isolates (e.g., HIV-1 Ba-L ) and low-passage primary (PR) isolates differed markedly in tropism f... more isolates (e.g., HIV-1 Ba-L ) and low-passage primary (PR) isolates differed markedly in tropism for syngeneic neonatal monocytes, monocyte-derived macrophages (MDMs), and placental macrophages (PMs). Newly adherent neonatal monocytes and cultured PMs were highly refractory to infection with PR HIV-1 isolates yet were permissive for LA M-tropic isolates. Day 4 MDMs were also permissive for LA M-tropic isolates and additionally, were permissive for over half the PR isolates tested. Qualitative differences in PR HIV-1 infection of monocytes/MDMs could not be correlated with CD4 levels alone, and in all three cell types the block to PR HIV-1 strain replication preceded reverse transcription. Neonatal monocyte susceptibility to PR HIV-1 strains correlated with increasing CCR-5 expression during maturation. CCR-5 could not be detected on newly adherent (day 1) neonatal monocytes, in contrast to adult monocytes (H. Naif et al., J. Virol. 72:830-836, 1998), but was readily detectable after 4 to 7 days of culture. However, moderate CCR-5 mRNA levels were present in day 1 neonatal monocytes and remained constant during monocyte maturation. CCR-5 was not detectable on the surface of PMs, yet the receptor was present within permeabilized cells. Notably, two brain-derived PR HIV-1 isolates from a single patient, differing in their V3 loops, were discordant in their abilities to infect neonatal monocytes/MDMs and PMs, yet both isolates could infect newly adherent adult monocytes. Together these data strongly suggest that LA HIV-1 isolates are able to infect neonatal monocytes at earlier stages of maturation and lower-level expression of CCR-5 than PR isolates. The differences between neonatal and adult monocytes in susceptibility to PR isolates may also be related to the level of CCR-5 expression.
CD4 is expressed by T lymphocytes and monocytes and is generally considered a monomer even though... more CD4 is expressed by T lymphocytes and monocytes and is generally considered a monomer even though its structure was originally modelled on the REI Bence-Jones homodimer. However, native CD4 was demonstrated as both monomer and dimers of 55 and 110 kDa in lymphoid and monocytoid cells by immunoprecipitation and immunoblotting after solubilization with alkylating (iodoacetamide) or reducing (dithiothreitol, 2-mercaptoethanol) reagents. Full reduction yielded only the 55-kDa monomeric form. Purified CD4 oligomers from CEM-T4 cells were also resolved as homodimers by MALDI-Tof mass fingerprinting after tryptic digestion. Cell treatment with the membrane impermeable, free-thiol reactive, 5,5'-dithiobis-2-nitrobenzoic acid enhanced cell surface CD4 dimers and tetramers. The interaction sites producing dimerization were probably in the D4 domain as OKT4 inhibited self association of recombinant CD4 (rCD4). Oligomerization of rCD4 by glutathione and thioredoxin indicates that thiol exchange interactions were responsible. Enhanced CD4 dimer expression was also observed after PMA (20 ng/ml) activation of THP-1 cells. These findings demonstrate that different quaternary forms of CD4 such as monomers, homodimers and tetramers are expressed by T lymphocytes and monocytes/macrophages.
Biochemical and immuno-microscopic techniques were used to study temporal involvement of thrombos... more Biochemical and immuno-microscopic techniques were used to study temporal involvement of thrombospondin in relation to fibrinogen in muscle regeneration using a rat skeletal muscle-wound model. In undamaged control muscle, no fibrinogen and minimal thrombospondin antigen was found. Following crushing injury, fibrin networks appear immediately, followed by a gradual ordered accumulation of thrombospondin (within a few hours) in the vicinity of the vascular bed and adjacent endomysial connective tissue. Later, thrombospondin becomes associated with connective tissue and basal laminae around muscle fibers throughout the damaged muscle, maximal labelling occurring 3-6 days post-injury. Thrombospondin immunoreactivity decreased thereafter to near normal levels after 7 days post-injury, coincident with the appearance of regenerating muscle fibers. In contrast, little fibrin material remained by five days after injury. Quantitative radioimmunoassay of soluble thrombospondin antigen and radioimmune labelling of thick frozen sections reinforced the qualitative immuno-microscopic observations, with levels peaking at 3-4 days post-trauma, 10-fold over control levels. SDS-PAGE immunoblotting of non-reduced muscle extracts three days after a crush assault shows that the bulk of the thrombospondin incorporated into the injury site exists in a polymerized state (less than or equal to 1000 kD). These results demonstrate that the temporal appearance and disappearance of thrombospondin in the healing of a crushing lesion in muscle is related more closely to the regeneration phase of muscle than to the coagulation phase.
