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A BIVARIATE CHROMATIC POLYNOMIAL FOR SIGNED GRAPHS

MATTHIAS BECK AND MELA HARDIN

ABSTRACT. We study Dohmen–Pönitz–Tittmann’s bivariate chromaticpolynomialcΓ(k, l) which counts all
(k+ l)-colorings of a graphΓ such that adjacent vertices get different colors if they are≤ k. Our first contribu-
tion is an extension ofcΓ(k, l) to signed graphs, for which we obtain an inclusion–exclusion formula and several
special evaluations giving rise, e.g., to polynomials thatencode balanced subgraphs. Our second goal is to de-
rive combinatorial reciprocity theorems forcΓ(k, l) and its signed-graph analogues, reminiscent of Stanley’s
reciprocity theorem linking chromatic polynomials to acyclic orientations.

1. INTRODUCTION

Graph coloring problems are ubiquitous in many areas withinand outside of mathematics. For a positive
integern, let [n] := {1,2, . . . ,n} and[±n] := {−n,−n+1, . . . ,n}. We study thebivariate chromatic polyno-
mial cΓ(k, l) of a graphΓ = (V,E), first introduced in [5] and defined as the counting function of colorings
x ∈ [k+ l ]V that satisfy for any edgevw∈ E

xv 6= xw or xv = xw > k.

The usual chromatic polynomial ofΓ can be recovered as the special evaluationcΓ(k,0). Dohmen, Pönitz,
and Tittmann provided basic properties ofcΓ(k, l) in [5], including polynomiality and special evaluations
yielding the matching and independence polynomials ofΓ. Subsequent results include a deletion–contraction
formula and applications to Fibonacci-sequence identities [9], common generalizations ofcΓ(k, l) and the
Tutte polynomial [1], and closed formulas for paths and cycles [4].

Our first goal is to introduce and study the natural analogue of the bivariate chromatic polynomial for
signed graphs, which originated in the social sciences and have found applications also in biology, physics,
computer science, and economics; see [14] for a comprehensive bibliography. Asigned graphΣ = (Γ,σ)

consists of a graphΓ = (V,E) and a signatureσ ∈ {±}E. The underlying graphΓ may have multiple
edges and, besides the usual links and loops, alsohalfedges(with only one endpoint) andloose edges(no
endpoints); the latter are irrelevant for coloring questions, and so we assume in this paper thatΣ has no loose
edges. An unsigned graph can be realized by a signed graph allof whose edges are labelled with+.

We define the functioncΣ(2k+ 1,2l) as counting theproper (k, l)-colorings x ∈ [±(k+ l)]V , namely,
those colorings that satisfy for any edgevw∈ E

xv 6= σvwxw or |xv|= |xw|> k.

This bivariate chromatic polynomial(in Corollary 5 we will see thatcΣ(2k+ 1,2l) is indeed a polyno-
mial) specializes to Zaslavsky’s chromatic polynomial of signed graphs [11] in the casel = 0. As in
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Zaslavsky’s theory,cΣ(2k+1,2l) comes with a companion, thezero-free bivariate chromatic polynomial
c∗Σ(2k,2l) which counts all proper(k, l)-coloringsx ∈ ([±(k+ l)]\0)V .

Our first result is a deletion–contraction formula, the common generalization of [11, Theorem 2.3] and
[9, Lemma 1.1]. The definitions of deletions and contractions of signed graphs are reviewed in detail in
Section 2, where we also prove our other results for the bivariate chromatic polynomials.

Theorem 1. Let Σ be a signed graph. If e∈ E is a halfedge or negative loop then

cΣ(2k+1,2l) = cΣ−e(2k+1,2l)−cΣ/e(2k+1,2l) ;

if e∈ E is not a halfedge or negative loop then

cΣ(2k+1,2l) = cΣ−e(2k+1,2l)−cΣ/e(2k+1,2l)+2l c[Σ/e]−v(2k+1,2l)

and
c∗Σ(2k,2l) = c∗Σ−e(2k,2l)−c∗Σ/e(2k,2l)+2l c∗[Σ/e]−v(2k,2l) ,

where v is the vertex to which e contracts inΣ/e.

