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Abstract

While humans find it easy to process visual information from the real world, machines struggle

with this task due to the unstructured and complex nature of the information. Computer vision

(CV) is the approach of artificial intelligence that attempts to automatically analyze, interpret, and

extract such information. Recent CV approaches mainly use deep learning (DL) due to its very high

accuracy. DL extracts useful features from unstructured images in a training dataset to use them for

specific real-world tasks. However, DL requires a large number of parameters, computational power,

and meaningful training data, which can be noisy, sparse, and incomplete for specific domains.

Furthermore, DL tends to learn correlations from the training data that do not occur in reality,

making DNNs poorly generalizable and error-prone.

Therefore, the field of visual transfer learning is seeking methods that are less dependent on

training data and are thus more applicable in the constantly changing world. One idea is to enrich

DL with prior knowledge. Knowledge graphs (KG) serve as a powerful tool for this purpose because

they can formalize and organize prior knowledge based on an underlying ontological schema. They

contain symbolic operations such as logic, rules, and reasoning, and can be created, adapted, and

interpreted by domain experts. Due to the abstraction potential of symbols, KGs provide good

prerequisites for generalizing their knowledge. To take advantage of the generalization properties

of KG and the ability of DL to learn from large-scale unstructured data, attempts have long been

made to combine explicit graph and implicit vector representations. However, with the recent

development of knowledge graph embedding methods, where a graph is transferred into a vector

space, new perspectives for a combination in vector space are opening up.

In this work, we attempt to combine prior knowledge from a KG with DL to improve visual

transfer learning using the following steps: First, we explore the potential benefits of using prior

knowledge encoded in a KG for DL-based visual transfer learning. Second, we investigate approaches

that already combine KG and DL and create a categorization based on their general idea of knowledge

integration. Third, we propose a novel method for the specific category of using the knowledge graph

as a trainer, where a DNN is trained to adapt to a representation given by prior knowledge of a KG.

Fourth, we extend the proposed method by extracting relevant context in the form of a subgraph of

the KG to investigate the relationship between prior knowledge and performance on a specific CV
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task. In summary, this work provides deep insights into the combination of KG and DL, with the

goal of making DL approaches more generalizable, more efficient, and more interpretable through

prior knowledge.
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Zusammenfassung

Während es Menschen leicht fällt, visuelle Informationen der realen Welt zu verarbeiten, gestal-

tet sich dies bei Maschinen deutlich schwieriger, da die Informationen unstrukturiert und komplex

sind. Computer Vision (CV) ist der Ansatz der künstlichen Intelligenz, der versucht solche Infor-

mationen automatisch zu analysieren, zu interpretieren und zu extrahieren. Neuere CV-Ansätze

verwenden aufgrund der sehr hohen Genauigkeit hauptsächlich Deep Learning (DL). Dabei werden

nützliche Merkmale aus unstrukturierten Bildern eines Trainingsdatensatzes extrahiert, um diese für

bestimmte Aufgaben in der realen Welt zu nutzen. DL erfordert jedoch eine große Menge an Param-

etern, Rechenleistung und aussagekräftigen Trainingsdaten, die für bestimmte Bereiche verrauscht,

spärlich und unvollständig sein können. Darüber hinaus neigt DL dazu, aus den Trainingsdaten

auch Korrelationen zu lernen, die in der Realität nicht vorkommen. Diese Eigenschaften machen

DL-Modelle schlecht generalisierbar und fehleranfällig.

Deshalb sucht das Forschungsfeld des Visual Transfer Learning nach Methoden, die weniger

stark von den Trainingsdaten abhängen und somit besser in der sich ständig verändernden Welt

anwendbar sind. Eine dieser Methoden versucht, DL mit Vorwissen anzureichern. Dazu dienen

Knowledge Graphs (KG) als leistungsfähiges Werkzeug, da sie Vorwissen auf Basis eines zugrunde

liegenden ontologischen Schemas gut formalisieren und organisieren können. Sie beinhalten sym-

bolische Operationen wie Logik, Regeln und Schlussfolgerungen und können von Domänenexperten

erstellt, angepasst und interpretiert werden. Aufgrund des Abstraktionspotentials von Symbolen

bieten KGs gute Voraussetzungen, ihr Wissen zu generalisieren. Um die Vorteile von KG und DL

zu vereinen, wurde schon lange Zeit versucht, explizite Graph- und implizite Vektorrepräsentationen

zu kombinieren. Durch die Entwicklung von Knowledge Graph Embedding Methods, bei denen ein

Graph in den Vektorraum transferiert wird, eröffnen sich neue Perspektiven für eine Kombination.

In dieser Arbeit untersuchen wir die Kombination von KG und DL, um Visual Transfer Learning

zu verbessern, anhand der folgenden Schritte: Erstens untersuchen wir die potenziellen Vorteile der

Verwendung von in einem KG kodiertem Vorwissen für DL-basiertes Visual Transfer Learning.

Zweitens fassen wir Ansätze zusammen, die bereits KG und DL kombinieren, und erstellen eine

Kategorisierung auf der Grundlage ihrer allgemeinen Idee der Wissensintegration. Drittens schlagen

wir eine neuartige Methode für die spezielle Kategorie der Verwendung des Wissensgraphen als
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Trainer vor, bei der ein Deep Neural Network (DNN) so trainiert wird, dass es sich an eine durch

das Vorwissen eines KG gegebene Darstellung anpasst. Viertens erweitern wir die vorgeschlagene

Methode durch die Extraktion von relevantem Kontext in Form eines Subgraphen des KG, um

die Beziehung zwischen dem Vorwissen und der Leistung bei einer bestimmten CV-Aufgabe zu

untersuchen. Zusammenfassend lässt sich sagen, dass diese Arbeit tiefe Einblicke in die Kombination

von KG und DL bietet, mit dem Ziel, DL-Ansätze durch Vorwissen verallgemeinerbarer, effizienter

und interpretierbarer zu machen.
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Chapter 1

Introduction

Artificial intelligence (AI) can be defined as the theory and development of computer systems capable

of performing tasks that normally require human intelligence, such as visual perception, speech

recognition, decision-making, and language translation [1]. While the topic of AI used to be only

part of research, it has recently attracted a lot of interest from general public. From self-driving

cars to virtual assistants, AI is becoming an integral part of daily lives, and its impact is expected

to continue to grow in the coming years. Computer vision (CV) is the research area of AI that deals

with the visual perception of the environment and visual transfer learning is the subfield that focuses

on improving the robustness of current CV approaches to naturally occurring visual changes.

On the one hand, deep learning (DL), as representative of machine learning (ML), has gained

popularity in recent years due to its very high accuracy on CV tasks. Its main strength lies in the

large-scale statistical exploitation of huge amounts of unstructured data and the availability of high

computational power. For this purpose, DL models, i.e. deep neural networks (DNN), implicitly

learn highly detailed features of images based on correlations in a training dataset and use them

to recognize objects in the real world. On the other hand, symbolic AI was the main driver of AI

before DL gained prominence. There was a general belief that symbols are the root of intelligent

action and therefore symbols should be the main topic of AI [2].

In Figure 1.1, we provide an overview of visual transfer learning using knowledge graphs (KG),

which combines prior knowledge of a KG with unstructured image data encoded by DL to improve

the generalization of DL. KG, as an emerging technology of symbolic AI, provide a way to encode

prior knowledge about entities, including objects, events, situations, or concepts, and their various

relationships in a structured way. Due to their underlying ontological schema, they use symbolic

operations such as logic, rules, and reasoning, and can be created, adapted, and interpreted by

human experts. A KG as a large-scale semantic network of real-world entities is therefore well

suited as additional and controlled input for unstructured image data. The research area of AI that

combines symbolic AI and ML is referred to as neuro-symbolic AI (NSAI) [3] and includes the idea

of combining prior knowledge of a KG with unstructured image data encoded by DL.

1



2 CHAPTER 1. INTRODUCTION

Machine LearningSymbolic AI

Artificial Intelligence

Knowledge Graph Deep Learning

NSAI

Visual Transfer Learning using KG

Prior
Knowledge

Image
Data

Figure 1.1: Visual transfer learning using KG is part of neuro-symbolic AI (NSAI) and combines
prior knowledge with image data. While a knowledge graph (KG) as a representative of symbolic AI
is well suited to store and process explicit prior knowledge, deep learning (DL) as a representative
of machine learning can handle unstructured data, such as images, well.

1.1 Motivation

DL approaches achieve very high accuracy for a number of tasks and outperform traditional CV

approaches by a large margin. Despite their widespread successes in AI-based applications like

autonomous driving, they face a number of weaknesses. First, DL approaches are resource hungry.

They require a large number of parameters, computational power, and expressive training data to

perform well. In addition, the training data must be balanced, as well as carefully selected and

labeled. Second, DL approaches have a poor ability to generalize. They tend to overfit the training

data, learning spurious correlations which are not present when applying these models in the real

world. Therefore, they require a training dataset that fully corresponds to the environment in which

the model is used. If reality differs from the training data, DL can lead to unpredictable errors.

Visual transfer learning is the research area of CV with the goal of making DL approaches more

robust to these failures and thus generalizable or transferable to related domains. Aiming to address

the drawbacks of data-driven DL approaches, we consider another dimension and therefore propose

to introduce prior knowledge about relevant correlations into the learning process. Prior knowledge

of a domain, such as higher-level class relationships, should support DL to learn faster from the given

training data but also to learn more robust features that generalize to related domains. Explicit

prior knowledge is best encoded with symbolic approaches such as KGs. They can be constructed,

customized, or interpreted by domain experts. Moreover, KGs are a promising technology to unify
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prior knowledge about domains using ubiquitous concepts and an underlying ontological schema.

Therefore, we aim to combine a KG with DL to learn meaningful representations of large-scale

unstructured image data using prior knowledge. However, the combination of symbolic, i.e. KG, and

subsymbolic knowledge, i.e. DL, still poses a number of serious challenges, which will be discussed

in the following.

1.2 Problem Definition and Challenges

DL and KG are coexisting technologies of AI that are commonly used for different problems due to

their distinct strengths and weaknesses. DL, as part of ML, can make sense of highly unstructured

data such as images or text using high-dimensional vector representations in a parallel manner.

KGs, as part of symbolic AI, sequentially operate on symbol representations, use logic and rules, are

explainable, and therefore well suited as an interface to human knowledge and experts. Due to their

complementary strengths and weaknesses, the field of NSAI attempts to combine ML and symbolic

AI, as illustrated in Figure 1.1.

However, the combination of explicit graph representations of symbolic AI and implicit vector

representations of ML proves to be challenging. Therefore, most approaches to NSAI consider both

fields independently. ML is responsible for extracting vector-based features from unstructured image

data and transferring them into symbolic output representations, e.g. recognized entities. Symbolic

AI then uses these extracted symbols to apply graph-based post-processing based on prior knowledge

to improve the results. However, traditional NSAI approaches do not consider the fact that features

learned by ML are highly dependent on the training data. If the domain changes, these features of

the images are not recognized by DL, and symbolic post-processing no longer works. Therefore, to

solve transfer learning problems other approaches need to be explored.

With the recent development of KGE methods, where a graph is transferred into a vector space,

new possibilities have emerged to combine symbolic representations, e.g. KGs, with subsymbolic

ones, e.g. DL. In the context of this work, we want to investigate the different ways of combining

a KG with DL to improve visual transfer learning. We will refer to such combinations as KG-DL.

Hereby, we face four main challenges (CH) and research questions (RQ), which are depicted in

Figure 1.2 and introduced in the following.

Challenge 1 - Enhancing Transfer Learning using Prior Knowledge: Transfer learning is

a powerful concept that involves the reuse of features from one domain to another. In DL, transfer

learning is essential because models must learn distinct features from a training dataset and apply

them to a test domain. However, for pure DL that relies solely on unstructured data, it is challenging

to determine which features generalize and therefore are relevant for unknown domains. Moreover,

there are hypotheses that assume that there can be no generalization without prior assumptions [4].
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Knowledge
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Data

RQ1: Why can prior knowledge encoded in 
a KG improve DL-based visual transfer 
learning?

RQ2: What are possible ways of integrating 
the prior knowledge encoded in a KG into 
the DL pipeline?

RQ4: How does the type of prior knowledge 
in a KG impact KG-DL performance, 
especially in visual transfer learning?
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learning?

Knowledge Graph Deep Learning

NSAI

KG improving DL

DL improving KG

CH1: Enhancing Transfer Learning using 
Prior Knowledge

CH2: Investigating Strategies for KG-DL 
Integration

CH4: Investigating the Impact of 
Contextual Knowledge for KG-DL

CH3: Guiding DL with Prior Knowledge 
for Visual Transfer Learning

Figure 1.2: Challenges (CH) and research questions (RQ). In this thesis, we identify four main
challenges and research questions for using a knowledge graph (KG) to improve deep learning (DL)
on visual transfer learning tasks.

In DL these prior assumptions are known as inductive biases and enable DNNs to learn transferable

features for unseen domains. However, selecting the appropriate inductive bias for a given task

remains an open question that requires human intuition and experience. Inductive biases can be

considered a raw form of prior knowledge because they do not directly reflect human knowledge

about a domain. Since, prior knowledge can be defined as additional information about the world, a

natural question is if other types of prior knowledge could also be used to enhance DL-based transfer

learning. Other types of prior knowledge include for instance additional measured data, data from

other modalities, or explicit human expert knowledge. Therefore, the main challenge for transfer

learning is to find other types of prior knowledge and suitable representation formats to enhance the

transfer learning capabilities of DL.

Challenge 2 - Investigating Strategies for KG-DL Integration: Especially in the field of

CV, DL approaches dominate the state of the art due to their high accuracy if trained on large-scale

data. However, these methods tend to learn spurious correlations of the specific training data and

face serious challenges if the domain changes. KGs can store prior knowledge, such as additional

context and background information, that can be useful for the DL method to understand and

interpret visual data correctly. KG-DL combinations have the potential to improve the performance

of DNNs by using prior knowledge provided by a KG to learn more generalizable CV models. There
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have been several approaches that attempt to incorporate prior knowledge into data-driven methods.

However, it is still not clear what kind of combination leads to the best results or is best suited for

a specific CV task.

The main challenge here is to understand the basic principles of KG-DL integration methods, as

well as their strengths and weaknesses. Therefore, the methods need to be examined in terms of, for

instance, how knowledge infusion is performed, in which transfer learning scenarios the methods are

mainly used, and what impact KG has on DL. The specific characteristics of each integration method

need to be explored to better understand how knowledge sharing between KG and DL occurs and

how it enhances the final visual transfer learning task.

Challenge 3 - Guiding DL with Prior Knowledge for Visual Transfer Learning: While

previous NSAI methods have mostly used KG and DL independently, by using DL for extracting

features and KG for performing reasoning over the extracted features, there is a growing need to

integrate the two methods more deeply. In particular, for visual transfer learning tasks where the

application domain differs from the training domain, traditional NSAI methods fail similarly to DL-

only approaches because relevant features cannot be extracted and reasoning cannot be performed.

If a KG should improve the performance of DL on these tasks, prior knowledge must already be used

while training the DNN to guide DL to learn robust features from data. With the development of

KGE methods that transform a KG into vector space, new possibilities for interaction with vector-

based DL have emerged and are worth exploring.

We thus hypothesize that deep integration of a KG’s prior knowledge when learning the DNN can

significantly improve the generalizability of CV models. The main idea is to provide the DNN during

training with information about what distinguishes a relevant correlation in the image data from a

spurious correlation. The main challenge here is to develop and investigate a specific method that

integrates the prior knowledge of the KG into the DNN at training time to better learn generalizing

features.

Challenge 4 - Investigating the Impact of Contextual Knowledge for KG-DL: In the

human brain, the same visual input is embedded differently in different brain areas depending on

the context [5, 6, 7]. For instance, tools like a hammer or a screwdriver are embedded not only

because of their appearance but also because of their function.

With KG-DL we are able to induce such additional context from a KG into a visual DL pipeline.

Therefore, we expect that studying the role of context, i.e., the type of prior knowledge in KG,

will also be crucial for further improving the performance of CV systems. The type of prior knowl-

edge guides the DNN to focus on context-specific information in the dataset and learn appropriate

features. A KG is a structured repository for any kind of prior knowledge, regularly contains het-

erogeneous types of prior knowledge that come from different sources and thus can be relevant in

different compositions for different tasks.
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It needs to be investigated, how the task-relevant contextual knowledge can be best extracted

from the KG and how it can be best induced into a DNN. Further, the impact of context needs

to be evaluated, especially for transfer learning tasks. Therefore, the relationship between the type

of prior knowledge and the final performance in visual transfer learning needs to be analyzed, and

relevant factors affecting it need to be identified and considered.

1.3 Research Questions

Based on the discussion in Section 1.1, we identified and elaborated problems and challenges for the

topic of visual transfer learning using KG. In this section, we refine the research goal for the scope

of this work and define four main research questions.

RQ1: Why can prior knowledge encoded in a KG improve DL-based visual transfer learning?

To understand how prior knowledge encoded in a KG can enhance DL-based visual transfer

learning, we must delve into the fundamentals of transfer learning and explore various transfer

learning scenarios. One key issue to investigate is why data-driven DL struggles with transfer

learning and how transfer learning methods aim to address this issue. To do so, we must examine

the specialization-generalization trade-off, the concept of inductive biases, and how they relate to

prior knowledge more broadly. Moreover, we must define the notion of prior knowledge and its

different forms. Additionally, we need to justify the use of KGs for encoding prior knowledge and

outline the task of visual transfer learning using KGs in detail.

In summary, our research question requires a comprehensive analysis of the fundamentals of

transfer learning, the concept of prior knowledge, and the use of KGs to encode and enhance transfer

learning for visual data.

RQ2: What are possible ways of integrating the prior knowledge encoded in a KG into the

DL pipeline?

To investigate possible ways of integrating prior knowledge encoded in a KG into the DL pipeline,

we must consider the many attempts that have been made to combine these two modalities of

knowledge. However, such integration is not always straightforward. Our research will summarize

relevant approaches from various application domains and group them into distinct categories based

on their underlying principles and infusion method. In creating these categories, we will focus on

approaches that combine KGs with DL for computer vision as well as approaches that use other types

of prior knowledge, such as text representations, in combination with visual data. Additionally, we
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will divide each of these works into feature extractors and transformation models, based on their

impact on the original encoder network.

To answer our research question in-depth, we must provide a detailed analysis of the approaches

belonging to each category, highlighting their strengths and weaknesses, and discussing their po-

tential applications to other KG-DL applications. Overall, our goal is to provide a comprehensive

overview of the different ways to integrate prior knowledge encoded in a KG into the DL pipeline

and to explore the potential benefits and limitations of each approach.

RQ3: How can prior knowledge encoded in a KG guide DL to improve visual transfer

learning?

To understand how prior knowledge encoded in a KG can guide DL and improve visual transfer

learning, a novel method that belongs to the Knowledge Graph as a Trainer must be developed.

This will require a comprehensive study that describes the principles of the approach, the pipeline,

and transfer learning experiments on multiple datasets. To develop the approach, a KG must first

be created that contains prior knowledge about the domain and related domains. This involves

exploring the type of graph structure used, the concepts used, and the best way to represent each

class in the dataset. Additionally, a suitable infusion method for the knowledge of the KG into the

learning process of the DNN must be found. Finally, the approach must be evaluated in transfer

learning tasks such as domain generalization and domain adaptation against a baseline without a

KG. The goal is to prove the hypothesis that the prior knowledge of a KG improves the generalization

performance of DL methods.

In summary, to answer the research question, a new method will be developed that utilizes a KG

as a Trainer for DNNs. The approach will be evaluated through transfer learning experiments, and

the results will be compared to a baseline without a KG to determine the impact of prior knowledge

on visual transfer learning.

RQ4: How does the type of prior knowledge in a KG impact KG-DL performance, especially

in visual transfer learning?

Recent findings in cognitive science suggest that visual inputs are embedded differently in the

brain depending on the context. To understand how the context, i.e. type of prior knowledge, in

a KG impacts KG-DL performance, particularly in visual transfer learning, we need to investigate

how specific contextual views of a generic KG influence a DNN. To train the DNN using a specific

type of context, we need to extract a specific contextual view from the generic KG and combine it

with the DNN in a way that the learned features from unstructured image data are influenced by the

contextual view. We then need to investigate the results of the different learned contextual models
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in depth, using qualitative visualizations of the class-based cosine similarities of their contextual

embedding spaces. Additionally, we must analyze the approach quantitatively by comparing the

final class accuracies on object recognition tasks for source and target domains.

To answer the research question, we need to investigate how the different contextual views of a

KG influence the performance of a DNN for specific CV tasks. We must extract and combine the

contextual views with the DNN and then evaluate the resulting performance through qualitative

and quantitative analyses. By doing so, we can gain insights into how the type of prior knowledge

in a KG can impact KG-DL performance in visual transfer learning.

1.4 Thesis Overview

To give the reader an overview of the work done in this thesis, we list the most important contribu-

tions of the thesis below. In addition, we provide all relevant publications and an overview of the

structure of the work.

1.4.1 Contributions

This part summarizes the main contributions of the thesis on visual transfer learning using knowledge

graphs. In the following, the contributions are listed based on the four main research questions.

1. Structured analysis of why prior knowledge encoded in a KG can improve DL-based visual

transfer learning.

Contribution for RQ1. This contribution explores the suitability of KG for improving

DL methods in visual transfer learning. The study provides an in-depth analysis of transfer

learning fundamentals, explains the specialization-generalization trade-off of DL, and highlights

how DNNs handle domain shifts using a raw format of prior knowledge. Additionally, the

research defines transfer learning using KG, describes explicit and implicit prior knowledge,

and argues why KGs are an ideal representation format for it.

2. Categorization of methods combining KG and DL for visual transfer learning.

Contribution for RQ2. This contribution presents a comprehensive categorization of KG

and DL combinations for visual transfer learning. The study proposes four main categories

of KG-DL combinations: Knowledge Graph as a Reviewer, Knowledge Graph as a Trainee,

Knowledge Graph as a Trainer, Knowledge Graph as a Peer. This categorization framework

provides a clear and structured understanding of the different ways in which KG and DL can

be combined for visual transfer learning purposes.

3. Method to learn a DNN using a KG as a Trainer.

Contribution for RQ3. This contribution introduces a new method called KG-NN, which
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uses a KG as a Trainer to train a DNN. The method works by transforming the explicit graph

representation of the KG into vector space using a KGE method. KG-NN then uses a con-

trastive loss to train the DNN to align its implicit visual embedding with the domain-invariant

embedding provided by the KGE. This method provides a novel approach to improve visual

transfer learning using the knowledge encoded in KGs, ultimately enhancing the performance

of DNNs in image recognition tasks.

4. Method to learn contextual DNNs using contextual views of a generic KG.

Contribution for RQ4. This contribution examines the impact of different types of prior

knowledge encoded in a KG on the performance of KG-NN. The study analyzes the perfor-

mance of KG-NN using individual contextual views, i.e. types of prior knowledge, of a generic

KG and shows that the context in which the prior knowledge is presented influences the final

accuracy of KG-NN, individual class accuracies, as well as predictions for individual image

samples. This research demonstrates the importance of context in enhancing the accuracy of

DNNs and highlights the potential benefits of using contextual views of KGs to improve visual

transfer learning.

1.4.2 List of Publications

Part of the work in this thesis is based on the following publications:

1. Sebastian Monka, Lavdim Halilaj, Stefan Schmid, and Achim Rettinger. 2021. Learning

Visual Models Using a Knowledge Graph as a Trainer. In The Semantic Web - ISWC 2021 -

20th International Semantic Web Conference, ISWC 2021, Virtual Event, October 24-28, 2021,

Proceedings (Lecture Notes in Computer Science), Springer, 357–373.

(Chapters 3, 5)

2. Sebastian Monka, Lavdim Halilaj, and Achim Rettinger. 2022. A survey on visual transfer

learning using knowledge graphs. Semantic Web 13, 3 (2022), 477–510.

(Chapters 2, 3, 4)

3. Sebastian Monka, Lavdim Halilaj, and Achim Rettinger. 2022. Context-Driven Visual

Object Recognition Based on Knowledge Graphs. In The Semantic Web - ISWC 2022 - 21st

International Semantic Web Conference, Virtual Event, October 23-27, 2022, Proceedings

(Lecture Notes in Computer Science), Springer, 142–160.

(Chapter 6)

4. Juergen Luettin, Sebastian Monka, Cory Henson, and Lavdim Halilaj. 2022. A Survey on

Knowledge Graph-based Methods for Automated Driving. KGSWC (2022).

(Chapters 2, 3)
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5. Lavdim Halilaj, Juergen Luettin, Cory Henson, and Sebastian Monka. 2022. Knowledge

graphs for Automated Driving. In IEEE AIKE-Artificial Intelligence and Knowledge Engi-

neering.

(Chapter 2)

6. Lavdim Halilaj, Juergen Luettin, Sebastian Monka and Cory Henson. 2022. Knowledge

graphs for Autonomous Driving. In IJCS 2023 - International Journal of Semantic Computing.

(Chapter 2)

7. Ruwan Wickramarachchi, Cory Henson, Sebastian Monka, Daria Stepanova, and Amit

Sheth. 2022. Tutorial: Knowledge-infused Learning for Autonomous Driving (KL4AD). In

Tutorial - ISWC 2022.

(Chapters 2, 3, 5, 6)

1.5 Outline of the Thesis

The thesis is comprised of seven chapters, each serving a specific purpose.

Chapter 1 provides a high-level introduction to the thesis by discussing the motivation for the topic of

visual transfer learning using KG in Section 1.1. We formulate four main challenges in Section 1.2,

define corresponding research questions in Section 1.3, and present the main contributions and

relevant publications of this thesis in Section 1.4.

Chapter 2 provides the necessary background information for KG-DL and NSAI in Section 2.1,

related to the deeper-rooted question of why to combine symbolic AI and machine learning. This

chapter also introduces the three thesis-relevant modalities of data, information, and knowledge,

namely vision, language, and KG in Section 2.2. It discusses the feature extraction process in

Section 2.3, and inductive biases in DL in Section 2.4.

Chapter 3 defines the term transfer learning using prior knowledge and answers RQ1. Therefore, it

introduces the fundamentals of transfer learning in Section 3.1. The chapter continues in Section 3.2

with insights into the problem of DL with domain change, introduces the specialization-generalization

trade-off, and describes how recent DL methods try to deal with transfer learning tasks. Further,

Section 3.3 introduces transfer learning using KG, by presenting KGs as an ideal representation

format for prior knowledge. In addition, Section 3.4 provides resources for visual transfer learning

using KG, including KGs and image datasets with prior knowledge.

Chapter 4 contains a structured analysis of how KGs can be used with DL methods. Therefore,

it provides a summary and categorization of methods for KG-DL combinations for visual transfer

learning and answer RQ2 in Section 4.2 by introducing four main categories of how a KG can be

combined with DL. Further, Section 4.3 summarizes relevant surveys related to the chapter.

Chapter 5 answers RQ3, by proposing a method for learning a DNN using a KG as a Trainer in

Section 5.1. We show in Section 5.2 that the proposed method outperforms baselines without a KG,
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especially on visual transfer learning tasks. Section 5.3 provides an overview of related work.

Chapter 6 answers RQ4 by presenting a method for learning contextual DNNs using contextual

views of a generic KG in Section 6.2. Accordingly, this chapter investigates the effect of the type

of prior knowledge in the KG on the final results of transfer learning tasks for object recognition in

Section 6.3. Section 6.4 summarizes related work relevant to the chapter.

Finally, Chapter 7 concludes the thesis with a discussion of the results, challenges, and potential

applications for future work.





Chapter 2

Preliminaries

This chapter gives an overview of relevant prior information on visual transfer learning using KG.

Therefore, NSAI is introduced based on theories of human intelligence, the modalities of vision,

language, and KG relevant for the work are introduced, the DL-based feature extraction process

and the idea of embedding spaces are explained, and insights into the inductive biases of DL that

influence what a DNN learns are provided.

Most of the topics described in this chapter are already published in:

• Sebastian Monka, Lavdim Halilaj, and Achim Rettinger. 2022. A survey on visual transfer

learning using knowledge graphs. Semantic Web 13, 3 (2022), 477–510.

The chapter begins by deriving the idea of NSAI from theories of human intelligence in Sec-

tion 2.1. For this purpose, we analyze views from cognitive science, e.g., philosophy, psychology,

and neuroscience, link them to the distinct principles of symbolic AI and ML, and introduce the

combination of KG and DL as a representative of NSAI. In the context of this work, we define

vision, language, and KG as modalities of data, information, and knowledge in Section 2.2. Finally,

we explain the principle of feature extractors in Section 2.3, their embedding spaces, and the general

effect of inductive biases in DL in Section 2.4.

2.1 Neuro-Symbolic AI

Enabling machines to behave intelligently like humans is one of the main challenges of AI. Human

intelligence is often defined as the ability to achieve goals in a wide range of environments [8].

Whereas ML approaches achieve impressive results on several tasks, they can only solve problems

in their specific training domains. With the goal of improving ML, other approaches to AI, like

symbolic AI, came back into focus. Symbolic AI and ML have evolved separately over the years.

13
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Figure 2.1: Prerequisites for artificial intelligence can be derived from theories of human intelligence,
based on research in philosophy, psychology, and neuroscience. Human intelligence is comprised of
two working processes: a sequential, conscious, and slow part, based on logic and reasoning, forming
explicit representations of structured data, akin to the principles of symbolic AI. The parallel,
unconscious, and fast part, based on habitual and intuitive processing, forms implicit representations
of unstructured data, akin to the principles of machine learning.

A KG is part of the symbolic AI, hence they make use of structured data, logic, and reasoning,

and operate in an explicit and sequential manner. DL, however, is part of the ML approaches. It can

leverage knowledge from unstructured data, is fast, intuitive, and operates in an implicit and parallel

manner. Because of their complementary properties, recent efforts have been made to combine the

two fields into one called NSAI. In this new form of AI, ML is used to develop a deep understanding

of unstructured data, and symbolic AI is used to provide structure, causality, and interpretability.

