPS]

Makes API calls to
USONMHTTPS]

gn

Uses uses Uses Uses
—

| AP! Application
e poads from and

oom in

. InternetBankingSystemException
Mainframe Banking ——————

System ————

wsq) |

Database

[Container; Relational Database Schema]

E-mail System

y!
Software Syster] Software System]

Stores user registration information,
hashed authentication credentials,
access logs, etc.

Stores all of the core banking
information about customers,
accounts, transactions, etc.

The internal Microsoft Exchange
e-mail system.

Component diagram for Internet Banking System - API Application
The component diagram for the API Application.
Workspace last modified: Thu Apr 04 2019 13:09:10 GMT+0100 (British Summer Time)

MainframeBankirigSystemFacade

GetBalanceResponse

GetBalanceRequest
I

AbstractResponse
—
——

Level 4

Code

Level 3
Components

Level 2
Containers

A well structured codebase
IS easy to visualise

Context diagram

[Person]

A user or business with content that
(I eve I 1) \ is_ aggre_gatgd into _the website, ,
signed in using their Twitter ID. - .
Anonymous User Administration User
[Person] [Person]

Anybody on the web. A system administration user,
signed in using a Twitter ID.
Manage user profile

and tribe membership

View people, tribes (businesses,
communities and interest
groups), content, events, jobs,
etc from the local tech, digital
and IT sector

Add people, add tribes and
manage tribe membership

N\

techtribes.je
[Software System]

()
&

techtribes.je is the only
way to keep up to date
with the IT, tech and digital
sector in Jersey and
Guernsey, Channel Islands.

\

Gets content using
RSS and Atom feeds
from

Gets profile information
and tweets from

Gets information
about public code
repositories from

Twitter GitHub Blogs

[Software System] [Software System] [Software System]

4 &

techtribes.je - Context

/

Anonymous User Aggregated User Administration User
[Person] [Person] [Person]
Anybody on the web. A user or business with content that A system administration user,

is aggregated into the website, signed in using a Twitter ID.
signed in using their Twitter ID.

Uses
[HTTPS]

Web Application
[Container: Spring MVC on
Apache Tomcat 7.x]

[[
Allows users to view people, tribes,
content, events, jobs, etc from the
local tech, digital and IT sector.

S l N
Reads from and writes data to

[SQL/JDBC, port 3306] Reads from
(level 2) v |

Relational Database File System NoSQL Data Store
[Container: MySQL 5.5.x] [Container] [Container: MongoDB 2.2.x]

Reads from
[Mongo DB Wire Protocol, port 27017]

Stores people, tribes, tribe Stores search indexes. Stores content from RSS/Atom feeds
membership, talks, events, jobs, (blog posts) and tweets.
badges, GitHub repos, etc.

X A 7

Reads from and writes data to , Reads from and writes data to
[SQL/JDBC, port 3306] Writes to [Mongo DB Wire Protocol, port 27017]

Content Updater

[Container: Java 7 Console
Application]

Updates profiles, tweets, GitHub
repos and content on a scheduled
basis.

Gets profile information Gets information Gets content using RSS

and tweets from about public code and Atom feeds from
[HTTPS] repositories from [HTTP]

/ [HTTPS]
Y

Twitter GitHub Blogs

[Software System] [Software System] [Software System]

techtribes.je - Containers

Component diagram

(level 3)

Relational Database File System
[Container: MySQL 5.5.x] [Container]

Stores people, tribes, tribe
membership, talks, events, jobs,
badges, GitHub repos, etc.

Stores search indexes.

Reads from and writes data to f
[SQL/JDBC, port 3306] Writes to

GitHub Search

Component Component
[Component: Spring [Component: Spring
Bean + JDBC] Bean + Lucene]

Provides access to Search facilities for news
GitHub repos. feed entries and tweets.

R

Updates search
indexes using

Updates GitHub

. Stores blog
repos using \ entries using
/

Scheduled

Content Updater
[Component: Spring
Scheduled Task]

Refreshes information
from external systems

every 15 minutes.

