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Abstract

This paper studies the complexity of distributed construction of purely additive spanners
in the CONGEST model. We describe algorithms for building such spanners in several cases.
Because of the need to simultaneously make decisions at far apart locations, the algorithms use
additional mechanisms compared to their sequential counterparts.

We complement our algorithms with a lower bound on the number of rounds required for
computing pairwise spanners. The standard reductions from set-disjointness and equality seem
unsuitable for this task because no specific edge needs to be removed from the graph. Instead,
to obtain our lower bound, we define a new communication complexity problem that reduces to
computing a sparse spanner, and prove a lower bound on its communication complexity using
information theory. This technique significantly extends the current toolbox used for obtaining
lower bounds for the CONGEST model, and we believe it may find additional applications.

1 Introduction

A graph spanner is a sparse subgraph that guarantees some bound on how much the original
distances are stretched. Graph spanners, introduced in 1989 [PS89, PU89a], are fundamental
graph structures which are central for many applications, such as synchronizing distributed net-
works [PU89a], information dissemination [CHKM12], compact routing schemes [Che13a,PU89b,
TZ01], and more.

Due to the importance of spanners, the trade-offs between their possible sparsity and stretch
have been the focus of a huge amount of literature. Moreover, finding time-efficient constructions
of spanners with optimal guarantees has been a major goal for the distributed computing com-
munity, with ingenious algorithms given in many studies (see, e.g., [EP04,Elk05,EZ06,DGPV09,
BKMP10, BS07, DG08,DGP07,DGPV08,DMP+05, Pet10]). One particular type of spanners are
purely additive spanners, in which the distances are promised to be stretched by no more than
an additive term. However, distributed constructions of such spanners have been scarce, with the
only known construction being a (+2)-additive spanner construction with O(n3/2 log n) edges in
O(

√
n log n+D) rounds in a network of size n and diameter D [LP13] (also follows from [HW12]).
The absence of distributed constructions of purely additive spanners is explicitly brought into

light by Pettie [Pet10], and implicitly mentioned in [DGP07].
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This paper remedies this state of affairs, by providing a study of the complexity of constructing
sparse purely additive spanners in the synchronous CONGEST model [Pel00], in which each of n
nodes can send an O(log n)-bit message to each of its neighbors in every round. Our contribution
is twofold: first, we provide efficient constructions of several spanners with different guarantees,
and second, we present new lower bounds for the number of rounds required for such constructions,
using tools that are not standard in this context.

1.1 The Challenge

A subgraph H of an undirected unweighted graph G = (V,E) is called a purely additive spanner
with stretch β if for every every pair (u, v) ∈ V ×V , we have δH(u, v) ≤ δG(u, v)+β, where δH(u, v)
is the u-v distance in H and δG(u, v) is the u-v distance in G. The goal in spanner problems is
to construct a subgraph H that is as sparse as possible with β as small as possible, i.e., we seek a
sparse subgraph of G which approximates all distances with a small stretch.

The problem of computing sparse spanners with small stretch β is well-studied and we know how
to construct sparse purely additive spanners for β = 2, 4, 6. These have sizes O(n3/2) [ACIM99],
Õ(n7/5) [Che13b], and O(n4/3) [BKMP10], respectively. In a very recent breakthrough, it was
shown that there is no purely additive spanner of size at most n4/3/2O(

√
logn) [AB16a].

In a bid to get sparser subgraphs than all-pairs spanners with the same stretch, the following
relaxation of pairwise spanners has attracted recent interest. Here we are given P ⊆ V × V : these
are our “relevant pairs” and we seek a sparse subgraph which approximates distances between all
pairs in P with a small stretch. That is, for every pair (u, v) ∈ P, the graph H should satisfy
δH(u, v) ≤ δG(u, v) +β and for pairs (u, v) outside P, the value δH(u, v) could be arbitrarily large.
Such a subgraph H is called a (+β)-pairwise spanner. We use τ(P) to denote the number of nodes
appearing in P, i.e. τ(P) = |{u | ∃v : {u, v} ∈ P}|.

The problem of constructing sparse pairwise spanners was first studied by Coppersmith and
Elkin [CE06] who showed sparse subgraphs where distances for pairs in P were exactly preserved;
these subgraphs were called pairwise preservers. A natural case for P is when P = S × V , where
S ⊆ V is a set of source nodes — here we seek for a sparse subgraph that well-approximates s-v
distances for all (s, v) ∈ S × V . Such pairwise spanners are called sourcewise spanners. Another
natural setting is when P = S × S and such pairwise spanners are called subsetwise spanners.

Purely additive spanners are usually built in three steps: first, building clusters which contain
all high-degree nodes and adding all the edges of the unclustered nodes; second, building BFS trees
which (+2)-approximate all the paths with many missing edges; and third, adding more edges to
approximate the other paths.

While our constructions follow the general outline of known sequential constructions of pairwise
additive spanners [Kav15,KV13], their techniques cannot be directly implemented in a distributed
setting. In the sequential setting, the clustering phase is implemented by repeatedly choosing a
high-degree node and adding some of its edges to the spanner; these neighbors are marked and
ignored in the rest of the phase. In the distributed setting, going over high degree nodes one by
one, creating clusters and updating the degrees is too costly. Instead, we choose the cluster centers
at random, as done by Thorup and Zwick [TZ05], Baswana and Sen [BS07], and Chechik [Che13b]
(see also Aingworth et al. [ACIM99] for an earlier use of randomization for the a dominating set
problem).