Figure 2.1 illustrates the relation between symbolic AI and ML and their relationship to human

intelligence and AI. Nowadays, NSAI mainly uses symbolic AI and ML as sequential and independent

modules. However, cognitive science presumes that both fields should be connected in a hybrid and

interactive manner [9]. Therefore, NSAI needs to draw inspiration from cognitive theories of human

decision making [10], by enriching DL approaches with well-founded knowledge representations and

reasoning capabilities [11].

In this chapter, we shed light on why a combination of both fields seems promising. Therefore,

we introduce theories of human intelligence from philosophy, psychology, and neuroscience and link

them to the properties of symbolic AI and ML. Further, we introduce the combination of KG and

DL as a promising step to build NSAI models that suit the complexity of the real world.
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2.1.1 Human Intelligence

Defining human intelligence is a widely discussed and controversial topic [12]. There are efforts from

philosophy, psychology, and neuroscience to better understand the fundamentals of intelligence.

These disciplines differ in their focus and approach to understanding the human mind and behavior.

Whereas philosophy uses a more abstract and theoretical approach, psychology and neuroscience

are empirical and data-driven. Psychology focuses on the study of behavior and mental processes,

while neuroscience focuses on the biological origin of these processes.

Philosophy: Philosophers in ancient Greece already started to think about human intelligence.

Due to Plato, intelligence is the perceptible part of the soul, and knowledge is justified true belief.

He separated intelligence into discursive reason and intuitive reason [13]. The discursive reason is

based on explicit steps, it is slow and based on logic and rules. Intuitive reason is a fast use of reason,

drawing conclusions without going through the whole deductive process [14]. Aristotle distinguished

between three types of souls, where the intellectual soul corresponds to humans and their ability to

think [15]. Later, Descartes, Félix Ravaisson, and Henri Bergson defined intuition.

In general, philosophers described the brain as a system that uses symbolic logic to reason about

the world [16]. If the mind goes beyond the data given, another source of information must make

up the difference [17].

Psychology: In the 20th century, intelligence became an object of study in psychology. Jean

Piaget studies the development of intelligence in children. Howard Gardner proposes a popular

but controversial theory of multiple intelligences. Catell introduced 1971 the theory of fluid and

crystallized intelligence [18, 19].

Aligned with assumptions from philosophy [13], Kahneman [9] introduced a framework about

human intelligence. He distinguished between two working principles, a system 1 type and a system 2

type. System 1 is relatively slow, uses logic and reasoning, and operates in an explicit and sequential

manner. System 2 is fast, intuitive, and operates in an implicit and parallel manner. Moreover,

system 1 and system 2 work in tandem, not as separate entities.

In psychology, it is assumed that the large majority of the skills and knowledge is learned, rather

than innate [20]. However, some kind of core knowledge seems to be built into the structure of the

brain, since human knowledge comes with priors [8].

Neuroscience: Neuroscience, as a descendant of philosophy and psychology, became an inde-

pendent research field in the 20th century. In 1952 the first version of a biological spiking neural

network (SNN), the Hodgkin–Huxley model, was introduced to explain the working principles of

a network of neurons in the brain [21]. Whereas an SNN differs from the traditional artificial NN

from computer science in many ways, their abstract working principles are comparable. Referring
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to the findings of psychology [9], neuroscientists claim that the brain is not literally divided into two

systems. Moreover, these systems evolve based on higher-level abstractions. System 1 and system 2

work in tandem, not as separate entities, such that a single reasoning process always involves both

systems. It is shown that there is no better system, both systems can be biased and make mistakes.

However, we do not yet know enough about neuroscience to literally reverse engineer the brain.

AI can help to decipher the brain, rather than the other way around [22]. Since most findings

are based on models comparing the brain with artificial NNs, these findings need to be taken with

caution.

2.1.2 Artificial Intelligence

One of the ultimate goals of AI is to develop systems that possess intelligence similar to that

of humans. Therefore, most AI methods draw inspiration from theories of human intelligence.

While symbolic AI is oriented to the brain’s sophisticated reasoning capabilities that use symbolic

processing, ML focuses on the unconscious and intuitive part, where information is extracted from

a variety of unstructured data. In the history of AI, there have been many debates about which AI

approach is the most promising.

Symbolic AI: Symbolic AI focuses on human reasoning capabilities. Symbolic logic can be traced

back to the rhetoric of ancient Greece, which was later developed into formal logic. The goal of formal

logic was to provide a complete and rigorous foundation for mathematics, but also to produce logical

representations of everyday knowledge. Nowadays, instead of the strings or trees of classical logic,

graphs are increasingly used to represent knowledge. These KGs are vast graph networks that are

increasingly finding applications in web search and product recommendation [16].

In general, symbolic AI is based on logic and declarative knowledge representation. It mimics

human reasoning, which is why the methods are explicit and understandable to humans. Moreover,

these methods thus provide an interface to the representation of expert knowledge. The approaches

work with symbols, which are high-level abstractions of real-world information and are therefore

able to generalize to unknown domains.

However, reasoning on symbols also has some drawbacks. For example, symbolic AI approaches

are quite slow because they are sequential in nature. They require symbols based on structured data

as input, which are very difficult to determine in unstructured data such as images or texts. Symbolic

AI methods are therefore mostly used in controlled environments and include logic, planning, search,

and optimization.

Machine Learning: ML is based on the idea of developing systems that, like humans, learn from

observations and can thus draw conclusions about their environment. In the course of research into

the learning behavior of living things, biological learning theories were formulated as early as around
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1940 [23, 24]. These mathematical principles were later first implemented in the perceptron [25]

algorithm, in which a single neuron is trained. With the invention of the backpropagation [26]

algorithm, it was possible to train deeper neural networks with one or two hidden layers, which

were able to solve more complex tasks because of their higher capacity. With the further increase

of neurons in additional hidden layers, data, and computational power, DL approaches [27, 28, 29]

have been able to provide significant results for a range of tasks. Moreover, the wide application of

DL in various areas of AI has earned ML a high reputation in society.

ML approaches can work with unstructured data, such as text and images. Based on raw data,

they can extract recurring patterns and classify or predict them. Their strength is that they learn a

model that works well in the complexity of the real world. However, they lack interpretability and

explainability. They require large and well-curated datasets and have limited generalizability and

robustness.

2.1.3 Combining Knowledge Graph and Deep Learning

Based on theories of human intelligence, as well as the complementary strengths and weaknesses of

symbolic AI and ML, there is a recent trend toward NSAI. In particular, the combination of KGs,

as a method of symbolic AI, and DL, as a method of ML, led to promising results.

First, the symbolic principle of the human mind, a sequential, slow, and deliberate processing

of explicit, structured knowledge involving logic and reasoning, can be related to the properties of

a KG. KGs work with structured data and symbolic representations, use sequential processing, and

are relatively slow. They use rules, reasoning, and compositionality based on and driven by general

human knowledge, resulting in general knowledge modules that can be reused for related domains.

Second, the subsymbolic principle is a parallel, rapid, and unconscious processing of implicit,

unstructured knowledge that is intuitive and habitual. This principle can be associated with DL,

which extracts information from unstructured data, such as text or images, and is highly parallel

and fast. However, they are implicit and therefore not understandable and interactable by humans.

Although all fields of research agree that human intelligent behavior is reflected in a synergy of

symbolic and subsymbolic behavior, it is still not clear whether the symbolic structure is innate or

evolves from the implicit knowledge of a densely interconnected biological NN. This debate can be

directly applied to the combination of KG and DL. While some argue that symbolic behavior should

be explicitly modeled [30], others think that symbolic structures evolve from the DL itself [31]. These

discussions raise further questions, e.g. how a future NSAI architecture should look such that the

explicit knowledge in the KG can be used efficiently with DL.
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2.2 Modalities of Data, Information, and Knowledge

The goal of AI is to enable machines to interpret and understand the world in the same way that

humans do. This includes the ability to automatically analyze raw data, convert it into information

about objects, and make predictions about the world.

The terms data, information, and knowledge are closely related but also have significant differ-

ences. A widely accepted definition for data, information, and knowledge is that data are character

sets representing empirical stimuli or perceptions, information is a character set representing em-

pirical knowledge, and knowledge is a character set representing the meaning of thoughts that the

individual reasonably believes to be true [32]. In short, data is the raw material, information is the

processed material, and knowledge is the understanding that results from processing the information.

Implicit knowledge is the form of knowledge that is gathered through experience and repetition

and is hard to articulate or transfer to others. Explicit knowledge is the type of knowledge that is

conscious. It can be formalized, interpreted, managed, and transmitted to others.

Moreover, data, information, and knowledge can occur in different modalities, i.e. specific forms

of representation. For instance, humans work with modalities such as vision, audition, touch, etc. In

the scope of this thesis, we focus on a more fine-grained concept of modality. Hereby, the modality

of vision relates to visual representations, the modality of language to language representations, and

the modality of KGs to KG representations. For the task of visual transfer learning, we further

define the sources of prior knowledge, i.e. language and knowledge graph, as semantic modalities.

2.2.1 Vision

The modality of vision refers to data, information, and knowledge that is based on images. The

generation of images or digital images is based on the fundamentals of the human visual system.

The human visual system processes the light information in the eye and encodes the visual signal

into electrical stimuli using neurons on the retina. Likewise, camera sensors record the visual infor-

mation of the world in digital images. Most sensors transform the visual signal of the world into

a continuous voltage waveform. This waveform is then converted into a digital image by sampling

and quantization. Therefore, an image is not only defined by the visual input but also by the sensor

and its digitization procedure.

A digital image is composed of picture elements, also called pixels. Each pixel has a finite,

discrete set of numerical representations for its intensity or gray level, which is an output of its

two-dimensional functions input by its spatial coordinates denoted by x, y, respectively [33]. Since

images exist in a fixed-size grid structure in Euclidean space, images can be seen as a particular case

of graphs with special adjacency [34].

In addition to grayscale information, images can also encode color information. Color images

can be represented using various color models, e.g., RGB, CMYK, or HSI. In Figure 2.2 we show
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a) RGB image with size [32,32,3] b) RGB channels with size [32,32,1]

Figure 2.2: The modality of vision is an encoded version of the visual signal based on the light
information in the real world. An RGB image is a digitized version of the visual signal and consists
of pixels, here 32x32, and three RGB channels, i.e. red, green, and blue. The information in the
image is comprised of the individual pixels of the channels and their correlations.

the discrete nature of an RGB image. An RGB image consists of discrete pixels with three channels

each for the colors red, green, and blue.

Besides the structure of an image, it is also relevant what kind of information is contained in

an image. The information of an image is defined by regions or parts of the image. These regions

are called features and describe, among other things, color, shape, and texture [35]. Based on

these features, humans, but also machines, are able to derive higher-level semantic information, e.g.

objects or classes, from an image.

2.2.2 Language

The modality of language includes data, information, and knowledge that is based on texts. In

the scope of visual transfer learning, we refer to the modality of language as a semantic modality.

Humans use language data as a medium for communication and knowledge transfer.

Linguistics is the scientific study of human language and text, that investigates the structure of

sentences (syntax), their meaning (semantics), the structure of words (morphology), speech sounds

and equivalent gestures in sign languages (phonetics), the abstract sound system of a particular lan-

guage (phonology), and how social context contributes to meaning (pragmatics) [36]. Text linguistics

is a subfield of linguistics that studies language used in written or spoken texts [37]. It provides

linguistic theories, concepts, and frameworks that are used to analyze text data. The subfield of

computational linguistics deals with the use of computer technology to analyze and generate natural
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A raccoon sits in the ?

Figure 2.3: The modality of language has a rich underlying structure based on syntax, semantics,
morphology, etc. A sentence is an extended structure of syntactic units. It consists of many features
interlinking the statistical probability of a word (?) occurrence to the previous words and their
order.

language. It provides the technical tools and methods to apply linguistic theories and concepts to

large-scale text data.

As illustrated in Figure 2.3, text data is an extended structure of syntactic units such as words,

groups, and clauses and textual units that is marked by both coherence among the elements and

completion. A non-text consists of random sequences of linguistic units such as sentences, para-

graphs, or sections in any temporal and spatial extension. [38] Practically, text data is a sequence

of discrete tokens [39] and can be seen as a one-dimensional grid or ring graph [34]. Language is

therefore a finite collection with its complexity limited by the number of letters, tokens, and words

that can be represented.

To extract information from text data, rules or statistical methods are applied to extract text

features. These features are, for instance, the grammatical structure, the used characters and their

frequency, and co-occurrences. Based on these features, humans, as well as machines, can derive

higher-level sets of information, such as meaning.

2.2.3 Knowledge Graph

The modality of KG describes data, information, and knowledge that is based on KGs. In the scope

of visual transfer learning, we refer to the modality of KG as a semantic modality. A KG is a form of

a semantic network, that stores explicit knowledge in a graphical format [40]. KGs are a structured

representation of facts, consisting of entities, relationships, and semantic descriptions. A compre-

hensive definition is given by the authors of [41] where a KG is defined as a graph of data with the

objective of accumulating and conveying real-world knowledge, where entities are represented by nodes

and relationships between entities are represented by edges. Entities can be real-world objects and

abstract concepts, relationships represent the relation between entities, and semantic descriptions of

entities and their relationships contain types and properties with well-defined meanings.

Knowledge can be expressed in a factual triple in the form of (head, relation, tail) or (subject,

predicate, object) under the Resource Description Framework (RDF), for example, (Albert Einstein,

WinnerOf, Nobel Prize). In its most basic form, we see a KG as a set of triples G = H,R, T , where
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Directed Labeled Graphs Hypergraphs Hyper-Relational Graphs
Nodes and
Literals

- Real-world and abstract entities
- Entity’s attribute value

- Real-world and abstract entities
- Entity’s attribute value

- Real-world and abstract entities
- Entity’s attribute value

Relationships - Binary relations between entities
- Relations between an entity and
its attribute’s values

- Binary relations between entities
- Relations between an entity and
its attribute’s values
- Many-to-many relations between
entities (Hyperedge)

- Binary relations between entities
- Relations between an entity and
its attribute’s values
- Additional information encoded
in a relationship (Hyper-relation)

Semantics Connect two nodes Connect an arbitrary set of nodes Connect two nodes with addi-
tional contextual information
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Table 2.1: A KG can be constructed using various graph models. The following three common graph
models can be used as an underlying structure for knowledge representation in KGs: 1) Directed
Labeled Graphs; 2) Hypergraphs; and 3) Hyper-relational Graphs.

H is a set of entities, T ⊆ E × L, is a set of entities and literal values and R, set of relationships

which connects H and R.

A graph model is a model which structures the data, including its schema and/or instances

in form of graphs, and the data manipulation is realized by graph-based operations and adequate

integrity constraints [42]. Each graph model has its formal definition based on the mathematical

foundation, which can vary according to different characteristics, for instance, directed vs. undi-

rected, labeled vs. unlabeled, etc. The most basic model is composed of labeled nodes and edges,

easy to comprehend but inappropriate to encapsulate multidimensional information. Other graph

models allow for the representation of information utilizing complex relationships in the form of

hypernodes or hyperedges.

Table 2.1 illustrates three graph models, namely directed labeled graphs, hypergraphs, or hyper-

relational graphs, a KG can be constructed. A KG can be based on any such graph model utilizing

nodes and edges as a fundamental modeling form. To extract information or knowledge from the

raw graph data, methods operate on symbolic rules or ML. Both approaches extract features in the

graph data, based on regions or pieces. Such features can be for example specific combinations of

nodes and relations, frequencies of their occurrences, or distinct graph structures. In the following,

we discuss in detail the three common graph models used in practice to represent data graphs:

Directed Labeled Graphs: A directed labeled graph is comprised of a set of nodes and a set

of edges connecting those nodes, labeled based on a specific vocabulary [42]. The direction of the
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edge of two paired nodes is important, which clearly distinguishes between the start node and the

end node. This intuitively enables the organization of information via the utilization of binary

relationships.

Hypergraphs: Hypergraphs extend the definition of binary edges by allowing the modeling of

multiple and complex relationships [42]. On the other hand, hypernodes modularize the notion of a

node, by allowing nesting graphs inside nodes. In addition, the notion of a hyperedge enables the

definition of n-ary relations between different concepts.

Hyper-Relational Graphs: A hyper-relational graph is also a labeled directed multigraph where

each node and edge might have several associated key-value pairs [43]. Internally, nodes and edges

are annotated according to a chosen vocabulary and have unique identifiers, making them a flexible

and powerful form of modeling for graph analysis with weighted edges.

2.3 Feature Extraction

A feature extractor is a transformation function from higher dimensional into lower dimensional

vector space [44, 45]. Since it has been shown that most downstream tasks can be solved better on a

reduced dimensionality, feature extractors are also a fundamental building block of modern systems

working on visual and semantic data.

Feature Extractor

Embedding

MLP

Input

0.1
0.0

0.1
0.8

ŷg(·)hf(·)x

Figure 2.4: A DNN that takes x as input and predicts ŷ can be decoupled into a feature extractor
f(·) with its embedding space h and a projection head g(·).

However, more and more conventional feature extraction methods have been replaced with DNNs.

A DNN is an artificial neural network (NN) with multiple layers between the input and output layers,

having the ability to automatically extract lower dimensional features from the input data [46, 47].

As depicted in Figure 2.4, a DNN can be decoupled in a feature extractor f(·), with its embedding

h and a projection head g(·), expressing the function

ŷ = g(f(x)). (2.1)



2.3. FEATURE EXTRACTION 23

Visual Features 
Extractor

Visual Embedding

xv hvfv(·)
(a) Visual features extractor

Semantic Features 
Extractor

Semantic Embedding

fs(·) hsxs

Eh
r t =

h r

t

distance

Text

(b) Semantic features extractor

Figure 2.5: A Feature extractor transforms input data into embedding space: a) a visual features
extractor transforms visual input data, i.e. images, into visual embedding space; and b) a semantic
features extractor transforms semantic input data, e.g. text or graphs, into semantic embedding
space.

There are different architectures of DNNs, but they always consist of the same components: neurons,

synapses, weights, biases, and functions [48].

The basic architecture that builds a DNN is a multilayer perceptron (MLP). An MLP can be

extended by modules using convolutions, recurrences, or attention. Whereas DNNs are usually

trained end-to-end resulting in a task-dependent embedding space h, more recently, attempts have

been made to independently pre-train the feature extractor and their embedding space, such that it

can be applied to several visual transfer learning downstream tasks [49].

Embedding: When referring to an embedding or embedding space we address a vector-based rep-

resentation of input data. A feature extractor maps input data x to an embedding h = f(x) ∈ RdE ,

where the activations of the final pooling layer and thus the representation layer have a dimension-

ality dE , where dE depends on the architecture of the feature extractor that is used. Ideally, an

embedding captures the semantics of the input by placing semantically similar inputs close together

in the vector space.

Projection: A projection or projection space is a transformation from the embedding to a different

dimensional vector space. This transformation is done in DNNs using a projection head g(h), e.g.

MLP. A projection head g(·) maps the embedding h into a projection z = g(h) ∈ RdP . For the

projection network g(·), often a multi-layer perceptron [50] with an input dimensionality dE , and

output vector of size dP is used. In standard end-to-end DNN training for classification, dP is the

number of predicted classes and z = ŷ.

2.3.1 Visual Features Extractor

As shown in Figure 2.5, feature extractors can extract different types of information and therefore

occur in different forms. A visual features extractor fv(·), shown in Figure 2.5a, is a transformation

function that transforms visual input data xv from a higher-dimensional image space into a lower
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dimensional visual embedding space hv. A formal definition is given by

hv = fv(xv), (2.2)

where the final dimensionality of hv is determined by the architecture.

Whereas early approaches used traditional visual features extractors as scale-invariant feature

transform (SIFT)[51] or histogram of oriented gradients (HOG) [52], modern CV methods use almost

only DNN-based approaches. Architectures of DNNs to process images are MLPs, convolutional

neural networks (CNN), recurrent neural networks (RNN), and transformers.

Each architecture has its advantages and is therefore preferred for a particular type of input

data and particular task [48]. MLPs use fully connected neurons between each layer of the network,

CNNs move filter kernels over grid-structured input data to learn recurrent features and thus scale

to large and computationally intensive images, RNNs use recurrent connections to process temporal

information of the input data [48], and transformer models use a multi-headed attention mechanism

to learn rich information of the underlying input data [53].

Visual Embedding: A visual embedding contains low-dimensional representations of images.

Each image is therefore associated with a particular vector in the visual embedding. It has been

shown that the embedding encapsulates relevant information about the images in a dense format.

Therefore, the similarity of images is encoded by distances in the embedding. In a visual embedding

learned from data, visually similar images are more likely to be encoded near, while visually dissimilar

images are more likely to be encoded far. It is quite common to use pre-trained visual feature

extractors for large image datasets and use them for related tasks.

2.3.2 Semantic Features Extractor

A semantic features extractor fs(·), shown in Figure 2.5b, is a transformation function that trans-

forms semantic input data xs from a higher dimensional image space into a lower dimensional

semantic embedding space hs. A formal definition is given by

hs = fs(xs), (2.3)

where the final dimensionality of hs is determined by the architecture.

The term semantic data is here used for both, unstructured data from language and structured

data from a KG. Although the input data structure differs in its original format, the output of the

semantic features extractor is always a low-dimensional and vector-based semantic embedding space.

This similarity enables a seamless transfer from hybrid approaches of vision and language to hybrid

approaches of vision and KGs.
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KGE-Method
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DNNs

factorization models

linear/bilinear models

KG Embedding

Figure 2.6: A KGE method transforms a knowledge graph (KG) into a vector-based KG embedding
hs such that each node is assigned to a position in vector space. There are many different types of
KGE methods, e.g. linear/bilinear models, factorization models, or DNNs.

Knowledge Graph Embedding: A knowledge graph embedding hs is a representation of a KG in

vector space, where close relationships between entities in a KG are reflected by local neighborhoods.

KGE is generated by a KGE method KGE(·), which maps the entities and relations of a KG into

low-dimensional vectors while capturing their semantic meanings and relations [54]. Therefore, a

KGE method is a special case of the semantic features extractors fs(·) that works on graph data.

In Figure 2.6, the general pipeline of KGE methods which transform a KG into hs is illustrated.

KGE methods can be categorized based on their learning mode and their used input format. Since

most graph embedding algorithms are originally developed on tripled-based entity relations before

being extended to n-ary relational data, we further divide the KGE methods into KGE methods

that work on directed labeled graphs, hyper-relational graphs, and hypergraphs as introduced in

Section 2.2.3.

KGE Methods - Learning Mode: Originally, KGE methods were developed to solve graph-

based tasks such as node classification or link prediction. However, there is an increasing interest to

apply KGE methods for visual tasks, such as classification, detection, or segmentation. We briefly

categorize KGE methods therefore into unsupervised and supervised KGE methods, as Chami et

al. [55] recently proposed for graph embedding algorithms.

Unsupervised KGE methods form hs based on the inherent graph structure and the node fea-

tures, without considering additional task-specific labels for the graph or its nodes. An overview

of unsupervised KGE methods is given by Ji et al. [56], who categorized KGE methods based

on their representation space (vector, matrix, and tensor space), the scoring function (distance-

based, similarity-based), the encoding model (linear/bilinear models, factorization models, neural

networks), and the prior information (text descriptions, type constraints).

In contrast, supervised KGE methods learn hs to best predict node or graph labels. Forming
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hs by using task-specific labels for the node features, hs can be optimized for a particular task

while retaining the full expressiveness of the graph. The most common supervised KGE methods

are graph neural networks (GNN) [57]. GNNs are extensions of standard DNNs that can directly

work on a graph structure as provided by a KG. For scalability reasons and to overcome challenges

that arise from graph irregularities various adaptations have emerged, such as graph convolutional

networks (GCN) [58] or graph attention networks (GAT) [59]. Furthermore, non-Euclidean graph

convolutional methods, such as hyperbolic graph convolutional neural networks (HGCN) [60] are used

to deal with a hierarchical structure of the input data.

KGE Methods - Input Type: The majority of existing KGE methods only work on directed

labeled graphs, expecting binary relations in a tripled-based format [61, 62, 63]. However, as shown

in Section 2.2.3, a basic triplet representation oversimplifies the complex nature of the information

that can be stored in hypergraphs and hyper-relational graphs [64].

A hypergraph or hyper-relational graph can be transformed into directed labeled graphs, either by

reification [65], that converts the graphs into binary-relation graphs, by creating additional triplets

from a hyper-relational fact or by the star-to-clique [66] technique, that converts a tuple defined on

k entities into
(
k
2

)
tuples. However, these conversions lead to suboptimal and incomplete models as

well as information loss. They only convert a set of key-value pairs, that are unaware of the triplet

structure [64, 65]. To preserve the whole expressiveness of the KG, a set of new KGE methods are

developed to directly operate on hypergraphs and hyper-relational graphs.

Methods that are extended to deal with hypergraphs are HEBE [67], HGE [68], Hyper2vec [69],

HNN [70], HCN [71], DHNE [72], HHNE [73], Hyper-SAGNN [74], HypE [65]. HEBE [67] aims

to learn the embedding for each object in a specific heterogeneous event by representing it as a

hyperedge and HGE [68] incorporates multi-way relations using Laplacian tensors. Hyper2vec [69],

hypergraph neural networks [70] and hypergraph convolution networks [71] are used for hypergraph

embedding, however, cannot be directly used for predicting hyperedges. In addition, DHNE [72] and

HHNE [73] use an MLP as their encoding model and therefore are limited to a fixed type and size

of heterogeneous hyperedges. Hyper-SAGNN [74] is based on a self-attention-based graph neural

network that can predict hyperedges and deal with variable hyperedge size and HypE [65] learns

positional convolutional embeddings for each entity.

Methods that embed hyper-relational graphs are m-TransH [66], HypE, HSimple [65], RAE [75],

GETD [76], TuckER [77], NaLP [78], HINGE [64], StarE [79]. m-TransH [66] that uses the star-to-

clique method to convert the graph to binary relations. HypE, HSimple [65] and RAE [75] convert

the hyper-relational facts into n-ary facts with one abstract relation that represents all relations

of the original fact. GETD [76] and TuckER [77] are tensor factorization approaches for n-ary

relational facts. NaLP [78] and HINGE [64] are convolutional models that support multiple entities

and relations in one fact. Recently, GNNs have been demonstrated to be capable of encoding also

multi-relational KGs [80], such as StarE [79] that can encode the structure of hyper-relational graphs.
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2.4 Inductive Biases in Deep Learning

When data and computation increase a definition of heuristic specifications becomes harder and

training learning systems become more effective [81]. However, all data-driven methods such as DL

use inductive biases or prior assumptions to learn a model from data, as depicted in Figure 2.7. For

instance, they assume the smoothness of the hidden function, the translation invariance for CNNs,

and a hierarchical organization principle of concepts. The no-free-lunch theorem for ML [82] basically

says that some set of priors over the space of all functions is necessary to obtain generalization.

However, priors can be imperfect and therefore they needed to be collected with care [83]. KGs

and other structures such as probabilistic variants of those are only one way to inject human knowl-

edge into a model [4]. Therefore, we list inductive biases that influence intentionally and uninten-

tionally the learning of the model. Previous work [84] describe levels of knowledge integration, based

on the training data, the hypothesis set, the learning algorithm, and the final hypothesis. We explain

how the labels, the data augmentation, the network architecture, and the loss function influence the

learned DNN.

2.4.1 Dataset

The dataset on which the DNN is trained can be seen as an inductive bias. It provides the model

with a set of examples to learn from, and these examples shape the model’s internal representation of

the problem domain. The specific patterns and regularities that are present in the dataset influence

how the DNN learns from data and therefore how it generalizes to new data.

DNNs are data-driven approaches, which means that they adapt highly to the image data dis-

tribution of the training dataset. Therefore, the underlying independent and identically distributed

(i.i.d.) assumptions of machine learning require the training domain to perfectly reflect the test

domain. However, this strong assumption does not hold for real-world scenarios, where the test

domain always differs from the training domain. Features that do occur in the training data but are

not present in future testing domains are called spurious correlations.

DNNs are known to learn many spurious correlations of a training dataset, such as camera

metadata or background information affecting the specific task [85]. For example, if a dataset

contains a lot of images of dogs in a forest, a DNN that is trained on this dataset may learn to

associate dogs with forests, rather than learning the higher-level semantics of what a dog is.

Learning spurious correlations of the dataset limits the applicability of DNNs because they do

not reflect the higher-level semantics of the images. To avoid learning spurious correlations, it is

important to have a balanced dataset. We further argue that a dataset needs to have a balanced

distribution of samples and a balanced distribution of style to learn generalizable features that can

be applied in reality.
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Figure 2.7: Inductive biases in deep learning. How a deep neural network (DNN) learns from
data heavily depends on several inductive biases, such as the dataset, the data augmentation, the
labels, the network architecture, the training objective, and the optimization method. Therefore,
the combination of these inductive biases determines the performance of a DNN.

Distribution of Samples: Statistical learning methods, e.g. DL approaches, highly depend on

the number of training samples for individual classes. Having a balanced dataset ensures prediction

fairness. If the dataset is not balanced, low frequent classes will not be learned since their occurrence

probability is too low. However, often low-frequent classes are important to be detected. For instance

in autonomous driving, corner case scenarios contain safety-relevant information, such as dangerous

traffic situations. Therefore, corner case scenarios are artificially collected or re-weighted to ensure

their detection even if the data is underrepresented.

Distribution of Style: The style of available image datasets varies greatly. Most image datasets

are collected from a variety of publicly available sources on the Internet [86]. Therefore, they

contain many different styles of images, e.g. different color distributions, lighting, resolution, etc.

This enables large image datasets to regularize their models in some sense. However, in autonomous

driving, most datasets are collected through driving scenarios with a similar camera setup. For

example, a DNN that was trained on a fisheye camera will fail if applied to a linear camera, or a

model trained on grayscale images will lose performance if applied to color images.