A component of the signed graphΣ = (Γ,σ) is balancedif it contains no halfedges and each cycle has
positive sign product, and it isantibalancedif its negative(Γ,−σ) is balanced. We define theantibalance
polynomialof Σ as

aΣ(x,y) := ∑
Santibalanced subgraph ofΣ

x|V(S)|yc(S),

wherec(S) denotes the number of components ofS. This polynomial relates to the zero-free bivariate
chromatic polynomial as follows:

Theorem 2. c∗Σ(2,2l) = (2l)|V |aΣ(
1
2l ,2) .

Our second goal is to provereciprocity theoremsfor the bichromatic polynomials for graphs and signed
graphs, in analogy with the following theorem of Stanley [10] on the usual chromatic polynomialcΓ(k). We
call an orientation of a graphΓ compatiblewith the coloringx ∈ Z

V if xv ≤ xw for any edge oriented fromv
to w.

Theorem 3 (Stanley). For k ∈ Z>0, (−1)|V |cΓ(−k) equals the number of k-colorings ofΓ, each counted
with multiplicity equal to the number of compatible acyclicorientations ofΓ. In particular, (−1)|V|cΓ(−1)
equals the number of acyclic orientations ofΓ.

Our generalization for bivariate chromatic polynomials isas follows.

Theorem 4. For k ∈ Z>0 and l ∈ Z≥0, (−1)|V |cΓ(−k,−l) equals the number of(k+ l)-colorings ofΓ,
each counted with multiplicity: a k-coloring has multiplicity equal to the number of compatible acyclic
orientations ofΓ, and a coloring that uses at least one color> k has multiplicity1.

We prove this theorem in Section 3, where we also give an analogous reciprocity theorem for the bivariate
chromatic polynomials of signed graphs. We finish with a few open problems in Section 4.

2. BIVARIATE CHROMATIC POLYNOMIALS FOR SIGNED GRAPHS

We first review a few constructs on a signed graphΣ = (V,E,σ). The restriction of Σ to an edge set
F ⊆ E is the signed graph(V,F,σ |F). Fore∈ E, we denote byΣ−e (thedeletionof e) the restriction ofΣ
to E−{e}. Forv∈V, denote byΣ−v the restriction ofΣ to E−F whereF is the set of all edges incident
to v.

SwitchingΣ by s∈ {±}V results in the new signed graph(V,E,σ s) whereσ s
vw = sv σvwsw. Switching

does not alter balance, and any balanced signed graph can be obtained from switching an all-positive graph
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[12]. We also note that there is a natural bijection of colorings ofΣ and a switched version of it, and this
bijection preserves the number of proper(k, l)-colorings.

The contractionof Σ by F ⊆ E, denoted byΣ/F, is defined as follows [12]: switchΣ so that every
balanced component ofF is all positive, coalesce all vertices of each balanced component, and discard the
remaining vertices and all edges inF ; note that this may produce halfedges. For example, ifF = {e} for a
link e, Σ/e is obtained by switchingΣ so thatσ(e) = + and then contractinge as in the case of unsigned
graphs, that is, disregarde and identify its two endpoints. As a second example, ife is a negative loop atv,
thenΣ/ehas vertex setV−{v} and edge set resulting fromE by deletingeand converting all edges incident
with v to half edges.

Before proving Theorem 1, we give two illustrating examples. First, a signed path with three vertices
(Figure 1):

Σ
e

cΣ(2k+1,2l) cΣ−e(2k+1,2l) cΣ/e(2k+1,2l)

FIGURE 1. Deletion–contraction at a halfedgeeof a signed pathΣ.

cΣ(2k+1,2l) = (2l)
[

(2l)(2l +2k+1)+ (2k+1)(2l +2k)
]

+(2k)
[

(2l)(2l +2k+1)+ (2k)(2l +2k)
]

= (2l)
[

(2l)(2l +2k+1)+ (2k+1)(2l +2k)
]

+(2k+1)
[

(2l)(2l +2k+1)+ (2k)(2l +2k)
]

−
[

(2l)(2l +2k+1)+ (2k)(2l +2k)
]

= cΣ−e(2k+1,2l)−cΣ/e(2k+1,2l)

Our second example is a signed 3-cycle (Figure 2):