Sources for BFS trees are carefully chosen in the sequential setting by approximately solving a
set-cover problem, in order to cover all paths with many missing edges. Once again, this cannot
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be directly implemented in the distributed setting, as the knowledge of all paths cannot be quickly
gathered in one location, so we choose the BFS sources randomly [Che13b]. In both the clustering
and BFS phases, the number of edges increases by a multiplicative logc n factor, for c < 1.

The main challenge left is to choose additional edges to add to the spanner in order to approx-
imate the remaining paths well. To this end, we make heavy use of the parallel-BFS technique of
Holzer and Wattenhofer [HW12], which allows to construct BFS trees rooted at s different nodes in
O(s+D) rounds. We use this technique to count edges in a path, to count missing edges in it, and
to choose which edges to add to the spanner. Yet, interestingly, we are unable to match the guar-
antee on the number of edges of more sophisticated algorithms [BKMP10,Kav15,Woo10]. Some
of these algorithms use the value of a path, which is roughly the number of pairs of cluster that
get closer if the path is added to the spanner. We are not able to measure this quantity efficiently
in the distributed setting, and this is one of the reasons we are unable to introduce (+6)-all-pairs
spanner matching the sequential constructions.

1.2 Our Contribution

We provide various spanner constructions in the CONGEST model, as summarized in Tables 1
and 2.

Spanner Type Number of Edges — Distributed Number of Edges — Sequential

(+2)-sourcewise O
(

n5/4 |S|1/4 log3/4 n
)

(Thm.1) O
(

n5/4 |S|1/4 log1/4 n
)

[KV13]

(+2)-pairwise O
(

n |P|1/3 log2/3 n
)

(Thm.9) O
(

n |P|1/3
)

[AB16b]

(+4)-pairwise O
(

n |P|2/7 log6/7 n
)

(Thm.13) O
(

n |P|2/7 log3/7 n
)

[Kav15]

(+4)-all-pairs O
(

n7/5 log4/5 n
)

(Thm.5) O
(

n7/5 log1/5 n
)

[Che13b]

(+8)-all-pairs O
(

n15/11 log10/11 n
)

(Thm.18) O
(

n4/3
)

[BKMP10]

(+2)-subsetwise O
(

n |S|2/3 log2/3 n
)

(Cor.17) O
(

n |S|1/2
)

[Pet09,CGK13]

(+4)-subsetwise O
(

n |S|4/7 log6/7 n
)

(Cor.17) O
(

n |S|1/2
)

[Pet09,CGK13]

Table 1: The number of edges in our new constructions versus prior, sequential work. We compare
our (+4)-subsetwise with a sequential construction of a (+2)-subsetwise spanner, and our (+8)-all-
pairs spanner with a (+6)-all-pairs spanner.

The distributed spanner construction algorithms we present have three main properties: stretch,
number of edges, and running time. All three properties hold w.h.p. (with high probability). That
is, the algorithm stops in the desired time, with the desired number of edges and the spanner
produced has the desired stretch with probability 1− n−c, where c is constant of choice. However,
we can trade the properties and guarantee two of the three to always hold: if the spanner is too dense
or the stretch is too large, we can repeat the algorithm; if the running time exceeds some threshold,
we can stop the execution and output the whole graph to get 0 stretch, or output an empty graph
to get the desired number of edges. The edges of the constructed spanner can be counted over a
BFS tree in G within O(D) rounds. In sourcewise, subsetwise and pairwise spanners, the stretch is
measured by running BFS from the relevant nodes (nodes of S of appearing in P) for O(D) rounds
in G and again in H; in all-pairs spanners, the stretch is measured by measuring the stretch of the
underlying sourcewise or subsetwise spanner.
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Spanner Type Number of Rounds Lower Bounds

(+2)-sourcewise O (|S|+D) (Thm.1) min
{

Ω̃
(

n3/8

|S|1/8

)

,Ω (D)
}

[Pet10]

(+2)-pairwise O (τ(P) +D) (Thm.9) min
{

Ω̃
(

n1/2

|P|1/6

)

,Ω (D)
}

[Pet10]

Ω
(

|P|
n log n

)

(Thm.23)

(+4)-pairwise O (τ(P) +D) (Thm.13) min
{

Ω̃
(

n1/2

|P|1/7

)

,Ω (D)
}

[Pet10]

Ω
(

|P|
n log n

)

(Thm.26)

(+4)-all-pairs O(n3/5 log1/5 n+D) (Thm.5) min
{

Ω̃
(

n3/10
)

,Ω (D)
}

[Pet10]

(+8)-all-pairs O(n7/11 log1/11 n+D) (Thm.18) min
{

Ω̃
(

n7/22
)

,Ω (D)
}

[Pet10]

(+2)-subsetwise O(|S|+D) (Cor.17) min
{

Ω̃
(

n1/2

|S|1/3

)

,Ω (D)
}

[Pet10]

(+4)-subsetwise O(|S|+D) (Cor.17) min
{

Ω̃
(

n1/2

|S|2/7

)

,Ω (D)
}

[Pet10]

Table 2: Running time: algorithms versus lower bounds, for number of edges as in Table 1. Ω̃ hides
polylogarithmic factors.