Uses

k/// v

GitHub Connector
[Component: Spring
Bean + Eclipse Mylyn]

Twitter Connector
[Component: Spring
Bean + Twitter4ij]

Retrieves profile
information and tweets
(using the REST and
Streaming APIs).

Retrieves information
about public repos.

G file inf . Gets information
etsar[?criot\],vge]?s ?;g}it]on about public code
(HTTPS] repositories from

[HTTPS]
Twitter GitHub
[Software System] [Software System]

Provides access to blog
entries and news. tweets.

NoSQL Data Store
[Container: MongoDB 2.2.x]

Stores content from RSS/Atom feeds
(blog posts) and tweets.

A

Reads from and writes data to
[Mongo DB Wire Protocol, port 27017]

rapp—

News Feed Entry Tweet

Component
[Component: Spring mj t: ing
Bean + MongoDB]

Component

Provides access to

Stores tweets
using

Logging oY%
Component
[Component: Spring
Bean + log4j]

Provides logging facilities
to all other components.

N

News Feed
Connector
[Component: Spring
Bean + ROME]

Retrieves content from
RSS and Atom feeds.

Gets content using RSS
and Atom feeds from
[HTTP]

Blogs
[Software Systems]

techtribes.je - Components - Content Updater

* Used by all components

je.techtribes.service

<<interface>>
TweetService
/\
|
|
DefaultTweetService

I
I
|
I
<<USesS>>
I

|
<<interface>>
TweetDao
/\
|
Code diagram

(level 4) je.techtribes.data

‘IIIIIIIIIIIIIIIIIIIIIIII.‘

je.techtribes.service

/\
:
DefaultTweetService

Where's my
‘component”?

(the “Tweet Component” doesn’t exist as a single thing;
it's a combination of interfaces and classes
across a layered architecture)

<<uUSeS>>
I

|
<<interface>>
TweetDao
/\
|
|
MongoDBTweetDao

je.techtribes.data

Illl..

|
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
|
4

*

AEEEEEEEEEEEEEEEEEEEEEERER®

“the component exists
conceptually”

Abstractions should
reflect the code

JUST ENOUGH
SOFTWARE ARCHITECTURE

A RISK-DRIVEN APPROACH
GEORGE FAIRBANKS

FOREWORD BY DAVID GARLAN

o/ AN
N 1, NS

g i mrsgm [X
WY 2 R E=R 1 RYE. 3=
- W=
e e T T —— =g -
- P =
Ny 7 J] "l S B e S\
N ([pe—— - - - - - e
§ | S . 4 =
. iy : 2 . N’ . ™~ |

Model-code gap. Your architecture models and your source code will not show the
same things. The difference between them is the model-code gap. Your architecture

models include some abstract concepts, like components, that your programming lan-
guage does not, but could. Beyond that, architecture models include intensional ele-

ments, like design decisions and constraints, that cannot be expressed in procedural
source code at all.

Consequently, the relationship between the architecture model and source code is

complicated. It is mostly a refinement relationship, where the extensional elements
in the architecture model are refined into extensional elements in source code. This

is shown in Figure 10.3. However, intensional elements are not refined into corre-
sponding elements in source code.

Upon learning about the model-code gap, your first instinct may be to avoid it. But

reflecting on the origins of the gap gives little hope of a general solution in the short
term: architecture models help you reason about complexity and scale because they

are abstract and intensional; source code executes on machines because it is concrete
and extensional.

"model-code gap”

Our architecture diagrams
don't match the code.

J U S T E N O U G H Model-code gap. Your architecture models and your source code will not show the
SOFTWARE ARCHITECTURE same things. The difference between them is the model-code gap. Your architecture
A RISK-DRIVEN APPROACH models include some abstract concepts, like components, that your programming lan-
GEORGE FAIRBANKS guage does not, but could. Beyond that, architecture models include intensional ele-

FOREWORD BY DAVID GARLAN . . « o . .
ments, like design decisions and constraints, that cannot be expressed in procedural
source code at all.

