
Simon Brown

Visualising software architecture
with the C4 model

Simon Brown
Independent consultant specialising in software architecture,

plus the creator of the C4 model and Structurizr

What is software
architecture?

Structure
The definition of software in terms

of its building blocks and their interactions

Vision
The process of architecting;

making decisions based upon business goals,
requirements and constraints,

plus being able to communicate this to a team

Enterprise Architecture
Structure and strategy across people, process and technology

System Architecture
High-level structure of a software system

(software and infrastructure)

Application Architecture
The internal structure of an application

“ ”
As a noun, design is the named structure
or behaviour of a system … a design thus

represents one point in a potential
decision space.

Grady Booch

“ ”All architecture is design, but
not all design is architecture.

Grady Booch

“ ”
Architecture represents the

significant decisions, where significance
is measured by cost of change.

Grady Booch

As architects, we define
the significant decisions

Curly braces on the same or next line
Whitespace vs tabs

Programming language
Monolith, microservices or hybrid approachArchitecture

Design

Implementation

Draw one or more
software architecture

diagrams to describe a
solution for the

”Financial Risk System”

simonbrown.je

Did you find anything
about this exercise

challenging?

Take a quick look at the diagrams:

1. Does the solution satisfy the architectural drivers?
2. If you were the bank, would you buy this solution?

Swap your diagrams
with another group

Review the diagrams
Focus on the diagrams rather than the design

… notation, colour coding, symbols, etc

3 things you like
3 things that could be improved

A score between 1-10

1 1 1 2 2 2

Information is likely
still stuck in your heads

“ ”This doesn’t make sense,
but we’ll explain it.

• What is this shape/symbol?
• What is this line/arrow?
• What do the colours mean?
• What level of abstraction is shown?
• Which diagram do we read first?

The producer-consumer conflict
of software architecture diagrams

I don’t want to put
technology choices on

the diagrams…
I wish these diagrams
included technology

choices…

Producer Consumer

Software design should
be technology
independent…

7

7

7

7

7

7

6

If you’re going to use “boxes & lines”,
at least do so in a structured way,
using a self-describing notation

Moving fast in the same direction
as a team requires

good communication

Do you use UML?

In my experience,

few people use UML

#2 “Not everybody else on the team knows it.”
#3 “I’m the only person on the team who knows it.”

#36 “You’ll be seen as old.”
#37 “You’ll be seen as old-fashioned.”

#66 “The tooling sucks.”
#80 “It’s too detailed.”

#81 “It’s a very elaborate waste of time.”
#92 “It’s not expected in agile.”

#97 “The value is in the conversation.”

If you’re using UML, ArchiMate,
SysML, BPML, DFDs, etc

and it’s working … keep doing so!

Who are the stakeholders that
you need to communicate
software architecture to;

what information do they need?

There are many different audiences for diagrams
and documentation, all with different interests

(software architects, software developers, operations and support staff, testers,
Product Owners, project managers, Scrum Masters, users, management,

business sponsors, potential customers, potential investors, …)

The primary use for
diagrams and documentation is
communication and learning

Would you code it that way?
(ensure that your diagrams reflect

your implementation intent)

Is that how it really works?
(ensure that your diagrams reflect

your actual codebase)

When drawing software
architecture diagrams,

think like a software developer

If software developers created building architecture diagrams…

Hallway

Stairs

Kitchen Living Room

Bed1

Bed3Bed2Stairs Bathroom

Bathroom

W
at

er
 in

W
at

er
 o

ut

 P
ea

k
el

ec
tri

ci
ty

 O
ff-

pe
ak

 e
le

ct
ric

ity

“ ”
To describe a software architecture,

we use a model composed of
multiple views or perspectives.

Architectural Blueprints - The “4+1” View Model of Software Architecture
Philippe Kruchten

“Viewpoints and Perspectives”

Why is there a separation
between the logical and

development views?

“ ”Our architecture diagrams
don’t match the code.

“model-code gap”

We lack a common vocabulary
to describe software architecture

https://en.wikipedia.org/wiki/Circuit_diagram

https://en.wikipedia.org/wiki/Component_diagram

“ ”Component
a modular unit with well-defined Interfaces
that is replaceable within its environment

https://www.omg.org/spec/UML/2.5.1/PDF

Software System

Web
Application

Logging
Component

Relational
Database

Ubiquitous
language

A common set of abstractions
is more important

than a common notation

Abstractions

A software system is made up of one or more containers (applications and data
stores), each of which contains one or more components, which in turn are

implemented by one or more code elements (classes, interfaces, objects, functions, etc).