We complement our algorithms with some lower bounds for the CONGEST model. We show
that any algorithm that constructs an additive (+2)-pairwise spanner with m edges on p ≤ m
pairs must have at least Ω(p/(n log n)) rounds, as long as m ≤ n3/2. For example, a CONGEST
construction of a (+2)-pairwise spanner must take Ω̃(

√
n) rounds. We also prove lower bounds for

(α, β)-pairwise spanners (i.e., for which δH(u, v) ≤ α δG(u, v)+β). We show that any algorithm that
constructs an (α, β)-pairwise spanner withm edges on p ≤ m pairs must have at least Ω(p/(n log n))

rounds, as long as m ≤ n1+ 4

9α+3β−10 , where the constant in the Ω notation depends on α, β.
We believe the difficulty in obtaining this lower bound arises from the fact that standard re-

ductions from set-disjointness and equality are unsuitable for this task. At a high level, in most
standard reductions the problem boils down to deciding the existence of an edge (which can rep-
resent, e.g., the intersecting element between the inputs); when constructing spanners, no specific
edge needs to be added to the spanner or omitted from it, so the solution is allowed a considerable
amount of slack that is not affected by any particular edge alone.

Instead, to obtain our lower bound, we define a new communication complexity problem that
reduces to computing a sparse spanner, and prove a lower bound on its communication complexity
using information theory. In this new problem, which we call PART-COMPm,p, Alice has a set
x ⊆ {1, . . . ,m} of size |x| = p, and Bob has to output a set y ⊆ {1, . . . ,m} of size |y| = m/2
so that x ∩ y = ∅. We show that any protocol that solves PART-COMPm,p must convey Ω(p)
bits of information about the set x. This technique significantly extends the current toolbox used
for obtaining lower bounds for the CONGEST model. As such, we believe it may find additional
applications, especially in obtaining lower bounds for computing in this model.

Roadmap: We conclude this section with a further discussion of related work. Section 2 contains
the definition of the model and some basic routines. In Section 3 we present distributed algorithms
for computing the various types of spanners discussed above. In Section 4 we present our new lower
bounds, and we conclude with a short discussion in Section 5.
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1.3 Related Work

Sparse spanners with a small multiplicative stretch are well-understood: Althöfer et al. [ADD+93]
in 1993 showed that any weighted graph G on n vertices has a spanner of size O(n1+1/k) with mul-
tiplicative stretch 2k − 1, for every integer k ≥ 1. Since then, several works [BS07,DHZ00,EP04,
Elk05, Knu14, Pet09, RTZ05, RZ11, TZ06] have considered the problem of efficiently constructing
sparse spanners with small stretch and have used spanners in the applications of computing ap-
proximate distances and approximate shortest paths efficiently.

For unweighted graphs, one seeks spanners where the stretch is purely additive and as mentioned
earlier, an almost tight bound of n4/3 is known for how sparse a purely additive spanner can be.
Bollobás et al. [BCE05] were the first to study a variant of pairwise preservers called distance
preservers, where the set of relevant pairs is P = {(u, v) : δG(u, v) ≥ d}, for a given parameter
d. Coppersmith and Elkin [CE06] showed pairwise preservers of size O(n

√

|P|) and O(n+ |P|√n)
for any P ⊆ V × V . For |P | = ω

(

n3/4
)

, the bound of O(n
√

|P|) for pairwise preservers has very

recently been improved to O(n2/3|P|2/3 + n|P|1/3) by Bodwin and Williams [BW16].
The problem of designing sparse pairwise spanners was first considered by Cygan et al. [CGK13]

who showed a tradeoff between the additive stretch and size of the spanner. The current sparsest
pairwise spanner with purely additive stretch has size O(n|P|1/4) and additive stretch 6 [Kav15].
Woodruff [Woo10] and Abboud and Bodwin [AB16b, AB16a] showed lower bounds for additive
spanners and pairwise spanners. Parter [Par14] showed sparse multiplicative sourcewise spanners
and a lower bound of Ω(n|S|1/k/k) on the size of a sourcewise spanner with additive stretch 2(k−1),
for any integer k ≥ 1.

Distributed construction of sparse spanners with multiplicative stretch was addressed in sev-
eral studies [BKMP10, BS07, DG08,DGP07, DGPV08, DMP+05, Pet10]. Constructions of (α, β)-
spanners were addressed in [BKMP10, DGPV09, Pet10]. Towards the goal of obtaining purely
additive spanners, for which α = 1, Elkin and Peleg [EP04] introduced nearly-additive spanners,
for which α = 1 + ǫ. Additional distributed constructions of nearly-additive spanners are given
in [Elk05,EZ06,DGPV09,Pet10]. Finally, somewhat related, are constructions of various spanners
in the streaming model, and in dynamic settings, both centralized and distributed [BKS12,Bas08,
BS08,Elk07a,Elk07b].

In his seminal paper, Pettie [Pet10] presents lower bounds for the number of rounds needed by
distributed algorithms in order to construct several families of spanners. Specifically, it is shown
that computing an all-pair additive β-spanner with size n1+ρ in expectation, for a constant β,
requires Ω

(

n(1−ρ)/2
)

rounds of communication. Because this is an indistinguishability-based lower
bound, it holds even for the less restricted LOCAL mode, where message lengths can be unbounded.

The lower bound is obtained by showing an n-node graph with diameter D = Θ
(

n(1−ρ)/2
)

where, roughly speaking, removing wrong edges induces a stretch that is too large, and identifying
these wrong edges takes Ω(D) rounds. This gives a lower bound of min

{

Ω
(

n(1−ρ)/2
)

,Ω (D)
}

rounds. Examining the construction in detail, it is not hard to show it works for other types of
spanners as well: even for a single pair of nodes, or a set S of size 2, at least Ω(D) rounds are
necessary in order to avoid removing wrong edges.
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2 Preliminaries

The Model: The distributed model we assume is the well-known CONGEST model [Pel00].
Such a system consists of a set of n computational units, who exchange messages according to an
undirected communication graph G = (V,E), |V | = n, where nodes represent the computational
units and edges the communication links. Each node has a unique identifier which can be encoded
using O(log n) bits. The diameter of G is denoted by D.