Consequently, the relationship between the architecture model and source code is

complicated. It is mostly a refinement relationship, where the extensional elements
in the architecture model are refined into extensional elements in source code. This

is shown in Figure 10.3. However, intensional elements are not refined into corre-
sponding elements in source code.

Upon learning about the model-code gap, your first instinct may be to avoid it. But
reflecting on the origins of the gap gives little hope of a general solution in the short
term: architecture models help you reason about complexity and scale because they

are abstract and intensional; source code executes on machines because it is concrete
and extensional.

-pe (/) ; | \!
VSR AN

Mo /|
I W ./
T
.. ' _I] N
My,
N .rr';,..n .ﬂ-'l. .
' | at®
NIA T L
L v i
! -
;:‘ f
) W)
AL K
ey A
\::r (= KN
¥ T '
i
' B KL
/ILN |
- :. /
1=\
L
it
=
' .l'g.
Ar) %,,’ﬂ'

"architecturally-evident coding style”

The code structure should reflect
the architectural intent

Package by layer

Organise code based upon
what the code does from
a technical perspective

Package by layer
IS a “horizontal” slicing

OrdersController
|

com.mycompal'ny.myapp.web

<<uses>>

OrdersServicelmpl
|

com.mycompany.myapp.service

I
<<uSesS>>

<<interface>>
OrdersRepository

JdbcOrdersRepository

com.mycompany.myapp.data

Chapter 1

Introducing the Spring Framework

Presentation tier

JSPs or other views
Generate HTML

|

Web tier actions
Process user input, call
service layer, choose
view to display

N

Remote service
“exporters”:
Web services or
other protocols

N\

/

Declarative services typically used here,

Business services layer: Exposes key functionality.
Manages transaction boundaries, includes business
logic. No knowledge of persistence specifics.

h 4

DAQ interface layer
Defines persistence operations, independent of
implementing technology

l

DAQ interface implementation layer
Retrieves, saves entities using ORM tool, JDBC

I

Persistent
domain obiect

Let’s summarize each layer and its responsibilities, beginning closest to the database or other enterprise
resources:

J Presentation layer: This is most likely to be a web tier. This layer should be as thin as possible.
It should be possible to have alternative presentation layers — such as a web tier or remote web
services facade —on a single, well-designed middle tier.

J Business services layer: This is responsible for transactional boundaries and providing an entry
point for operations on the system as a whole. This layer should have no knowledge of presen-
tation concerns, and should be reusable.

J DAO interface layer: This is a layer of interfaces independent of any data access technology that is
used to find and persist persistent objects. This layer effectively consists of Strategy interfaces for
the Business services layer. This layer should not contain business logic. Implementations of
these interfaces will normally use an O/R mapping technology or Spring'’s JDBC abstraction.

J Persistent domain objects: These model real objects or concepts such as a bank account.

J Databases and legacy systems: By far the most common case is a single RDBMS. However, there
may be multiple databases, or a mix of databases and other transactional or non-transactional
legacy systems or other enterprise resources. The same fundamental architecture is applicable in
either case. This is often referred to as the EIS (Enterprise Information System) tier.

In a |2EE application, all layers except the EIS tier will run in the application server or web container.
Domain objects will typically be passed up to the presentation layer, which will display data they con-
tain, but not modify them, which will occur only within the transactional boundaries defined by the busi-
ness services layer. Thus there is no need for distinct Transfer Objects, as used in traditional J2EE
architecture.

In the following sections we’ll discuss each of these layers in turn, beginning closest to the database.

Spring aims to decouple architectural layers, so that each layer can be modified as
far as possible without impacting other layers. No layer is aware of the concerns of
the layer above; as far as possible, dependency is purely on the layer immediately
below. Dependency between layers is normally in the form of interfaces, ensuring
that coupling is as loose as possible.

O/R mapping IayerE_

<omo-

EIS tier Databases, SIS

other transactional
resources S

Spring aims to decouple architectural layers, so that each layer can be modified as
far as possible without impacting other layers. No layer is aware of the concerns of
the layer above; as far as possible, dependency is purely on the layer immediately
below. Dependency between layers is normally in the form of interfaces, ensuring
that coupling is as loose as possible.