2.4.2 Data Augmentation

Data augmentation is the process of changing the distribution of the input data. It is a method to

artificially increase the number of data samples, but also a way to regularize a model by inducing

some prior knowledge about the test domain. The goal is to avoid overfitting and to increase the

performance on a target domain However, the right composition of data augmentation operations is

crucial for learning good representations [87] for multiple domains.
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Image Data Augmentation: Image data augmentation is a widely used technique in the field,

where the goal is to increase the size and diversity of a training dataset in order to improve the

robustness and generalization of DNNs. The process involves applying various transformations to the

original images, such as color jittering, random grayscaling, rotation, flipping, and cropping, in order

to simulate different real-world conditions. The survey [88] summarizes used data augmentation

strategies for image data. Further authors show that the individual image augmentations are class

dependent [89]. Whereas some augmentations increase the performance of some classes of a dataset,

they harm the performance of others.

Knowledge Graph Data Augmentation: Graph augmentation refers to the process of adding

new nodes, edges, or attributes to a graph representation, in order to improve its representational

power or generalizability. There are various graph augmentation strategies that have been proposed

in the literature, each with its own advantages and limitations. Some of these strategies include

node splitting, graph addition, node embedding, and graph convolution. These methods can be

used individually or in combination, depending on the specific task and the desired outcome. The

survey [90] provides an overview of graph augmentation strategies.

2.4.3 Labels

In DL, i.e. supervise learning, the labeling of data samples plays an important role in the training

of ML models. These labels describe how the DNN should interpret the individual image based on

the task. For instance, in classification, the label provides the name of the object in the image.

Labels can be either hard or soft, and the choice of labeling method affects the performance and

interpretability of the model. Hard labels are binary or categorical representations that assign a

unique class to each data sample, while soft labels are continuous or probabilistic representations

that assign a probability distribution over the classes for each sample.

Hard-Labels: The common approach in supervised learning is to assign a hard-labels to an im-

age. A hard label is used as one-hot encoding to a data sample, e.g. an image is a ”cat”. Hard

labels provide a clear and decisive assignment of class membership, which makes them simple and

straightforward to use in the training process. However, a hard label treats all instances of a class

in a similar way and does not take into account the fact that instances of one class may be more

similar to some other classes than to others.

Soft-Labels: Soft labels are continuous or probabilistic representations of class labels in DL [91].

Soft labels induce additional knowledge about the similarity of the image to other classes. Soft

labeling comes with the assumption that assigning a discrete class to an image can be a hard task in

the real world. In this labeling method, each data sample is assigned a probability distribution over
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the classes. For instance, if the task is image classification, a sample may be assigned a probability

distribution such as [0.6, 0.3] over the classes ”cat” and ”dog”, respectively. This means the sample

is 60% likely a cat and 40% likely a dog. However, the use of soft labels can also introduce additional

uncertainty and noise into the training process.

2.4.4 Network Architecture

Network architectures define or constrain the interaction between specific parameters in the DNN.

Therefore, DNN architectures can be seen as hard constraints to the learning problem, such that

specific architectures are only suited for specific tasks.

Spatial Dependency: Object recognition tasks rely on a strong inductive bias of spatial local-

ization and translation invariance, such that an object is to be recognized without considering its

localization in the image. For instance, CNNs make use of spatial dependency. These networks as-

sume that important features are based on local neighborhoods. Therefore, they learn filter kernels

of small size, e.g. 5x5 or 3x3, and slide them over the whole image. By sharing learned kernels they

can save parameters and avoid learning correlations of unrelated far regions in the image.

Sequential Dependency: Sequential data in texts, or temporal data in videos, need to take pre-

vious data into consideration. These temporal dependencies can be modeled by recurrent neural

networks. Typical representatives are RNNs, LSTMs, and GRUs. Their main principle is to aggre-

gate a state over several timestamps in a dynamic environment. Hereby, it is assumed that every

timestep representation is dependent on an aggregation of previous timestep representations.

Structural Dependency: In graph neural networks the architecture is defined by the under-

lying graph structure. A graphical neighborhood is defined by relationships rather than spatial

distances. Every node is dependent on its connected neighbors through its relationships. Especially,

for molecule synthesis or social network prediction the provided graph structure helps to constrain

the problem space.

2.4.5 Training Objective

The training objective is also known as loss function in DL. Loss functions are mathematical functions

that measure the difference between the predicted output of a model and the true output, i.e.

label. The choice of a suitable loss function depends on the task at hand, as well as the type

of data being used. For image-only methods, the mean squared error (MSE) is commonly used for

regression problems, while the cross-entropy loss is used for classification problems. There are several

derivatives of both basic loss functions. Since the applicable loss function depends on the task and
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on the modality being compared, we focus on loss functions being applied for joint embedding spaces

of semantic and visual embeddings.

Aligning latent samples in high-dimensional space often leads to problems, as distances are not

well defined. Therefore, a common idea is to reduce dimensionality before comparison. A projection

head is a linear layer or a few-layer NN that learns to convert a higher-dimensional output into a

lower-dimensional output. To use various dimensional KGE with the visual embedding space of the

neural network a projection head can be integrated into the training pipeline of the DNN. Since

visual and semantic information can be encoded in a vector-based embedding space forming hv and

hs, there are several training objectives to learn a joint embedding. The objectives and also DNNs

are optimized using an optimization method. The optimization method minimizes an objective,

that measures how far apart the ground truth from the predicted probability distribution or value

is. The most common principle to derive specific objectives that are good estimators for different

models is the maximum likelihood principle. These objectives can be seen as cross entropy between

the empirical distribution of the training set and the probability distribution defined by model [48].

Here we present some of the basic objectives used in visual transfer learning using KG, which can

be augmented with additional regularization terms or hyperparameters. There are configurations of

visual and semantic embedding space that only allow certain objectives to be applied. We define

l ∈ RK as the network’s output vector (logits), and t ∈ 0, 1K as the one-hot encoded vector of

targets, where ‖t‖1 = 1. We refer to visual data as xv and semantic data as xs, and equally to visual

embedding as hv and semantic embedding as hs.

The Effect on Network Layers: Recently there was the idea that a loss function can influence

how the DNN learns from data. However, work [92, 93] showed that the objectives have a smaller

impact on the learned DNN than suspected. A loss function only influences the penultimate layers of

a DNN [94]. Using centered kernel alignment to measure similarity between hidden representations

of networks, they find that differences between loss functions are only visible in the last layers of

the network. They look more closely at the penultimate layer representations and find that different

objectives and hyperparameter combinations lead to dramatically different levels of class separation.

Pointwise Objectives

Softmax Cross-Entropy (CE) [95]: CE is the most common objective to learn multi-class

classification tasks. The softmax represents a probability distribution over a discrete variable with

K possible values, i.e. classes. CE learns the DNN end-to-end by comparing the logits l with the
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target vector t and is given by

LCE(l, t) = −
K∑

k=1

tk log

(
exp (lk)∑K
j=1 exp (lj)

)
(2.4)

= −
K∑

k=1

tklk + log

K∑
k=1

exp (lk). (2.5)

Mean Squared Error (MSE): MSE is the most intuitive way of attracting two vectors and is

given by

LMSE =
1

K

K∑
k=1

‖hs,k − hv,k)‖2 . (2.6)

The MSE loss calculates the Euclidean distance and maps a training image xv,k and its visual feature

vector hv,k) to a semantic embedding vector hs,k, corresponding to the same class k [96].

However, using the Euclidean distance as a metric fails in high-dimensional space [97]. An alter-

native metric in high dimensions is the cosine distance, which is given by sim(u,v) = u>v/ ‖u‖ ‖v‖.

Pairwise Objectives

Pairwise objectives [98] always rely on the information of positive and negative samples. They have

the goal to pull positive visual embedding vectors hv,p to its corresponding semantic embedding

anchor vector hs,a and push negatives hv,n away [99].

Triplet and Hinge Rank Loss [100]: The triplet and hinge rank loss requires explicit negative

sampling. It uses a margin α as a regularization term and it is given by

Ltri =
∑
n 6=p

max[0, α− sim(hs,a,hv,p) + sim(hs,a),hv,n]. (2.7)

Contrastive Loss: The contrastive loss extends the triplet loss by a version of the softmax and

handles multiple positives and negatives at a time and is given by

Lcon = − log
exp (sim(hs,a,hv,p)/τ)∑2N

n=1 1n 6=a exp (sim(hs,a,hv,n)/τ)
. (2.8)

where, 1n 6=a ∈ {0, 1} is an indicator function that returns 1 iff n 6= a, and τ > 0 denotes a

temperature parameter.

2.4.6 Optimization Method

The basic principle of a DNN is to adjust many parameters to map an input, i.e. image pixels, to

a desired output. The process of finding the optimal set of parameters that satisfy the mapping
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task is called optimization. Optimization involves searching through a high-dimensional space of

possible parameters, e.g. weights of the DNN, to find the optimal set that produces the lowest loss

between the output of the DNN and the labels. In the context of DNNs, gradient-based methods

are typically used for optimization, where each model parameter is assigned a gradient with respect

to the gradient of the loss function. The individual parameter gradient provides information on how

to update the parameter efficiently to minimize the overall loss.

One of the most widely used gradient-based optimization methods for DNNs is stochastic gradient

descent (SGD) [101]. SGD is a version of gradient descent that computes the gradient of the

loss function on a small batch of data at a time, rather than the entire dataset. This approach

is computationally more efficient and allows for fast convergence to a good solution. However,

SGD has some limitations such as the tendency to get stuck in local minima. In recent years,

several extensions to SGD have been developed to improve the learning of DNNs. Some of these

methods include AdaGrad, Adam, and RMSProp [102]. These optimization methods incorporate

adaptive learning rates, momentum, and other advanced techniques to help the model to converge

to an optimal solution. However, the choice of an appropriate optimization method depends on the

characteristics of the problem being solved, as well as on other inductive biases of the DNN, such as

the architecture or the distribution of the dataset.

Nearly all variants of SGD rely on back-propagation [103] as a learning algorithm to distribute

the gradient of the loss to the individual parameters of the DNN, based on their influence on the final

outcome. Iteratively, every parameter is assigned with a gradient and then updated in the direction

to minimize the final error. It is worth noting that the optimization method heavily influences

the way a DNN learns from data and that there are more and more conjectures that the human

brain learns differently from data than DNNs. For example, the brain can learn from a few training

examples with many neurons, while DNNs learn dense representations into a few neurons from many

training examples. Moreover, there is no convincing evidence that the cortex explicitly propagates

error derivatives or stores neural activities for use in a subsequent backward pass [104]. However,

research on alternative learning algorithms is still in its early stages and there are not many viable

alternatives that scale yet. Alternative learning algorithms are for example the Boltzmann Learning

Algorithm [105] or the Forward-Forward Algorithm [104].

However, not only the optimization method itself but also the choice of hyperparameters and the

initialization of the weights can have a significant impact on the performance of DNNs. Therefore,

it is important to tune these parameters carefully to achieve the best possible performance.

Hyperparameter Selection: Hyperparameters are parameters that are set before training and

are not learned during training. These include variables such as the number of layers, the number of

neurons in each layer, the learning rate, and the stack size. Choosing appropriate hyperparameters

is critical for a good performance of DNNs. For example, if the learning rate is set too high, the

model may overshoot the optimal solution and oscillate, causing it to miss the optimal solution. On
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the other hand, if the learning rate is set too low, the training process may get stuck in local minima

and is relatively slow. Similarly, if the DNN is too small, the DNN may not be able to capture

complex patterns in the data, while if it is too large, the DNN may overfit.

However, selecting the right hyperparameters remains a challenge, and most approaches use

heuristics that try different hyperparameter configurations and select the best one. A common

approach to hyperparameter selection is grid search, where the user specifies a range of values for

each hyperparameter and the system trains the model for each combination of values in that range.

Grid search is excellent for randomly testing combinations that are known to generally perform

well. Another approach is random search [106], in which the system randomly selects values from a

given range for each hyperparameter and trains the model for each combination of values. Random

search is excellent for discovering hyperparameter combinations that would not have been thought

of intuitively, although it often takes more time to execute. Sometimes more advanced methods are

used, such as Bayesian optimization and evolutionary optimization.

Weight Initialization: Weights are usually initialized randomly before the training process be-

gins. The initial values of the weights can affect how fast the model converges and whether it gets

stuck at a local minimum. If the initial weights are too large, the model can go into saturation and

produce very small gradients, slowing down the learning process. On the other hand, if the initial

weights are too small, it may take a long time for the model to converge or get stuck in local minima.

Therefore, choosing the right method to initialize the weights is important to achieve fast con-

vergence of the model and better performance. A common approach for initializing the weights is

to take the initial values from a normal distribution with a mean of 0 and a standard deviation of

1. However, this approach can lead to slow convergence and poor performance in some cases.

A better approach is to use initialization techniques specific to the activation function used in

each layer. For example, the Xavier initialization method [107] scales the weights by the square

root of the number of inputs to the layer, which has been shown to improve convergence and reduce

the likelihood of disappearing or exploding gradients. However, the Xavier initialization method

has been found to cause problems when initializing DNNs that use the rectified linear unit (ReLU)

activation function. Another popular initialization method that can handle ReLU activations is

the He initialization method [108], which scales the weights using the square root of the number of

neurons in the previous layer.



Chapter 3

Transfer Learning using Prior

Knowledge

Transfer learning is a powerful approach to learning that enables the application of knowledge gained

from one domain to another. The concept of transfer learning may have originated in educational

psychology. Psychology assumes that people frequently engage in transfer learning in everyday life.

They may reuse learned knowledge to better interpret new things or to learn them more quickly.

Therefore, there are also attempts to transfer the theory of transfer learning to DL. Since training

DNNs is a rather tedious task and requires a lot of data and computational power, the idea of

training a model on a source domain and reusing it for related target domains with sparse data

is quite prominent in DL. Moreover, the principle of DL, where features are learned in a training

domain to be applied in a test domain, implicitly requires transfer learning skills since reality is

always different from the training data [109].

While DNNs tend to be highly specialized in the domain on which they were trained, this

specialization may come at the cost of poor generalization to new and unknown domains [110].

Therefore, to achieve optimal performance in transfer learning for DL, it is important to strike a

balance between specialization and generalization. To this end, DL approaches either try to avoid

transfer learning by increasing the source domain size or focus on inducing additional biases in the

learning process. The main goal is always to relax the strong training data dependency and provide

additional knowledge that is valid for both source and associated target domains.

However, finding the right inductive bias for a transfer learning task is not straightforward, as

the choice hardly depends on the setting, e.g. the data, the domain shift, or the model. Moreover,

these inductive biases are inflexible, limited, and do not correspond to the way humans think about

domains. Since humans are well suited to provide additional high-level knowledge about the rela-

tionship between the source and target domains, there is an urgent need to find such an interface

35
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that can better utilize human prior knowledge.

We hypothesize that symbolic prior knowledge about a domain is much more flexible and bet-

ter suited to describe human prior knowledge and thus provide DL with additional knowledge. In

this context, we introduce the notion of transfer learning using prior knowledge, where DNNs are

supported with prior knowledge to decide what distinguishes a good feature from an incorrect one.

Additionally, we argue that such prior knowledge can be well encoded and formalized with KGs

since KGs provide the necessary tools to encode such knowledge in an explicit and implicit format.

Therefore, transfer learning using KG can help to learn better-generalized DNNs and transfer knowl-

edge across different domains and tasks. It has the potential to enable more effective and robust use

of DL for many real-world applications.

In this chapter, we address the following research question:

RQ1: Why can prior knowledge encoded in a KG improve DL-based visual transfer learning?

The main contribution of this chapter is summarized as follows:

• Structured analysis of why prior knowledge encoded in a KG can improve DL-based visual

transfer learning.

Most of the topics described in this chapter are already published in:

• Sebastian Monka, Lavdim Halilaj, and Achim Rettinger. 2022. A survey on visual transfer

learning using knowledge graphs. Semantic Web 13, 3 (2022), 477–510.

The chapter introduces the concept of transfer learning using prior knowledge. Therefore, it

starts in Section 3.1 with relevant fundamentals of transfer learning, explaining transfer learning

scenarios, such as input domain change and output domain change. Further, it continues with

Section 3.2, where the problem of transfer learning is related to DL. Therefore, the trade-off between

specialization and generalization is explained and methods for enabling DL for transfer learning are

discussed. Section 3.3 then introduces transfer learning using KGs. Hereby, we introduce the notion

of explicit and implicit prior knowledge. Further, we show that KGs are well suited to encode both

types of knowledge and therefore are well suited as a representation format for prior knowledge.

Finally, Section 3.4 provides an overview of datasets for visual transfer learning using KG, including

generic KGs and visual transfer learning tasks with and without prior knowledge.

3.1 Fundamentals of Transfer Learning

Transfer learning is a phenomenon that can be observed when humans interpret or learn new things,

e.g. languages, music instruments, or sports. If the new task is related to a task that has been
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already acquired in the past, learned knowledge can be reused. However, transfer learning is not

always beneficial and can be separated into positive and negative transfer. Positive transfer refers

to a scenario where acquired knowledge of a source domain can be leveraged to better understand

a novel target domain. Negative transfer refers to a scenario where acquired knowledge of a source

domain hinders understanding a novel target domain [111]. Whether positive or negative transfer

will occur may depend on several factors, such as the relevance between the source and the target

domains and the learner’s capacity of finding the transferable and beneficial part of the knowledge

across domains. [112]. The main goal of transfer learning can be directly transferred to DL and is

therefore to enable positive and avoid negative transfer.

A theoretical framework for transfer learning is presented as follows [113, 114]:

Given a source domain DS with input data XS, a corresponding source task TS with labels

YS, as well as a target domain DT with input data XT and a target task TT with labels

YT , the objective of transfer learning is to learn the target conditional probability distribution

PT (YT |XT ) with the information gained from DS and TS where DS 6= DT or TS 6= TT .

3.1.1 Transfer Learning Scenarios

Transfer learning can occur in two distinct scenarios, either input domain change or output domain

change. Input domain change refers to scenarios, where the same type of object is represented using

different but related types of input. Output domain change happens if a new type of object that is

related to the initial type of object is added to the possible outputs.

Figure 3.1 describes both transfer learning scenarios: a) input domain change, where a distri-

bution shift is happening in the input, and b) output domain change, where a distribution shift is

happening in the output.

Input Domain Change: Input domain change refers to scenarios where the initial input changes

from source to target domain. For instance, the source domain, on which the DNN was trained,

contains images of road signs, and the target domain, to which the DNN is applied, contains the

same road sign images deviating in terms of weather, artificial changes, or country.

The scenario of input domain change includes two distinct tasks, domain generalization, and

domain adaptation. Domain generalization is a transfer learning task with access to labeled source

domain data and unlabeled target domain data. Domain generalization aims to extract implicit

knowledge of the source domain DS and transfer this knowledge to an unknown target domain

DT [115, 116]. If domain generalization has access to an additional set of labeled target data XT ,

the task is called domain adaptation. Figure 3.1 a) shows a stop road sign of a source domain and

various variations of the stop road sign of the target domain. Examples of the target domains are

the same road signs with deviating weather, artificial changes, or different countries.
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Figure 3.1: Transfer learning can be divided into two distinct scenarios: a) input domain change,
where a distribution shift is happening in the input, and b) output domain change, where a dis-
tribution shift is happening in the output. Prior knowledge, such as knowledge graphs or textual
descriptions, can help a DNN deal with these scenarios.

Output Domain Change: Output domain change refers to scenarios where the initial output

changes from the source to the target domain. For example, the DNN was trained on road signs,

including speed limit 30. When applied to a target domain, the model must also predict a speed limit

70 that was not present in the initial domain and therefore not present at training time.

The scenario of output domain change includes two tasks, zero-shot learning, and few-shot learn-

ing. Zero-shot learning is a transfer learning task with labeled source domain data and unlabeled

target domain data. Zero-shot learning aims to extract implicit knowledge of the classes in the

source domain task TS and transfers this knowledge to unknown classes of the target domain task

TT [113]. If zero-shot learning has access to an additional set of labeled target data XT , the task

is called few-shot learning. Figure 3.1 b) depicts road signs of a source domain and additional road

signs of a target domain. The goal of the tasks is to leverage the knowledge of the source domain

road signs and transfer it to the ones from the target domain.

3.1.2 Strategies in Transfer Learning

It is an open question of how to effectively deal with transfer learning scenarios in DL. Since the

strong dependency on the training data is a fundamental problem of DL, there is no satisfactory

solution to deal with distribution shifts so far.

DL pipelines that deal with distribution shifts can be grouped into three main categories as
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(a) MDMM (b) SDSM (c) MDSM

Figure 3.2: Strategies for handling transfer learning scenarios in DL. Approaches of DL that deal
with multiple domains can be categorized into a) Multiple Domains Multiple Models (MDMM); b)
Single Domain Single Model (SDSM); and c) Multiple Domains Single Model (MDSM).

depicted in Figure 3.2: a) Multiple Domains Multiple Models (MDMM); b) Single Domain Single

Model (SDSM); and c) Multiple Domains Single Model (MDSM). MDMM approaches treat all

datasets as independent and train a respective model for each of them. Therefore, these approaches

are very costly to train, and learned knowledge cannot be transferred between datasets. SDSM

approaches train a single model on a large dataset merged from many smaller ones. However, it is

difficult to create a balanced dataset required by the DNN to learn a general representation suitable

for all domains. MDSM approaches train a single model on various datasets at different stages, and

can therefore transfer learned knowledge to new domains. However, if trained with the standard

cross entropy these models suffer from an unpredictable and error-prone knowledge transfer and

catastrophic forgetting, where learned knowledge from previous datasets tends to be forgotten after

training on the current dataset.

All approaches deal with the transfer learning problem in different ways. MDMM avoids the

transfer learning problem by design, SDSM increases the source domain to also include the target

domain, and MDSM needs to find relevant features that also suit the source domain. In the context

of this work, transfer learning methods that need to generalize and learn transferable features are

methods that belong to MDSM.

3.2 Domain Change in Deep Learning

DL as an ML technique is broadly used to successfully solve CV tasks. Its main strength lies in its

ability to find complex underlying features in a given set of images. A common method for training

a DNN is to minimize the cross-entropy (CE) loss on a training domain, which is equivalent to

maximizing the negative log-likelihood between the empirical distribution of the training set and

the probability distribution defined by the model. This idea relies on the independent and identically

distributed (i.i.d.) assumptions as underlying rules of basic ML. This assumption states that the
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examples in each dataset are independent of each other, that train and test sets are identically

distributed, and that they are drawn from the same probability distribution [48]. However, if the

train and test domains follow different distributions, which means that there is a domain change,

the i.i.d. assumptions are violated, and DL leads to unpredictable and poor results [117]. This has

been demonstrated by using adversarially constructed examples [118] or variations in the test images

such as noise, blur, and JPEG compression [119]. Moreover, it is shown [120] that the real world

also contains unpredictable distribution shifts to a training and testing dataset, which can lead to

critical errors in standard DNNs.

3.2.1 Specialization-Generalization Trade-off in DL

DNNs are designed to learn complex features from large datasets. This is achieved by learning

complex patterns and relationships between the input and output data. The main assumption

in learning from data is that any learning algorithm will generalize better on some distributions

and worse on others [82]. Therefore, every learning process involves a delicate trade-off between

specialization and generalization [121].

Specialization refers to the model’s ability to fit the training data accurately. Therefore the

model is trained to learn every individual feature that maximizes the prediction accuracy of a model

on a specific task. However, if a model is too specialized, it can overfit the training data, capturing

noise and random fluctuations in the data instead of the underlying patterns. Such features are

also called spurious correlations of the training data. When learning these spurious correlations the

model will perform well on the training dataset but poorly on the target data. The model memorized

the training dataset rather than learning generalizable features. Moreover, If the model can only

fit the training data, it will not be useful in real-world applications, since the real world will always

deviate slightly from the training data.

Generalization is the ability of a DNN to perform well on new and unseen data. Generalization is

critical because it allows the model to be useful in real-world applications. The ability to generalize

well is achieved by learning the underlying patterns and relationships that are common across the

training data. However, if a model is too generalized, it underfits the training data and does not

capture the relevant features in the data. This results in a model that performs poorly on both

source and target data, as it is unable to learn the relevant features and relationships in the data.

Therefore, the specialization-generalization trade-off is a fundamental concept in DL and also

known as optimization-generalization dilemma [121]. DNNs can either specialize in fitting to the

training data, leading to high accuracy on the training data but poor generalization to new data, or

generalize better to new data but sacrifice accuracy on the training data. The goal of DL is to find

a balance between specialization and generalization that maximizes performance on both the source

and target domains. Achieving this balance is critical for the success of DNNs, as it determines their

ability to learn from data and make accurate predictions in real-world applications.
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3.2.2 Enabling Deep Learning to Generalize

The use of DL to handle dynamic, and changing conditions of the real world has limitations. To

enable a DNN to handle such conditions it needs to be able to generalize or transfer to novel

domains. Therefore, most approaches either increase the source domain to avoid transfer learning

or incorporate inductive biases, such as those introduced in Section 2.4, into a DNN to handle the

specialization-generalization trade-off.

Scaling the Source Domain: Enabling DL to generalize to novel domains is a quite challenging

task due to the specialization-generalization trade-off. Therefore, one approach to make DNNs

generalizable is scaling the source domain, such that a target domain will already be inside the

source domain and therefore be seen at training time. As described in Section 3.1.2, we assign such

models to the category SDSM. Having such a huge source domain avoids the difficult task of transfer

learning in some sense. Recent methods that use that trick are for example foundation models [122]

of language and vision. Through a self-supervised training task, they enable large-scale training on

a huge amount of data from the Internet.

However, whereas this approach seems to provide good transfer learning results, it is quite de-

bated if such models are leading to better transferable features. One assumption is that these models

learn better-generalized features through a self-regularization due to a large amount of training data

and its large variability. Another assumption is that these large models just remember the training

data and that the huge domain is just a way to avoid the transfer learning problem of DL since the

model has already seen data from the target domain. Therefore, it needs to be further investigated

if scale can improve the transfer learning capabilities of DL.

Usage of Inductive Biases: To enable models of the category MDSM, as described in Sec-

tion 3.1.2, to transfer, the learning process from unstructured data needs to be influenced. Consis-

tent with the specialization-generalization trade-off, there are many possible solutions to a learning

problem that exhibit equally performance on the training data. Given a finite training set, the only

way to generalize to new input configurations is then to rely on some assumptions about the preferred

solution [83]. These assumptions that guide the learning process are called inductive biases.

Inductive biases are non-learnable parts of the DNN that cause the learning algorithm to favor

solutions with certain properties. In Section 2.4 we provided an overview of the inductive biases of

DL. Inductive biases occur in various parts of the DNN, such as in the input data, augmentation

methods, architecture, training objectives, labels, and optimization methods. They include assump-

tions such as function smoothness, translation invariance for CNNs, and a hierarchical organization

of concepts as a general assumption of DL [4].

Inductive biases are mostly chosen by human intuition. For instance, if the target domain consists

of just grayscale images, it is helpful to provide grayscale data augmentation to the source domain
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data when learning the DNN that should be applied to the target domain. Another strong inductive

bias for vision is the usage of convolutional layers in CNNs, which assume for instance translation

invariance such that objects and features retain their semantic meaning no matter in which part of

the image they appear. Using such inductive biases DL can learn more efficient and more robust

models in the real world. An important question for AI research aiming at human-level performance

then is to identify relevant inductive biases for the real world. However, there is still much work to

be done to improve our understanding of inductive biases and how to incorporate them into DL [83].

In summary, incorporating inductive biases into DL can help to enable transferability and gen-

eralizability. Inductive biases are parts of DNNs that are human-defined and not learned. They are

highly dependent on human experts and their prior knowledge and can be seen as constraints on

how DL learns from unstructured data. However, there is still much work to be done to improve our

understanding and incorporate these biases effectively. Achieving a balance between specialization

and generalization requires careful consideration of inductive biases and is essential for the success

of DNNs in real-world applications.

3.3 Transfer Learning using Knowledge Graphs

Transfer learning using KG relates to the task of improving the transfer learning capabilities of

DL using prior knowledge encoded in a KG. We introduce the effect of prior knowledge on human

cognition and relate important concepts to the development of AI systems and transfer learning.

Further, we show that prior knowledge can be divided into explicit and implicit knowledge and

explain the different types in detail.

To use prior knowledge in combination with DL we suggest using KGs as a representation format

and describe why KGs are well suited to encode prior knowledge for transfer learning. Hereby, we

argue that KGs are ideal for representing prior knowledge since they are able to encode both, explicit

and implicit knowledge. Therefore KGs can suit as an interface to explicit human knowledge, as

well as to implicit embeddings learned from data through a KGE.

The theoretical framework for transfer learning using KG can be defined as follows:

Given a source domain DS, a target domain DT , and their corresponding tasks TS and TT

as well as the prior knowledge represented by a KG and embedded into a latent space hs,

the objective of a transfer learning task using a KG is to learn a probability distribution

PKG(YT |XT ,KG) with the information gained from DS and TS where DS 6= DT or TS 6= TT

and the prior knowledge given by KG.
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3.3.1 Types of Prior Knowledge

The concept of prior knowledge in human cognition has been used in various fields of study, such

as psychology, education, and cognitive science, among others. Prior knowledge refers to knowledge

that an individual has acquired before encountering a new problem or situation. It is the knowledge

and experience that a person brings to a new situation that can be used to aid in learning or problem-

solving. Prior knowledge has typically been shown to facilitate learning [123], increase the rate at

which novel categories are learned [124], decrease prediction errors during learning, and make it

possible for learners to acquire categories with a complex relational structure [125]. Prior knowledge

can play an important role in learning and problem-solving by providing a foundation on which new

knowledge can be built [125, 126] It is assumed that prior knowledge interacts with other variables

to influence learning outcomes [127].

In the context of AI and DL, prior knowledge also refers to any knowledge that exists about the

problem domain before the learning process begins [4]. In this context, the term prior knowledge is

also commonly used to refer to knowledge that can be leveraged to improve the performance of DL.

Consistent with theories of human cognition, prior knowledge is not only important to solve transfer

learning problems, but also a way to influence the way a DNN learns from unstructured data [128].

As seen in Section 3.2, most transfer learning approaches from DL address the domain shift

problem by reducing dependence on source domain data through inductive biases. As shown in

Section 3.2.2 inductive biases can be seen as a specific type of prior knowledge, since they influence

what kind of features are learned on the training data. However, choosing the right inductive bias for

a problem is a complicated and error-prone process [83]. Therefore, DL approaches also incorporate

other types of prior knowledge to solve the transfer learning issue of DL. Prior knowledge can be

divided into explicit and implicit knowledge [129].