When the computation starts, each node knows its own identifier and the identifiers of its
neighbors; when there is a set S of nodes or a set P of node-pairs involved in the computation,
it also knows if it belongs to S, or all the pairs in P it belongs to. The computation proceeds in
rounds, where in each round each node sends an O(log n)-bits message to each of its neighbors,
receives a message from each neighbor, and performs a computation. We use the number of rounds
as our complexity measure, while ignoring the local computation time; however, in our algorithms
all local computations take polynomial time. When the computation ends, each node knows which
of its neighbors is also its neighbor in the new graph H = (V,E′) generated. We do not assume
that the global structure of H is known to any of the nodes.

Clustering and BFS: The first building block in all of our algorithms is clustering. A cluster
Ci around a cluster center ci is a subset of ΓG(ci), the set of neighbors of ci in G (which does
not include ci itself). A node belonging to a cluster is clustered, while the other nodes of G are
unclustered. We use C to denote the set of cluster centers and Ĉ to denote the set of clusters.

In the clustering phase of our algorithms we divide some of the nodes into clusters. We create
a new graph containing all the edges connecting a clustered node to its cluster center, and all the
edges incident on unclustered nodes.

Another building block is BFS trees. A BFS tree in a graph G, rooted at a node r, consists of
shortest paths from r to all other nodes in G. The process of creating a BFS tree, known as BFS
search, is well-known in the sequential setting. In the distributed setting, a single BFS tree can be
easily constructed by a techniques called flooding (see, e.g. [Pel00, §3]), and a celebrated result of
Holzer and Wattenhofer [HW12] asserts that multiple BFS trees, rooted at a set S of nodes, can
be constructed in O(|S|+D) rounds. Here, D denotes the diameter of the graph, i.e. the maximal
distance between two nodes. We use this technique to add BFS trees to the spanner we construct,
and to measure distances in the original graph.

3 Building Spanners

In this section we present distributed algorithms for building several types of additive spanners.
For each spanner, we first describe a template for constructing it independently of a computational
model and analyze its stretch and number of edges. Then, we provide a distributed implementation
of the algorithm in the CONGEST model and analyze its running time.

In a nutshell, our algorithms have three steps: first, each node tosses a coin to decide if it will
serve as a cluster center; second, each cluster center tosses another coin to decide if it will serve as
a root of a BFS tree; third, add to the current graph edges that are part of certain short paths.
The parameters of the coins and the meaning of “short” are carefully chosen, depending on the
input to the problem and the desired stretch.
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Proving that the algorithms perform well is about analyzing the probability of failure. This
analysis uses the graph structure as well as standard concentration bounds. In all of our algorithms,
c is a constant that can be chosen according to the desired exponent of 1/n in the failure probability.

3.1 A (+2)-Sourcewise Spanner

Our first algorithm constructs a (+2)-sourcewise spanner. Given a set S ⊆ V , the algorithm returns
a subgraph H of G satisfying δH(s, v) ≤ δG(s, v)+2 for all (s, v) ∈ S×V , with guarantees as given
in the following theorem.

Theorem 1. Given a graph G on n nodes and a set of sources S, a (+2)-sourcewise spanner with

O(n5/4 |S|1/4 log3/4 n) edges can be constructed in O(|S|+D) rounds in the CONGEST model w.h.p.

This is only a factor O(log1/2 n) more than the number of edges given by the best sequential
algorithm known for this type of spanners [KV13]. Lemmas 2 and 3 analyze the size and stretch
of Algorithm 2S given below. The number of rounds of its distributed implementation is analyzed
in Lemma 4, giving Theorem 1.

3.1.1 Algorithm 2S

Input: a graph G = (V,E); a set of source nodes S ⊆ V
Output: a subgraph H
Initialization: n = |V |, h = (n |S|)1/4 log3/4 n, and H = (V, ∅)

Clustering Pick each node as a cluster center w.p. c logn
h , and denote the set of selected nodes

by {c1, c2, . . .}. For each node v ∈ V , choose a neighbor ci of v which is a cluster center, if such a
neighbor exists, add the edge (v, ci) to H, and add v to Ci; if none of the neighbors of v is a cluster
center, add to H all the edges v belongs to.

BFS Pick each cluster center as a root of a BFS tree w.p. h2

cn logn , and add to H a BFS tree rooted
at each chosen root.

Path Buying For each source-cluster pair (s, Ci) ∈ S × Ĉ: build a temporary set of paths,
containing a single, arbitrary shortest path from s to each x ∈ Ci; omit from the set all paths with

more than 2c2n log2 n
h2 missing edges (i.e. edges in G but not in H); if any paths are left, add to H

the shortest among them.

3.1.2 Analysis of Algorithm 2S

We now study the properties of the spanner H created by the algorithm; in the next section,
we describe the implementation of the different phases in the CONGEST model and analyze the
running time of the algorithm.

Lemma 2. Given a graph G = (V,E) with |V | = n and a set S ⊆ V , Algorithm 2S outputs a graph

H = (V,E′), E′ ⊆ E, with |E′| = O(n5/4 |S|1/4 log3/4 n) edges w.p. at least 1−O(n−c+2).
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Proof. The algorithm starts with H = (V, ∅), and adds to it only edges from G. We analyze the
number of edges added in each phase.