isolates (e.g., HIV-1 Ba-L ) and low-passage primary (PR) isolates differed markedly in tropism f... more isolates (e.g., HIV-1 Ba-L ) and low-passage primary (PR) isolates differed markedly in tropism for syngeneic neonatal monocytes, monocyte-derived macrophages (MDMs), and placental macrophages (PMs). Newly adherent neonatal monocytes and cultured PMs were highly refractory to infection with PR HIV-1 isolates yet were permissive for LA M-tropic isolates. Day 4 MDMs were also permissive for LA M-tropic isolates and additionally, were permissive for over half the PR isolates tested. Qualitative differences in PR HIV-1 infection of monocytes/MDMs could not be correlated with CD4 levels alone, and in all three cell types the block to PR HIV-1 strain replication preceded reverse transcription. Neonatal monocyte susceptibility to PR HIV-1 strains correlated with increasing CCR-5 expression during maturation. CCR-5 could not be detected on newly adherent (day 1) neonatal monocytes, in contrast to adult monocytes (H. Naif et al., J. Virol. 72:830-836, 1998), but was readily detectable after 4 to 7 days of culture. However, moderate CCR-5 mRNA levels were present in day 1 neonatal monocytes and remained constant during monocyte maturation. CCR-5 was not detectable on the surface of PMs, yet the receptor was present within permeabilized cells. Notably, two brain-derived PR HIV-1 isolates from a single patient, differing in their V3 loops, were discordant in their abilities to infect neonatal monocytes/MDMs and PMs, yet both isolates could infect newly adherent adult monocytes. Together these data strongly suggest that LA HIV-1 isolates are able to infect neonatal monocytes at earlier stages of maturation and lower-level expression of CCR-5 than PR isolates. The differences between neonatal and adult monocytes in susceptibility to PR isolates may also be related to the level of CCR-5 expression.
CD4 is expressed by T lymphocytes and monocytes and is generally considered a monomer even though... more CD4 is expressed by T lymphocytes and monocytes and is generally considered a monomer even though its structure was originally modelled on the REI Bence-Jones homodimer. However, native CD4 was demonstrated as both monomer and dimers of 55 and 110 kDa in lymphoid and monocytoid cells by immunoprecipitation and immunoblotting after solubilization with alkylating (iodoacetamide) or reducing (dithiothreitol, 2-mercaptoethanol) reagents. Full reduction yielded only the 55-kDa monomeric form. Purified CD4 oligomers from CEM-T4 cells were also resolved as homodimers by MALDI-Tof mass fingerprinting after tryptic digestion. Cell treatment with the membrane impermeable, free-thiol reactive, 5,5'-dithiobis-2-nitrobenzoic acid enhanced cell surface CD4 dimers and tetramers. The interaction sites producing dimerization were probably in the D4 domain as OKT4 inhibited self association of recombinant CD4 (rCD4). Oligomerization of rCD4 by glutathione and thioredoxin indicates that thiol exchange interactions were responsible. Enhanced CD4 dimer expression was also observed after PMA (20 ng/ml) activation of THP-1 cells. These findings demonstrate that different quaternary forms of CD4 such as monomers, homodimers and tetramers are expressed by T lymphocytes and monocytes/macrophages.
Biochemical and immuno-microscopic techniques were used to study temporal involvement of thrombos... more Biochemical and immuno-microscopic techniques were used to study temporal involvement of thrombospondin in relation to fibrinogen in muscle regeneration using a rat skeletal muscle-wound model. In undamaged control muscle, no fibrinogen and minimal thrombospondin antigen was found. Following crushing injury, fibrin networks appear immediately, followed by a gradual ordered accumulation of thrombospondin (within a few hours) in the vicinity of the vascular bed and adjacent endomysial connective tissue. Later, thrombospondin becomes associated with connective tissue and basal laminae around muscle fibers throughout the damaged muscle, maximal labelling occurring 3-6 days post-injury. Thrombospondin immunoreactivity decreased thereafter to near normal levels after 7 days post-injury, coincident with the appearance of regenerating muscle fibers. In contrast, little fibrin material remained by five days after injury. Quantitative radioimmunoassay of soluble thrombospondin antigen and radioimmune labelling of thick frozen sections reinforced the qualitative immuno-microscopic observations, with levels peaking at 3-4 days post-trauma, 10-fold over control levels. SDS-PAGE immunoblotting of non-reduced muscle extracts three days after a crush assault shows that the bulk of the thrombospondin incorporated into the injury site exists in a polymerized state (less than or equal to 1000 kD). These results demonstrate that the temporal appearance and disappearance of thrombospondin in the healing of a crushing lesion in muscle is related more closely to the regeneration phase of muscle than to the coagulation phase.
Uploads
Papers by Garry Lynch