Also sample codebases,
starter projects, demos
at conferences, etc...

Cargo cult programming can also
refer to the results of applying a
design pattern or coding style blindly
without understanding the reasons
penind that design principle.

https://en.wikipedia.org/wiki/Cargo_cult_programming

Screaming Architecture

Uncle Bob / 30 Sep 207171 Architecture

Imagine that you are looking at the blueprints of a building. This document,
prepared by an architect, tells you the plans for the building. What do these plans
tell you?

If the plans you are looking at are for a single family residence, then you’ll likely see
a front entrance, a foyer leading to a living room and perhaps a dining room. There’ll
likely be a kitchen a short distance away, close to the dining room. Perhaps a dinette
area next to the kitchen, and probably a family room close to that. As you looked at
those plans, there’d be no question that you were looking at a house. The
architecture would scream: house.

Or if you were looking at the architecture of a library, you'd likely see a grand
entrance, an area for check-in-out clerks, reading areas, small conference rooms,
and gallery after gallery capable of holding bookshelves for all the books in the
library. That architecture would scream: Library.

So what does the architecture of your application scream? When you look at the top
level directory structure, and the source files in the highest level package; do they
scream: Health Care System, or Accounting System, or Inventory Management
System? Or do they scream: Rails, or Spring/Hibernate, or ASP?

PresentationDomainDatalLayering

Martin Fowler
26 August 2015

One of the most common ways to modularize an information-rich
program is to separate it into three broad layers: presentation (Ul),
domain logic (aka business logic), and data access. So you often see
web applications divided into a web layer that knows about handling
http requests and rendering HTML, a business logic layer that
contains validations and calculations, and a data access layer that
sorts out how to manage persistant data in a database or remote
services.

A%

Although presentation-domain-data separation is a common
approach, it should only be applied at a relatively small granularity.
As an application grows, each layer can get sufficiently complex on its
own that you need to modularize further. When this happens it's
usually not best to use presentation-domain-data as the higher level
of modules. Often frameworks encourage you to have something like
view-model-data as the top level namespaces; that's ok for smaller
systems, but once any of these layers gets too big you should split
your top level into domain oriented modules which are internally
layered.

Changes to a layered architecture
usually result in changes

across all layers

Package by feature

Organise code based upon
what the code does from
a functional perspective

Features, domain concepts,
aggregate roots, etc

Package by feature
s a “vertical” slicing

OrdersController
|

I
<<usSesS>>
I

|
V
<<interface>>
OrdersService
/\

OrdersServicelmpl
|

I
<<US€S>?

|
|
|
<<interface>>
OrdersRepository
I
|
I
|
I
|

JdbcOrdersRepository

com.mycompany.myapp.orders

Cited benefits include higher
cohesion, lower coupling, ana

related code is easier to find

Web Application Web Application Web Application

S
v

S
| resanegom
v

Relational Relational Relational
Database Database Database

Ports and adapters,
hexagonal, clean,
onion, etc

Keep domain related code separate
from technical details

The “inside” is technology agnostic,
and is often described in terms
of a ubiquitous language

The “outside” Is technology specific

The “outside” depends
upon the “inside”

" outside) | ot
. OrdersController
(outside)

com.mycompany.myapp.web

<<uses>>

<<interface>>
OrdersService

“

o

Domain
(inside)

<<USeS>>

|4
<<interface>>
Orders

com.mycompany.myapp.domain

|
|
JdbcOrdersRepository

com.mycompany.myapp.database

This approach
IS also

“cargo culted”,
yet not all
frameworks
are equal

OrdersController

|
com.mycompany.myapp.web

<<uses>>

Hi, can you add
feature X to the
orders functionality?

<<interface>>
OrdersRepository
JdbcOrdersRepository

com.mycompany.myapp.data

Sure!