In the first part of the clustering phase, each node adds to H at most one edge, connecting it
to a single cluster center, for a total of O(n) edges. Then, the probability that a node of degree at
least h is left unclustered is at most (1− c logn

h )h which is O(n−c). A union bound implies that all
nodes of degree at least h are clustered w.p. 1−O(n−c+2), and thus the total number of edges added
to H by unclustered nodes in the second part of the clustering phase is O(nh) w.p. 1−O(n−c+2).

A node becomes a root in the BFS phase if it is chosen as a cluster center and then as a
root, which happens with probability c logn

h · h2

cn logn = h
n . Letting T denote the set of trees gives

E[|T |] = h
n · n = h, and a Chernoff bound implies that Pr[|T | > 4h] ≤ exp(−h). As h ≥ c log n we

have exp(−h) = O(n−c), and the BFS phase adds at most 4h trees, which are O(nh) edges.
Finally, each of the n nodes is chosen as a cluster center with probability c logn

h , so E[|C|] =
cn logn

h . A Chernoff bound implies Pr[|C| > 4cn logn
h ] ≤ exp(− cn logn

h ); as h < n3/4, we have

exp(− cn logn
h ) < exp(−cn1/4) = o(n−c). For each pair in S × Ĉ, at most 2c2n log2 n

h2 edges are

added in the path buying phase, for a total of O(|S| · n logn
h · n log2 n

h2 ) = O( |S|n
2 log3 n
h3 ) edges.

Substituting h = (n |S|)1/4 log3/4 n gives a total of O(n5/4 |S|1/4 log3/4 n) edges, as claimed.

Lemma 3. Given a graph G = (V,E) with |V | = n and a set S ⊆ V , the graph H constructed by
Algorithm 2S satisfies δH(s, v) ≤ δG(s, v) + 2 for each pair (s, v) ∈ S× V w.p. at least 1−O (n−c).

Proof. Consider a shortest path ρ between s ∈ S and v ∈ V in G.

If ρ has more than 2c2n log2 n
h2 missing edges in H after the clustering phase, then it traverses

more than c2n log2 n
h2 clusters, as otherwise there is a shorter path between s and v in G. The

probability that none of the centers of these clusters is chosen as a root in the BFS phase is at most
(

1− h2

cn logn

)c2n log2 n/h2

= O(exp(−c log n)) = O (n−c) . Let Ci be a cluster that ρ traverses, and let

u be a node in ρ∩Ci. Adding a BFS tree rooted at ci ensures that δH(s, ci) = δG(s, ci) ≤ δG(s, u)+1
and similarly δH(ci, v) = δG(ci, v) ≤ δG(u, v) + 1. By the triangle inequality

δH(s, v) ≤ δH(s, ci) + δH(ci, v) ≤ δG(s, u) + δG(u, v) + 2

which equals δG(s, v) + 2 since u is on ρ. This completes the proof for ρ with many missing edges.

Consider the complementary case, where ρ has at most 2c2n log2 n
h2 missing edges in H after the

clustering phase. If ρ traverses no clusters, then it is contained in H, and δH(s, v) = δG(s, v).
Otherwise, if v belongs to some cluster Ci, then there is a node v′ ∈ Ci (possibly v itself) such
that the shortest path between s and v′ is added to the graph H in the path buying phase. The
nodes v and v′ both belong to the same cluster, so δH(v, v′) ≤ 2 and the triangle inequality implies
δH(s, v) ≤ δH(s, v′) + δH(v′, v) ≤ δH(s, v′) + 2, as claimed. Finally, consider the case where ρ
traverses at least one cluster and v is unclustered; let u be the clustered node closest to v on ρ.
The sub-path from v to u is contained in H, so δH(v, u) = δG(v, u) and by the previous analysis
δH(s, u) ≤ δG(s, u) + 2; the triangle inequality implies

δH(s, v) ≤ δH(s, u) + δH(u, v) ≤ δG(s, u) + 2 + δG(u, v)

and since u is on ρ, we have δG(s, u) + δG(u, v) = δG(s, v) and the claim follows.
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3.1.3 Implementing Algorithm 2S in the CONGEST Model

We now discuss the implementation of Algorithm 2S in the CONGEST model.

Lemma 4. Algorithm 2S can be implemented in O(|S|+D) rounds in the CONGEST model, w.p.
at least 1− o(n−c).

Proof. We present distributed implementations for each of the phases in Algorithm 2S, and analyze
their running time.

Preprocessing In order to run the algorithm properly, we need each node to know the parameter
h, which in turn depends on |S| and n. These parameters are not given in advance to all graph
nodes, but they can be gathered along a BFS tree rooted at a predetermined node, e.g. the node
with minimal identifier, and then spread to all the nodes over the same tree. This is done in O(D)
rounds.

Clustering The clustering phase is implemented as follows: first, each node becomes a cluster
center w.p. c logn

h and sends a message to all its neighbors; then, each node that gets at least one
message joins a cluster of one of its neighbors, by sending a message to that neighbor and adding
their connecting edge to the graph; finally, nodes that are not neighbors of any cluster center send a
message to all their neighbors and add all their incident edges to the graph. The round complexity
of this phase is constant.

BFS Each cluster center becomes a root of a BFS tree w.p. ch2

n logn , which is done without com-
munication. Then, all BFS roots run BFS searches in parallel. The number of BFS trees is O(h)
w.p. o (n−c), as seen in the proof of Lemma 2, and this number of BFS searches can be run in
parallel in O(D + h) rounds, using an algorithm of Holzer and Wattenhofer [HW12, §6.1]. Their
algorithm outputs the distances along the BFS trees, whereas we wish to mark the BFS tree edges
and add them to the graph; this requires a simple change to the algorithm, which does not affect
its correctness or asymptotic running time.