Σ
e

cΣ(2k+1,2l) cΣ−e(2k+1,2l) cΣ/e(2k+1,2l)

2l

2l{c[Σ/e]−v(2k+1,2l)}

FIGURE 2. Deletion–contraction at an edgeeof a signed 3-cycleΣ.

cΣ(2k+1,2l) = (2l)
[

(2l)(2l +2k+1)+ (2k+1)(2l +2k)
]

+(2k+1)
[

(2l)(2l +2k)+ (2k)(2l +2k−1)
]

= (2l)
[

(2l)(2l +2k+1)+ (2k+1)(2l +2k)
]

+(2k+1)
[

(2l)(2l +2k+1)+ (2k)(2l +2k)
]

−
[

(2l)(2l +2k+1)+ (2k+1)(2l +2k)
]

+ 2l
[

2l +2k+1
]

= cΣ−e(2k+1,2l)−cΣ/e(2k+1,2l)+2l{c[Σ/e]−v(2k+1,2l)}

Proof of Theorem 1.Let ebe a halfedge or negative loop ofΣ, and letv be its incident vertex. Thenv cannot
be colored zero, and so we have to subtract from the coloringsof Σ−e those which colorv zero (which are
in bijection with the colorings ofΣ/e).

Now let ebe an edge ofΣ that is not a halfedge or negative loop. We have to subtract from the colorings
of Σ− e those which color the endpoints ofe the same (which are in bijection with the colorings ofΣ/e)
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and add back in those where the latter color is> k (the number of which is 2l times the number of proper
(k, l)-colorings of[Σ/e]−v). �

By induction on the number of edges of a signed graph, we immediately conclude:

Corollary 5. The chromatic counting functions cΣ(2k+1,2l) and c∗Σ(2k,2l) are polynomials in k and l.

Our next result is the signed-graph analog of [5, Theorem 1].

Theorem 6. Let Σ = (V,E,σ) be a signed graph. Then

cΣ(2k+1,2l) = ∑
W⊆V

(2l)|W|cΣ−W(2k+1,0) and c∗Σ(2k,2l) = ∑
W⊆V

(2l)|W|c∗Σ−W(2k,0) .

Naturally, the polynomials in the summations should be interpreted as Zaslavsky’s chromatic polynomi-
als.

Proof. Every proper(k, l)-coloring of Σ can be obtained by first choosing a subsetW of V that is colored
with colors> k; there are(2l)|W| such colorings for these vertices. The remaining subgraphΣ−W has to be
colored properly using colors≤ k. �

The above proof is virtually identical to that of [5, Theorem1], and thus we obtain, as an analogous
consequence, the following corollary, paralleling [5, Corollary 2], regarding theindependence polynomial

iΣ(x) := ∑
W⊆V independent

x|V−W| .

(HereW is independentif no two vertices inW are adjacent.)

Corollary 7. iΣ(x) = cΣ(1,x) .

Proof. By Theorem 6, we have

cΣ(1,2x) = ∑
W⊆V

(2x)|W| cΣ−W(1,0) .

Now note thatcΣ−W(1,0) equals one ifV −W is independent and zero otherwise. �

Proof of Theorem 2.By Theorem 6,

c∗Σ(2,2l) = ∑
W⊆V

(2l)|W|c∗Σ−W(2,0) .

Now c∗S(2,0) equals 2c(S) if S is antibalanced, andc∗S(2,0) = 0 if S is not antibalanced. Thus

c∗Σ(2,2l) = ∑
Santibalanced subgraph ofΣ

(2l)|V |−|V(S)|2c(S) = (2l)|V |aΣ(
1
2l ,2) . �

For completeness sake, we state the signed analogue of [5, Theorem 3]; its proof is virtually identical to
the unsigned case.