OrdersController

|
com.mycompa:ny. myapp.web

<<uses>>

<<interface>>
OrdersService

OrdersServicelmpl

|
com.mycompany.myapp.service

I
<<USeS>>

<<interface>>
OrdersRepository

JdbcOrdersRepository

com.mycompany.myapp.data

OrdersController
|

com.mycompal'ny.myapp.web

<<uses>>

OrdersServicelmpl
|

com.mycompany.myapp.service

I
<<uSesS>>

<<interface>>
OrdersRepository

JdbcOrdersRepository

com.mycompany.myapp.data

A big ball of mud is a casually, even
naphazardly, structured system. Its
organization, if one can call it that,

IS dictated more by expediency
than design.

Big Ball of Muc
Brian Foote and Joseph Yoder

Architectural principles
iINntroaduce consistency via
constraints and guidelines

web controllers should never
access repositories directly

we enforce this principle through
goo0d discipline and code reviews,
pecause we trust our developers

Responsible, professional software
developers are still human :-)

it's 2024! In a world of artificial
intelligence and machine learning,

why don’t we use tools to
help us build “good” software?

O'REILLY"

Building
kvolutionary
Architectures

“Fitness functions”

(e.g. cyclic complexity, coupling, etc)

Neal Ford, Rebecca Parsons & Patrick Kua

Tooling?

Static analysis tools, architecture violation checking, etc

types in package ** /web should
Nnot access types in ** /data

Using tools to assert good code
structure seems like a hack

But Java’'s access modifiers
are flawed...

Package by component

Organise code by bundling together
everything related to a “component”

Component?

a grouping of related functionality,
accessed via a well-defined interface,
residing inside an application (i.e. a C4 container)

Software System

Container

(e.g. client-side web app, server-side web app, console application,
mobile app, database schema, file system, object store, etc)

Component

A software system is made up of one or more containers (applications and data
stores), each of which contains one or more components, which in turn are
implemented by one or more code elements (classes, interfaces, objects, functions, etc).

OrdersController
|

com.mycompalhy.myapp.web
|
|
|
|

<<uses>>

OrdersComponentimpl

<<USEeS>>

v
<<interface>>
OrdersRepository
/\

I
JdbcOrdersRepository

com.mycompany.myapp.orders

Package by component is about
applying component-based or

service-oriented design thinking
to a monolithic codebase

Modularity as a principle

Separating interface
from implementation

Public API Public API

Impermeable
poundaries

Access modifiers vs
network boundaries

The devil is In the
Implementation details

Organisation vs encapsulation

If you make all types public,
architectural styles
can be conceptually different,
put syntactically identical

OrdersController

com.mycompa:ny.myapp.web

<<uses>>

OrdersController

1
I
|
<<USES>>
|

v

<<interface>>
OrdersService

<<interface>>
OrdersService

/\

A

OrdersServicelmpl

OrdersServicelmpl

|
|
com.mycompany.myapp.service

I
<<uUSesS>>

|
|
|
<<US€S>?
I
I
I

v

<<interface>>
OrdersRepository

<<interface>>
OrdersRepository

/\

/\

JdbcOrdersRepository

JdbcOrdersRepository

com.mycompany.myapp.data

com.mycompany.myapp.orders

OrdersController

com.mycompany.myapp.web

<<US€S>?

<<interface>>
OrdersService

JAN

OrdersServicelmpl

|
<<USesS>>

v

<<interface>>
Orders

|
com.mycompany.myapp.domain

JdbcOrdersRepository

com.mycompany.myapp.database

OrdersController

com.mycompa:ny.myapp.web
!
!
!
!