Path Buying This phase starts with measuring all the distances between pairs of nodes in S×V ,
and the number of missing edges in each shortest path measured. To find all distances from a node
s ∈ S to all other nodes, we run a BFS search from s; moreover, we augment each BFS procedure
with a counter that counts the missing edges in each path from the root to a node on the BFS
tree. Running BFS searches from all the nodes of S is done in O(|S| +D) rounds, as before, and
adding a counter does not change the time complexity. When a node v ∈ V receives a message of
a BFS initiated by some s ∈ S, it learns its distance from s and the number of missing edges on
one shortest path from s to v, which lies within the BFS tree; we refer to this path as the shortest
path from s to v.

After all the BFS searches complete, each clustered node x sends to its cluster center the distance
from each s ∈ S to x, and the number of missing edges on the corresponding path. This sub-phase
takes O(|S|) rounds to complete.

Each cluster center ci now knows, for each s ∈ S, the length of the shortest path from s to each
x ∈ Ci, and the number of missing edges in each such path; it then locally chooses the shortest

among all paths with at most 2c2n log2 n
h2 missing edges. Finally, for each chosen (x, s) path, ci sends
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a message to x containing the identifier of s. All BFS searches are now executed backwards, by
sending all the messages in opposite direction and order; when x runs backwards the BFS search
initiated by s, it marks the message to his parent with a “buy” bit, which is passed up the tree
and makes each of its receivers add the appropriate edge to the graph. This sub-phase requires
O(|S|+D) rounds as well.

In total, the running time of the algorithm is O(h + |S| +D), w.p. at least 1 − o(n−c), which
completes the proof for the case h = O(|S|). In the case h = Ω(|S|), we can replace the algorithm
by a simpler algorithm that returns the union of BFS trees rooted at all nodes of S. This creates
a graph that exactly preserves all distances among pairs (s, v) ∈ S × V , and takes O(|S| + D)
rounds to complete. The number of edges in the created spanner is O(n |S|), and the assumption
h = Ω(|S|) implies O(n |S|) = O(nh), as desired.

3.2 A (+4)-All-Pairs Spanner

Recall that a subgraph H of G is a (+4)-all-pairs spanner if δH(u, v) ≤ δG(u, v) + 4 for all pairs
(u, v) ∈ V × V . We present an algorithm, based on Algorithm 2S, which builds a (+4)-all-pairs
spanner and has the properties guaranteed by the following theorem.

Theorem 5. Given a graph G on n nodes, a (+4)-all-pairs spanner with O
(

n7/5 log4/5 n
)

edges

can be constructed in O(n3/5 log1/5 n+D) rounds in the CONGEST model w.h.p.

The main idea is that cluster centers are now sources for a (+2)-sourcewise spanner, which, as
we show, promises a (+4)-stretch to all pairs. Lemmas 6 and 7 analyze the size and the stretch
of Algorithm 4AP below. Lemma 8 analyzes the running time of its distributed implementation,
completing the proof of Theorem 5.

3.2.1 Algorithm 4AP

Input: G = (V,E)
Output: a subgraph H
Initialization: n = |V |, h = n2/5 log4/5 n, and H = (V, ∅)

Clustering Run clustering as in Algorithm 2S.

BFS and Path Buying Run the BFS and path buying phases from Algorithm 2S, with cluster
centers as sources, i.e. S = C.

3.2.2 Analysis of Algorithm 4AP

Lemma 6. Given a graph G = (V,E) with |V | = n, Algorithm 4AP outputs a graph H = (V,E′),

E′ ⊆ E, with |E′| = O
(

n7/5 log4/5 n
)

edges w.p. at least 1−O(n−c+2).

Proof. The lemma follows from the proof of Lemma 2: in Algorithm 4AP, S is the set of all cluster

centers, whose amount is |C|, and by the proof |C| ≤ 4cn logn
h w.h.p. Substituting |S| = O

(

n logn
h

)

and h = n2/5 log4/5 n in Lemma 2, we get that the graph created by Algorithm 4AP contains
O(n7/5 log4/5 n) edges w.p. at least 1−O(n−c+2).
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Lemma 7. Given a graph G = (V,E) with |V | = n, Algorithm 4AP outputs a graph H satisfying
δH(u, v) ≤ δG(u, v) + 4 for each pair of vertices (u, v) ∈ V × V w.p. at least 1−O(n−c).

Proof. Let (u, v) ∈ V × V be an arbitrary pair of nodes, and set a shortest path ρ in G between
them.

If ρ is not incident on any clustered node, then all its nodes are unclustered and all its edges are
present in H. Otherwise, let x be the first clustered node on ρ, when traversing it from u to v, and
let Ci be the cluster containing x. The sub-path of ρ from u to x exists in H, as all nodes on this
sub-path except for x are unclustered; the distance from ci to v satisfies δH(ci, v) ≤ δG(ci, v) + 2,
as the stretch of (ci, v) in H is at most 2 by Lemma 3, w.p. at least 1 − O(n−c). The triangle
inequality completes the proof:

δH(u, v) ≤ δH(u, x) + δH(x, ci) + δH(ci, v)

≤ δG(u, x) + 1 + δG(ci, v) + 2

≤ δG(u, x) + δG(ci, x) + δG(x, v) + 3 = δG(u, v) + 4.

