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A BIVARIATE CHROMATIC POLYNOMIAL FOR SIGNED GRAPHS
MATTHIAS BECK AND MELA HARDIN

ABSTRACT. We study Dohmen—Ponitz—Tittmann’s bivariate chrompbtynomialcr (k,1) which counts all
(k+1)-colorings of a grapli such that adjacent vertices get different colors if they<ate Our first contribu-

tion is an extension afr (k, | ) to signed graphs, for which we obtain an inclusion—exchu$iwmula and several
special evaluations giving rise, e.g., to polynomials #hatode balanced subgraphs. Our second goal is to de-
rive combinatorial reciprocity theorems fog (k,1) and its signed-graph analogues, reminiscent of Stanley’s
reciprocity theorem linking chromatic polynomials to aliyorientations.

1. INTRODUCTION

Graph coloring problems are ubiquitous in many areas wihith outside of mathematics. For a positive
integern, let[n] := {1,2,...,n} and[£n] := {—n,—n+1,...,n}. We study thebivariate chromatic polyno-
mial ¢-(k,1) of a graphl” = (V,E), first introduced in([5] and defined as the counting functiboalorings
x € [k+1]V that satisfy for any edgew € E

Xy 7 Xw or Xy = Xw > K.

The usual chromatic polynomial &f can be recovered as the special evaluatigik,0). Dohmen, Ponitz,
and Tittmann provided basic propertiesapfk,l) in [5], including polynomiality and special evaluations
yielding the matching and independence polynomials.@ubsequent results include a deletion—contraction
formula and applications to Fibonacci-sequence idest{®, common generalizations of (k,I) and the
Tutte polynomiall[1], and closed formulas for paths and eg¢4].

Our first goal is to introduce and study the natural analodguie bivariate chromatic polynomial for
signed graphs, which originated in the social sciences amd found applications also in biology, physics,
computer science, and economics; see [14] for a comprefeeb#iliography. Asigned graphz = (I', 0)
consists of a grapf = (V,E) and a signaturer < {i}E. The underlying grapli’ may have multiple
edges and, besides the usual links and loops, fedfedgeqwith only one endpoint) antbose edgegno
endpoints); the latter are irrelevant for coloring questicand so we assume in this paper thaas no loose
edges. An unsigned graph can be realized by a signed graptwvatiose edges are labelled with

We define the functiores (2k + 1,21) as counting theproper (k,)-colorings x € [£(k+ 1)}V, namely,
those colorings that satisfy for any edge c E

Xy 7# Oy Xw or IXv| = [Xw| > k.

This bivariate chromatic polynomia{in Corollary[5 we will see thats(2k + 1,2I) is indeed a polyno-
mial) specializes to Zaslavsky’s chromatic polynomial @ned graphs[[11] in the cade= 0. As in
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Zaslavsky’s theoryes (2k+1,2l) comes with a companion, theero-free bivariate chromatic polynomial
c;(2k,2I) which counts all propetk, | )-coloringsx € ([£(k+1)]\ 0)V.

Our first result is a deletion—contraction formula, the camnngeneralization of [11, Theorem 2.3] and
[9, Lemma 1.1]. The definitions of deletions and contraction signed graphs are reviewed in detail in
Sectior 2, where we also prove our other results for the iditeachromatic polynomials.

Theorem 1. LetZ be a signed graph. If € E is a halfedge or negative loop then
Cs(2k+1,2l) =5 e(2k+1,2l) — C5/e(2k+1,2);
if e € E is not a halfedge or negative loop then
Cz(2k+1,21) = Cse(2k+1,21) — C5e(2k+1,21) + 2 €5 /g _v(2k+1,20)
and
Cs(2K,2l) = C5_¢(2K,2l) — C5 jo(2K,21) + 2 cf‘z/e]_v(Zk, 2),
where v is the vertex to which e contractife.