Code Code Code

Component Component Component

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, database schema, file system, object store, etc)

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, database schema, file system, object store, etc)

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, database schema, file system, object store, etc)

Software System

Static structure diagrams

C4
c4model.com

Zoom in

Zoom in

Level 1

Context
Level 2

Containers
Level 3

Components
Level 4

Code

Zoom in

The C4 model for visualising
software architecture

c4model.com

Diagrams are maps
that help software developers navigate a large and/or complex codebase

4. Code (e.g. classes)
Component implementation details.

1. System Context
The system plus users and system dependencies.

2. Containers
The overall shape of the architecture and technology choices.

3. Components
Logical components and their interactions within a container.

Overview first

Zoom & filter

Details on demand

Example
(Internet Banking System)

Level 1

System Context diagram

Level 2

Container diagram

The container diagram shows the
containers that reside inside

the software system boundary

Level 3

Component diagram

The component diagram
shows the components

that reside inside an
individual container

Level 4

Code diagram

The code level diagram shows the code
elements that make up a component

Notation

The C4 model is
notation independent

The C4 model is
notation independent

Titles
Short and meaningful, include the diagram type,

numbered if diagram order is important; for example:

System Context diagram for Financial Risk System
[System Context] Financial Risk System

Visual consistency
Try to be consistent with notation

and element positioning across diagrams

Acronyms
Be wary of using acronyms, especially those related

to the business/domain that you work in

Boxes
Start with simple boxes containing the element name, type,
technology (if appropriate) and a description/responsibilities

Internet Banking System
[Software System]

Allows customers to view information
about their bank accounts,

and make payments.

Personal Banking
Customer

[Person]

A customer of the bank, with
personal bank accounts.

Mainframe Banking
System Facade

[Component: Spring Bean]

A facade onto the mainframe
banking system.

API Application
[Container: Java and Spring MVC]

Provides Internet banking functionality
via a JSON/HTTPS API.

Lines
Favour uni-directional lines showing the most important

dependencies or data flow, with an annotation to be explicit
about the purpose of the line and direction

No Yes

Summarise the intent of the relationship

Single Page Application
[Container]

API Application
[Container]

Makes an API request to

Single Page Application
[Container]

API Application
[Container]

Makes API calls using

Sends an API response to

Summarise, yet be specific

Single Page Application
[Container]

API Application
[Container]

Single Page Application
[Container]

API Application
[Container]

Makes API calls using

Uses

Show both directions when
the intents are different

Service A
[Container]

Service B
[Container]

Requests a list of customers from
[JSON/HTTPS]

Sends new customers to
[Kafka topic]

Beware of hiding the true story

Sends messages to

Service D
[Container]

Service C
[Container]

Sends messages to

Sends messages to

Sends messages to
Service B
[Container]

Service A
[Container]

Kafka
[Container]

Beware of hiding the true story

Sends customer update messages to

Service D
[Container]

Service C
[Container]Sends customer update messages to

Service B
[Container]

Service A
[Container]

Topic X
 [Container: Kafka

Topic]

Topic Y
 [Container: Kafka

Topic]Sends order creation messages to Sends order creation messages to

Beware of hiding the true story

Sends customer update messages to

Service D
[Container]

Service C
[Container]Subscribes to customer update

messages from

Service B
[Container]

Service A
[Container]

Topic X
 [Container: Kafka

Topic]

Topic Y
 [Container: Kafka

Topic]Sends order creation messages to
Subscribes to order creation

messages from

Beware of hiding the true story

Sends customer update messages to
[via Kafka topic X]

Service D
[Container]

Service C
[Container]

Sends order creation messages to
[via Kafka topic Y]

Service A
[Container]

Service B
[Container]

Add more words to make the intent explicit

Trade Data System
[Software System]

Financial Risk System
[Software System]

Trade data

Trade Data System
[Software System]

Financial Risk System
[Software System]

Sends trade data to

If in doubt, read the relationship

Web Application
[Container]

Database
[Container]

Reads from and writes to

Web Application
[Container]

Database
[Container]

Reads from and writes to

Key/legend
Explain shapes, line styles, colours, borders, acronyms, etc

… even if your notation seems obvious!

Arrowheads
Be careful, using different
arrowheads is very subtle;

readers may miss them

Use shape, colour and size
to complement a diagram
that already makes sense

Be careful with icons

Increase the readability of
software architecture diagrams,

so they can stand alone

Any narrative should complement
the diagram rather than explain it

c4model.com

Abstractions first,
notation second

Ensure that your team has a ubiquitous
language to describe software architecture

A set of hierarchical
abstractions

(software systems, containers,
components, and code)

A set of hierarchical
diagrams

(system context, containers, components,
and code)

Notation independent

The C4 model is…

Tooling independent

Draw System Context
and Container

diagrams to describe a
solution for the

”Financial Risk System”

simonbrown.je

Designing software is where
the complexity should be,

not communicating it!