3.2.3 Implementing Algorithm 4AP

Running Algorithm 4AP is done by executing Algorithm 2S with a specific set S; thus, their running
times are identical, as stated in the next lemma.

Lemma 8. Algorithm 4AP can be implemented in the CONGEST model in O(n3/5 log1/5 n + D)
rounds w.p. at least 1− o(n−c).

Proof. The lemma follows from the proof of Lemmas 2 and 4: in Algorithm 4AP, S is the set of
cluster centers, whose amount is |C|, and by the proof of lemma 2, |C| ≤ 4cn logn

h w.h.p. Substi-

tuting |S| = O(n logn
h ) and h = n2/5 log4/5 n in Lemma 4, we get that the algorithm completes in

O(n3/5 log1/5 n+D) rounds, with the claimed probability.

3.3 A (+2)-Pairwise Spanner

Recall that a (+2)-pairwise spanner, for a set of pairs P ⊆ V × V , is subgraph H of G satisfying
δH(u, v) ≤ δG(u, v) + 2 for all pairs (u, v) ∈ P. Recall that τ(P) denotes the number of nodes
appearing in P, i.e. τ(P) = |{u | ∃v : {u, v} ∈ P}|.

We present a distributed algorithm, Algorithm 2P, which returns a (+2)-pairwise spanner with
the properties described in the following theorem.

Theorem 9. Given a graph G on n nodes and a set P of pairs of nodes in G, a (+2)-pairwise

spanner with O(n |P|1/3 log2/3 n) edges can be constructed in O(τ(P)+D) rounds in the CONGEST
model w.h.p.

If τ(P) < 2c2 |P|1/3 log2/3 n, achieving the desired spanner is simple: for each u appearing in P,

add to H a BFS from u. The number of edges is O (nτ(P)) = O
(

n |P|1/3 log2/3 n
)

, the stretch is

0 for all pairs in P, and the running time is O(τ(P) +D), as desired. Otherwise, Lemmas 10 and
11 prove the claimed size and stretch of Algorithm 2P below. Lemma 12 proves the running time
of its distributed implementation, giving Theorem 9.
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3.3.1 Algorithm 2P

Input: G = (V,E), P ⊆ V × V
Output: a subgraph H
Initialization: n = |V |, h = |P|1/3 log2/3 n, and H = (V, ∅)

Clustering and BFS Run clustering and add BFS trees from selected cluster centers, as in
Algorithm 2S.

Path Buying For each pair (u, v) ∈ P, if the shortest path between u and v in G has at most
2c2n log2 n

h2 missing edges in H, add it to H.

3.3.2 Analysis of Algorithm 2P

Lemma 10. Given a graph G = (V,E) with |V | = n and a set P ⊆ V × V , Algorithm 2P outputs

a graph H = (V,E′), E′ ⊆ E, with |E′| = O(n |P|1/3 log2/3 n) edges, w.p. at least 1−O
(

n−c+2
)

.

Proof. The lemma follows from the proof of Lemma 2: the clustering and BFS phases add O(nh)
edges to the graph w.p. at least 1− O

(

n−c+2
)

, as long as c log n ≤ h ≤ n3/4. The first inequality
comes from the comment after the statement of Theorem 9, the fact that τ(P) ≤ 2 |P| and the
choice of h, and the second inequality is immediate.

In the path buying phase, at most 2c2n log2 n
h2 edges are added for each pair in P, for a total of

O
(

|P|n log2 n
h2

)

edges. Substituting h = |P|1/3 log2/3 n, we get a total of O
(

n |P|1/3 log2/3 n
)

edges

in H.

Lemma 11. Given a graph G = (V,E) with |V | = n, Algorithm 2P outputs a graph H satisfying
δH(u, v) ≤ δG(u, v) + 2 for each pair of vertices (u, v) ∈ P, w.p. at least 1−O (n−c).

Proof. Let (u, v) ∈ P be an arbitrary pair of nodes, and fix a shortest path ρ in G between them.

If ρ has at most 2c2n log2 n
h2 missing edges in H before the path buying phase, it is added to

H, and δG(u, v) = δH(u, v). Otherwise, ρ has more than 2c2n log2 n
h2 missing edges before the BFS

phase, so it traverse at least c2n log2 n
h2 clusters. As in the proof of Lemma 3, at least one of the

corresponding cluster centers is chosen as a root of a BFS tree w.p. at least 1 − O (n−c), and
δH(u, v) ≤ δG(u, v) + 2, as claimed.

3.3.3 Implementing Algorithm 2P

Lemma 12. Algorithm 2P can be implemented in O(τ(P) + |P|1/3 log2/3 n + D) rounds in the
CONGEST model w.p. at least 1− o (n−c).

Proof. We can implement the clustering and path buying phases in O(h + D) = O(τ(P) + D)
rounds with success probability 1 − o (n−c), as seen in the proof of Lemma 4. In order to count
missing edges in paths, we run a BFS search in G from each node appearing in P. Then, the BFS
search is run backwards, and is used to add the “cheap” paths: for a pair (u, v) in P, if the BFS

from v arrives at u traversing at most 2c2n log2 n
h2 missing edges, then u sends back a “buy” message

up the tree, and the path is added. We may end up adding two shortest path for a pair (u, v) ∈ P,
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but this does not affect the asymptotic number of edges or the time complexity. This phase is
implemented in O(τ(P) +D) rounds, by running the τ(P) BFS searches in parallel.

3.4 A (+4)-Pairwise Spanner

We present an algorithm for constructing a (+4)-pairwise spanner, with the parameters described
by the following theorem.