Explicit Knowledge: Explicit knowledge refers to knowledge that is codified, recorded, or other-

wise formalized in some tangible form that can be easily transmitted and communicated to others.

It is the knowledge that can be articulated and expressed through language or other symbols, and

is often easily documented, stored, and shared. We refer to explicit knowledge as a form of sym-

bolic knowledge, that is represented and processed using symbols, such as words, numbers, or other

abstractions. Explicit knowledge can be constructed, is intuitive, compositional, and controllable

by human experts. Examples of explicit knowledge include information from textbooks, technical

specifications, scientific articles, and other written or visual materials that convey information in a

structured and systematic way often represented in graphs.

Implicit Knowledge: Implicit or tacit knowledge is often deeply ingrained in an individual’s

cognitive and experiential background and can be difficult to communicate to others through formal

means. It is difficult to articulate or codify and is often based on personal experience, intuition,
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Prior Knowledge
Explicit Knowledge Implicit Knowledge

KGE Method

KG KGE

Classes | Properties | Entities

Graph-based Relationships Vector-based Relationships

ContextualIntuitive
Compositional Embedded

SubsymbolicSymbolic

Figure 3.3: A knowledge graph (KG) can represent prior knowledge explicitly and implicitly. This
makes a KG an ideal representation format for prior knowledge, as it interfaces with explicit human
knowledge through its knowledge graph embedding (KGE) and connects to implicit embeddings of
data from other modalities, such as vision or language.

and informal interactions. Implicit knowledge is therefore embedded knowledge based on a specific

context. As shown in Section 2.3 it can be extracted from data and stored using feature extrac-

tors, forming embeddings of different modalities using specific contexts. These embeddings are a

dense representation of contextual knowledge illustrated through vectors in high-dimensional space.

Therefore, implicit knowledge is able to encode a large amount of information in an efficient way.

3.3.2 Knowledge Graph as a Representation Format

As introduced in Section 2.2.3, KGs are an effective representation format for capturing prior knowl-

edge. Through the development of KGE methods, they are able to represent both implicit and

explicit types of knowledge as depicted in Figure 3.3. To encode explicit prior knowledge, KGs use

a graph-based representation format, where classes, properties, and entities are represented through

nodes and their relationships through edges. These graphs allow for interaction with human ex-

perts and include underlying concepts to unify data. Due to their established tool set, KGs provide

excellent preconditions for modeling, reusing, reasoning, and interlinking all sorts of heterogeneous

knowledge. KGs can include domain knowledge, from human experts, taxonomies, books, or other

sources of data, which can be used to model classes, entities, their properties, and relationships.

Since KGs offer a natural interface for encoding, modifying, and using explicit prior knowledge,

they allow for a more comprehensive understanding of the domain and enable effective knowledge

management.
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Moreover, KGs are also able to represent their knowledge using an implicit format. With the

recent development of KGE methods that transform KGs into vector spaces, the symbolic encoded

prior knowledge of a KG can be transformed into an implicit representation. Therefore KGEs can be

linked to implicit embeddings of data from other modalities, such as vision or language. In contrast

to visual or language embeddings that are based on the collection of the underlying training data,

KGE methods provide more flexibility to manually influence how the training data, i.e., the KG,

is built and how the implicit knowledge is formed. As shown in Section 2.3.2, there are many

different KGE methods that influence how knowledge is represented in its implicit form. Implicit

knowledge of a KG, i.e. KGE, is therefore a form of knowledge represented in vector space that

reflects similarities between different entities and classes based on their positions in an embedding

space. Hereby, KGEs encode the knowledge about relationships of objects due to the similarities

and distances in the embedding space.

In summary, A KG can represent prior knowledge explicitly and implicitly. This makes a KG

an ideal representation format for prior knowledge, as it interfaces with explicit human knowledge

through the KG and connects to implicit embeddings of data from other modalities, such as vision

or language, through its KGE. KGs are flexible, interpretable, and modifiable, and come with an

established toolset to build, reason, interact, and embedding heterogeneous sources of information.

Therefore, KGs can be considered an ideal representational format for encoding prior knowledge for

visual transfer learning.

3.4 Resources for Visual Transfer Learning using KG

The field of visual transfer learning using KG is fairly new, and only a few datasets exist that can

be used out of the box. Therefore, many visual transfer learning approaches use datasets that just

contain a type of prior knowledge, such as attributes or descriptions. This prior knowledge can

be transformed into a KG representation. Since building meaningful KGs from scratch can be a

challenging task and KGs are designed on the principle of reusability, it is possible to reuse or enrich

generic KGs also for related tasks [41].

Therefore, this section first provides an overview of generic KGs that can be used with prior

knowledge in Table 3.1. Second, we provide in Table 3.2 a list of datasets for knowledge-based ML

and visual transfer learning. We categorize these datasets based on their modality of knowledge

into: a) Attribute-augmented image datasets with textual image or class attribute descriptions;

b) Language-augmented image datasets, providing additional textual descriptions of the images;

c) Knowledge graph-augmented image datasets, containing metadata of class relations in a KG;

d) Image datasets without prior knowledge, used for zero-shot learning and domain generalization

tasks.
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WordNet DBPedia Wikidata ConceptNet CSKG
#triples 2,6M 1,1B 14,5B 34M 4,6M

describes words,
concepts

instances,
concepts

instances,
concepts

objects,
actions,
relations

objects,
actions,
relations

type thesaurus encyclopedia encyclopedia commonsense commonsense
representation directed hypergraph hyper-rel directed hyper-rel

external sources - - -

WordNet
DBpedia
OpenCyc
Wiktionary

WordNet
Wikidata

ConceptNet

generation manual crowdsourced crowdsourced crowdsourced automatic

ZSL use cases [130, 131, 132]
[133, 134, 135]

[136] - [137] -

DG use cases
[138, 139, 140]
[141, 142, 143]

[144]
- - [145] -

VQA use cases - [146] - - -

release date 1985 2007 2012 2017 2021
version 2011-06 (3.1) 2022-09 2023-01 2020-05 (5.8) 2020-12

example lion.n.01

hypernymy

dbr:Lion

dbp:description

wd:Q140

wdt:P279

/c/en/lion/n

/r/RelatedTo

/c/en/lion/n

/r/RelatedTo

Table 3.1: We provide an overview of available generic KGs and compare them based on distinct
properties, e.g. size, content, and representation type. We also present relevant work from domain
generalization (DG), zero-shot learning (ZSL), and visual question answering (VQA), which already
use the KGs.

3.4.1 Generic Knowledge Graphs

Over the years, several open-access KGs have been created by various community initiatives. These

graphs contain universal knowledge which potentially can be used as prior knowledge in various

scenarios since KGs can be interlinked or reused for related tasks. Generic KGs differ in terms of

size, content, and representation. Their size ranges between thousands and billions, their content

varies from domain-specific to commonsense knowledge, and their representation is either manually

curated, crowdsourced or automatically extracted from the web.

In the following, we compare some of the most common generic KGs summarized in Table 3.1.

However, for deeper insights and more KGs, we refer to the survey of Färber et al. [147].

WordNet [148]: Wordnet is a lexical database of English words, which organizes its words into

synonym sets and organizes these sets into a hierarchy. Since WordNet 3.1 is frequently used

in visual transfer learning scenarios with prior knowledge, is available in RDF, and encodes rich

semantic concepts, we define it as a generic KG for the scope of this work. WordNet, first released
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in 1995, is an online lexical reference system for English nouns, verbs, and adjectives which are

organized into synonym sets (synsets), each representing one underlying lexical concept. WordNet

superficially resembles a thesaurus, in that it groups words based on their meanings. There are 117

thousand synsets, each synset is linked with other synsets by super-subordinate relations, forming

a hierarchical structure of instances, concepts, and categories whereas all are linked with the root

node, entity. Since WordNet is manually built, it is the most structured and accurate, but also the

smallest and less detailed KG.

DBPedia [149]: DBPedia is a structured data version of Wikipedia. It is a community effort to

extract structured information from Wikipedia and to make this information available on the Web.

DBpedia allows you to ask sophisticated queries against datasets derived from Wikipedia and to

link other datasets on the Web to Wikipedia data. DBPedia answers questions like ”Give me the

birthplace of Albert Einstein?” or ”Give me all movies Leonardo Di Caprio has starred in?”. The

underlying structure of DBpedia is a hypergraph model in Section 2.2.3 where facts are represented

via binary and n-ary relationships. The English version of the DBpedia knowledge base describes

4,58 million things, out of which 4,22 million are classified in a consistent ontology, including 1,445

thousand persons, 735 thousand places, and 411 thousand creative works 1. However, DBPedia

is known to be messier than other generic KGs, where the vocabulary only consists of titles of

Wikipedia articles.

Wikidata [150]: Wikidata is a KG, built collaboratively by humans or automated agents. It

encapsulates facts about the world entities organized in a form of complex statements. The basic

structure comprises items defined with a label and several aliases. In addition, Wikidata contains

some sense of basic commonsense knowledge [151] which allows for performing several sophisticated

downstream tasks based on reasoning capabilities. The facts within Wikidata are represented as

a hyper-relation graph in Section 2.2.3, where relations are enriched with additional information

known as qualifiers [79]. These qualifiers enable the disambiguation of complex facts about the

same entities in different contexts. Currently, Wikidata has about 101 million items, e.g. 23 million

scholarly articles, six million of them are humans, five million astronomical objects, and two million

administrative entities 2.

ConceptNet [152]: The ConceptNet graph encodes commonsense knowledge about everyday ob-

jects. It is a freely-available semantic network, designed to help computers understand the meanings

of words that people use. ConceptNet originated from the crowdsourcing project Open Mind Com-

mon Sense, which was launched in 1999 at the MIT Media Lab. Its knowledge is collected from

many sources including resources created by experts, crowdsourcing, and games with a purpose.

1https://wiki.dbpedia.org/about, accessed on 27 January 2023
2https://www.wikidata.org/wiki/Wikidata:Statistics, accessed on 27 January 2023

https://wiki.dbpedia.org/about
https://www.wikidata.org/wiki/Wikidata:Statistics
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ConceptNet connects words and phrases of natural language. It was initially designed to represent

the general knowledge involved in understanding language, improving natural language applications

by allowing the application to better understand the meanings behind the words people use. Infor-

mation within ConceptNet is modeled as a directed labeled graph in Section 2.2.3, where concepts

are connected via binary relationships. It contains approximately 34 million facts 3.

CSKG [153]: CSKG is a commonsense knowledge graph initially designed to use heterogeneous

sources for question answering and natural language inference tasks. The KG unifies seven generic

KGs into a single representation. It integrates the commonsense source ConceptNet, the visual

commonsense source Visual Genome, the procedural source ATOMIC, the general-domain source

Wikidata, and three lexical sources, WordNet, Roget, and FrameNet. CSKG is represented as a

hyper-relational graph 2.2.3, by using the KGTK data model. Moreover, for CSKG text and graph

embeddings are provided, showing that CSKG is well-connected and that its embeddings provide a

useful entry point to the graph. The KG can be used for generalizable downstream reasoning and

for pre-training of language models and is publicly available.

3.4.2 Image Datasets

Image datasets are used to train and test models for various CV tasks, such as image classifica-

tion, object detection, or semantic segmentation. To enable the models to generalize many datasets

provide additional information to the images, e.g. attributes or descriptions. In the scope of this

work, we refer to that additional data as prior knowledge. While some datasets build on the struc-

tures of earlier knowledge bases, such as ImageNet on WordNet, others have additional attributes

or descriptions for their images, such as AwA or MS-COCO.

We provide a categorization of visual datasets in Table 3.2. We categorize the datasets in terms

of their modalities, their task, the type of prior knowledge they provide, and their release date.

Attribute-Augmented Image Datasets: We define attribute-augmented image datasets as im-

age datasets with additional textual image and class attributes. In particular, every image contains

attributes that describe the context in or even beyond the visual information.

AwA [154]: The Animals with Attributes dataset consists of over 30 thousand images with

pre-computed reference features for 50 animal classes, for which a semantic attribute annotation

is available from studies in cognitive science. However, as the AWA images do not have a public

copyright license, only some computed image features, i.e. SIFT [51], DECAF [155], VGG19 [156]

of the AwA dataset are publicly available, rather than the raw images. Since feature learning of

3https://conceptnet.io
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Modality Task Dataset prior Knowledge Released

Attributes
+

Images

ZSL

AwA text attributes for img/cls 2009
AwA2 text attributes for img/cls 2019
SUN text attributes for img/cls 2012
CUB text attributes for img/cls 2010

DG Large-Scale Car text attributes for img/cls 2017

Language
+

Images
Other

MS-COCO text denotation graph 2014
Flickr30K text denotation graph 2015

SBU Captions text descriptions for img 2011
Conceptual Captions text descriptions for img 2018

Knowledge Graph
+

Images

ZSL
Visual Genome flat concept graph 2017
Mini-ImageNet hierarchical concept graph 2016

Tiered-ImageNet hierarchical concept graph 2018
DG ImageNet hierarchical concept graph 2009-2015

Images

ZSL
CIFAR-FS N/A 2016

FC-100 N/A 2016

DG
Office-31 N/A 2010

Office-Home N/A 2016
VisDA2017 N/A 2017

Table 3.2: Datasets for visual transfer learning and knowledge-based ML are summarized due to
type of knowledge, task, prior knowledge, and their release date. We refer to tasks such as zero-
shot learning (ZSL), domain generalization (DG), and image classification, object detection, object
segmentation, and image captioning (Other).

images is an important part of DL and modern CV, this dataset is of limited use for end-to-end

learned visual models.

AwA2 [157]: Animals with Attributes 2 is a dataset for benchmarking transfer-learning al-

gorithms, in particular for attribute-based classification and zero-shot learning. It served as a re-

placement for the original Animals with Attributes (AwA) dataset, with available raw images with

public licenses from Flickr. The dataset has the same class structure and almost the same features.

It consists of 37322 raw images of 50 animal classes. In alignment with AwA, the dataset provides

pre-extracted feature representations for each image. AwA2 also provides a category-attribute ma-

trix that contains an 85-part attribute vector for each category, e.g., color, stripes, fur, size, and

habitat. Using the shared attributes, it is possible to transfer information between different classes.

CUB-200-2011 [158]: The CUB-200 [159] dataset and its extension the Caltech-UCSD-Birds

200-2011 (CUB-200-2011) [158] dataset, are datasets describing 200 bird species. CUB-200-2011 has

roughly double the number of images per class than CUB-200 and new part location annotations. It

is fine-grained and medium-scaled concerning both the number of images and the number of classes,

i.e. 11,788 images from 200 different categories, e.g., types of birds, annotated with 15 part locations,

312 attributes, and one bounding box per image. Akata et al. [160] introduces the first zero-shot
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split of CUB with 150 training, 50 validation, and 50 test classes. It is also explicitly stated that

the images in the dataset overlap with the images in ImageNet. Therefore, the results of transfer

learning must be carefully checked when using networks previously trained with ImageNet or with

images from Flickr, since the test set of CUB may overlap with the training set of the original

network.

SUN Attribute Database [161]: SUN is a large-scale scene attribute database for high-level

scene understanding and fine-grained scene recognition. It is crowdsourced by humans to find a

taxonomy of 102 discriminative attributes. Next, the SUN attribute database was created on top

of the fine-grained SUN categorical database. The attribute database consists of 14,340 images

coming from 717 classes of scenes annotated with 102 attributes. The dataset is used to train

attribute classifiers and evaluate how well these relatively simple classifiers can recognize a variety

of attributes related to materials, surface properties, lighting, functions and affordances, and spatial

envelope properties. Lampert et al. [162] use 645 classes of SUN for training, 65 classes for validation,

and 72 classes for testing.

Fine-grained Car Dataset [163]: The Fine-grained Car Dataset originally consists of 2,657

classes and 700 thousand images. They refer to images from craigslist.com, cars.com, and ed-

munds.com as web images and those from Google Street View as GSV images. In addition to the

category labels, each class is accompanied by metadata such as the make, model body type, and

manufacturing country of the car. The dataset was adapted to domain generalization using a subset

of 170 classes and 71,030 images [139]. The image category web images is used as the source domain,

whereas the category GSV images suits as the target domain. The cars in web images are large and

typically unoccluded, whereas those in GSV are small, blurry, and occluded.

Language-Augmented Image Datasets: We define datasets that provide context through tex-

tual descriptions in addition to the image as language-augmented image datasets. With the rise

of multi-modal foundation models these datasets have increased their visibility recently. Besides

the use of raw text descriptions, datasets have evolved that represent images and texts in a unified

denotation graph.

MS-COCO [164]: MS-COCO includes images of complex everyday scenes with common ob-

jects in their natural context. It contains a total of 2.5 million labeled instances of 91 object types, in

328 thousand images. In addition, each image is described by five different human-written captions,

e.g., ”two men on motorcycles next to a stop sign.”, ”a motorcycle driver wearing a strange helmet

at stop sign”, or ”a rider on a chopper with a helmet in the shape of a black skull with spikes”. MS-

COCO is used for class detection, instance detection, and instance segmentation. Recently, Zhang et

al. [165] released an additionally learned denotation graph for MS-COCO, which structures text and
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images into a combined representation. In addition, MS-COCO can be used for zero-shot learning

tasks using the provided splits of unseen and seen class categories [166].

Flickr30K [167]: The Flickr30K is a standard benchmark for sentence-based image descrip-

tion and was originally designed for the tasks of image-based and text-based retrieval. The dataset

contains 31 thousand images collected from the Flickr website, with five human-annotated text de-

scriptions per image, and 276 thousand manually annotated bounding boxes. Each image is described

independently by five annotators who are not familiar with the specific entities and circumstances,

resulting in high-level descriptions such as “Three people setting up a tent”. All images are under

the Creative Commons license. Moreover, they released a denotation graph for the dataset [165].

SBU Captions [168]: SBU Captions was originally designed for the purpose of generating

text descriptions for images. It contains a large number of images from the Flickr website, where

the images contain user-associated captions. The dataset was automatically crawled and filtered

to produce a data collection containing over one million images with descriptive text descriptions.

These text descriptions generally work similarly to captions and usually relate directly to some

aspect of the visual image content, such as ”Street dog in Lijiang”, ”Fresh fruit and vegetables at

the market in Port Louis Mauritius”, or ”The sun was coming through the trees while I was sitting

in my chair by the river”.

Conceptual Captions [169]: Conceptual Captions is a dataset for automatic image caption-

ing provided by Google. It consists of about 3.3 million images equipped with text descriptions. In

contrast to the curated style of the MS-COCO images, Conceptual Caption images and their raw de-

scriptions are collected from the web. Therefore, it is an order of magnitude larger than MS-COCO

and represents a wider variety of both images and image caption styles. More precisely, the raw

text descriptions are taken from the Alt-Text of the HTML attribute associated with web images.

In general, they automatically extracted, filtered, and transformed image and text descriptions, to

achieve a balance between cleanliness, informativeness, fluidity, and learnability of the resulting cap-

tions 4. Additionally, Ng et al. [170] provided machine-generated labels for a subset of two million

images from the Conceptual Captions training set.

Knowledge Graph-Augmented Image Datasets: We define KG-augmented image datasets

as datasets that combine images with prior knowledge encoded in a KG. This prior knowledge in

the KG can describe object and class relationships, higher-level concepts, or taxonomies. Therefore,

every image of the dataset is connected to a graph representation that provides additional context

for the understanding of the scene.

4https://ai.google.com/research/ConceptualCaptions/, accessed on 27 January 2023

https://ai.google.com/research/ConceptualCaptions/
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Visual Genome [171]: Visual Genome provides a flat concept graph model of object rela-

tionships. These relationships describe the information that occurs in the image or even go beyond

the information that can be extracted from the image. Visual Genome contains images with dense

annotations of objects, attributes, and relationships modeled in a graph. More precisely, the dataset

consists of over 100 thousand images, with each image containing an average of 21 objects, 18

attributes, and 18 pairwise relationships between objects. It summarizes objects, attributes, re-

lationships, and noun phrases in region descriptions and map question answer pairs to WordNet

synsets. Every image can contain multiple region graphs condensed of objects, attributes, and re-

lationships, e.g., ”stop sign is octagonal”, ”stop sign on the side of road”, or ”An old-fashioned car

stopped in the street”. All region graphs combined form a scene graph that describes all objects

and their relations in the image. For zero-shot learning a split with 608 categories is considered for

classification [166, 172]. Among these, 478 are seen categories, and 130 are unseen categories. This

results in 54,913 training images and 7,788 test images. The relationship graph has 6,396 edges.

ImageNet [173]: The ImageNet Large-Scale Visual Recognition Dataset and Challenge is a

benchmark in object category classification and detection on hundreds of categories and millions of

images. The challenge has been run annually from 2010 to 2015. It contains one thousand classes

and more than 1.2 million train, and 100 thousand test images per class for object classification.

For the task of object detection, it contains one thousand classes and more than 450 thousand

training images with 470 thousand bounding boxes, 50 thousand validation images with 55 thousand

bounding boxes, and 40 thousand test images per class.

There are several derivatives of ImageNet with different appearances, such as ImageNetV2 [174],

ImageNet Sketch [175], ImageNet-Vid [176], ImageNet Adversarial [177], ImageNet Rendition [178],

and such with synthetic distribution shifts, as ImageNet-C [119], and Stylized ImageNet [179]. More

recently, a domain generalization scenario has been created in which ImageNet-trained models are

tested on various ImageNet derivatives to evaluate the robustness of the models to distribution shift.

Mini-ImageNet [180]: Mini-ImageNet is a derivative of the ImageNet dataset and consists

of 60 thousand color images of size 84 × 84 with 100 classes, each having 600 examples. Since

this dataset fits in memory on modern computers, it is very convenient for rapid prototyping and

experimentation. These 100 classes are divided into 64 train, 16 val, and 20 test classes for the

zero-shot learning task.

Tiered-ImageNet [181]: Tiered-ImageNet is a subset of the ImageNet dataset. It groups

classes into broader categories corresponding to higher-level nodes in the ImageNet hierarchy. There

are 34 categories in total, with each category containing between 10 and 30 classes. For zero-shot

learning, they split the categories into 20 training, six validation, and eight testing categories. This
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ensures that all of the training classes are sufficiently distinct from the testing classes, unlike Mini-

ImageNet.

Image Datasets without prior Knowledge

This section introduces transfer learning image datasets that have been originally created without

prior knowledge. We list them because adding prior knowledge from generic KGs can be beneficial.

Zero-Shot Learning Datasets without prior Knowledge: We introduce image datasets with-

out prior knowledge that have been applied mainly for zero-shot learning or few-shot learning tasks.

As introduced in Section 3.1.1, zero-shot learning is part of an output domain change scenario.

CIFAR-FS [182]: CIFAR-FS is a few-shot learning dataset, randomly sampled from CIFAR-

100 [183]. CIFAR-100, as well as CIFAR-10 [183], are labeled subsets of the 80 Million Tiny Images

Dataset [184], which was created in 2006 and withdrawn in 2020 due to inappropriate content.

It contains 53,464 different nouns copied directly from Wordnet. Those terms were then used to

automatically download images of the corresponding noun from Internet search engines and filters

at the time to collect the 80 million images. CIFAR-FS contains 600 images for each of the 100

classes, which are further grouped into 20 superclasses. The limited original resolution of 32×32

makes the dataset well-suited for fast prototyping.

FC100 [185]: Fewshot-CIFAR100 is also a derivative of the CIFAR-100 dataset and provides

another few-shot learning split of the full CIFAR-100 dataset. The dataset is split into superclasses,

rather than into individual classes to minimize the information overlap. Thus the train split contains

60 classes belonging to 12 superclasses, the validation and test contain 20 classes belonging to five

superclasses each.

Domain Generalization Datasets without prior Knowledge: We provide a summary of

image datasets without prior knowledge that have been applied mainly for domain generalization or

domain adaptation tasks. As introduced in Section 3.1.1, domain generalization is part of an input

domain change scenario.

Office-31 [186]: Office-31 is an object recognition dataset that contains 31 categories and

three domains, that is, Amazon (A), Webcam (W), and DSLR (D). These three domains have

2817, 498, and 795 instances, respectively. The images in Amazon are product images taken from

amazon.com, the images in Webcam are the low-resolution images taken by web cameras, and the

images in DSLR are the high-resolution images taken by DSLR cameras. In the experiments, every

two of the three domains are selected as the source and the target domains, which results in six tasks.

The evaluation contains all six cross-domain tasks: A→D, A→W, D→A, D→W , W→A,W→D.
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Office-Home [187]: Office Home contains 15,585 images of 65 categories, collected from four

domains: a) Art: 2421 artistic depictions of objects in the form of sketches, paintings, ornamentation,

etc.; b) Clipart: a collection of 4379 clipart images; c) Product: 4428 images of objects without a

background, akin to the Amazon category in the Office dataset; d) Real-World: 4357 images of

objects captured with a regular camera. The evaluation contains all 12 cross-domain tasks.

VisDA2017 [188]: The 2017 Visual Domain Adaptation Dataset and Challenge is focused

on the simulation-to-reality shift and has two associated tasks: image classification and image seg-

mentation. The goal in both tracks is to first train a model on simulated, synthetic data in the

source domain and then adapt it to perform well on real image data in the unlabeled test domain.

VisDA2017 is the largest dataset for cross-domain object classification, with over 280 thousand im-

ages across 12 categories in the combined training, validation, and testing domains. The image

segmentation dataset is also large-scale with over 30 thousand images across 18 categories in the

three domains.

3.5 Summary

In this chapter, we introduced the task of transfer learning using prior knowledge. Therefore, we

described the fundamentals of transfer learning and outlined different transfer learning scenarios

based on the type of domain change. We categorized domain generalization and domain adaptation

as tasks with an input domain change and zero-shot learning and few-shot learning as tasks with an

output domain change. We provided insights into why DL suffers from domain-changing scenarios

and introduced the specialization-generalization trade-off. In addition, we described how scale and

inductive biases are used to enable DL methods to transfer. With interpreting inductive biases as

infusion techniques for human knowledge we relate it to the idea of transfer learning using prior

knowledge. We introduced transfer learning using KG as a promising variant of transfer learning

using prior knowledge, since KGs are well suited to represent any kind of human understandable

prior knowledge in explicit and implicit form. Finally, we provided relevant resources for visual

transfer learning using KG, including generic KGs and datasets for visual transfer learning using

prior knowledge.



Chapter 4

Combinations of Knowledge

Graphs and Deep Learning

In recent years, the combination of KG and DL has gained increasing popularity for CV tasks.

Whereas DL can learn rich representations from unstructured image data, KGs are well-known

for representing explicit prior knowledge. Approaches of KG-DL aim to leverage the structured,

human-engineered knowledge of KGs to enhance data-driven DL on images. However, integrating

these two modalities of knowledge is not straightforward. While KGs encode their knowledge in

graph-based explicit representations, DL approaches extract their knowledge and store vector-based

representations in an implicit form.

As shown in Section 3.3.2, KGs are able to transform their explicit graph-based knowledge into

implicit vector-based format. Therefore, KGE methods creates new opportunities for the field of

combining KG and DL, by converting the KG into KGE hs, which enables the usage of linear

operations and a combination with DNNs.

A common method for incorporating implicit prior knowledge encoded of a KGE with implicit

knowledge of a DNN is to use a training objective. The training objective combines the semantic

embedding hs from the KGE with the visual embedding hv created by the DNN. In this chapter,

we introduce three distinct types of joint embeddings: a) semantic-visual embedding hs,v, where

semantic data is embedded using hv as an objective; b) visual-semantic embedding hv,s, where

visual data is embedded using hs as an objective; and c) hybrid embedding hh, where both semantic

and visual data are embedded using a combination of hs and hv as an objective. Therefore, we

collect approaches from different fields and different tasks to get a complete overview of KG-DL

combinations. We provide a comprehensive summary and categorization of these approaches with

respect to their integration of prior knowledge from the KG into the DNN.

55
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In this chapter, we address the following research question:

RQ2: What are possible ways of integrating the prior knowledge encoded in a KG into the

DL pipeline?

Our main contribution based on RQ2 is as follows:

• Categorization of methods combining KG and DL for visual transfer learning.

The work of this chapter is mainly based on the following publication:

• Sebastian Monka, Lavdim Halilaj, and Achim Rettinger. 2022. A survey on visual transfer

learning using knowledge graphs. Semantic Web 13, 3 (2022), 477–510.

The chapter starts with Section 4.1, that provides an overview of the methodology we used to

conduct the work in this chapter, such as the strategy for literature search and selection of relevant

works for the overview. Furthermore, in Section 4.2, a categorization is proposed based on four

different categories of how a KG can be combined with a DL pipeline:

1) Knowledge Graph as a Reviewer - where the KG is used for post-validation of a visual model;

2) Knowledge Graph as a Trainee, where the KG is embedded into hs,v using hv as objective;

3) Knowledge Graph as a Trainer, where the KG with hs is used as an objective to embed images

into hv,s; and

4) Knowledge Graph as a Peer, where the KG with hs is combined with hv to suit as an objective

that embeds both the KG and images into hh.

Since KGE methods have only recently entered the field of visual transfer learning, we also list

related methods forming hs based on other types of prior knowledge in categories 2), 3), and 4).

Other types of prior knowledge are language descriptions or class attributes so that their semantic

features extractor fs(·) differs in the type of input, but not in its architecture. Section 4.3 provides

related work and Section 4.4 concludes the paper with a final summary.

4.1 Methodology

Our objective is to provide a comprehensive overview of how KGs can be used in combination with

DL to solve visual transfer learning tasks. To ensure the quality of the outcome, we followed the

process proposed by Petersen et al. [189, 190] and conducted an initial search on five scholarly

indexing services. We applied inclusion and exclusion criteria on our findings and extended them

based on the snowballing approach [191].
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4.1.1 Literature Search

For the primary search process, we used five scholarly indexing services: Google Scholar1, IEEE

Xplore2, ACM Digital Library3, Scopus4, and DBLP5. To collect relevant literature, we define a

search string using the following strategy:

• Extract major terms from research questions.