Theorem 8.
∂

∂ (2l)
cΣ(2k+1,2l) = ∑

v∈V

cΣ−v(2k+1,2l) and
∂

∂ (2l)
c∗Σ(2k,2l) = ∑

v∈V

c∗Σ−v(2k,2l) .
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3. BIVARIATE CHROMATIC RECIPROCITY THEOREMS

The proofs of our reciprocity theorems follow along the lines of the proof of Stanley’s Theorem 3 given in
[3], which introduced the general setup of aninside-out polytope(P,H ) consisting of a rational polytope
P and a rational hyperplane arrangementH in R

d; that is, the linear equations and inequalities definingP

andH have integer coefficients. (The proper understanding of this section assumes familiarity with [3].)
The goal is to compute the counting function

L◦
P,H (t) :=

∣

∣(P \H )∩ 1
t Z

d
∣

∣ ,

and it follows from Ehrhart’s theory of counting lattice points in dilates of rational polytopes [2, 6] that
this function is a quasipolynomial int whose degree is dim(P), whose (constant) leading coefficient is the
normalized lattice volume ofP, and whose period divides the lcm of all denominators that appear in the
coordinates of the vertices of(P,H ). In our case, all vertices of(P,H ) will be integral, so that the
resulting counting functions will be polynomials. Furthermore, [3] established the reciprocity theorem

(1) L◦
P◦,H (−t) = (−1)dimPL

P,H (t) ,

whereP◦ andP denote the interior and closure ofP, respectively, and

(2) LP,H (t) := ∑
m∈ 1

t Z
d

multP,H (m)

where multP,H (m) denotes the number of closed regions of(P,H ) containingm. (A regionof (P,H )
is a connected component ofP \H ; aclosed regionis the closure of a region.) See [3] for this and several
more properties of inside-out polytopes. The concept of inside-out polytopes has been applied to a number
of combinatorial settings; at the heart of any such application is an interpretation of the regions of(P,H );
from this point of view, Stanley’s Theorem 3 follows from Greene’s observation [7, 8] that the regions of
thegraphic arrangement(for a given graphΓ = (V,E))

HΓ := {xv = xw : vw∈ E}

in R
V are in one-to-one correspondence with the acyclic orientations ofΓ.

Proof of Theorem 4.GivenΓ = (V,E), let✷ := [0,1]V be the unit cube inRV and

Φ(k, l) :=
∣

∣(k+ l +1)✷◦∩Z
V
∣

∣−
∣

∣(k+1)✷◦∩Z
V
∣

∣ ,

i.e.,Φ(k, l) is the difference of two evaluations (atk+ l +1 andk+1) of the Ehrhart polynomial of✷◦. By
Ehrhart–Macdonald reciprocity (see, e.g., [2, Chapter 4]),

(3) (−1)|V|Φ(−k,−l) =
∣

∣(k+ l −1)✷∩Z
V
∣

∣−
∣

∣(k−1)✷∩Z
V
∣

∣ .

On the other hand, it is natural to interpret the bichromaticpolynomial ofΓ geometrically as

cΓ(k, l) =
∣

∣

(

[1,k+ l ]V −
(

[1,k]V ∩HΓ
))

∩Z
V
∣

∣=
∣

∣

(

(0,k+ l +1)V −
(

(0,k+1)V ∩ HΓ
))

∩Z
V
∣

∣

= L◦
✷◦,HΓ

(k+1)+Φ(k, l)

(see Figure 3 for an illustrative example). Thus, by (1) and (3),

(−1)|V |cΓ(−k,−l) = (−1)|V |L◦
✷◦,HΓ

(−k+1)+ (−1)|V |Φ(−k,−l)

= L✷,HΓ(k−1)+
∣

∣(k+ l −1)✷∩Z
V
∣

∣−
∣

∣(k−1)✷∩Z
V
∣

∣ .

What we are counting on the right-hand side are the integer lattice points in the cube[0,k+ l − 1]V , with
multiplicity equal to 1 if outside the cube[0,k− 1]V , otherwise with multiplicity equal to the number of
closed regions ofHΓ the points lies in. As we mentioned above (and as was used in [3]), the latter can be
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k+1

k+1 k+ l +1

k+ l +1

FIGURE 3. The proper(k, l)-colorings ofK2 with k= 6 andl = 4.

interpreted as the number of compatible acyclic orientations ofΓ. It is now a short step to re-interpret the
lattice points in[0,k+ l −1]V as(k+ l)-colorings and the ones in[0,k−1] ask-colorings ofΓ. �

In order to state and prove the analogous reciprocity theorem for bichromatic polynomials for signed
graphs, we need more definitions. Anorientationof a signed graphΣ = (Γ,σ) is obtained from abidirection
of the underlying graphΓ, where the endpoints of each edge are independently oriented, in such a way that
the two arrows on an edgee point in the same direction ifσe = + and they conflict ifσe = −. We express
the bidirection (and hence the orientation) by means of anincidence functionη defined on the edge ends:
ηve= 1 if the arrow one at v points intov, andηve= −1 if it points away fromv; with this definition we
obtainσe =−ηveηwe for an edgee= vw. (See [13] for more details.)