A component of the signed gragh= (I', 0) is balancedif it contains no halfedges and each cycle has
positive sign product, and it @ntibalancedif its negative(I", —o) is balanced. We define thantibalance
polynomialof Z as

Z; xV (OIS
Santibalanced subgraph af
wherec(S) denotes the number of componentsSf This polynomial relates to the zero-free bivariate
chromatic polynomial as follows:

Theorem 2. ¢;(2,2!) = (2)Vas(£,2).

Our second goal is to proveciprocity theoremsor the bichromatic polynomials for graphs and signed
graphs, in analogy with the following theorem of Stanley][@0 the usual chromatic polynomiet (k). We
call an orientation of a graph compatiblewith the coloringx € ZV if x, < x, for any edge oriented from
tow.

as(x,y) ==

Theorem 3 (Stanley) For k € Z-o, (—1)Vler (—k) equals the number of k-colorings Bf each counted
with multiplicity equal to the number of compatible acyaigentations off . In particular, (—1)Vcr (—1)
equals the number of acyclic orientationslof

Our generalization for bivariate chromatic polynomialassfollows.

Theorem 4. For k € Z-o and | € Z=o, (—1)Vler(—k, —I) equals the number dfk + I)-colorings ofT,
each counted with multiplicity: a k-coloring has multiptic equal to the number of compatible acyclic
orientations ofl’, and a coloring that uses at least one coleik has multiplicityl.

We prove this theorem in Sectibh 3, where we also give an goakreciprocity theorem for the bivariate
chromatic polynomials of signed graphs. We finish with a f@&mproblems in Sectidd 4.

2. BIVARIATE CHROMATIC POLYNOMIALS FOR SIGNED GRAPHS

We first review a few constructs on a signed grapk (V,E, o). Therestriction of X to an edge set
F C Eis the signed graptV,F,d|g). Fore € E, we denote by — e (the deletionof €) the restriction o
to E — {e}. Forv eV, denote by> — v the restriction o to E — F whereF is the set of all edges incident
tov.

SwitchingX by s ¢ {i}v results in the new signed gragW,E, 0°) whereog,, = s, owSy. Switching
does not alter balance, and any balanced signed graph cdndieenl from switching an all-positive graph
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[12]. We also note that there is a natural bijection of colgs of> and a switched version of it, and this
bijection preserves the number of progkr )-colorings.

The contractionof X~ by F C E, denoted byz/F, is defined as follows [12]: switck so that every
balanced component & is all positive, coalesce all vertices of each balanced @orapt, and discard the
remaining vertices and all edgesHn note that this may produce halfedges. For example,=if {e} for a
link e, Z/eis obtained by switching so thato(e) = + and then contracting as in the case of unsigned
graphs, that is, disregasdand identify its two endpoints. As a second example,iff a negative loop at,
thenX/ehas vertex séf — {v} and edge set resulting froBiby deletinge and converting all edges incident
with v to half edges.

Before proving Theorernl 1, we give two illustrating exampl&&rst, a signed path with three vertices
(Figure1):

z -
&——J - —— 9o —o - - - o——

cs(2k+1,21) Cs—e(2k+1,2) Cs/e(2k+1,21)

FIGURE 1. Deletion—contraction at a halfedgef a signed patix.
Cs(2k+1,21) = (2)[(2)(2 +2k+ 1)+ (2k-+1)(2 + 2K)] + (2K) [(21) (2l + 2k+ 1) + (2K) (2l + 2K)]
)[(2)(2 4 2k+ 1) + (2k+ 1) (2 + 2K)] + (2k+ 1) [(21) (2 + 2k + 1) + (2k) (2l + 2K)]

— [(2)(2 + 2k+ 1) + (2k) (2l + 2K)|
= Cz,e(2k—|— 1 2|) - Cz/e(Zk—l— 1, 2|)

(2
(2

Our second example is a signed 3-cycle (Fidure 2):
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cs(2k+1,20) Cre(2k+1,2l)  C5e(2k+1,21)  21{cyg y(2k+1,20)}