• Use synonyms and alternative terms.

• Combine using OR to include synonyms and alternative terms.

• Combine using AND to join the key terms.

As a result, the following major terms related to the concepts are derived: Knowledge Graph, Visual

Transfer Learning, and connect them by a Boolean AND operation. Each term contains a set of

keywords related to the respective concept, connected by a Boolean OR operation. Therefore, the

initial search string was as follows: ((”Knowledge Graph” OR ”Knowledge Graph Embed-

ding” OR ”Semantic Embedding”) AND (”Visual Transfer Learning” OR ”Transfer

Learning” OR ”Zero-shot Learning” OR ”Deep Learning” OR ”Computer Vision”))

4.1.2 Literature Selection and Quality Assessment

After the literature search, we included literature based on the following criteria:

• Studies using visual features.

• Studies using prior knowledge.

Further, we excluded literature based on the following criteria:

• News articles.

• Non-English studies.

• Non-public available studies.

• Duplicate studies.

We reduced the amount of 16,200 studies after applying the inclusion and exclusion criteria

on title and abstract to 17 relevant surveys and 164 studies (1.12%) During full-text reading, it

1https://scholar.google.com
2https://ieeexplore.ieee.org
3https://dl.acm.org
4https://www.scopus.com
5https://dblp.uni-trier.de
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became obvious that further articles should be removed as they were not in the scope based on

the inclusion and exclusion criteria. The remaining articles (106) were used to conduct backward

snowball sampling [191], which led to 22 additional studies. On the set of 128 primary studies, we

conducted a quality assessment on the following questions:

• Does the study provide a solid assessment?

• Are the results plausible?

Thus, we were able to reduce the number of studies to 124. These studies provide the basis for the

chapter and serve to answer the formulated research questions.

4.2 A Categorization of Visual Transfer Learning using KG

Visual transfer learning using KG has proven to be particularly advantageous compared to ap-

proaches without prior knowledge [96, 134]. Since prior knowledge mitigates the sole dependence on

data distribution, it leads to models that are better generalized and thus more robust and applicable

to new domains [128]. Having various kinds of prior knowledge, a KG can serve as a universal knowl-

edge representation. KGs encode the classes either hierarchically, organized in superclasses, or flat,

using relationships to other objects or other classes. Section 2.2.3 presents three distinct modeling

structures with different levels of expressiveness and Section 2.3.2 introduces relevant embedding

methods. All approaches that use a KG in combination with a DNN use the KG to implement

some prior assumptions in the data-driven DL pipeline. A prior assumption induced by the KG is

the definition of relationships between objects/classes so that objects/classes can borrow statistical

strength from other related objects/classes in the graph. These priors give the CV process a struc-

ture that allows making better predictions even when visual data is sparse or erroneous. However,

there are several ways the prior knowledge of a KG can be induced into a DNN.

This section provides a categorization of visual transfer learning approaches that combine KGs

with the DL pipeline. As shown in Figure 4.1, we categorize the field of visual transfer learning

using KG into:

1) Knowledge Graph as a Reviewer - where the KG is used for post-validation of a visual model;

2) Knowledge Graph as a Trainee, where a semantic-visual embedding hs,v is learned using a visual

embedding hv as objective;

3) Knowledge Graph as a Trainer, a visual-semantic embedding hv,s is learned using a semantic

embedding hs as objective; and

4) Knowledge Graph as a Peer, where a hybrid-embedding hh is learned using a combination of

semantic embedding hs and a visual embedding hv as objective.

Since KGE methods have only recently entered the field of visual transfer learning, we also list related

methods forming hs based on other types of prior knowledge in categories 2), 3), and 4). Other
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Figure 4.1: Visual transfer learning using KG is divided into four categories based on the role of the
KG: 1) Knowledge Graph as a Reviewer ; 2) Knowledge Graph as a Trainee; 3) Knowledge Graph as
a Trainer ; and 4) Knowledge Graph as a Peer. Each of the categories can be further separated into
transformation models or feature extractors.
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Category Sub-Category Output Domain
Change

Input Domain
Change

Other

Knowledge Graph
as a Reviewer

[154], [192], [131],
[132], [172]

[139], [193] [194], [138], [140],
[195], [196], [136],
[143]

Knowledge Graph
as a Trainee

Semantic-Visual
Transformation
Model

[197], [198]

Semantic-Visual
Features Extrac-
tor

[134], [199], [137],
[141], [200], [135],
[201], [202], [203]

[204]

Knowledge Graph
as a Trainer

Visual-Semantic
Transformation
Model

[160], [205], [96],
[99], [206], [207],
[208]

[209]

Visual-Semantic
Features Extrac-
tor

[210] [211], [86] [212]

Knowledge Graph
as a Peer

Hybrid
Transformation
Model

[142], [213], [214],
[215], [216], [217],
[218], [219]

[213] [220], [221], [222],
[223]

Hybrid
Features Extrac-
tor

[224] [225]

Table 4.1: Categories of KG-DL combinations and their tasks. Output domain change refers to cat-
egory zero and few-shot learning, input domain change refers to the category domain generalization
and adaptation, and other relates to object classification, object detection, and object segmenta-
tion on source task and domain only. Note: All approaches using related representations of prior
knowledge instead of knowledge graphs are highlighted in red.

types of prior knowledge are language descriptions or class attributes, so that their semantic features

extractor fs(·) differs in the type of input, but not in its architecture, as described in Section 2.3.2.

We describe the categories and their approaches in detail and discuss their field of application

and their properties. A summary of all approaches and their respective transfer learning task is

given in Table 4.1.

4.2.1 Knowledge Graph as a Reviewer

Approaches of the category Knowledge Graph as a Reviewer arrange the visual model and the KG

in sequential order, as depicted in Figure 4.2.

The visual output of a pre-trained DNN or its intermediate feature layers suit as an input to a

graph or graph-based network. Unlike the other categories, the KG as a Reviewer does not learn a

joint embedding space, instead, it uses the KG or its hs to reason over the independent output of a

visual model hv.
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Figure 4.2: Approaches from the category Knowledge Graph as a Reviewer use the KG for post-
validation of a pre-trained DNN or its intermediate feature layers.

Most of the approaches map the output of a visual features extractor fv(·) on the corresponding

input nodes in a hierarchical graph, to enrich the output with inter-class relationships. Lampert et

al. [154] train a support vector machine (SVM) on SIFT features to predict binary AwA dataset

attributes. These class attributes are fed into a hierarchical graph-based network to predict unknown

classes for a zero-shot learning task. Salakhutdinov et al. [194] introduce a hierarchical Bayesian

classification model [226] that learns a tree structure of class and super-class relationships. They use

their learned graph on top of an SVM, which classifies HOG features of images. They show that their

method using a learned graph outperforms a method using a fixed graph based on WordNet6 [148]

and other approaches without hierarchical graph information. Deng et al. [192] proposed the DARTS

algorithm for zero-shot learning. They pre-train an SVM on SIFT features of the ImageNet [130]

dataset and map its classification output to WordNet with a reward and accuracy to maximize

the information gain. Ordonez et al. [138] extend the approach to output human-understandable

entry categories for images. They enrich the output of an SVM-based image classification model with

information from a text-based n-gram language model by mapping both sources to the corresponding

node in the WordNet graph. Rohrbach et al. [131] present propagated semantic transfer (PST).

They use WordNet and attribute vectors from the AwA dataset to perform classification on few-

shot learning classes of ImageNet. PST exploits similarities in visual embeddings of known classes

encoded by an SVM learning a k-Nearest Neighbor (kNN) graph that helps to find relationships

to new classes. Deng et al. [132] propose to use a hierarchy and exclusion (HEX) graph that

exploits hierarchical class relationships of the output of a visual model. HEX graphs allow flexible

specification of relations between labels applied to the same object. To build the graph, they use the

hierarchical structure of WordNet extended with additional specifications and relations to objects,

such as mutual exclusion (e.g., an object cannot be a dog and a cat), overlap (e.g., a husky can be

a puppy and vice versa), and subsumption (e.g., all huskies are dogs). In addition, they proposed

a probabilistic classification model that exploits their HEX graphs and evaluated their approach on

ImageNet, in object classification and zero-shot learning. Gebru et al. [139] use WordNet attributes

to improve fine-grained object classification on the task of domain generalization with the Office-

31 [186] and the large-scale Car dataset [163]. Source and target domain images are fed through a

6https://wordnet.princeton.edu/

https://wordnet.princeton.edu/
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pipeline with two identical CNNs and a classification layer that classifies both the fine-grained classes

and the different attribute types. The Kullback–Leibler divergence is used to compare the predicted

label distributions. Lee et al. [133] propose a graph gated neural network (GGNN) that incorporates

a structured KG based on WordNet and learned edge weights to improve zero-shot learning. First,

an NN is learned that combines the GloVe [227] language embeddings of the class labels and the

pre-trained visual feature vectors of the images as input to the GGNN. Second, the GGNN learns

to propagate the information through the KG and outputs a probability for each node.

Instead of using hierarchical graphs of WordNet and class attributes only, other approaches make

use of flat object or class relationships. Their graph consists of specific real-world configurations

of objects and their appearance. Marino et al. [140] improves fine-grained image classification by

creating a KG using the most common object-attribute and object-object relationships of the Visual

Genome [171] dataset and higher-level semantics from WordNet. The output of a pre-trained,

faster R-CNN [228] object detector is fed into a graph search neural network (GSNN) which reasons

about relationships of the detected objects. The final prediction is a combination of the GSNN

output, the visual embedding, and the detections of the faster R-CNN. Chen et al. [195] propose

an object detection post-processing that connects a local and a global module via an attention

mechanism. The local module is based on a convolutional gated recurrent unit (GRU) and builds

spatial memory of previously detected objects using the class label and its visual embedding. The

global graph-reasoning module consists of two paths, a spatial path that uses a region graph to

connect far detected classes, and a semantic path that uses a KG, based on ADE20K [229] and

Visual Genome, to connect classes with semantically related classes. Jiang et al. [196] extend [195]

with hybrid knowledge routed modules (HKRM) allowing them to be applied on the intermediate

feature representation directly to check the compatibility of prior knowledge with visual evidence in

each image. HKRM can be divided into an explicit knowledge module and an implicit knowledge

module, whereas the former contains external knowledge such as shared attributes, co-occurrence,

and relationships, and the latter is built without explicit definitions and forms a region-to-region

graph with constraints over objects, as spatial knowledge such as layout, size, overlap. Liu et al. [136]

improve object detection by feeding the final object detections into a GCN which is based on object

relationships and learned from MSCOCO dataset [164]. Gong et al. [193] propose a human parsing

agent called ”Graphonomy” that learns a KG on a conventional parsing network. It consists of an

intra-graph reasoning module in form of a GCN whose structure uses semantic constraints from the

human body to transfer knowledge within a dataset due to encoded relationships between nodes,

and an inter-graph reasoning module, that uses handcrafted relations, a learnable matrix, feature

similarities, and semantic similarities, to transfer semantic information between different datasets.

Liang et al. [143] present a symbolic graph reasoning (SGR) layer for semantic segmentation and

image classification. It consists of a module that assigns the visual features of a pre-trained DNN to

corresponding nodes of a KG. Graph reasoning over all previously defined nodes is performed, and a
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Figure 4.3: Approaches that belong to the category Knowledge Graph as a Trainee learn semantic
visual embedding space supervised by a visual embedding. They either learn a) a transformation
function, e.g. MLP, on top of a pre-trained semantic embedding space or b) a semantic-visual
features extractor.

mapping from the symbolic graph information back to the visual feature space. Their graph is based

on an object relation graph from Visual Genome and a hierarchical relation graph from WordNet.

Luo et al. [172] propose a context-aware zero-shot learning framework, where they use a KG to

reason about visual feature vectors generated from an object detection model. By using inter-class

relationships, they improve traditional zero-shot learning techniques on the Visual Genome dataset.

4.2.2 Knowledge Graph as a Trainee

Approaches that belong to this category combine the visual DNN with the prior knowledge of a KG

by learning a semantic-visual embedding hs,v. Unlike the Knowledge Graph as a Reviewer, which

uses the visual embedding hv as input for the KG, approaches from the category Knowledge Graph

as a Trainee use hv as an objective to embed the KG into hs,v.

Figure 4.3 illustrates a conceptual architecture of the Knowledge Graph as a Trainee approach.

To combine visual and semantic information, some approaches either learn a transformation function,

e.g. MLP, on top of a semantic embedding space hs, or apply supervised KGE methods to learn a

semantic-visual features extractor fs,v(·) directly.

Semantic-Visual Transformation Models

As shown in Figure 4.3a, the pre-trained hs is fixed over the whole training process, and an additional

transformation function, e.g. MLP, is learned to transform hs, into the semantic-visual embedding

space hs,v.

Related Approaches using other Prior Knowledge: Rochan et al. [197] used a fixed language

embedding to define relationships between classes, that unknown classes in a zero-shot learning task

can borrow their visual embeddings from a linear combination of known related classes. Zhang et



64 CHAPTER 4. COMBINATIONS OF KNOWLEDGE GRAPHS AND DEEP LEARNING

al. [198] extends the method by suggesting to use the visual space, instead of the semantic space,

as the main embedding space. They claim that this will reduce the hubness problem that occurs in

high dimensions.

Semantic-visual Features Extractors

As illustrated in Figure 4.3b the semantic-visual features extractor fs,v(·) learns to directly transform

the KG into a semantic-visual embedding hs,v using the supervision of the visual embedding space

hv. As described in Section 2.3.2, fs,v(·) is mostly implemented using a supervised KGE method.

Wang et al [134] build a GCN on the structure of WordNet and optimize it to predict ImageNet

pre-trained visual classifiers. Based on the learned relations in the GCN they are able to transform

information into novel class nodes to perform zero-shot learning. A similar principle is used by

Chen et al. [204] for multi-label image recognition. However, instead of using a hierarchical graph,

the approach uses an object-relation graph which reflects the different relations between objects in

a scene. They build their graph based on the occurrence probabilities of different objects in the

MSCOCO dataset since some objects are more likely to occur together. Kampffmeyer et al. [199]

claim that multi-layer GNN architectures, which are required to propagate knowledge to distant

nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each

layer and thereby consequently decrease performance. They propose a dense graph propagation

(DGP) module with direct links among distant nodes to exploit the hierarchical graph structure of

the KG. They tested their approach on zero-shot learning tasks such as the 21K-ImageNet dataset

and AWA2. Gao et al. [137] designed a two-stream GCN (TS-GCN) to perform zero-shot action

recognition (ZSAR). Their GCN architectures are based on the ConceptNet 5.5 KG, which contains

information from various knowledge bases such as WordNet and DBpedia. The first classifier branch

uses the language embedding vectors of all classes as input for a GCN and then generates the

classifiers for each action category. The second instance branch feeds video segments into a DNN

and outputs object scores, which are combined with attribute vectors from the classifier branch using

a post-processing GCN to form an attribute feature space. The final objective is then defined by a

comparison of the attribute feature space and the output of the classifier branch. Peng et al. [141]

propose a knowledge transfer network (KTN), which extends [134] with a vision-knowledge fusion

model. This vision-knowledge fusion model is used to combine the final prediction output of the

GCN with the output of a DNN, as they claim that semantic embeddings and visual embeddings are

complementary and therefore cannot be combined with a single inner product. They pre-train their

visual feature learning module using cosine similarity on image data, use a subgraph of WordNet for

their knowledge transfer module, and language embeddings of the class labels as the initial state of

the nodes of the GCN. Chen et al. [200] present the knowledge graph transfer network (KGTN). The

knowledge graph transfer module incorporates a GGNN, which supports a knowledge transfer of

classes through a KG. To train GGNN, they fix the weights of a pre-trained visual features extractor
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and examine three different similarity metrics, such as inner product, cosine similarity, and person

correlation coefficient, to compare the output of the DNN and the GGNN. They show that the

accuracy of the model benefits from a reasoning process and the prior knowledge from a KG.

Geng et al. [135] recently proposed Onto-ZSL, an ontology-enhanced zero-shot learning frame-

work that can be applied either to image classification or knowledge graph completion. They build an

inter-class relationship using an ontological schema, that comprises a label taxonomy from WordNet,

as well as text and attribute descriptions. Further, they address the data imbalance problem be-

tween seen and unseen images by leveraging a generative adversarial network (GAN) that produces

synthesized visual feature vectors for unseen classes.

Related Approaches using other Prior Knowledge: Approaches using language models lever-

age GANs to imagine unseen categories from text descriptions and hence recognize novel classes with

no examples being seen. GANs can be seen as a transformation function from text-based input to

visual features, using the supervision of a visual model. Zhu et al. [201] propose GAZL, an approach

that takes noisy text descriptions about unseen classes from Wikipedia and generates synthesized

visual features for this class. Using textual input for unseen classes they learn a GAN that generates

visual features similar to the pre-trained ones of the seen classes. Therefore, the zero-shot learning

problem is transformed into a standard classification task and a classifier that can handle unseen

classes can be trained using the synthesized image features for every unseen class. Li et al. [202]

extended the approach by introducing LisGAN, a GAN that takes semantic descriptions and random

noise to generate visual features for unseen classes. In addition, they deploy the average representa-

tion of all samples from an unseen class defining the sole sample of the class to reduce the noise in

the predictions. Vyas et al. [203] propose LsrGAN, a generative model that leverages the semantic

relationship between seen and unseen categories and explicitly performs knowledge transfer by in-

corporating a novel semantic regularized loss (SR-Loss). Knowing the inter-class relationships in the

semantic space helps to impose the same relationship constraints to the generated visual features.

Methods that belong to the category Knowledge Graph as a Trainer combine the visual output

of a DNN with the prior knowledge of a KG by learning a visual-semantic embedding hv,s.

4.2.3 Knowledge Graph as a Trainer

Figure 4.4 illustrates a conceptual architecture of the Knowledge Graph as a Trainer approach.

The KG acts as a trainer and supervises the training of the DNN using hs, rather than letting

the DNN learn a hv solely depending on the data distribution of the images. We refer to such

an embedding of visual information learned under the supervision of a semantic embedding hs as

a visual-semantic embedding hv,s. To combine semantic and visual information, some approaches

either learn a transformation function, e.g. MLP, on a pre-trained and fixed visual embedding hv

or learn a visual-semantic features extractor fv,s(·) directly.
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Figure 4.4: Approaches that belong to the category Knowledge Graph as a Trainer learn visual se-
mantic embedding space supervised by a semantic embedding. They either learn a) a transformation
function, e.g. MLP, on top of a pre-trained visual embedding space that suits as a transformation
function or b) a visual-semantic features extractor that learns the final embedding directly.

Visual-Semantic Transformation Models

As shown in Figure 4.4a, the pre-trained hv is fixed over the whole training process and a transfor-

mation function, e.g. MLP, is learned to transform hv, into the visual-semantic embedding hv,s.

Akata et al. [160] refer to their semantic embedding space transformations as label embedding

methods. They compared transformation functions from the visual embedding space to the attribute

label embedding space, the hierarchy label embedding space, and the Word2Vec [230] label embed-

ding space. Lonij et al. [144] approached the task of open-world visual recognition by using KGs.

They learn hs from a WordNet KG by using the neural tensor layer (NTL) [231] architecture and

embed the visual embedding generated by a pre-trained CNN into the same space using the hinge

rank loss.

Related Approaches using other Prior Knowledge: One of the first approaches that use

semantic embeddings with NNs is the work from Mitchell et al. [209]. They use language embed-

dings derived from text corpus statistics to generate neural activity pattern images. Instead of

generating images from text, Palatucci et al. [205] learn a linear regression model to map neural

activity patterns into language embedding space. Socher et al. [96] present a model for zero-shot

learning that learns a transformation function between a visual embedding space, obtained by an

unsupervised feature extraction method, and a semantic embedding space, based on a language

model. The authors trained a 2-layer NN with the MSE loss to transform the visual embedding

into the language embedding of eight classes. Frome et al. [99] introduce the deep visual-semantic

embedding model DeViSE that extends the approach from eight known and two unknown classes

to one thousand known and 20 thousand unknown classes. Therefore, they pre-train their visual

features extractor using ImageNet and their semantic embedding vector using a skip-gram language

model [230]. In contrast to Socher et al. [96] they learn a linear transformation function between
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the visual embedding space and the semantic embedding space using a combination of dot-product

similarity and hinge rank loss since they claim that MSE distance fails in high-dimensional space.

Norouzi et al. [206] propose convex combination of semantic embeddings (ConSE). ConSE performs

a convex combination of known classes in the semantic embedding space, weighted by their predicted

output scores of the DNN, to predict unknown classes in a zero-shot learning task. Similarly, Zhang

et al. [207] introduce the semantic similarity embedding (SSE), which models target data instances

as a mixture of seen class proportions. They built a semantic space in that each novel class could be

represented as a probabilistic mixture of the projected source attribute vectors of the known classes.

Kodirov et al. [208] propose SAE a semantic autoencoder for zero-shot learning. It is learned by

encoding pre-trained visual features of a CNN into a latent semantic space and then by decoding

them back into visual space. The semantic space is based on class attributes for smaller datasets and

on a word2vec language model for larger datasets. They claim that their latent semantic embedding

space can better handle the projection domain shift problem, i.e. the distribution shift between seen

and unseen classes.

Visual-semantic Features Extractors

As illustrated in Figure 4.4b the visual-semantic features extractor fv,s(·) is learned to directly

transform the images into a visual-semantic embedding hv,s using the supervision of the semantic

embedding space hs. As described in Section 2.3.2, hs is mostly learned using an unsupervised KGE

method and fv,s(·) is implemented using a standard DNN.

Monka et al. [211] propose KG-NN, an approach that uses a KG and its hs to train a visual

DNN. Using a contrastive knowledge graph embedding loss in combination with hs they learn a

visual-semantic features extractor fv,s(·). They test their approach on domain generalization and

adaptation tasks for road sign recognition in Germany and China, as well as on Mini-ImageNet and

various derivatives. They show that their visual features extractor learned using the Knowledge

Graph as a Trainer outperforms a conventional DNN trained with CE, the same DNN without

additional information from the KG, and the same DNN using additional information from a pre-

trained GloVe embedding in visual transfer learning tasks.

Jayathilaka et al. [210] proposed a framework named ViOCE that integrates ontology-based back-

ground knowledge in the form of n-ball class embeddings into a DNN-based vision architecture. The

approach consists of two components - converting symbolic knowledge of an ontology into continuous

space by learning n-ball embeddings that capture properties of subsumption and disjointness and

guiding the training and inference of a vision model using the learned embeddings.

Related Approaches using other Prior Knowledge: Joulin et al. [212] demonstrate that

feature extractors trained to predict words in image captions learn useful image representations.

They convert the title, description, and hashtag metadata of images into a bag-of-words multi-label
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Figure 4.5: Approaches that belong to the category Knowledge Graph as a Peer learn hybrid em-
bedding space as a combination of visual and semantic embedding space. They either learn a)
transformation functions, e.g. MLPs, on top of both pre-trained visual and semantic embedding
spaces that suit as a transformation function or b) hybrid features extractors that learn the final
embedding directly.

classification task and showed that pre-training a feature extractor to predict these labels learned

representations which performed similarly to ImageNet-based pre-training on transfer tasks. Radford

et al. [86] claim that state-of-the-art CV systems are restricted to predict a fixed set of predetermined

object categories. Therefore, they propose to use a simple and general pre-training of their CNN

with natural language supervision, i.e. predicting which caption goes with which image on a dataset

of 400 million image-text pairs collected from the Internet using the objective of Zhang et al. [225].

Approaches of the category Knowledge Graph as a Peer combine the visual DNN with the

prior knowledge of a KG by influencing both semantic and visual embedding. Unlike the previous

categories, the idea of a hybrid embedding hh is to fuse the visual embedding hv and the semantic

embedding hs. Both semantic and visual data are then embedded into hh.

4.2.4 Knowledge Graph as a Peer

Figure 4.5 illustrates a conceptual architecture of the Knowledge Graph as a Peer approach. The final

hybrid embedding space is either a combination of pre-trained visual embedding hv and semantic

embedding hs, using a transformation function, e.g. MLP, or a combination of hybrid-visual fh,v(·)
and hybrid-semantic features extractors fh,s(·).

Hybrid Transformation Models

As shown in Figure 4.5a, pre-trained hs and pre-trained hv are fixed over the whole training process

and additional transformation functions, e.g. MLPs, are learned to transform hs and hv, into the

hybrid embedding space hh.

Zhao et al. [142] propose a joint model that combines an image stream and a concept stream

via a joint loss function to preserve concept hierarchy as well as visual feature similarities. The
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concept stream is based on a language embedding with the hierarchical graph of WordNet and

the image stream is a visual embedding from semantic segmentation DNN. They compare their

approach against the standard CE-based approach and semantic embedding space transformations

based on Word2Vec. Roy et al. [214] introduce a zero-shot learning model that takes advantage

of the commonsense KG ConceptNet 5.5 to generate hs of the class labels by using a GCN-based

autoencoder. They enrich hs with additional attributes and language embeddings, which is then

compared with a pre-trained visual output of a DNN using a relation network [232].

Related Approaches using other Prior Knowledge: Yang et al. [213] propose a two-sided NN

to learn a combination of a pre-trained visual embedding and a semantic embedding of attributes and

word vectors based on image descriptions to perform zero-shot learning and domain generalization.

To train their NN they use a Euclidean loss for regression and a hinge rank loss for classification.

Fu et al. [215] try to reduce the bias of semantic embedding spaces, by proposing a transductive

multi-view embedding framework that aligns novel features with the semantic embedding space

for zero-shot learning. The framework first transforms the semantic embedding space into a joint

embedding space using the unlabeled target data with a multi-view canonical correlation analysis

(CCA) to alleviate the projection domain shift problem. And Second, a heterogeneous multi-view

hypergraph label propagation method is used to perform zero-shot learning in the transductive

embedding space, which combines additional semantic knowledge in the form of attributes and word

vectors from related classes. Ba et al. [216] introduce a flexible zero-shot learning model that learns

to predict unseen image classes using a language embedding. Therefore, they add two separate

MLPs on top of the visual embedding and the semantic embedding and train them using the binary-

CE loss, the hinge loss, and the Euclidean distance loss. Karpathy et al. [220] learn a model that

generates language descriptions for detected objects in an image. Their objective aligns the output

of a pre-trained CNN applied to image regions, and the output of a bidirectional RNN applied to

sentences. Changpinyo et al. [217] use a set of “phantom” object classes whose coordinates live in

both the semantic space and the model space. To align the two spaces, they view the coordinates in

the visual embedding as the projection of the vertices on the graph from the semantic embedding.

To compute low-dimensional Euclidean space embeddings from the weighted graph they propose to

use the algorithm of Laplacian eigenmaps, mapping semantic and visual embedding into a common

space defined by the mixture of seen classes proportions. Tsai et al. [218] propose the approach

ReViSE that learns an unsupervised joint embedding of semantic and visual features to enable zero-

shot learning. As external knowledge, they experiment with three different embedding methods

for their attributes, human-annotated attributes [162], Word2Vec attributes, and GloVe attributes.

Tang et al. [221] propose the large scale detection through adaptation (LSDA) framework to improve

object detectors with image classification DNNs, hence without requiring expensive bounding box

annotations. LSDA defines visual similarity as the distance between pre-trained visual embedding

vectors and semantic similarity as the distance between pre-trained language embedding vectors
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of the labels. Jiang et al. [219] introduce their transferable contrastive network (TCN) explicitly

transfers knowledge from the source classes to the target classes, to counteract the overfitting problem

on source classes. To compute the similarities between classes in the hybrid embedding space, they

design a contrastive network that automatically judges how well the embedding vector is consistent

with a specific class. Li et al. [222] propose a multi-layer transformer [53] model as DNN, which

uses object tags detected in images as anchor points to learn a joint embedding of the detected

objects and the language tags, instead of simply concatenating visual embedding and semantic

embedding. Yu et al. [223] propose a knowledge-enhanced approach, ERNIE-ViL, to learn joint

representations of vision and language using a transformer model as DNN. ERNIE-ViL tries to

construct detailed semantic connections across vision and language while constructing a scene graph

parsed from sentences and type prediction tasks, i.e., object prediction, attribute prediction, and

relationship prediction in the pre-training phase.

Hybrid Features Extractors

As depicted in Figure 4.5b, hybrid-semantic fh,s(·) and hybrid-visual fh,v(·) features extractors are

learned to directly transform KG and images into a common hybrid embedding hh. As described

in Section 2.3.2, fh,s(·) is usually implemented using a supervised KGE method and fh,v(·) using a

standard DNN.

Recently, Naeem et al. [233] proposed a method to perform zero-shot image classification using

hybrid features extractors. An ImageNet pre-trained DNN is used for the visual features extractor

and a GCN in the compositional graph embedding (CGE) setting is used for the semantic features

extractor. However, they learn a joint embedding function that can influence the weights of the

DNN as well as the weights from the GCN. Interestingly, they compare their model against a similar

version of their model, but with a fixed visual features extractor where the KG just acts as a trainee,

as proposed in Section 4.2.2. They use that version for comparison with related approaches, stating

that all other methods are based on fixed visual features extractors. Moreover, they show that a

hybrid approach with an adaptive visual features extractor performs better than the other.

Related Approaches using other Prior Knowledge: Zhang et al. [225] use two contrastive

pre-training objectives, contrasting semantic embedding to visual embedding, and vice versa, on the

special domain of medical imaging to learn a joint feature extractor. Instead of previous works that

learn transformation functions on top of fixed image-trained visual features extractors they directly

supervise the training of the CNNs with language embedding information. To train their DNN they

use text-image paired data.



4.3. SURVEYS RELATED TO VISUAL TRANSFER LEARNING USING KG 71

4.3 Surveys Related to Visual Transfer Learning using KG

This section discusses related work for this chapter. Therefore, we outline surveys from visual

transfer learning and knowledge-based machine learning. Furthermore, we provide additional insight

into surveys on the topic of explainable AI, as the field is strongly related to knowledge-based ML.