Similar levels of abstraction provide
a way to easily compare solutions

The diagrams should spark
meaningful questions

No
“What does that arrow mean?”

“Why are some boxes red?”
“Is that a Java application?”

“Is that a monolithic application, or a collection of microservices?”
“How do the users get their reports?”

Yes
“What protocol are your two Java applications using

to communicate with each other?”
“Why do you have two separate C# applications instead of one?”

“Why are you using MongoDB?”
“Why are you using MySQL when our standard is Oracle?”

“Should we really build new applications with .NET Framework
rather than .NET Core?”

Richer diagrams lead to
richer design discussions

Richer diagrams lead to
better communication,

making it easier to scale teams

System landscape diagrams

Runtime/behavioural diagrams

Static structure diagrams
are very useful, but they
don’t tell the whole story

Use dynamic diagrams to describe
patterns or complex interactions

Deployment diagrams

Deployment is about the mapping
of containers to infrastructure

Deployment Node
Physical infrastructure (a physical server or device),

virtualised infrastructure (IaaS, PaaS, a virtual machine),
containerised infrastructure (a Docker container),
database server, Java EE web/application server,

Microsoft IIS, etc

A deployment node can contain
other deployment nodes or

software system/container instances

Infrastructure Node
Routers, firewalls, load balancers,
DNS providers, edge caches, etc

FAQ
Part 1

“ ”C4 has been around over a decade
- if it was truly useful, it would have

replaced UML in most teams

C4 wasn't designed
to replace UML

C4 was designed to bring structure to
the typical ad hoc "boxes and arrows"

diagrams teams typically create
because they are no longer using UML

I've seen more interest than ever in
C4 over the past few years; many

organisations have adopted it as their
preferred approach for software

architecture diagramming

I’ve run software architecture
workshops

in 30+ countries
for 10,000+ people

across most industry sectors

My C4 model book is also
used as course material

in many other universities

Tooling?

What tooling do you recommend
for long-lived diagrams?

c4model.com

FAQ
Part 2

Abstraction
vs

organisation

“ ”What are your thoughts on modelling
additional abstractions?

Subsystem
"part of a larger system"

Bounded context

Layers

Controller Layer

Service Layer

Repository Layer

Some of these concepts
might be better thought of as
organisational constructs

rather than abstractions

Shared libraries

Dependencies to
“external” containers

My recommendation is that container
diagrams only show containers inside
the software system that is the scope

of the diagram

Container diagram for software system A

container a {
 include *
}

Container diagram for software system B

container b {
 include *
}

I don’t recommend showing
“external” containers

Container diagram for software systems A and B

container a {
 include a.app b.api
}

Showing “external” containers implies
some understanding of

implementation details, which makes
the diagrams more volatile to change

This is a form of coupling

There may some useful exceptions
to this guidance…

Container diagram for software system A, showing a shared DB

container a {
 include a.app c.db
}

Container diagram for software system B, showing a shared DB

container b {
 include b.api c.db
}

Micro frontends

Microservices

“ ”C4 is more suited to monolithic
architectures, and doesn’t support

distributed architectures well

“ ”We’re modelling microservices as
containers, with APIs and database

schemas as components

A microservice should be modelled
as one of the following:

1. A software system
2. A container

3. A group of containers

What is a
“microservice”?

Stage 1: 💵
(monolithic architecture)

Stage 2: 💵 💵
(microservices)

software system

Stage 3: 💵 💵 💵
(Conway’s Law)

The C4 model at scale

In this example,
a microservice is
a combination of

an API and
a database schema

container softwareSystem {
 include user
 Include ->service1->
}

container softwareSystem {
 include ->service2->
}

container softwareSystem {
 include ->service3->
}

A final note on diagrams…

Initial
No software architecture

diagrams.

Ad hoc
Software architecture
diagrams with ad hoc

abstractions and notation,
in a general purpose

diagramming tool.

Defined
Software architecture
diagrams with defined

abstractions and notation, in
a general purpose
diagramming tool.

Level 4 Level 5Level 3Level 2Level 1

Modelled
Software architecture
diagrams with defined

abstractions and notation, in
a modelling tool, authored

manually.

Optimising
- Model elements are shared

between teams.
- Centralised system
landscape views are

generated by aggregating
decentralised team-based

models.
- Model elements are

reverse-engineered from
source code, deployment

environment, logs, etc.
- Alternative visualisations
are used for different use
cases (e.g. communication

vs exploration).
- Models are used as
queryable datasets.

…

C4 model

Modelling tools
Structurizr, etc

Diagramming tools
Microsoft Visio, Lucidchart, draw.io,

PlantUML, Mermaid, whiteboard, etc

Software architecture diagramming maturity model
Simon Brown | c4model.com

C4 model

Simon Brown

Thank you!

https://leanpub.com/b/software-architecture/c/…