FIGURE 2. Deletion—contraction at an edgef a signed 3-cycl&.
Cs(2k+1,21) = (2)[(2)(2 +2k+1)+ (2k+1)(2 4+ 2K)| + (2k+ 1) [(21)(2 + 2K) + (2K) (2| + 2k —1)]
(2)[(2)(2 +2k+ 1) + (2k+ 1) (2 + 2K)] + (2k+ 1) [(21) (2 + 2k+ 1) + (2k) (2 + 2K)]
— [(2)(2 + 2k+1) + (2k+ 1) (2 + 2k)]

+ 21 [21 + 2k +1]
= Cr-e(ZK+1,2) —Csje(2k+1,21) + 2{Cjz /g v(2k+1,21)}

Proof of Theorerh]1Let e be a halfedge or negative loopbfand letv be its incident vertex. Thencannot
be colored zero, and so we have to subtract from the coloahgs- e those which colow zero (which are
in bijection with the colorings oE/e€).

Now let e be an edge of that is not a halfedge or negative loop. We have to subtrant the colorings
of X — e those which color the endpoints efthe same (which are in bijection with the coloringsofe)
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and add back in those where the latter colorik (the number of which isl2times the number of proper

(k,I)-colorings of[Z/€] — V). O
By induction on the number of edges of a signed graph, we inatedy conclude:

Corollary 5. The chromatic counting functiong @k+ 1,21) and G (2k,2l) are polynomials in k and I.

Our next result is the signed-graph analog of [5, Theorem 1].

Theorem 6. LetX = (V,E, 0) be a signed graph. Then

cs(2k+1,2) = WZ/(ZI)M'cz_W(ZkJr 1,00 and  ¢(2,2)= ng(zmw\ ¢ w(2k,0).

@ C

Naturally, the polynomials in the summations should berprieted as Zaslavsky’s chromatic polynomi-
als.

Proof. Every proper(k,|)-coloring of Z can be obtained by first choosing a subAebf V that is colored
with colors> k; there arg2l)W| such colorings for these vertices. The remaining subgEaphlV has to be
colored properly using colors k. d

The above proof is virtually identical to that of|[5, Theordrf and thus we obtain, as an analogous
conseguence, the following corollary, parallelibg [5, @tary 2], regarding théndependence polynomial

is(X) := ; xV Wi

WCV independent
(HereW is independenif no two vertices iV are adjacent.)
Corollary 7. is(x) = cs(1,X).

Proof. By Theoreni b, we have

cs(1,2x) = ng(zx)\w\ cs_w(1,0).

C

Now note thats_w(1,0) equals one i/ —W is independent and zero otherwise. O
Proof of Theorerhl2By Theoreni 6,
G@2)= 5 2" w(20).

C

Now c&(2,0) equals 29 if Sis antibalanced, anck(2,0) = 0 if Sis not antibalanced. Thus

ci(2,21) = 2)NVIENVEIE = (21)Vias (1, 2). O

2
Santibalanc; subgraph &f

For completeness sake, we state the signed analoguée ofdgbrdrh 3]; its proof is virtually identical to
the unsigned case.

Theorem 8.

Cs(2k+1,2) = Z/cz_v(2k+ 1,2l) and Lc’g(Zk, 2l) = ;c§_v(2k, 20).

17}
o(2) W& a2) &
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3. BIVARIATE CHROMATIC RECIPROCITY THEOREMS

The proofs of our reciprocity theorems follow along the $iré the proof of Stanley’s Theordm 3 given in
[3], which introduced the general setup ofiaside-out polytopé.#?,.#’) consisting of a rational polytope
2 and a rational hyperplane arrangemstitin RY; that is, the linear equations and inequalities definiag
and.Z have integer coefficients. (The proper understanding sfghction assumes familiarity with|[3].)
The goal is to compute the counting function