Visual Transfer Learning: Pan et al. [113] and Zhang et al. [234] categorized the task of vi-

sual transfer learning into three main settings: inductive, transductive, and unsupervised transfer

learning. In inductive transfer learning the task changes from source to target, whereas the domain

stays the same. In transductive transfer learning, the source and target tasks are the same, while

the source and target domains are different. Finally, in the unsupervised transfer learning setting,

similar to inductive transfer learning, the target task is different from but related to the source

task. However, unsupervised transfer learning focuses on solving learning tasks when no labeled

data is available in the source and the target domain. Weiss et al.[235] separated the field into

homogeneous and heterogeneous transfer learning, whereas approaches of the former are developed

and proposed for handling the situations where the domains are of the same feature space and the

latter refers to the knowledge transfer process in the situations where the domains have different

feature spaces. Kaboli et al. [236] reviewed and structured 20 transfer-learning approaches. Wang

et al. [237] investigated the field from the domain change perspective. If the domain change is small

they call it homogeneous transfer learning and if the domain change is large they call it hetero-

geneous transfer learning. Zhang et al. [238] further separated the field of transfer learning into

17 different tasks, based on supervision, the amount of labeled data, and the size of the domain

gap. Zhang et al. [234] categorized transfer learning based on their adaptation process into weakly

supervised learning, instance re-weighting, feature adaptation, classifier adaptation, deep network

adaptation, and adversarial adaptation. Wang et al. [239] provides a comprehensive survey about

zero-shot learning methods and their different semantic spaces. These semantic spaces can either be

engineered semantic spaces, generated by attributes, lexicals, and text keywords, or learned seman-

tic spaces, such as label-embeddings, text-embeddings, and image-representations. Xian et al. [157]

recently released a survey about zero-shot learning which structures the field into methods that learn

linear compatibility, nonlinear compatibility, intermediate attribute classifier, or hybrid models.

Knowledge-Based Machine Learning: Only a few surveys have investigated the field of knowledge-

based ML. Von Rueden et al. [84] recently published a survey about knowledge-based ML under the

term informed machine learning. They structure the field based on the source of the knowledge,

the representation of the knowledge, and the integration of the knowledge into the ML pipeline.

Further, Gouidis et al. [240] structured the knowledge-based ML literature into approaches with

symbolic knowledge, commonsense knowledge, and the ability to learn new knowledge. They give

an overview of different works that combines ML with knowledge-based approaches in the field of
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CV. They categorized the approaches due to their CV task, e.g. object detection, scene understand-

ing, image classification, their applied ML architecture, e.g. CNN, GNN, RCNN, and their loss

function, e.g. scoring functions, probabilistic programming models, and Bayesian Networks. Ding

et al. [241] reviewed all ontology applications in the field of object recognition.

Another research field in demand is Explainable AI, where knowledge-based methods and ML

approaches are combined. Explainable AI refers to methods and techniques of ML such that the

results of the solution can be understood by humans. Futia et al. [242] investigated the field of ex-

plainable AI using KGs and categorized approaches into knowledge matching, cross-disciplinary and

interactive explanations. Chen et al. [243] and Chari et al. [244] proposed to use hybrid explanations

of a taxonomy generated for the end-user, including causal methods, neuro-symbolic AI systems,

and representation techniques. Seeliger et al. [245] summarized semantic web technologies that can

provide valid explanations for ML models, separating them due to their ML technique and semantic

expressiveness. Chen et al. [246] recently proposed a survey about knowledge-aware zero-shot learn-

ing. They divided the ML methods that approach the zero-shot learning task into three distinct

categories: mapping function-based, generative model-based, and graph neural network based. In

their work, they additionally provide an overview of different types of prior knowledge, e.g. text,

attribute, KG, and rule and ontology.

Aditya et al. [247] provide a survey about reasoning mechanisms and knowledge integration

methods for image understanding applications. Besides an overview of frameworks that handle logic

operations, they briefly discuss at which position prior knowledge can be introduced into a DL

pipeline: i) Ahead of the DNN, through a pre-processing of domain knowledge and augmentation of

training samples; ii) Inside the DNN, through a vectorization of parts of the knowledge base and as

an input to intermediate layers; iii) Inside of the DNN, to inspire the neural network architecture;

and iv) After the DNN, as a post-processing using external knowledge.

We understand their taxonomy as a general explanation of where external knowledge can be

induced into the DL pipeline. For instance, our category Knowledge Graph as a Reviewer is related

to iv), since the KG can operate as a post-processing network on the output of the visual DNN.

However, we also see that the reasoning process of the Knowledge Graph as a Reviewer can be

applied on an intermediate visual feature layer of the DNN. Similarly, the categories Knowledge

Graph as a Trainee, Knowledge Graph as a Trainer, and Knowledge Graph as a Peer overlap with

categories ii) and iii).

However, in contrast to Aditya et al., our categories are described by the explicit information

exchange between the visual and semantic embedding space. Instead of a categorization based on

the position of the knowledge induction, our categories depend on whether the semantic embedding

inspires the visual embedding or vice versa. Using our categories, we, therefore, describe four distinct

principles used to combine the two modalities.
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4.4 Summary

Visual transfer learning using prior knowledge has gained increasing attention in research. Since

initiatives for building and maintaining generic KGs host a large research community, we believe

that exploiting them with DL will improve various applications, especially in visual transfer learning.

This chapter presented a deep analysis of existing approaches and investigated how KGs, as a unified

representation of prior knowledge, can be utilized in various forms. The insights gained from this

analysis can be valuable in developing solutions for addressing challenges and open issues in the

field. The main contributions of the chapter are framed in RQ2, and we summarize the answer as

follows:

• What are possible ways of integrating the prior knowledge encoded in a KG into the DL

pipeline?

Approaches of the field of visual transfer learning using KG can be separated into four distinct

categories based on how the KG is combined with the DL pipeline:

1) Knowledge Graph as a Reviewer - where the KG is used for post-validation of a visual

model;

2) Knowledge Graph as a Trainee, where a semantic-visual embedding hs,v is learned using a

visual embedding hv as objective;

3) Knowledge Graph as a Trainer, a visual-semantic embedding hv,s is learned using a semantic

embedding hs as objective; and

4) Knowledge Graph as a Peer, where a hybrid-embedding hh is learned using a combination

of semantic embedding hs and a visual embedding hv as objective.

• What are the properties of the respective combinations?

It can be seen that every category has its applications in distinct tasks.

1) Knowledge Graph as a Reviewer - approaches leverage prior knowledge by using it as an

independent post-validation. The KG or KGE (hs) enables reasoning over the output or inter-

mediate feature layers of the DNN. However, the modalities are either learned independently or

in sequential order, such that semantic and visual embedding spaces are not directly influenced

by each other.

2) Knowledge Graph as a Trainee - approaches leverage prior knowledge by providing a struc-

ture for a KGE method, e.g. GNN, that is learned using hv as objective. Approaches are used

mainly in the zero-shot learning scenario to extend the learned model to classes that are not

present in the training data, using the inductive property of GNNs combined with the ability

of DNNs to extract relevant features of images.
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3) Knowledge Graph as a Trainer - approaches leverage prior knowledge by influencing DNNs in

learning specific visual features. The DNN can learn an image data distribution independent

embedding provided by hs instead of just using the data distribution. Thus, we see the

advantage of these approaches specifically in the domain generalization scenario.

4) Knowledge Graph as a Peer - approaches leverage prior knowledge by influencing semantic

and visual embedding equally. Although it is not clear which modality dominates the other and

therefore the learned embedding, approaches have yielded quite promising results for zero-shot

learning and domain generalization tasks.



Chapter 5

Learning Visual Models using a

Knowledge Graph as a Trainer

As shown in Chapter 3, transfer learning is a ubiquitous concept in DL. Since DL learns its model

on a constrained training dataset, it must always deal with a trade-off between specialization and

generalization. In particular, in transfer learning scenarios where the domain gap between source

and target domains continues to increase, DL methods require additional knowledge to support

generalization [110]. To reduce the high dependency on the training domain, pre-training methods

that generate rich embedding spaces seem to be a promising research direction for CV and NLP.

Exploring these embedding spaces, it is found that DNNs encode visually similar classes close to

each other when sufficient training data is available. Recently, the idea of training a DNN with an

image-independent embedding space in form of language embeddings has also been proven to be

beneficial for CV tasks [212, 86, 225].

In this Chapter, we introduce the knowledge graph neural network (KG-NN), a novel approach to

learn a visual model using a KG and its KGE hs as a trainer. More concretely, a domain-invariant

embedding space using a KG and an appropriate KG embedding algorithm is constructed. We

then train KG-NN with a contrastive loss function to adapt its visual embedding to hs given by

the KG. KG-NN, therefore, learns the relevant features of the images by connecting semantically

similar classes and distinguishing them from different ones. The benefit is two-fold. First, KG-NN

will be more robust to distribution shifts since the embedding space is independent of the dataset

distribution, and second, it is enriched with additional semantic data in a controlled manner.

To investigate the generalization and adaption of KG-NN in real-world scenarios, the task of

visual transfer learning provides a suitable testing environment. Transfer learning tasks consist

of a source and a target dataset, differing in terms of their underlying distribution, e.g sensors,

environments, and countries. A domain generalization task has only access to labeled source data,

75
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whereas the domain adaptation task contains a small amount of additional labeled target data. For

domain generalization - Scenario 1, we performed two experiments: 1) object classification, where

the DNN is trained on the Mini-ImageNet [180] dataset and evaluated on derivatives; 2) road sign

recognition, where the DNN is trained on the German Traffic Signs Dataset (GTSRB) [248] and

evaluate on the Chinese Traffic Signs Dataset (CTSD) [249]. For domain adaptation - Scenario 2,

we train the DNN on GTSRB and additional labeled target data from CTSD. In both scenarios,

the respective KGs are developed in RDF representation. RDF provides the necessary means for an

easy and flexible extension of the defined schemas and allows for enriching and interlinking entities

in the KGs with complementary information from other sources. The generality of our approach

becomes apparent in the fact that it can be assigned to any method using DNNs since we provide

an alternative and enriched training method. Our results indicate that KG-NN is significantly

more accurate compared to a conventional approach based on the cross-entropy loss in any domain-

changing scenario.

This chapter introduces a novel approach called KG-NN, which combines KGs with DL architec-

tures to enhance visual transfer learning. Hereby, KG-NN is learned to align the visual embedding

space hv to the semantic embedding space hs of the KGE.

In this chapter, we address the following research question:

RQ3: How can prior knowledge encoded in a KG guide DL to improve visual transfer

learning?

Our main contribution of this paper is summarized as follows:

• Method to learn a DNN using a KG as a Trainer.

This contribution can be divided into the following sub-contributions:

• We introduce KG-NN, a neuro-symbolic approach that uses prior domain-invariant knowledge

captured by a KG to train a DNN.

• We adapt a contrastive loss function to combine knowledge graph embeddings with the visual

embeddings learned by the DNN.

• We evaluate the KG-NN approach in domain generalization and domain adaptation tasks on

two different scenarios with respective image datasets.

The work in the chapter is mainly based on the following publication:

• Sebastian Monka, Lavdim Halilaj, Stefan Schmid, and Achim Rettinger. 2021. Learning

Visual Models Using a Knowledge Graph as a Trainer. In The Semantic Web - ISWC 2021 -

20th International Semantic Web Conference, ISWC 2021, Virtual Event, October 24-28, 2021,

Proceedings (Lecture Notes in Computer Science), Springer, 357–373.
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Figure 5.1: Overview of the KG-NN approach: a) the main building blocks for learning a visual-
semantic embedding space hv,s using a Knowlede Graph as a Trainer ; b) the 2D projection of the
semantic-embedding hs represented in a knowledge graph.

The chapter starts with Section 5.1, which presents a detailed description of KG-NN, the approach

that uses a KG to train a DNN for CV. Section 5.2 provides an evaluation on two datasets in a

domain generalization and domain adaptation task. We summarize related work in Section 5.3 and

conclude the chapter and provide an outlook on future directions in Section 5.4.

5.1 Knowledge Graph as a Trainer

In this section, we define the basic terminology of the KG-NN approach as well as the underlying

pipeline for the realization of a transfer learning task. The main objective of KG-NN is incorporating

prior knowledge into the DL pipeline using a KG as a Trainer.

The main concept of KG-NN is illustrated in Figure 5.1. As depicted in Figure 5.1a, the class

labels of a given dataset are infused to the DNN in form of a high-dimensional vector of the KGE hs,

instead of using the standard one-hot encoded vectors. This hs shown in Figure 5.1b is generated

from a KG using a KGE method KGE(·). It incorporates domain-invariant relations to other classes

inside or outside the dataset and therefore enriches the DNN with prior knowledge in an indirect

manner. To guide the adaption of the DNN to the hs space, we use the contrastive knowledge graph

embedding loss. It compares the respective outputs from the visual feature extractor with the class

label vectors of the hs forming a visual-sematic embedding space hv,s. As a result, the learned DNN

projects respective images close to their representations given by the hs.

5.1.1 Knowledge Infusion

We infuse the knowledge of the KGE into the DNN via the contrastive knowledge graph embedding

loss. We derive the loss from the supervised contrastive loss [250, 87] which extends the multi-class
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N-pair loss [251] or InfoNCE loss [252] with class label information. Instead of contrasting images

in the batch against an anchor image, we adapt the loss to contrast images of the batch against the

class label representation of the hs. A batch consists of 2N training samples and two augmented

versions for each of the N training images. Within a batch, an anchor i ∈ {1...2N} is selected

that corresponds to a specific class label yi and therefore assigns a specific embedding vector of the

hs, hs,i. Positive samples are all samples that correspond to the same class label as the anchor i.

The numerator in the loss function computes a similarity score between the anchor vector of the

hs, hs,i, and the visual projection vector of a positive sample in the batch, hv,j . The denominator

computes the similarity score between the anchor vector of the hs and the visual projection vector

of all other samples hv,k in the batch. We choose the cosine similarity as the distance measure in the

high-dimensional space. For each anchor i, there can be many positive samples, which contribute

to the final loss, where Nyi
is their total number. The KG-based contrastive loss function is then

given by:

LKG =

2N∑
i=1

LKG,i (5.1)

with

LKG,i =
−1

2Nyi
− 1

2N∑
j=1

1i 6=j · 1yi=yj
· log

exp (hs,i · hv,j/τ)∑2N
k=1 1i 6=k exp (hs,i · hv,k/τ)

(5.2)

where hv = P (E(x)), 1k 6=i ∈ {0, 1} is an indicator function that returns 1 iff k 6= i evaluates as true,

and τ > 0 is a predefined scalar temperature parameter. During optimization of the loss function

LKG, the DNN learns its weights by mapping its projection hv to the hs space.

5.1.2 Adaptation to a Labeled Target Domain

Training robust DNNs is crucial in real-world scenarios as deployment domains typically differ from

the training ones. The KG as a Trainer can influence how a DNN should behave in different

environments by providing a stable embedding space. However, if the domain gap is quite large, it

is beneficial to fine-tune the DNN on labeled data of the target domain.

We design a training pipeline to support a transfer learning scenario where a small amount of

labeled target data exists. An overview of this pipeline comprised of five consecutive phases is shown

in Figure 5.2.

Knowledge Graph Construction: KGs can represent prior knowledge encoded with rich seman-

tics in a graph structure. Based on the selected scenario, underlying knowledge of one or multiple

domains is conceptualized and formalized into a KG. Since KGs are manually curated by human

experts, it is possible to define an underlying schema comprising multiple classes from different do-

mains. This joint representation of domains enables inferring relations between classes, which can

then be transferred into high-dimensional vector space.
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Figure 5.2: The pipeline designed for KG-NN consists of five phases in which a knowledge graph
acts as a trainer that supports the adaptation and generalization of DL: Knowledge Graph Construc-
tion; Knowledge Graph Embedding ; Source Domain Pre-Training ; Target Domain Pre-Training ; and
Linear Layer Training.

Knowledge Graph Embedding: The KG is transformed into a KGE hs via a KGE method

KGE(·). There are various approaches to generate these dense vectors that encode all entities and

relations within the KG [253, 254, 255]. Note that KG-NN can operate on any hs generated by any

KGE(·), as an hs only reflects similarities between entities by distances and positions in the vector

space. Thus, if entities share many properties in the KG, they are closely located in space.

Source Domain Pre-Training: We train KG-NN from scratch using the KG as a Trainer and

do not initialize the DNN with pre-trained weights from ImageNet [173] As the hv,s space of KG-NN

depends on the KG instead of the source dataset, KG-NN can be applied to other domains following

the same semantic relations given by the KG. This property is shown on the domain generalization

task.

Target Domain Pre-Training: Small amounts of labeled target data can usually be gathered

with manageable effort. However, just fine-tuning a DNN with additional target domain data using

the cross-entropy loss leads to catastrophic forgetting and thus poor accuracy. We assume that this

happens because the DNN tries to find a new hv that fits the target domain, but differs from the

embedding obtained from the source domain. In contrast, DNNs optimized on the source domain

using a KG as a Trainer can simply be enriched with additional target data using the same training

method. Therefore, KG-NN pre-trained on the source domain is retrained on the target dataset

using the same hs.

Linear Layer Training: For adaption to a downstream task like classification, we add a randomly-

initialized linear fully-connected layer to the trained encoder network. The size of the output vector

depends on the number of classes. This linear layer is trained with the default cross-entropy loss,

while the parameters of the encoder network remain unchanged.
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5.2 Experiments

We conduct experiments on two different scenarios with multiple datasets to demonstrate the benefit

of training a DNN using a KG as a Trainer, which leads to more accurate and more robust models

in terms of the distribution shift. We compare KG-NN with two baselines: 1) CE, which trains

the DNN using the supervised cross-entropy loss; and 2) SupCon, which trains the DNN with the

(self-)supervised contrastive loss [250]. We chose CE, as it is typically used for training DNNs, as

well as SupCon, as this approach utilizes a similar contrastive loss function, however without the

incorporation of prior knowledge and supervision. CE and SupCon learn an embedding layer based

on the data distribution of the source dataset, whereas KG-NN relies on the embedding given by

the KG. To qualitatively evaluate the influence of the KGE we further compare against GloVe, a

variation of KG-NN that uses a GloVe [227] language embedding instead of hs. All approaches use

the same ResNet-50 [256] backend as the encoder network and only differ in their method of how

this encoder network is trained.

Two different scenarios are defined to analyze our approach to concrete transfer learning tasks.

Scenario 1 - we investigate the sensitivity to distribution shifts using a domain generalization task.

Therefore, we train: a) KG-NN, CE, SupCon, and GloVe from scratch on Mini-ImageNet and eval-

uate on its derivatives, ImageNetV2 [174], ImageNet-R [257], ImageNet-Sketch [258] and ImageNet-

A [259]; b) KG-NN, CE, and SupCon from scratch on GTSRB, and evaluate on CTSD. Scenario 2 -

we focus on supervised domain adaptation, a more practical scenario where KG-NN, CE, and Sup-

Con are trained on GTSRB and fully retrained on CTSD with a small amount of target data. Note

that we exclude GloVe when using GTSRB/CTSD since the language embedding does not contain

a specific representation for each roadsign class and therefore can not be applied straightforwardly.

5.2.1 Scenario 1 - Domain Generalization

Domain generalization describes the task of learning generalized models on a source domain so that

they can be used on unseen target domains. Therefore, KG-NN is used without the target domain

pre-training phase.

Experiment 1 - Wordnet-Subset with Mini-ImageNet

Dataset Settings: As the source domain, we use Mini-ImageNet, a derivative of the ImageNet

dataset, consisting of 60 thousand color images of size 84 × 84 with 100 classes, each having 600

examples. Compared to ImageNet, this dataset fits in memory on modern machines, making it very

convenient for rapid prototyping and experimentation. For the evaluation, we use the target domains:

ImageNetV2, which contains 10 new test images per class and closely follows the original labeling

protocol; ImageNet-R, which has art, cartoons, deviantart, etc. renditions of 200 ImageNet classes

resulting in 30 thousand images; ImageNet-Sketch comprising 50 thousand images, 50 images for
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each of the one thousand ImageNet classes; and ImageNet-A, which contains real-world, unmodified,

and naturally occurring examples that cause ML model’s performance to significantly degrade.

Knowledge Graph and KG Embedding Space: WordNet is a lexical database containing

nouns, verbs, adjectives, and adverbs of the English language structured into respective synsets [148,

260]. Each synset is an underlying concept consisting of a collection of synonyms as well as its

relations to other synsets. The mini WordNet knowledge graph (MWKG) is created by extracting the

respective synsets of each label from the Mini-ImageNet dataset from [261] into RDF representation.

These synsets are grouped based on the lexical domain they pertain to, e.g. animal, artifact, or food.

They are represented as classes and further described with relations such as: hypernym, meronym,

synset-member. Additionally, a shallow taxonomy is established by extracting the parents of each

synset including their relationships and attributes. In total, MWKG contains 198 classes with eight

annotation properties. We transfer MWKG into a 300-dimensional hs using the MRGCN [262],

which exploits the literal information in addition to classes and their relationships. To realize that,

we use the MRGCN’s node classification feature to build the hs that explicitly clusters the six lexical

domains: animal, artifact, communication, food, object, and plant.

Training Details: All models use a ResNet-50 backend and are pre-trained with a batch size of

1,024 on the Mini-ImageNet dataset. We resize the images to 32x32 for fast prototyping. KG-NN

and SupCon are trained for one thousand epochs using their respective contrastive loss function,

SGD with a learning rate of 0.5, cosine annealing, and a temperature of τ = 0.5. CE is trained for

500 epochs with the cross-entropy loss and SGD with a learning rate of 0.8. For the linear-layer

phase, we train an one-layer MLP on top of the frozen encoder networks of KG-NN, SupCon, and

CE, with an adam optimizer and a learning rate of 0.0004.

Evaluation: We evaluate the models on ImageNetV2, ImageNet-R, ImageNet-Sketch, and ImageNet-

A. KG-NN outperforms CE, SupCon, and GloVe on the trained source as well as on unknown target

domains as shown in Figure 5.3. This means that KG-NN makes use of the additional semantic

information. It can be seen that CE fails particularly when the domain gap increases. We assume

that this happens due to its high specialization on the source domain. SupCon cannot reach the

performance of CE on the source dataset, however, it outperforms CE on more general target tasks.

We see that pre-training on a more generic self-supervised task helps the DNN to extract more gen-

eral features. GloVe, the version of KG-NN that relies on a language embedding instead of a KG,

is also outperformed by KG-NN. We see that the performance of KG-NN depends on the quality of

the embedding space, which we can control manually using different KGs or KGE methods.
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Figure 5.3: Accuracy of the domain generalization scenario using Mini-ImageNet as the source
and multiple derivatives as target domains. We compare KG-NN with the standard CE, SupCon,
a version of our loss without prior knowledge of a KG, and GloVe, a version of KG-NN using a
language embedding instead of a hs.

Experiment 2 - RoadSign KG with GTSRB and CTSD

Dataset Settings: The GTSRB, which contains 51, 970 images of 43 road signs, is used as the

source domain, and the CTSD, which contains 6, 164 images of 58 road signs, as the target domain.

We resize all images to a uniform size of 32x32 pixels. Note that we do not cut out the road signs, but

take the whole image for classification. Both datasets contain a domain shift as they were recorded

with different cameras in different countries and hence have different appearances.

Knowledge Graph and KG Embedding Space: First, we construct a small KG for traffic

sign recognition, the road sign knowledge graph (RSKG) that contains all classes of both datasets

incorporated in an underlying domain ontology.

An example subgraph of RSKG is illustrated in Figure 5.4. To encode the formal semantics of

road signs from different countries and standards, we first develop the RoadSign ontology. It contains

classes (e.g. RoadSign, Shape, Icon, Color), relationships (e.g. hasShape, hasIcon, hasColor), and

attributes (e.g. label, textWithinSign, etc). The actual road signs that exist within given datasets

are represented as concrete individuals. Note that this information is extracted from externally

available road-sign standards, without accessing the datasets. Currently, RSKG contains 18 classes,

11 object properties, two datatype properties, and 101 individuals.

It is important to mention that the KG can be further populated with concrete road signs

instances from other countries. This would enrich RSKG and could help to find inter-relations

between the domains. We transfer RSKG into a 300-dimensional hs by using MRGCN [262] as we

also want to exploit its literal information. Therefore, we use MRGCN in the node classification task
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Figure 5.4: The road sign knowledge graph (RSKG) models the class-based relationships of the
individual road signs of the GTSRB and CTSD datasets. It includes visual properties, such as
shape, foreground color, etc., but also features based on roadsign conventions, e.g. type, and country
information.

to build a KGE. The KGE is therefore trained to clusters the hs into the five subclasses of danger,

informative, mandatory, prohibitory, and warning, given their underlying other features in the KG.

Training Details: All models use a ResNet-50 backend and are pre-trained with a batch size of

1,024 on the GTSRB dataset. We resize the images to 32x32 for fast prototyping. KG-NN and

SupCon are trained for one thousand epochs using their respective contrastive loss function, SGD

with a learning rate of 0.5, cosine annealing, and a temperature of τ = 0.5. CE is trained for 500

epochs with the cross-entropy loss and SGD with a learning rate of 0.8. For the linear-layer phase,

we train an one-layer MLP on top of the frozen encoder networks of KG-NN, SupCon, and CE,

with an adam optimizer and a learning rate of 0.0004.
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Figure 5.5: Accuracy of the domain generalization scenario using GTSRB as the source and CTSD
as the target domain. We compare KG-NN with the standard CE and SupCon, a version of our loss
without prior knowledge of a KG.

Evaluation: Figure 5.5 shows that KG-NN outperforms CE by 0.8% on the source and by 7.1%

on the target dataset. It can be seen that KG-NN exceeds the accuracy of SupCon by 55.0% on

GTSRB and by 35.7% on CTSD. SupCon with its self-supervised loss needs large datasets to form

a good embedding space, however, both datasets are quite small and from the special domain of

road sign recognition. We do not compare against a GloVe embedding, as there are no instances for

specific road signs and no clear procedure on how to generate these instances from a text corpus.

Overall, KG-NN performs better and is more robust to unforeseen distribution shifts using the same

amount of training data.

5.2.2 Scenario 2 - Supervised Domain Adaptation

Supervised domain adaptation describes the task of transfer learning that adapts models learned

on a source domain to a specific labeled target domain. We claim that a DNN learned using an

image-data-independent hs can adapt to new domains and new classes better as both domains use

the same embedding space. For this experiment, we use the settings described in Experiment 2.

First, KG-NN, CE, and SupCon are pre-trained on the source dataset. Second, we use the

encoder networks of each DNN and presume the pre-training on the target dataset. The DNNs

are retrained with different amounts of labeled target data. The one-shot (58) experiment uses 58

images, one image for each class of the CTSD target dataset. The five-shot (290) experiment uses

290 images, five images for each class of the CTSD. The 10% (416) experiment uses 416 images, 10%

of images of the CTSD. The 50% (2083) experiment uses 2,083 images, 50% of images of the CTSD.

The 100% (4165) experiment uses 4,165 images, 100% of images of the CTSD target dataset.

Similar to the previous experiments, we use the linear layer phase to adopt the pre-trained

encoder network to the target task. As shown in Figure 5.6, all experiments are evaluated on the

full CTSD target dataset and on the 25 common classes of the GTSRB source dataset.

Evaluating the approaches on the initial source domain, we find that all DNNs suffer from

catastrophic forgetting, as depicted in Figure 5.6b. If 100% of target data is used for training, the

accuracy of CE drops from 96.1% to 49.5%, the accuracy of SupCon drops from 41.9% to 37.2%, and
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Figure 5.6: Evaluation of the domain adaptation scenario for GTSRB to CTSD. We compare
GTSRB-trained KG-NN, SupCon, and CE for domain adaptation when re-trained with different
amount of target data from CTSD: a) evaluates the DNNs on the target domain (CTSD); b) eval-
uates the DNNs again on the initial source domain (GTSRB) to reflect the catastrophic forgetting
phenomenon.

the accuracy of KG-NN drops from 96.9% to 60.7% on the source domain. This means that KG-NN

is still the best-performing model on the source domain, even after retraining on a target domain

with an increased difference to CE from 0.8% to 11.2%. We think that the fixed embedding space

between the source and the target domain helps to overcome the issue of catastrophic forgetting.

If we compare the approaches on the target domain as illustrated in Figure 5.6a, we see that

KG-NN achieves an accuracy of 88.1%, which is an improvement by 5.9% over standard CE and

by 23.4% over SupCon. Since we operate on transfer learning, an additional target-only baseline

is introduced. Thus, CE is initialized with weights pre-trained on ImageNet, instead of using the

source domain to pre-train the parameters of the DNN. We see that the target-only baseline suffers

from fewer target data in DT yielding only 53.1% accuracy as the ImageNet initialization does not

suit well for the task of road sign recognition. All approaches seem to be able to transfer some

knowledge from the source domain DS to the target domain DT outperforming the target-only

baseline. However, KG-NN significantly outperforms the baseline by 35.0%, whereas CE improves

by 29.1% and SupCon by 11.6%.

Interestingly, with less than five target images per class, which is fewer than 7% of target data,

KG-NN surpasses the performance of the target-only baseline. We observe KG-NN always outper-

forms CE by approximately 10% of accuracy. When compared to SupCon, we see the accuracy

difference even increases if more labeled target data is available. In the one-shot scenario, KG-NN

outperforms CE by 12.2% of accuracy, in the five-shot-scenario by 13.8%, in the 10%-scenario by

11.2%, in the 50%-scenario by 10.7%, and on the full target dataset by 5.9%. In the one-shot sce-

nario, KG-NN outperforms SupCon by 10.3% of accuracy, in the five-shot-scenario by 25.4%, in the

10%-scenario by 25%, in the 50%-scenario by 31.6%, and on the full target dataset by 23.4%.
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5.3 Work Related to Learning Visual Models using a KG

Embedding spaces trained with the cross-entropy loss tend to be specialized embedding spaces for

a particular domain. To reduce the high dependency on the training domain, pre-training methods

that generate rich embedding spaces seem to be a promising research direction for CV and NLP. Most

neuro-symbolic approaches only learn a transformation function, e.g., MLP, on top of a pre-trained

hv. We refer to these models as visual-semantic transformation models. Since the weights of the

visual feature extractor are a really important part of robust object recognition, recent approaches

have shown that learning a visual-semantic feature extractor from scratch improves generalization

capabilities and makes the DNN applicable to further downstream and transfer learning tasks [86].