Following [11], we call a coloringx ∈ Z
V and an orientationη compatibleif for any link e= vw

ηvexv+ηwexw ≥ 0,

and for any halfedge or negative loopeat v
ηvexv ≥ 0.

Furthermore, an orientation isacyclic if no cycle has a source or sink (i.e., a vertexv for which both inci-
dent edges point either into or away fromv). Zaslavsky [11] proved the following analogue of Stanley’s
Theorem 3 for the chromatic polynomialcΣ(2k+1) of a signed graphΣ:

Theorem 9 (Zaslavsky). For k ∈ Z>0, (−1)|V|cΣ(−2k− 1) equals the number of k-colorings ofΣ, each
counted with multiplicity equal to the number of compatibleacyclic orientations ofΣ. In particular, (−1)|V |cΣ(−1)
equals the number of acyclic orientations ofΣ.

Our analogue of this theorem for bivariate chromatic polynomials is as follows.

Theorem 10. For k∈ Z>0 and l∈ Z≥0, (−1)|V |cΣ(−2k−1,−2l) equals the number of(k+ l)-colorings of
Σ, each counted with multiplicity: a k-coloring has multiplicity equal to the number of compatible acyclic
orientations ofΣ, and a coloring that uses at least one color with absolute value> k has multiplicity1.
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Proof. We follow the proof of Theorem 4, with a few modifications: GivenΣ = (V,E,σ), let✷ := [−1,1]V

and
Φ(k, l) :=

∣

∣(k+ l +1)✷◦∩Z
V
∣

∣−
∣

∣(k+1)✷◦∩Z
V
∣

∣ .

By Ehrhart–Macdonald reciprocity,

(4) (−1)|V|Φ(−k,−l) =
∣

∣(k+ l −1)✷∩Z
V
∣

∣−
∣

∣(k−1)✷∩Z
V
∣

∣ .

To construct an inside-out counting function forΣ, we use the hyperplane arrangement

HΣ := {xv = σvwxw : vw∈ E} ,

and so

cΣ(2k+1,2l) =
∣

∣

(

[−k− l ,k+ l ]V −
(

[−k,k]V ∩HΣ
))

∩Z
V
∣

∣

=
∣

∣

(

(−k− l −1,k+ l +1)V −
(

(−k−1,k+1)V ∩ HΣ
))

∩Z
V
∣

∣

= L◦
✷◦,HΣ

(k+1)+Φ(k, l)

(see Figure 4). Thus, by (1) and (4),

k+1 k+ l +1

k+1

k+ l +1

FIGURE 4. The lattice points corresponding to(k, l)-colorings of±K2 with k= 6 andl = 4.

(−1)|V |cΣ(−2k−1,−2l) = (−1)|V|L◦
✷◦,HΣ

(−k)+ (−1)|V|Φ(−k−1,−l)

= L✷,HΣ(k)+
∣

∣(k+ l)✷∩Z
V
∣

∣−
∣

∣k✷∩Z
V
∣

∣ .

What we are counting on the right-hand side are the integer lattice points in the cube[−k− l ,k+ l ]V , with
multiplicity equal to 1 if outside the cube[−k,k]V , otherwise with multiplicity equal to the number of closed
regions ofHΣ the points lies in. As shown in [11] (and again used in [3]), the latter can be interpreted as the
number of compatible acyclic orientations ofΣ. �
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4. OPEN QUESTIONS

We finish with two venues for future research. First, one can associate several matroids to a signed graph,
most prominently Zaslavsky’sframe matriodand(extended) lift matroid[12, 14]. It is a natural question to
ask about possible connections between the Tutte polynomials of these matroids and the bivariate chromatic
polynomials. Second,gain and biased graphsare natural generalizations of signed graphs [14], and so
another natural question concerns possible extensions of our work to these more general constructs.
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