Do) = (2 \)n7L,

and it follows from Ehrhart's theory of counting lattice ptd in dilates of rational polytopes|[2] 6] that
this function is a quasipolynomial inwhose degree is difR), whose (constant) leading coefficient is the
normalized lattice volume dP, and whose period divides the Icm of all denominators thaeapin the
coordinates of the vertices ¢f7,.7). In our case, all vertices (f?,.7) will be integral, so that the
resulting counting functions will be polynomials. Furtirere, [3] established the reciprocity theorem

1) Do (—1) = (=D)L (1),
where 2° and 2 denote the interior and closure &7, respectively, and
() Lowt):= 5 multy »(m)

me 29

where mulz s (m) denotes the number of closed regiong 6f,.7#") containingm. (A regionof (%, )

is a connected component &# \ 7#’; aclosed regionis the closure of a region.) See [3] for this and several
more properties of inside-out polytopes. The concept dflexsut polytopes has been applied to a number
of combinatorial settings; at the heart of any such apptioas an interpretation of the regions @¥, 7¢);
from this point of view, Stanley’s Theorelm 3 follows from @re’s observatiori [7, 8] that the regions of
the graphic arrangemengfor a given grapi = (V,E))

Ht={x=Xw:VWEE}
in RV are in one-to-one correspondence with the acyclic oriemsiofI".
Proof of Theorerhl4Givenl” = (V,E), letO := [0,1]V be the unit cube iRY and
k1) == (k+1+1o°NZY| - |(k+1)D°NZY[,

i.e.,®(k,1) is the difference of two evaluations (at-1 + 1 andk+ 1) of the Ehrhart polynomial afi°. By
Ehrhart—-Macdonald reciprocity (see, e.gl, [2, Chapter 4])

3) ()M o(—k ~1) = |(k+1-1)ONnZY| - |(k-1)ONnZY].
On the other hand, it is natural to interpret the bichrompditynomial ofl" geometrically as
or (k1) = | ([Lk+11Y = ([L,KY nog))nZY | = | (0. k+1+1)Y = (0,k+ 1)V N o4))nZY|
=L s (k+1)+D(k, 1)
(see Figuré&l3 for an illustrative example). Thus, By (1) @)d (
(—DVler (—k,—1) = (=DM (—k+ 1)+ (-1)VId(—k, 1)
=Log (k=1 +|(k+1-1)ONZY| - |(k—1)TNnZY|.

What we are counting on the right-hand side are the intedgticdapoints in the cubé0,k +1 — 1]V, with
multiplicity equal to 1 if outside the cubf®,k — 1]V, otherwise with multiplicity equal to the number of
closed regions o7t the points lies in. As we mentioned above (and as was useq)irthi@ latter can be



6 MATTHIAS BECK AND MELA HARDIN

K+l+1 —» & -0-0-0-0-0-06-0-0-6-0-0
|
@

k1l —»

O0--0--0-0--0-6-0--6-6--0-0-

x—p

FIGURE 3. The propelk,|)-colorings ofK, with k=6 andl = 4.

interpreted as the number of compatible acyclic orientatiof I". It is now a short step to re-interpret the
lattice points in0,k+1 —1]¥ as(k+1)-colorings and the ones {0,k — 1] ask-colorings ofl". O

In order to state and prove the analogous reciprocity tmedor bichromatic polynomials for signed
graphs, we need more definitions. Anentationof a signed grap = (I', 0) is obtained from &idirection
of the underlying grapii, where the endpoints of each edge are independently adiegntsuch a way that
the two arrows on an edgepoint in the same direction i, = + and they conflict ifoe = —. We express
the bidirection (and hence the orientation) by means dhaigdlence functiom defined on the edge ends:
Nve = 1 if the arrow one at v points intov, andn,e = —1 if it points away fromv; with this definition we
obtainge = —nvenwe for an edgee = vw. (See([13] for more details.)