We refer to these models as visual-semantic features extractors.

Neural Networks improved by KG: Most of the works that combine KGs with NNs use Word-

Net [263], small-scale label [133, 204] or scene [195] graphs as KG. However, the capacity of WordNet

as a lexical database is limited. Large-scale KGs such as DBPedia [149] or ConceptNet [152] encode

additional semantic information by using higher order relations between concepts. Although their

applications are still sparse in the visual domain, there are a few works that have shown promising

results. DBPedia is already used in the field of explainable AI [264, 265], object detection [136], and

visual question answering [146]; and ConceptNet is used for video classification [145] and zero-shot

action recognition [137]. However, all approaches use the KG only as a post-validation step on a

pre-trained visual feature extractor, while KG-NN learns the visual feature extractor by itself based

on the KG.

Visual-Semantic Transformation Models: Visual-semantic transformation models are learned

via a transformation function, e.g. MLP, from a pre-trained hv into hs. One of the first approaches

that use hs with NNs is the work from Mitchell et al. [209]. They use word embeddings derived from

text corpus statistics to generate neural activity patterns, i.e. images. Instead of generating images

from text, Palatucci et al. [205] learn a linear regression model to map neural activity patterns

into word embedding space. In their work, they improve zero-shot learning by extrapolating the

knowledge gathered from in the hs related classes to novel classes. Socher et al. [96] present a

model for zero-shot learning that learns a transformation function between an hv space, obtained

by an unsupervised feature extraction method, and an hs, based on an NN-based language model.

The authors trained a 2-layer NN with the MSE loss to transform the hv into the word embedding

of eight classes. Frome et al. [99] introduce the deep visual-semantic embedding model DeViSE

that extends the approach from eight known and two unknown classes to one thousand known

classes for the image model and up to 20 thousand unknown classes. Therefore, they pre-train their

visual feature extractor using ImageNet and their hs based on the Word2Vec [230] language model,

exposed to the text of a single online encyclopedia. In contrast to Socher et al. [96], DeVISE learns
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a linear transformation function between the hv space and the hs space using a combination of dot-

product similarity and hinge rank loss since MSE distance fails in high-dimensional space. Norouzi

et al. [206] propose convex combination of semantic embeddings (ConSE), a simple framework for

constructing a zero-shot learning classifier. ConSE uses a semantic word embedding model to reason

about the predicted output scores of the NN-based image classifier. To predict unknown classes, it

performs a convex combination of the classes in the hs space, weighted by their predicted output

scores of the NN. Similarly, Zhang et al. [207] introduce the semantic similarity embedding (SSE),

which models target data instances as a mixture of seen class proportions. SSE builds a semantic

space where each novel class could be represented as a probabilistic mixture of the projected source

attribute vectors of the seen classes. Akata et al. [160] refer to their hs space transformations as label

embedding methods. They compared transformation functions from the hv space to the attribute

label embedding space, the hierarchy label embedding space, and the Word2Vec label embedding

space, in which embedded classes can share features among themselves.

Visual-Semantic Features Extractors: The approaches mentioned so far only learn a trans-

formation from hv to hs. However, the parameters of the feature extractor are not affected by the

prior information. Thus, if the feature extractor cannot detect visual features due to the domain

shift problem, the performance of the final prediction suffers. Instead of maximizing the likelihood

on the output, some approaches maximize the energy, i.e. the difference between the prediction and

the excepted result, directly on the embedding space to learn the NN. Hadsell et al. [266] introduce

the contrastive loss for a siamese architecture to learn a robust embedding space from unlabeled

data. They show that their self-supervised energy-based method can learn a lighting and rotation-

invariant embedding space. Recently, many approaches claim that training an embedding space in a

self-supervised manner using the contrastive loss tends to find a more general and domain-invariant

representation [87, 267]. Furthermore, Tian et al. [268] show that learning an embedding space using

the contrastive loss, followed by training a supervised linear classifier on top of this representation,

outperforms state-of-the-art few-shot learning methods.

Joulin et al. [212] demonstrate that feature extractors trained to predict words in image captions

can learn useful visual-semantic embedding spaces hv(s). Further, Radford et al. [86] proposed a

general pre-training of an NN with natural language supervision using a dataset of 400 million

image-text pairs collected from the Internet and the contrastive objective of Zhang et al. [225].

To the best of our knowledge, there is no work that learns a visual feature extractor using a KG

or its embedding space hs. We choose to use prior knowledge encoded in a KG instead of using the

unstructured knowledge of a language embedding as they are highly dependent on their text corpus,

inconsistent, and do not incorporate expert knowledge.
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5.4 Summary

In this Chapter, we proposed KG-NN, a KG-based approach that enables DNNs to learn more robust

and controlled embedding spaces for visual transfer learning. The core idea of our approach is to

use domain-invariant knowledge represented in a KG, transform it into a vector space using a KGE

method, and train a DNN so that its embedding space is adapted to the domain-invariant embeddings

given by the KG. The KG relies on prior knowledge of the domain and related domains represented

in the form of symbolic graph structures. A domain-invariant hs is formed by transforming the

symbolic knowledge of the KG with KGE methods into a high-dimensional vector space. Using our

KG-based contrastive loss function, we force the DNN to adapt its hv space to the domain-invariant

hs space given by the KG, thus forming hv,s. Our experimental results show that DNNs benefit

from exploiting prior knowledge, in particular on visual transfer learning tasks. As a result, KG-

NN increases the generalization performance of DNNs and therefore the accuracy on known and

unknown domains. For domain adaptation tasks KG-NN keeps up with DNNs trained with the

cross-entropy loss despite requiring significantly less training data.



Chapter 6

Context-driven Visual Object

Recognition based on Knowledge

Graphs

How humans perceive the real world is strongly dependent on the context [269, 270]. Especially,

in situations with poor quality of visual input, for instance, caused by large distances, or short

capturing times, context appears to play a major role in improving the reliability of recognition [271].

Perception is not only influenced by co-occurring objects or visual features in the same image, but also

by experience and memory [272]. There is evidence that humans perceive similar images differently

considering the given context [273]. A famous example are ambiguous figures as shown in Figure 6.1.

Depending on the context, i.e. if it is Easter or Christmas [276], Figure 6.1a can be either a duck

or a rabbit. Likewise, influenced by own-age social biases [277], Figure 6.1b can be either a young

lady or an old woman.

(a) Duck or rabbit? [274] (b) Young lady or old woman? [275].

Figure 6.1: Humans perceive similar images differently considering the given context. Ambiguous
figures show that the perception and mental representation for visually similar input can change
depending on the context.

89
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Humans categorize images based on various types of context. Known categories are based on

visual features or semantic concepts [278], but may also be based on other information such as

attributes describing their function. Accordingly, neuroscience has shown that the human brain

encodes visual input into individual contextual object representations [5, 6, 7], namely visual, taxo-

nomical, and functional [279]. Concretely, in a visual context, images of a drum and a barrel have a

high similarity, as they share similar visual features. In a taxonomical context, a drum would be sim-

ilar to a violin, as they both are musical instruments. And in a functional context, the drum would

be similar to a hammer, since the same action of hitting can be performed with both objects [280].

Whereas there is much evidence that intelligent machines should also represent information in

contextualized embeddings, deep neural networks form their object representations based only on

the feature distribution of the image dataset [281, 282]. Therefore, they fail if the objects are placed

in an incongruent context that was not present in previously seen images [283].

This chapter investigates the influence of the type of prior knowledge of the KG that is induced

into the DNN. Does taxonomical prior knowledge, equally benefit visual object recognition, as

functional or visual prior knowledge? What is the relationship between prior knowledge, the image

data, and the task? To investigate these questions, we propose a theoretical framework that extracts

contextual views of a KG, which then are used to train KG-NNs individually.

In this chapter, we address the following research question:

RQ4: How does the type of prior knowledge in a KG impact KG-DL performance, especially

in visual transfer learning?

To provide a comprehensive answer for RQ4, we divided the research question into:

• RQ4.1: Can context provided in the form of a KG influence learning image representations

of a DNN, the final accuracy, and the image predictions?

• RQ4.2: Can context help to avoid critical errors in domain-changing scenarios where DNNs

fail?

Our main contribution based on RQ4 is as follows:

• Method to learn contextual DNNs using contextual views of a generic KG.

The main parts of this chapter are already published in the following work:

• Sebastian Monka, Lavdim Halilaj, and Achim Rettinger. 2022. Context-Driven Visual

Object Recognition Based on Knowledge Graphs. In The Semantic Web - ISWC 2022 - 21st

International Semantic Web Conference, Virtual Event, October 23-27, 2022, Proceedings

(Lecture Notes in Computer Science), Springer, 142–160.
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To enable standard DNNs to build contextual object representations, we provide the context

using a KG and its corresponding KGE hs. Similar to the process in the human brain, we conduct

experiments with three different types of contexts, namely visual context, taxonomical context, and

functional context 6.3. We provide two versions of knowledge infusion into a DNN and compare

the induction of different contextual models in depth by quantitatively investigating their learned

contextual embedding spaces using class-related cosine similarities. In addition, we evaluate our

approach quantitatively by comparing their final accuracy on object recognition tasks on source and

target domains and provide insights and challenges.

The structure of this chapter is organized as follows: Section 6.2.1 introduces the three different

types of context and an option to model these views in a contextual KG. Section 6.2 shows two ways

of infusing context into a visual DNN. Section 6.3 contains experiments on seven image datasets

within two transfer learning scenarios. Section 6.4 provides an overview of work related to the content

of this chapter. Section 6.5 answers the research questions and summarizes our main insights.

6.1 Contextual Image Representations

Contextual Image Representations in the Brain: Cognitive and neuroscience research has

recently begun to investigate the relationship between viewed objects and the corresponding fMRI

scan activities of the human brain. It is assumed that the primate visual system is organized into

two separate processing pathways in the visual cortex, namely, the dorsal pathway and the ventral

pathway. While the dorsal pathway is responsible for the spatial recognition of objects as well as

actions and manipulations such as grasping, the ventral pathway is responsible for recognizing the

type of object based on its form or motion [284]. Bonner et al. [285] recently showed that the sensory

coding of objects in the ventral cortex of the human brain is related to statistical embeddings of

object or word co-occurrences. Moreover, these object representations potentially reflect a number

of different properties, which together are considered to form an object concept [279]. It can be

learned based on the context in which the object is seen. For example, an object concept may

include the visual features, its taxonomy, or the function of the object [7, 6].

Image Representations in the DNN: Recent work has shown that while the performance of

humans, monkeys, and DNNs is quite similar for object-level confusions, the image-level performance

does not match between different domains [7]. In contrast to visual object representations in the

brain, which also include high-level contextual knowledge of concepts and their functions, image

representations of DNNs only depend on the statistical co-occurrence of visual features and a specific

task. We consider the context extracted from the dataset as dataset bias. Even in balanced datasets,

i.e., datasets containing the same number of images for each class, there still exists an imbalance

due to the overlap of features between different classes. For instance, it must be taken into account
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Figure 6.2: A Framework to learn contextual deep neural networks (DNN) using contextual views
provided by a generic knowledge graph. Our approach to learning contextual image representations
consists of two main parts: 1) the contextual view extraction; and 2) the contextual view infusion.

that a cat and a dog have similar visual features and that in composite datasets certain classes

can have different metadata for the images, such as illumination, perspective, or sensor resolution.

This dataset bias leads to predefined neighborhoods in the visual embedding space, as well as

predefined similarities between distinct classes. In a DNN, a feature extractor f(·) maps images x

to a visual embedding hv = f(x) ∈ RdE , where the activations of the final pooling layer and thus

the representation layer have a dimensionality dE , where dE depends on the encoder network itself.

Contextual Representations in the KG: A KG is a graph of data aiming to accumulate and

convey real-world knowledge, where entities are represented by nodes and relationships between

entities are represented by edges [41]. A generic KG GKG is a graph of data that relates different

classes of a dataset based on defined contextual properties. These contextual properties can be both

learned and manually curated. They bring in prior knowledge about classes, even those that may

not necessarily be present in the image dataset, and thus place them in contextual relationships with

each other.

6.2 Learning Contextual Image Representations

The framework, as shown in Figure 6.2 consists of two main parts: 1) the contextual view extraction,

where task-relevant knowledge is extracted from a GKG; and 2) the contextual view infusion, where

the contextual view is infused into the DNN.
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Figure 6.3: There are different types of context. Aligned to insights into how humans perceive
the world, we present three contextual views of a generic knowledge graph, namely the visual,
taxonomical, and functional view.

6.2.1 Contextual View Extraction

A KG can represent prior knowledge encoded with rich semantics in a graph structure. A GKG

encapsulating n contextual views:

GKG ⊇ {GKG1, GKG2, ..., GKGn}

is a collection of heterogeneous knowledge sources, where each contextual view defines specific re-

lationships between encoded classes. However, for a particular task, only a specific part of a GKG

can be relevant. Thus, a subgraph containing a single contextual view:

GKGview = query(GKG; view)

or a combination of views is extracted from a GKG. Since object recognition models are deployed

in the real world that differs from their training domain, it is necessary to encode prior knowledge

that is not present in the dataset.

Based on image representations in our brain and on how humans tend to classify objects, we

introduce three distinct types of contextual views as shown in Figure 6.3. The first contextual view

is based on visual, the second view is based on taxonomical, and the third view is based on functional

properties.

Visual Context: The visual view GKGv describes high-level visual properties of the classes, for

instance, properties describing color, shape, or texture. These properties may or may not be present

in the image data set. For example, if all horses in the dataset are white, we want to encode that

horses can also occur in different colors.
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Taxonomical Context: The taxonomical view GKGt describes class relationships based on hier-

archical schemes. A taxonomy is built by experts and can contain categories based on concepts from

biology, living place, feeding method, etc. For instance, a biological taxonomy separates animals

from vehicles and divides them into further subcategories.

Functional Context: The functional view GKGf contains properties describing the function of

a class. It is known that tools are categorized in the human brain based on their function [279].

In that sense properties such as hit, rub, or drill would determine the category of a given tool.

However, to broaden the scope, additional functional properties such as noise, transport, or smell

can be introduced.

6.2.2 Contextual View Infusion

When transferring the knowledge from the GKGview using the KGE method KGE(·) into the KGE

hsview = KGE(GKGview),

graph-based relationships are transferred into spatial relationships. Intuitively, a different context

leads to a different representation in the vector space, where hsview reflects all relationships that are

modeled in GKGview.

As illustrated in Figure 6.4, we present two different ways of learning a visual context embedding

hv,sview in alignment with Chapter 4. The first one is KG-NNuview , which uses the Knowledge Graph

as a Trainer 5 and thus learns hsview
u

without any supervision of image data. The second version is

KG-NNsview , which uses the Knowledge Graph as a Peer and thus learns hv,sview
s ) and hsview

s
jointly

with additional supervision of image data.

Both versions use the contrastive loss to align the image embedding hv,sview of the images x and

the DNN with the KGE hsview of the label information. A batch consists of N augmented training

samples. The KG-based contrastive loss is constructed using the individual anchor losses as given

by

LKGview =

N∑
i=1

LKGview,i.

Within a batch, an anchor image i ∈ {1...2N} is selected that corresponds to a specific class

label yi, where yi points to its KGE hsview,i. Positive images j are all images of the batch that

correspond to the same class label as the anchor i. The numerator in the loss function computes

a similarity score between hsview,i and the image embeddings hv,j . The denominator computes the

similarity score between hsview,i and the image embeddings hv,k of all images of the other classes in

the batch. As a similarity score, we choose the cosine similarity, which however can be replaced by

others. 1k 6=i ∈ {0, 1} is an indicator function that returns 1 iff k 6= i evaluates as true, and τ > 0 is
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Figure 6.4: Contextual view infusion. The contextual object recognition model, i.e. deep neural
network (DNN), can be trained in two different ways: a) using the KG as a Trainer, where the
knowledge graph embedding KGEu is learned without supervision of the image data; or b) using
the KG as a Peer, where KGEs is learned with supervision of the image data. Images x are fed
into the DNN, producing hv which is optimized with hsview using the KG-based contrastive loss and
produces then hv,sview . In a second step, a gaussian process (GP ) or linear layer (LL) is trained to
predict the class labels y of x based on the trained hv,sview .

a predefined scalar temperature parameter. The KG-based contrastive anchor losses for contextual

views are then given by

LKGview,i =
−1

2Nyi
− 1

2N∑
j=1

1i 6=j · 1yi=yj
· log

exp (hsview,i · hv,j/τ)∑2N
k=1 1i 6=k exp (hsview,i · hv,k/τ)

.

Prediction: To predict the class labels of unknown images it is common to train a linear layer or

to use a gaussian process on top of hv,sview . For GP , we run the whole training dataset through the

trained DNN and calculate the mean and covariance matrices for all the classes in hv,sview . GP and

LL, both calculate decision boundaries in hv,sview for all the classes of the dataset. At inference,

where the goal is to predict the class label of an unknown image, GP or LL assign probabilities if

an image belongs to a specific class. The maximal probability is chosen to be the final prediction.
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6.3 Experiments

The goal of our empirical investigations is to provide an answer to RQ4 and therefore to RQ4.1

and RQ4.2. We conduct experiments with seven datasets in the two specific domain generalization

settings, Cifar10 and Mini-ImageNet. For both experiments, we build separate GKGs that include

three different contextual views, the visual (GKGv), the taxonomical (GKGt), and the functional

(GKGf ) view, respectively. Based on the framework in Section 6.2, we use GKGview to learn a

contextual DNN in combination with image data. We evaluate and compare both versions of our

approach, KG-NNuview and KG-NNsview .

6.3.1 Implementation details

For both experiments, we use a similar implementation of our approach. From the GKG, we extract

various GKGviews using respective SPARQL queries. A ResNet-18 architecture is used as a DNN

backend, with a 128-dimensional MLP as the head. We train all configurations using an ADAM

optimizer, a learning rate of 0.001, no weight decay, and a cosine annealing scheduler with a learning

decay rate of 0.1. The images are augmented via random cropping, random horizontal flipping, color

jittering, random grayscaling, and resizing to 32x32 pixels. All models are trained for 500 epochs. For

a) KG-NNuview we transform GKGview into vector space using a graph auto encoder (GAE) [286],

which we denote as the KG-NNuview model due to its unsupervised nature. Our GAE comprises

two convolutional layers, with a hidden layer dimension of 128. We train the GAE using an ADAM

optimizer with a learning rate of 0.01 for 500 epochs. For b) KG-NNsview , a graph attention network

(GAT) [59] is trained in combination with the image data, denoted as the KG-NNsview model due

to its supervised nature. The GAT consists of two GAT-layers with 256 hidden dimensions, eight

heads, and an output dimension of 128. Training is performed via the same KG-based contrastive

loss from the images in addition to the GKGview input. We optimize the GAT using an ADAM

optimizer with a learning rate of 0.001 and no weight decay.

6.3.2 Experiments on Cifar10

Dataset Settings: The source domain Cifar10 [287] consists of six thousand 32x32 color images

for each of the 10 classes, namely airplane, bird, automobile, cat, deer, dog, horse, frog, ship, and

truck. The target domain Stl10 [288] includes 500 96x96 color images for each of the 10 classes,

namely airplane, bird, automobile, cat, deer, dog, horse, monkey, ship, and truck.

Knowledge Graph Construction: We build a GKG that includes the previously discussed three

types of context, namely visual, taxonomical, and functional. GKGv contains visual properties like:

hasBackground : air, forest, water; hasColor : black, blue, brown; hasPart : eyes, legs, wings; has-

Shape: rectangular, ellipsoid, cross; hasSize: large, medium, small; or hasTexture: dotted, striped,
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a) Visual b) Taxonomical c) Functional d) Generic

Cifar10

Stl10

Figure 6.5: Qualitative evaluation for Cifar10. We compare hsview
u

and hv,sview
u

based on: a) the
visual view; b) the taxonomical view; c) the functional view; and d) the full generic KG. To inves-
tigate how the semantic relationships are reflected in the embeddings, we illustrate the individual
cosine similarity matrices between the classes of the Cifar10 and the Stl10 dataset.

uniform. GKGt contains a taxonomy of the classes using the type-relation. For example, the class

Horse is-a Mammal and is-an Animal or the class Ship is-a Water-vehicle and is-a Vehicle. GKGf

defines the function of the class, e.g. properties like: hasMovement : drive, fly, swim; hasSound :

bark, meow, vroom; hasSpeed : fast, medium, slow; hasWeight : heavy, light, middle. Our GKG

contains in total 34 classes, 16 object properties, and 65 individuals. Please note that our GKG is

only an example and we are aware that there are unlimited possibilities of how and what type of

knowledge can be modeled in a KG.

Evaluation: To evaluate our approach we first investigate the learned embeddings, if and how

semantic relationships from GKGview are reflected in hsview . Second, we compare the individual

class accuracies to see how these relationships influence the final object recognition. Figure 6.5 shows

an analysis: a) the visual view; b) the taxonomical view; and c) the functional view. For every cell

in hsview
u

we calculate the cosine similarity between the corresponding nodes, i.e. the classes of the
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(a) Results on Cifar10

Cifar10 Airplane Auto Bird Cat Deer Dog Frog Horse Ship Truck All

SupSSL 95.1 97.0 91.8 83.9 92.9 85.7 96.0 93.5 96.8 95.9 92.9

∆KG-NNuv -1.2 0.5 -2.6 -0.2 2.3 -0.8 -0.2 -1.1 -0.5 -0.9 -0.5
∆KG-NNut -0.9 -0.6 -1.2 -30.8 -29.8 -0.2 -2.2 -1.6 -1.5 -1.3 -7.0
∆KG-NNuf 1.0 0.2 -1.1 1.9 0.1 0.6 0.7 1.2 -0.1 -0.4 0.4
∆KG-NNu -0.7 0.0 -2.3 0.4 0.6 -0.6 -1.1 0.0 0.3 -1.8 -0.5

∆KG-NNsv -0.6 -0.3 0.2 0.3 0.1 -1.0 0.3 0.9 0.7 -0.8 -0.0
∆KG-NNst -0.9 0.0 -1.7 1.8 0.1 1.0 0.4 0.5 -0.1 0.3 0.1
∆KG-NNsf -0.4 0.5 -3.0 1.7 1.5 -0.4 0.4 0.8 0.4 -0.1 0.1
∆KG-NNs -1.0 0.3 -1.8 1.2 -0.3 2.0 -0.5 1.7 0.0 0.7 0.2

(b) Results on Stl10

Stl10 Airplane Auto Bird Cat Deer Dog Frog Horse Ship Truck All

SupSSL 85.4 86.9 82.4 56.6 91.5 60.5 - 76.5 84.5 74.1 77.6

∆KG-NNuv 1.0 0.2 -2.6 3.4 1.2 -4.5 - -4.8 -0.6 3.9 -0.3
∆KG-NNut 2.4 -1.0 -1.5 -10.1 -32.9 0.2 - -0.5 -1.6 -1.6 -5.2
∆KG-NNuf 1.9 -0.8 -1.3 1.4 -2.4 -0.5 - 3.4 0.9 3.3 0.7
∆KG-NNu 0.4 0.5 -1.9 1.8 -1.5 2.6 - -1.4 -0.6 2.1 0.2

∆KG-NNsv 0.5 -0.9 2.6 -0.6 -0.1 0.5 - 0.5 1.0 0.0 0.4
∆KG-NNst 1.0 -2.1 -0.5 1.9 -0.4 0.8 - 0.5 1.6 3.0 0.6
∆KG-NNsf 2.7 -0.3 -1.5 -0.7 -1.0 -2.6 - 0.0 0.4 1.8 -0.1
∆KG-NNs -1.6 -1.0 -2.6 -2.2 -1.2 2.8 - 3.1 1.2 4.3 0.3

Table 6.1: Quantitative evaluation for Cifar10. Comparison of the individual class accuracies for
the Cifar10 dataset as training domain and the Stl10 dataset as testing domain. We compare the
contextual view-trained DNNs against their baseline SupSSL.

image dataset, and for hv,sview
u

we calculate the class-means of the image representations. Since the

goal is to learn contextual image classifiers, we investigate if the context is transferred to hsview

and hv,sview , respectively. It can be seen that semantic relationships provided by the GKGview are

reflected in hsview
u

. In hsvu
, the airplane has the highest similarity to the truck and the bird, in hstu

,

the airplane has the highest similarity to the ship, in hsfu
, the airplane has the highest similarity to

the automobile, and hsu the airplane has a high similarity to all vehicles. Further, one notices that

taxonomical and generic hsu have two main distinctive groups in the embedding space. In hstu
and

hsu vehicles and animals have a high inter-cluster, but a small intra-cluster variance. For hv,sview
u

,

we observe that similarities in the GKGview and hsview
u

are only partially reflected. All hv,sview
u

seem

to have a similar underlying pattern of the class distribution, with minor differences. We think that

implicit relations between class features interfere with the similarities given by hsu and the GKG.

Further, we retrieve different distributions for either Cifar10 or Stl10. This behavior can be
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explained by the distribution shift between the source and the target domain. While the network

attempts to separate classes in the training domain Cifar10, this separation is less successful in the

testing domain Stl10.

In Table 6.1 we compare the final object recognition accuracy of the contextual DNNs, compared

to their baseline SupSSL. SupSSL is the same model trained with the supervised contrastive loss [250]

and without prior context. In Table 6.1aWe observe that for different contextual infusions, the overall

accuracy is not significantly impacted. For Cifar10 ∆KG-NNut with −7.0 is the worst performing

model, whereas ∆KG-NNuf with 0.4 is the best performing model. We marked the best-performing

model for every class in bold. It can be seen that for every class a different contextual model is

outperforming the others. It also shows that context influences the focus a DNN puts on predicting a

specific class. Table 6.1b shows the relative accuracies of the contextual models on the Stl10 dataset.

Note that the models are only trained on Cifar10 data. The goal of that domain generalization

scenario is to test the robustness of the models. When evaluated on the target domain, it can be

observed that almost in every contextual model the relative accuracy is increased compared to the

baseline with no contextual knowledge. In scenarios where the domain changes, we observe strange

phenomena occurring such that the model with the second worst performance KG-NNt
u for the class

Aircraft of the Cifar10 dataset is the model with the second best performance for Aircraft on Stl10.

However, for most of the classes, we see a trend that the best-performing model for a class in Cifar10

tends to perform also better on the target domain.

6.3.3 Experiments on Mini-ImageNet

Dataset Settings: We use Mini-ImageNet, a subset of the ImageNet dataset, as our training

domain. It contains 100 classes, each having 600 images of size 84 × 84. As the testing domain

we use ImageNetV2 [174] comprising 10 new test images per class, ImageNet-Sketch [258] with 50

images per class, ImageNet-R [257], which has 150 images in the style of art, cartoons, deviantart,

and ImageNet-A [259] with 7.500 unmodified real-world examples.

Knowledge Graph Construction: Our GKG is built using the three contextual views, namely

visual, taxonomical, and functional. GKGv contains visual properties, e.g. hasColor : black, blue,

brown; hasTexture: dotted, striped, uniform; hasSize: large, medium-large, small; and hasShape:

ellipsoid, quadratic, rectangular. GKGt contains a taxonomy of the classes using the type-relation.

Following DBpedia [149], the class Malamute is-a Dog, is-a Mammal, is-an Animal, is-an Eukaryote,

and is-a Species. GKGf defines the function of a class with properties like: hasSpeed : fast, static,

slow; hasWeight : heavy, light, middle; or hasTransportation: goods, none, people. Our GKG

contains in total 166 classes, 14 object properties, and 183 individuals.
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a) Visual b) Taxonomical c) Functional d) Generic

Figure 6.6: Qualitative evaluation for Mini-ImageNet. We compare hsview
u

and hv,sview
u

, as well as
hsview

s
and hv,sview

s
based on, a) the visual view, b) the taxonomical view, c) the functional view, and

d) the full generic KG. To investigate how the semantic relationships are reflected in the embeddings,
we illustrate the individual cosine similarities between the classes of the Mini-ImageNet dataset.

Evaluation: Due to the difficulty of deeply investigating 100x100 class similarities, we provide a

qualitative overview of the embedding spaces. Figure 6.6 shows a qualitative comparison of hsview

and hv,sview of a) the visual view; b) the taxonomical view; c) the functional view; and d) the GKG.

Complementing the experiment in Section 6.3.2, we illustrate the class similarities of hss and hv,ss

learned using image data as supervision. Interestingly, it can be observed that the similarities in

hss and hsu follow a similar pattern, but hsu seems to have a stronger contrast. However, when

investigating the learned image representations in hv,ss it is hard to spot the differences between

the individual contextual models.

ImageNet Mini V2 Sketch R A

SupSSL 58.6 43.0 20.3 4.3 1.2

∆KG-NNuv -0.3 0.0 -0.6 0.2 -0.2
∆KG-NNut -19.6 -13.7 -8.8 -2.8 0.0
∆KG-NNuf -5.2 -3.3 -2.3 -0.7 0.3
∆KG-NNu 0.8 1.6 -0.6 -0.1 -0.1

∆KG-NNsv 0.9 2.3 0.2 0.0 0.3
∆KG-NNst 1.3 0.6 0.1 0.1 0.0
∆KG-NNsf 0.4 0.4 0.0 -0.1 -0.1
∆KG-NNs 0.5 0.6 0.1 0.0 0.0

Table 6.2: Quantitative evaluation for Mini-ImageNet. Comparison of the contextual view mod-
els and their SupSSL baseline on the Mini-ImageNet and its derivatives, Mini-ImageNet (Mini),
ImageNetV2 (V2), ImageNet-Sketch (Sketch), ImageNet-R (R), and ImageNet-A (A).

As depicted in Table 6.2, KG-NNut and KG-NNuf are outperformed by the baseline SupSSL

and the other models with different contextual views by a large margin. In contrast to the Cifar10

experiment where the least performing model is only 8% worse than the baseline, in Mini-ImageNet
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the worst is around 34%. Moreover, KG-NNst does not suffer from constraints given by GKGt.