<<uses>>

L4

<<interface>>
OrdersComponent

JAN

OrdersComponentimpl

|
<<uUSeS>>

4

<<interface>>
OrdersRepository

JAN

JdbcOrdersRepository

com.mycompany.myapp.orders

OrdersController

I
I
I
I
I
<<USeS>>
I
I
I
I
I
I

v

OrdersController

OrdersController

J
I
I
<<USES>>
|

v

<<interface>>
OrdersService

<<interface>>
OrdersService

/\

A

|
|
|
|
|
<<US€S>?
|
|
|
|
|
|

L4

OrdersController

<<interface>>
OrdersService

OrdersServicelmpl

OrdersServicelmpl

JAN

|
I
I
I
I
<<uUsSeS>>
I
I
I
I
I
I

v

|
I
I
<<uses>>
I
I
I

v

OrdersServicelmpl

<<uses>>

L4

|
<<uUSeS>>

V

<<interface>>
OrdersComponent

<<interface>>
Orders

JAN

<<interface>>
OrdersRepository

<<interface>>
OrdersRepository

JAN

/\

JdbcOrdersRepository

JdbcOrdersRepository

_____________[>

OrdersComponentimpl

I
<<uUSeS>>

4

<<interface>>
OrdersRepository

JAN

JdbcOrdersRepository

JdbcOrdersRepository

OrdersController

com.mycompa:ny.myapp.web

<<uses>>

<<interface>>
OrdersService

com.mycompany.myapp.service

I
<<uUSeS>>

<<interface>>
OrdersRepository

JAN

com.mycompany.myapp.data

OrdersController

1

I

I
<<USES>>

v

A

|

I

I
<<uUsSeS>>

|
|
|
\4

/\

com.mycompany.myapp.orders

OrdersController

com.mycompa:ny.myapp.web

<<US€S>?

<<interface>>
OrdersService

|
<<uUSes>>

4

<<interface>>
Orders

|
com.mycompany.myapp.domain

com.mycompany.myapp.database

OrdersController

|
!
com.mycompalhy.myapp.web

<<uses>>

<<interface>>
OrdersComponent

|
<<uUSeS>>

Vv

JAN

com.mycompany.myapp.orders

Use encapsulation to minimise the
numbper of potential dependencies

The surface area of your internal
public APIs should match your
architectural intent

't you're building a monolithic
application with a single codebase,

try to use the compiler to
enforce boundaries

Or other decoupling modes such as a
module framework that differentiates
public from published types

(e.g. Java module system, Spring Modulith)

Or split the source code tree
iInto multiple parts

SR | ot
OrdersController

com.mycompany.myapp.web

<<uses>>

<<interface>>
OrdersService

<<USeS>>

|4
<<interface>>
Orders

com.mycompany.myapp.domain

|
|
JdbcOrdersRepository

com.mycompany.myapp.database

There are real-world trade-offs
with many source code trees

And, more generally, each decoupling
mode has different trade-offs

(modular monoliths vs microservices)

software architecture, code, and tests be more explicit?

Software architecture

System Tests

Ul, API, functional and
acceptance tests, (“end-to-end” tests)

Component and Service Tests
Tests focused on components and services
through their public interface
(“integration” tests)

Code Tests

Tests focused on individual classes
and methods, sometimes by
mocking out dependencies
(“unit” tests)

Should the relationship between

Granularity vs testability

(some architectural styles, when combined with
dependency injection and “unit testing” promote high testability
... perhaps at the expense of coarse-grained modularity?)

S PN OIU G
SOFTWARE ARCHITECTURE

A RISK-DRIVEN APPROACH
GEORGE FAIRBANKS

FOREWORD BY DAVID GARLAN

T

e DR TR T EAE

.:‘l 4 i
N
e - N
G
s b

—
-
=

A good architecture rarely
nappens through
architecture-indifferent design

- Modularity --------semeemmmeeeeeeas

Microservices

Distributed
big ball of mud

Well-defined, in-process components is a
stepping stone to out-of-process components

-

Ce®

O

O
Qoo°

~

J

Focussed on a business capability
Bounded context or aggregate
Encapsulated data

Low coupling

Substitutable
Composable

High cohesion

(I.e. microservices)

O O
e oK
From components O Q

to microservices

< All of that plus

Individually deployable
Individually upgradeable
Individually replaceable

Individually scalable
Heterogeneous technology stacks

Choose microservices for the benefits,
not because your monolithic
codebase iIs a mess

Whatever architectural approach
you choose, don't forget about
the implementation details

Beware of the
model-code gap

Thank you!

Simon Brown