Following [11], we call a coloring € ZV and an orientatiom compatibleif for any link e = vw

NveXy + NweXw = 0,

and for any halfedge or negative loe@tv

NveXy > 0.
Furthermore, an orientation &yclicif no cycle has a source or sink (i.e., a vertefor which both inci-
dent edges point either into or away fromn Zaslavsky[[11] proved the following analogue of Stardey’
TheoreniB for the chromatic polynomiad (2k+ 1) of a signed grapk:

Theorem 9 (Zaslavsky) For k € Z-, (—1)Vlcs(—2k — 1) equals the number of k-colorings &f each
counted with multiplicity equal to the number of compatiubgclic orientations of. In particular, (—1)V/cs(—1)
equals the number of acyclic orientationsof

Our analogue of this theorem for bivariate chromatic polgiads is as follows.

Theorem 10. Fork € Z-gand | € Z~o, (—1)Vlcs(—2k — 1, —21) equals the number @k + | )-colorings of
2, each counted with multiplicity: a k-coloring has multigty equal to the number of compatible acyclic
orientations ofz, and a coloring that uses at least one color with absolutei®@al k has multiplicityl.
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Proof. We follow the proof of Theorerl 4, with a few modifications: &z = (V,E, o), letO := [-1,1V

e (k1) == | (k+1+1)0°NZY| —|(k+1)0°NZY|.

By Ehrhart—Macdonald reciprocity,

(4) ()Mo (—k ~1) = |(k+1-1)ONnZY| - |(k-1)ONnZY].

To construct an inside-out counting function fgrwe use the hyperplane arrangement

A5 = {X = OwXw: VWE E},
and so
cs(2k+1,2) = |([-k—1Lk+1]Y = ([-k.KY n%))NZY|

=|((—k=1=Lk+I1+1)V - ((~k—1,k+ 1)V n %)) NZ"|
=L s (K+1)+D(k,1)

(see Figur&ld). Thus, bil(1) arid (4),

A
|
k+|+l ﬁQO@*OO*@*OO*@*OO*¢*OO*O*OO*@*OO*@*OO
(T) © 0606060000 0 0 ? © 06006000 0 0 0 ¢
O ® ®© 06 00606060 006 00000600 00 0 00
(‘p © 0600000 0 0 0 + © 0600000 0 0 o0 g‘)
k+1 Hq} o 0o o e e S = S S S Y o 0o o 0‘
O ® e e ¢ O 0 0 0 0 0 ; ®© 0006 00 0 0 0 00
(‘p ®© o0 0 060 0 0 0 0 * e o0 0600 ¢ 0 0 0 g‘)
‘0 ®© o0 006060 0 0 o0 f e 00600 0 ¢ 0 0 0 (T)
O ® ®© 0 ¢ 006060 00600060 0600 6060 0 00
(‘p ®© o0 0 060 0 0 0 o * e O e 000 00 0 0 g‘)
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¢ ®© o0 0 060 0O 0 0 o0 * ® 06O 0 0 00 0 0 g‘)
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|
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FIGURE 4. The lattice points corresponding (a | )-colorings of+K; with k=6 andl = 4.

(—DVles(—2k—1,-21) = (-1)VILEe e (—K) + (-D)VId(—k—1,-1)
=Log (K +|(k+1HONZY| - [kanzY].
What we are counting on the right-hand side are the integiizdepoints in the cubg—k —1,k+1]V, with
multiplicity equal to 1 if outside the culde-k, kY, otherwise with multiplicity equal to the number of closed

regions of7# the points lies in. As shown in[11] (and again used_in [3]§ lditer can be interpreted as the
number of compatible acyclic orientations Xaf O
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4. OPEN QUESTIONS

We finish with two venues for future research. First, one caoeiate several matroids to a signed graph,
most prominently ZaslavskyBame matriodand(extended) lift matroid12,[14]. It is a natural question to
ask about possible connections between the Tutte polyt®wofithese matroids and the bivariate chromatic
polynomials. Secondgain and biased graphsare natural generalizations of signed graphs [14], and so
another natural question concerns possible extensiongraefark to these more general constructs.
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