This finding confirms the assumption that a joint training softens the constraints of the GKG.

SupSSL
 visual

taxonomical
functional

generic
visual

taxonomical
functional

generic

Figure 6.7: Evaluation of sample predictions for Mini-ImageNet. Contextual Predictions of KG-NNu

(GAE) and KG-NNs (GAT) and their contextual view on Mini-ImageNet. The contextual view
influences the image representation and therefore the final prediction for the same input image.

Similar to the example of ambiguous figures, our approach enables DNNs to interpret the same

image in various ways using contextual views given by a KG. The results in Figure 6.7 show that for

out-of-distribution images the contextual views play a major role in giving reasonable predictions.

The idea is that some class confusions are not as critical as others. In that sense, for some tasks it

is uncritical to confuse a goose with a house finch as they are both part of the bird family, however

confusing a music instrument (oboe), with a dog (malamute) could lead to problems. We also

see that KG-NNu (GAE) and KG-NNs (GAT) do not necessarily predict the same image given the

same context. We believe that further research is needed w.r.t. investigating how to best incorporate

context in combination with image data.

6.4 Work Related to Contextual Visual Models based on KG

Contextual information has always been of great interest to improve CV systems. We structure

related work into implicit-contextual visual models, explicit-contextual visual models, and contextual

KGEs.

Implicit-Contextual Visual Models: Implicit-contextual visual models contextualize relation-

ships between visual features that occur in the image itself. They are used for object priming, where

the context defines a prior on the detection parameters [271] or for object detection and segmen-

tation, where boosting is used to relate objects in an image [289]. Wu et al. [290] improved object

recognition by processing object regions and context regions in parallel. To overcome the drawback

of small receptive fields from standard CNNs, extensions that incorporate visual features from far
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image regions [291, 292] or alternative architectures, such as vision transformers (ViTs) [293] have

been established recently. Moreover, Gao et al. [294] proposed that all modern DNNs are part of

the implicit-contextual models since they aggregate contextual information over image regions.

Explicit-Contextual Visual Models: Explicit-contextual visual models use higher-level infor-

mation like object co-occurrences or semantic concept relationships. They induce additional con-

textual information that is either not in the dataset or cannot be automatically extracted by the

DNN [295]. To create explicit context based on object relations, most methods use scene graphs that

describe a scene based on symbolic representations of entities and their spatial and semantic rela-

tions. Scene graphs have been applied to the task of collective or group activity recognition [296, 297],

object recognition [298, 282], object detection [195, 299] and visual question answering [300]. Label

graphs [301] apply fine-grained labels to an image and are used to improve object recognition and

reasoning over object relationships [302]. Semantic scene graphs extend scene graphs by textual

descriptions and fine-grained labels of a scene [303]. Context-aware zero-shot learning for object

recognition [304] or compositional zero-shot learning methods [233] add observed visual primitive

states (e.g. old, cute) to objects (e.g. car, dog) to build an embedding space based on visual context.

However, scene correlations need to be addressed very carefully, as implicit-contextual models can

heavily depend on learned contextual relationships that are only valid for a specific dataset configu-

ration. Therefore, work was already done to decorrelate objects and their visual features to improve

model generalization [305].

Contextual Knowledge Graph Embeddings: Whereas our approach extracts the contextual

views in a previous step before the actual KGE, there exist works that create contextualized KGEs

based on the full KG. Werner et al. [306] introduced a KG embedding over temporal contextualized

KG facts. Their recurrent transformer transforms KGEs into contextual embeddings, given the

situation-specific factors of the relationship and the subjective history of the entity. Ning et al. [307]

proposed a lightweight framework for the usage of context within standard embedding methods.

Wang et al. [308] presented a deep contextualized KGE method that learns representations of entities

and relations from constructed contextual entity-relation chains. Wang et al. [309] introduced the

contextualized KG embedding method (CoKE). They propose to take the contextual nature of KGs

into account, by learning dynamic, flexible, and fully contextualized entity and relation embeddings.

6.5 Discussion and Insights

With our work, we provided a method to infuse context in form of GKGview into DNNs for visual

object recognition. However, knowledge infusion is not straightforward, as inductive biases of ML,

such as hyperparameter selection, weight initialization, or dataset dependence, strongly influence the

learned representations. To provide an answer for RQ4 we start by answering the two sub-questions.
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RQ4.1: Can context provided in form of a KG influence learning image representations of a

DNN, the final accuracy, and the image predictions? - we list the insights obtained from our inves-

tigations:

- GKGview defines class-relationships. We showed that various contextual views can be ex-

tracted from a GKG and that different views lead to different relationships between classes of the

dataset.

- hsview needs to reflect GKGview. The embedding method itself also influences the hKGEview

and the performance of the final prediction model. Context can get lost when transferring GKGview

into hsview . Hard constraints either in GKGview or produced by the KGE method, e.g. to represent

dissimilar classes in hsview together, can drastically reduce the prediction accuracy.

- hsview
u

is only partially reflected in hv,sview
u

. Since data-driven approaches have a strong de-

pendence on the dataset distribution, hsview
u

only influences hv,sview
u

to form a hybrid representation.

We see that data augmentation weakens the dataset bias and helps to align hv,sview
u

with hsview
u

.

- Joint training reduces the impact of GKG. Both the learned hv,ss and the achieved accuracy

values are only slightly affected by the induced GKG. Neither the qualitative evaluation of hv,ss

nor the quantitative evaluation based on accuracy shows any significant contextual changes.

- Context shifts the focus on learning specific classes. We assume that the context constrains

the DNN and its hypothesis space. It is known that DNNs tend to memorize spurious correlations

that can lead to catastrophic errors in the real world [85]. We think that the task of our contextual

models is to prevent exactly these errors. In our experiments, we showed that specific contextual

models performed better on specific classes. We assume that context can shift the overall interest

of a DNN to predict a certain class.

- Context rather influences individual image predictions. Similar to the proposed motiva-

tion of how humans interpret ambiguous figures we see context influencing the prediction of difficult

or undefinable images in the dataset.

Regarding RQ4.2: Can context help to avoid critical errors in domain-changing scenarios where

DNNs fail?

- Context makes more robust against domain changes. It can be seen that almost every

contextual model increases its relative accuracy compared to the baseline when evaluated on the

target domain. Moreover, contextual models that performed better on the source dataset tend to

perform better if domain change occurs. We argue that GKGview regularizes the strong dependency

on the source domain and thus increases the performance on the target domain.

6.6 Summary

In this work, we proposed a framework for context-driven visual object recognition based on KGs.

We qualitatively and quantitatively investigated how different contextual views, as well as their
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embedding and their infusion method, influence the learned DNN. Further, we have seen that con-

textual models tend to have a minor impact on the final accuracy, but a major impact on how

individual classes or images are represented and predicted. In particular, for out-of-distribution

data, where data-driven approaches suffer from less knowledge, contextual image representations

help to constrain the hypothesis space, leading to more reasonable predictions. However, there are

still challenges to be faced.

We conducted intensive research about a possible context infusion approach and emerging chal-

lenges. On the one hand, we have the implementation of the infusion method, which itself heavily

depends on modeling choices, weight initialization, as well as network and hyperparameter selection.

On the other hand, there is a strong dependence on the image data, which originally comes with

an initial dataset bias. This dataset bias limits the ability to influence image data representations

and thus predictions influenced by prior knowledge. However, our work showed that with deeper

investigations of all the influencing parameters knowledge-infused learning is a promising approach

to building context-driven and future intelligent systems.



Chapter 7

Conclusions

The limitations of pure DL approaches have spurred interest in visual transfer learning methods that

are less reliant on training data and more adaptable to real-world scenarios. This study explores

the incorporation of prior knowledge through KGs to enhance DL’s ability to generalize. KGs offer

an effective means of organizing and formalizing knowledge through symbolic operations, making

them ideal for knowledge reuse and transfer learning tasks. KGs contain symbolic operations such

as logic, rules, and reasoning, and can be created, adapted, and interpreted by human experts.

However, combining the explicit nature of KGs with the implicit vector representations of DL

presents various challenges. With KGE methods, that transform the explicit graph representation

of a KG into an implicit vector representation of a KGE, new combination possibilities for KG-DL

have recently emerged. This work addresses four key challenges in leveraging the prior knowledge

encoded in a KG to improve DL for visual transfer learning:

• Enhancing Transfer Learning using Prior Knowledge (CH1)

• Investigating Strategies for KG-DL Integration (CH2)

• Guiding DL with Prior Knowledge for Visual Transfer Learning (CH3)

• Investigating the Impact of Contextual Knowledge for KG-DL (CH4)

Overall, the thesis provides a comprehensive investigation into the improvement of DL-based

visual transfer learning using KG. The thesis started with Chapter 1, by introducing the problem

of visual transfer learning using KG and outlining the four main challenges and research questions.

Relevant preliminaries were then presented in Chapter 2, including an overview of NSAI, modalities

used in this work, DL-based feature extraction, and inductive biases that affect DNN learning. Then

Chapter 3 provides an introduction to transfer learning using prior knowledge and argues that KGs

are an ideal representation format for encoding and utilizing prior knowledge. Based on CH1/RQ1,
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the chapter motivates why a combination of KG and DL is well suited for improved DL and visual

transfer learning systems. Chapter 4 focuses on CH2/RQ2, by providing a comprehensive cate-

gorization of KG-DL combinations. Therefore, it summarizes CV models that already utilize KGs

with DL and proposes a categorization based on their knowledge integration. Chapter 5 investigates

how prior knowledge encoded in a KG can guide DL to improve visual transfer learning, based on

CH3/RQ3. In particular, it provides a novel KG-DL method for visual transfer learning of the

KG as a Trainer category. Chapter 6 focuses on CH4/RQ4, by investigating the impact of differ-

ent types of prior knowledge encoded in a KG on the performance of KG-DL, especially for visual

transfer learning. Finally, Chapter 7 concludes the thesis, by revisiting all research questions, posing

further challenges and open issues, and providing an outlook for future work. Overall, the thesis

contributes to the understanding of how prior knowledge encoded in KGs can be used to improve

DL-based visual transfer learning and provides insights into the challenges and opportunities of such

an integration.

7.1 Revisiting the Research Questions

In this thesis, we have intensively studied the problem of visual transfer learning using KG. Within

this section, we will therefore provide comprehensive answers to each of the research questions

formulated in Section 1.3:

RQ1: Why can prior knowledge encoded in a KG improve DL-based visual transfer learning?

Transfer learning is a powerful approach to learning that enables the application of knowledge

gained from one domain to another but related domain. In Chapter 3, we explored the fundamental

principles of transfer learning and showed that any DL task relies on transfer learning by design. DL

learns features from constrained training data and applies them in reality. However, the information

of the training domain is constrained and will always differ from the information in the real world.

To generalize gathered knowledge of the training data to unknown domains, DL requires additional

prior assumptions about the world [4]. These prior assumptions, known as inductive biases, are

pre-assigned and non-learnable components of the model that influence which features are learned

from the data. Inductive biases can be considered a form of prior knowledge, however, they are

abstract, difficult to interpret, and cannot be easily combined with human expert knowledge.

In general, prior knowledge refers to any knowledge that exists about the problem domain before

the learning process begins and can occur in explicit and implicit forms. We showed that a KG can

represent prior knowledge in both forms, explicitly and implicitly. KGs naturally work with explicit

symbolic knowledge that is encoded in a graph such that humans can understand and interact

with it. KGs are flexible, interpretable, and modifiable, and come with an established toolset to
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build, reason, interact, and embedd heterogeneous sources of information. They unify human expert

knowledge with established knowledge from taxonomies, books, and other sources of information

and encode it by modeling classes, entities, and their relationships of a domain. With the recent

development of KGE methods that transform a KG into vector space, its prior knowledge can be

transformed into an implicit representation format. This makes a KG an ideal representation format

for prior knowledge, as it interfaces with explicit human knowledge through the KG and connects

to implicit embeddings of data from other modalities, such as vision or language, through its KGE.

By leveraging prior knowledge encoded in a KG, DL will learn more efficiently and robustly for

visual transfer learning scenarios that naturally occur in the real world. The incorporation of prior

knowledge in a KG can help to overcome the limitations of constrained training data and enables the

transfer of knowledge across related visual domains, resulting in better generalization and improved

performance in real-world applications.

RQ2: What are possible ways of integrating the prior knowledge encoded in a KG into the

DL pipeline?

In Chapter 4, we explored different ways of integrating prior knowledge encoded in a KG into

the DL pipeline for visual transfer learning. These approaches differ in terms of how they integrate

prior knowledge, and we identified four main categories of approaches that combine a KG with DL.

The first category is called Knowledge Graph as a Reviewer, in which the KG is used for post-

validation. This involves matching the predictions of a DNN with the structured knowledge in the

KG to identify any inconsistencies or errors in the output of the visual model. The second category

is Knowledge Graph as a Trainee, which learns a KGE method that embeds the KG into a KGE hs,v

based on the visual embedding hv. Approaches of this category use the visual embedding of the DNN

as a guide for training the hs,v and force the KGE method to associate the graph structure of the

KG with the visual embedding of the DNN. Approaches of this category are mostly used for transfer

learning scenarios with an output domain change, such as zero-shot or few-shot learning. The third

category is Knowledge Graph as a Trainer, which uses the KG with its KGE hs to learn a DNN

that embeds images in a visual-semantic embedding hv,s that is based on the KGE. This approach

uses the structured prior knowledge in the KG to train a DNN that learns its visual embedding

based on the representation of the KGE. Approaches within this category can use prior knowledge

to influence how a DNN learns from unstructured image data and thus can be used for transfer

learning scenarios where input domain change occurs. The fourth category is the Knowledge Graph

as a Peer, which combines the KG and its KGE hs with the visual embedding hv to form a hybrid

embedding hh. In this approach, both the KGE method and the DNN are learned using a joint

optimization process. However, at the same time, the approach loses the hard constraints of each

modality and its interpretability.
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In each of the KG-DL categories, we distinguish between a feature extractor and a transformation

model. When an approach retrains the entire encoder network using the other modality, we refer to

it as a feature extractor. When it learns only a transformation function from the embedding of one

modality to another, we define it as a transformation model. All categories provide different ways

of integrating prior knowledge encoded in a KG into the DL pipeline and can be used differently to

improve the performance of visual transfer learning.

RQ3: How can prior knowledge encoded in a KG guide DL to improve visual transfer

learning?

In Chapter 5, we explored the use of prior knowledge encoded in a KG to guide DL to improve

visual transfer learning. We proposed the KG-NN approach, which belongs to the category KG as

a Trainer. This approach leverages prior knowledge of a KG to influence the learning of certain

features from image data in a DNN. By doing so, it can improve generalization and efficiency in

transfer learning scenarios.

The KG-NN approach works by constructing a KG based on prior knowledge about the domain,

including individual properties and relationships between classes. The KG is then converted into

a KGE using an appropriate KGE method to align it with the implicit knowledge of the visual

embedding from the DNN. The KG-NN approach optimizes the entire feature extractor of the

DNN by attracting the visual embedding of the images to their representatives in the KGE using

a contrastive loss function. By doing so, it forces the DNN to learn visual features that depend on

the relationships in the KGE and are thus partially independent of the training data distribution.

We compared KG-NN with approaches without prior knowledge and demonstrated that it outper-

forms them, particularly in transfer learning tasks. KG-NN not only provides better generalization

but also learns more efficiently, requiring significantly less training data to adapt to a new domain.

We tested the approach in various domains, such as road sign recognition, where the KG defines the

relationships between classes based on prior knowledge controlled by human experts. The KG-NN

approach can be applied to any other domains where prior knowledge is available that can be en-

coded in a KG. Overall, KG-NN demonstrates the potential of using prior knowledge encoded in a

KG to guide DL for improving visual transfer learning.

RQ4: How does the type of prior knowledge in a KG impact KG-DL performance, especially

in visual transfer learning?

We have shown that prior knowledge in KG-DL can help improve visual transfer learning by

learning more generalizable representations from unstructured image data. However, the question
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remains how different types of prior knowledge affect the behavior of KG-DL and its results. There-

fore, Chapter 6 investigated the impact of contextual prior knowledge on a DNN. Similar to the

human brain, which encodes visual inputs and their objects into contextual embeddings, we con-

structed experiments to learn different DNNs based on the same visual input but using different

contextual knowledge of a KG. Whereas objects in the brain can be embedded based on their visual

properties, tools are encoded based on their functional properties. While pure DL can only encode

images based on their visual properties, KG-DL can induce any contextual knowledge using the KG.

Therefore, we provide three different types of context, i.e. contextual views, namely visual,

taxonomic, and functional context. The induced contextual view influences the neighborhood rela-

tionships between images and classes in the embedding space and we see that the contextual KG-DL

models perform differently based on their induced context. It can be seen that the overall accuracy,

but also the accuracy of individual classes and the prediction for specific image samples changes.

In addition, hard constraints of the KG that contradict the information in the images can lead to

optimization problems and problems in distinguishing between specific classes. However, we also see

that joint optimization methods, such as those provided by Knowledge Graph as a Peer methods,

relax these hard constraints. Despite this, adding any contextual prior knowledge improves gen-

eralizability and thus the performance on visual transfer learning tasks. However, there are many

factors besides contextual views that influence the learning of a DNN, such as the encoding format

of prior knowledge in the KG, as well as the KGE method that converts the graph-based KG into a

vector-based format. Moreover, DL is always highly influenced by various inductive biases, such as

the dataset itself, the augmentation method, the labels, the DNN architecture, the loss function, and

the optimization method, which make analyzing the exact influence of contextual prior knowledge

and fully controlling the learning of a DNN a difficult task.

In summary, we have shown that KG-DL performance depends on contextual view, the infusion

method, the inductive biases, and the final task. The type of prior knowledge, i.e. the contex-

tual view, affects the predictions for individual classes and images, and the importance of context

increases if the domain changes.

7.2 Further Challenges and Open Issues

In this work, we have shown the potential of combining KG with DL, especially for visual transfer

learning tasks. We have seen that adding prior knowledge to data-driven DL provides a way to

influence the learning process and helps DNNs to learn more generalizable models. For this purpose,

we worked on several challenges for KG-DL. We argued why a KG can improve DL-based visual

transfer learning, introduced different categories for knowledge integration in KG-DL, developed

a specific KG-DL method for visual transfer learning, and studied the impact of contextual prior

knowledge of a KG on the performance of KG-DL. However, there are still many open challenges
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for visual transfer learning using KG that need to be further investigated.

Relevant Knowledge and its Representation: As explained in Section 2.2.3, a KG can be

created using different modeling structures, e.g., directed, labeled, hyper- or hyper-relational graphs.

It is important to investigate how these structures affect the KGE and the final performance of KG-

DL. Thus, the open challenge is to find a balance between the level of detail of the relevant knowledge

and the complexity of the structures used to represent it.

In addition, as highlighted in Chapter 6, different types of prior knowledge lead to different

behavior and results of KG-DL, but cannot be fully controlled. Therefore, the relationship between

specific prior knowledge and DL behavior needs to be explored in more detail. We anticipate that it

will be necessary to include the DL pipeline with all its inductive biases, and the task in the process

of selecting relevant knowledge. Therefore, a generic KG that contains multiple task-dependent

contextual views must be able to quickly retrieve relevant compositions of knowledge.

In summary, it is critical to understand how KG modeling structures influence KGE and con-

sequently KG-DL performance, but also how the task and DL pipeline itself influence what prior

knowledge is relevant.

Knowledge Graph Embedding and its Metrics: In the context of this thesis, we have inves-

tigated various KGE methods, with the objective of understanding how the KGE method impacts

the KGE, the induction of prior knowledge, and the final KG-DL performance.

In Section 2.3.2, we have seen that the choice of a KGE method is highly dependent on how

the knowledge is modeled in the KG. For instance, most GNN-based KGE methods expect directed

labeled graphs as input and have difficulties in encoding n-ary relations, edge attributes, literals,

etc. Moreover, it needs to be investigated how KGE methods can work with multimodality and how

hierarchies, rules, and concepts from a KG can be maintained after embedding the KG into KGE.

In addition, typical metrics for KGE, such as AMR, MRR, Hits@K, do not reflect the final

performance of KG-DL when combined with image data. Therefore, it is important to investigate

which type of KGE method is suitable for which task and develop metrics to decide if a KGE is

suitable for knowledge induction into a visual model.

Transforming the KG into KGE using joint training with image data representations of the DNN,

similar to the category KG as a Peer, seems to be another direction, but also lowers the impact of

the KGE. The challenge here is to find a perfect balance between supporting the optimization of the

KGE with image data and constraining the learning process of the DNN.

Impact of Prior Knowledge and Inductive Biases: Data-driven DL approaches derive their

implicit knowledge from the training data only. KG-NN brings additional prior knowledge about

KG into the learning process by using a training objective that aligns the two embedding spaces.

However, recent studies [94] showed that the objective function, and so the prior knowledge, mainly
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influences the last layers of a DNN. This means that the learned representations of the early network

layers are only partially influenced by prior knowledge. It needs to be investigated if this limits the

performance of KG-NN and if alternative infusion techniques can bring benefit.

With the goal of fully controlling the DNN using prior knowledge encoded in a KG, we have

seen in Chapter 6 that the behavior of DNNs is also highly dependent on the choice of its inductive

biases. Therefore, the prior knowledge induced by the KG is only one piece of the puzzle and must

be reconciled with all other training effects. To further analyze DNN’s behavior when inducing

prior knowledge of a KG, ways to consider inductive biases need to be found. In summary, the

specific influence of prior knowledge on DNN layers needs to be further investigated, and alternative

induction strategies or extensions to KG-NN that take inductive biases into consideration need to

be explored.

7.3 Future Work

The combination of KG with DL is based on the discussion of combining symbolic AI with ML, and

the deeper-rooted question of how to achieve artificial human intelligence. We hope that this thesis

will help the reader to systematically combine the technology of KG with DL for developing models

that benefit from the appropriate combination of semantic prior knowledge with visual information.

In this work, we have shown that a KG is able to influence the behavior of a DNN. If we further

learn how to fully control how the DNN learns from unstructured data, there is an opportunity to

overcome the drawbacks of DL and improve future AI.

To achieve the goal of effectively using KG with DL, it will be important to further investigate

the impact of knowledge structures, the relevance of KGE methods, and the role of inductive biases

in the learning process. If KG-DL is supposed to be used for better and safer products, extensions

to our method need to be developed that leverage data at scale, include sample-based in addition

to the class-based context in the KG, fully constrain the DNN, induce explicit rules, use temporal

knowledge, deal with evolving knowledge, and leverage the KG in combination with the DNN at

inference time.

Scaling Models: Humans have been shown to be significantly intellectually superior to apes, yet

cognitive scientists assume that the human brain may just be a scaled-up version of the primate

brain [310]. The fact that scale is essential for the development of intelligent systems is also evident in

recent applications of AI, such as foundation models. Foundation models are huge DNNs trained on

large and diverse datasets, outperforming more specialized and optimized, but also smaller, models

in most downstream NLP and CV tasks [122]. However, obtaining labeled training data can be a

rather tedious, error-prone, and sometimes impossible process.

Therefore, foundation models use various tricks to train without the need for additional expensive
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labels, enabling them to leverage information from vast amounts of data. Foundation models for

CV, e.g. CLIP [86], use the fact that most images on the Internet co-occur with additional text

descriptions. CLIP uses these noisy text annotations as labels, assuming that the content of the

image is at least partially described by the noisy text annotation. To relate all the heterogeneous text

descriptions based on their underlying meaning, an LLM is used to transform the text description

into a lower-dimensional semantic embedding. Similar to the category KG as a Trainer, CLIP then

uses the semantic embedding to train the visual DNN. Since the major difference between CLIP and

KG-NN, is the availability of large amounts of free image-text pairs, one future direction is to explore

where prior KG-image pairs are already available or how they could be collected automatically.

In particular, areas such as autonomous driving, the production line, or the Internet of things

(IoT) are promising, since huge amounts of graph-based metadata could be automatically collected

with images. Moreover, we assume that a foundation model of KG-DL would lead to even more

generalized features and higher accuracy, especially in visual transfer learning tasks.

Unifying Sample-based and Class-based Context: In the scope of this work, KG-NN is only

trained with class-based context, i.e. each image of a class has the same representation in KGE due

to its properties and its relationship to other classes in the KG. More specifically, the KG contains

class-based context due to higher-level class properties, e.g., stop sign - has shape - octagon, stop

sign - has background color - red, etc. However, class-based context needs expensive data labeling

to define the relevant class for the images and the assumption that the information in the image is

just defined by the class does not fully reflect the real world.

In reality, images of different classes can also be similar due to other visual properties. We

refer to such visual properties of images as sample-based context, that describe the properties of an

individual image and therefore its relationship to other images, e.g., has camera, has environment,

has location, etc.

Moreover, Sample-based context could be manually annotated or automatically collected in many

real-world applications of CV. The KG can include higher-level concepts, relating the class-based

context with the sample-based context, to provide further meaning to noisy collected data. When

using the KG as a Trainer, each image will be assigned to a specific contextual position in the

semantic embedding space based on its sample and class-based context. Furthermore, we argue that

unifying class-based context and sample-based context in a KG will help KG-DL models to further

improve accuracy and generalization.

Constraining Models and Inducing Explicit Rules: If models should be deployed into safety-

relevant products, such as autonomous driving, they should be able to follow certain constraints and

obey certain rules. One of the main goals of NSAI is to enable DL to operate on fixed structures

where constraints, rules, and reasoning can be applied. We argue that inducing such a structure,

e.g. an ontology or a KG, into the learning process will enable DL to learn more efficiently and
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constrained from data. Rules, as abstractions derived from general experience, generalize well to

related domains. KG-NN uses the KG to induce additional prior knowledge into DL-based learning

from unstructured data. However, when transferring the KG to a vector-based KGE, the explicit

rules and constraints of the KG are omitted and, if present, are only implicit.

Therefore, methods should be explored that can constrain the huge hypothesis space using struc-

tured and robust KGs in combination with unstructured text and images. Methods that can learn

implicit representations from data based on explicit rules and semantic structures, will pave the way

for future machine intelligence.

Using Temporal Knowledge: Temporal data provides valuable information about the motion

and acceleration of objects, essential for object detection and tracking. However, temporal data

also provide important information about the relationship between images, objects, and features

that cannot be described without temporal dependency. Shuffling data and pretending that the

image frames are i.i.d. is a false assumption and a loss of information [81]. Therefore, acquiring

the temporal information is important to identify relevant correlations and avoid learning spurious

correlations from the data [85]. However, video data is very complex, and DL methods can only

effectively analyze single frames due to computational limitations.

We argue that KGs can serve as temporal memories that store contextual information about

images, such as metadata features or objects, across multiple timestamps. If KG-DL would be

able to reuse the information from a temporal KG memory during training, important correlations

in single image frames could be identified, even after shuffling the data. In a temporal KG-DL,

metadata for the images can be transferred to a KG that links and stores temporal information.

When training the DNN, this KG metadata can be reused to allow the DNN to extract temporally

relevant features and avoid learning spurious correlations.

In summary, such a method combining a temporal KG and DL can leverage temporal information

to distinguish between relevant and spurious features in image data. Having such a system would

enable DL to be more accurate and more robust when predicting in the real world.

Evolving Knowledge: Knowledge of the real world or specific knowledge of a domain can evolve

rapidly. The main problem of DNNs is that they require a time-consuming and resource-intensive

re-training process when updated with new data. For KG-NN, where the KG influences how a DNN

learns, the same problem applies.

However, there are ideas on how KG-DL can deal with evolving knowledge. One possibility to

deal with evolving knowledge is to extract implicit knowledge from the DNN [17] or heterogeneous

knowledge from external sources and integrate it into a KG that can be updated, managed, and

refined by humans. Progress has already been made in the area of KG construction by embedding

and information extraction methods [311, 312, 313]. This would allow the application of rules and

reusable knowledge structures over detected visual features in the images.
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If the goal is to process evolving unstructured data, methods must be developed to extract implicit

features from DNNs, integrate these features into KGs, and either induce the evolved knowledge of

the KG back into the DNN during inference or use the knowledge of the KG directly for prediction.

Using the Knowledge Graph at Inference: DNNs struggle or behave unpredictably when

presented with noisy visual data during inference. In contrast, humans are able to make robust and

accurate predictions by leveraging multiple sources of information at inference. For example, when

driving at night on a highway, humans can predict the presence of a car by simply seeing two lights

in front of them, using commonsense to fill in the gaps in their visual input.

However, DL systems rely solely on visual input and therefore fail if that input is noisy or

degraded. To address this challenge, it is important to explore ways to incorporate additional

knowledge into the system at inference time, especially in situations where training data is scarce.

We propose three different ideas to leverage a KG to improve the performance of DNNs during

inference. The first idea involves using the KG as a Reviewer, where the plausibility of the output of

the DNN is evaluated and constrained by the KG. The second idea involves model-agnostic fusion of

modalities, in which the DNN stacks image data with vector-based prior knowledge of the KG and

automatically learns how best to combine the two to solve the task. Finally, the third idea involves

infusing the prior knowledge directly into the embedding space, allowing the two modalities to be

combined in a way that optimizes the performance of the DNN. However, whether these methods

will be helpful to improve KG-DL performance at inference needs further investigation.

Although incorporating prior knowledge from a KG into a DL system at inference is not straight-

forward, it will be essential to improve KG-DL performance in situations where visual data is noisy

or scarce, and where humans are able to make accurate predictions by leveraging multiple sources

of information.
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Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, editors, Advances in

Neural Information Processing Systems 26: 27th Annual Conference on Neural Information

Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,

Nevada, United States, pages 2787–2795, 2013.

[62] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of rela-

tional machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2016.

[63] Mikhail Galkin, Etienne G. Denis, Jiapeng Wu, and William L. Hamilton. Nodepiece: Com-

positional and parameter-efficient representations of large knowledge graphs. In The Tenth

International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-

29, 2022. OpenReview.net, 2022.

[64] Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. Beyond triplets: Hyper-relational
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Schücker. Informed machine learning - towards a taxonomy of explicit integration of knowledge

into machine learning. CoRR, abs/1903.12394, 2019.
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