Theorem 13. Given a graph G on n nodes and a set P of pairs, a (+4)-pairwise spanner with

O
(

n |P|2/7 log6/7 n
)

edges can be constructed in O(τ(P) + D) rounds in the CONGEST model

w.h.p.

If |P| < log4 n, the (+2)-pairwise spanner from Theorem 9 is sparser than the one promised
by Theorem 13, and can be constructed in the same running time. Otherwise, Lemmas 14 and 15
show the claimed size and stretch of Algorithm 4P below, which together with Lemma 16, which
analyzes the running time of its distributed implementation, proves Theorem 13.

3.4.1 Algorithm 4P

Input: a graph G = (V,E); a set of pairs P ⊆ V × V
Output: a subgraph H

Initialization: n = |V |, h = |P|2/7 log6/7 n, ℓ = n log3 n
h5/2 and H = (V, ∅)

Clustering and BFS Run clustering and add BFS trees from selected cluster centers, as in
Algorithm 2S.

Prefix-Suffix Buying For each pair (u, v) ∈ P, let ρ be a shortest path from u to v. Add to H
the first ℓ missing edges and the last ℓ missing edges in ρ.

Choosing Cluster Centers Construct a set A of cluster centers by adding to it each cluster
center independently w.p. 16c logn

ℓ .

Path Buying For each pair (c1, c2) ∈ A×A: fix a set of paths containing a single shortest path

from c1 to each x ∈ C2; omit all paths with more than 2c2n log2 n
h2 missing edges in H; if any paths

are left, add to H the shortest among them.

3.4.2 Analysis of Algorithm 4P

Lemma 14. Given a graph G = (V,E) with |V | = n and a set P ⊆ V × V , Algorithm 4P outputs

a graph H = (V,E′), E′ ⊆ E, with |E′| = O
(

n |P|2/7 log6/7 n
)

edges w.p. at least 1−O
(

n−c+2
)

.

Proof. The clustering and BFS phases add O(nh) edges to the graph w.p. at least 1−O
(

n−c+2
)

,

as seen in the proof of Lemma 2, as long as c log n < h < n3/4. The first inequality comes from the
discussion below the statement of Theorem 13, and the second is immediate.

In the prefix-suffix buying phase, at most O(ℓ) edges are bought for each pair in P, for a total

of O
(

|P| · n log3 n
h5/2

)

= O
(

n |P|2/7 log6/7 n
)

edges.
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Finally, in the path buying phase we add to H at most |A|2 paths, with O
(

n log2 n
h2

)

missing

edges in each. Each node is chosen to be a cluster center w.p. c logn
h , and then to enter A w.p.

16c logn
ℓ , so E[|A|] = n · c lognh · 16c lognℓ = 16c2n log2 n

hℓ = 16c2 |P|3/7 log2/7 n. A Chernoff bound implies

Pr
[

|A| > 64c2 |P|3/7 log2/7 n
]

≤ exp
(

−16c2 |P|3/7 log2/7 n
)

= O(n−c); the last equality holds un-

der the assumption |P| ≥ log n, as discussed below the statement of Theorem 9. Hence, the number

of edges added in the path buying step is O

(

(

|P|3/7 log2/7 n
)2

· n log2 n
h2

)

= O(
(

n |P|2/7 log6/7 n
)

edges. In total, H has O(
(

n |P|2/7 log6/7 n
)

edges w.p. at least 1−O
(

n−c+2
)

.

Lemma 15. Given a graph G = (V,E) with |V | = n, Algorithm 4P outputs a graph H satisfying
δH(u, v) ≤ δG(u, v) + 4 for each pair of vertices (u, v) ∈ P w.p. at least 1−O

(

n−c+2
)

.

Proof. Let (u, v) ∈ P be an arbitrary pair of nodes, and let ρ be an arbitrary shortest path from
u to v. If ρ has at most 2ℓ missing edges in H after the clustering phase, it is added to H in the
prefix-suffix buying phase and δG(u, v) = δH(u, v).

Otherwise, the prefix of ρ with ℓ missing edges is incident on at least ℓ/2 clusters. Each cluster
center is added to A independently w.p. 16c logn

ℓ so the expected number of clusters in A which are
also incident on the prefix is 8c log n, and a Chernoff bound implies that the probability that less
than 4c log n of the centers of these clusters are chosen to A is at most O(exp(−c log n)) = O (n−c).
The same argument shows that the suffix of ρ is incident on a cluster in A, and a union bound
implies that all prefixes and suffixes are incident on clusters in A w.p. at least 1−O

(

n−c+2
)

.
Let c1 be a center of a cluster in A which is incident on the prefix of ρ, and c2 a center of a

cluster incident on the suffix of ρ. Let u′ and v′ be nodes in ρ∩C1 and ρ∩C2 respectively, and let
σ be a path between c1 and v′ in G.

If the number of edges of σ missing in H after the clustering phase is more than 2c2n log2 n
h2 , then

σ is incident on at least c2n log2 n
h2 clusters. In this case, a cluster incident on σ is a source of a BFS

tree w.p. at least 1 − O (n−c), as seen in the proof of Lemma 3. Let Ci be such a cluster, then
after adding the BFS trees it holds that δH(u′, v′) ≤ 1 + δH(c1, v

′) ≤ 1 + δH(c1, ci) + δH(ci, v
′) ≤

δG(c1, v
′)+3 ≤ δG(u

′, v′)+4, which implies δH(u, v) ≤ δH(u, u′)+δH(u′, v′)+δH (v′, v) ≤ δG(u, u
′)+

δG(u
′, v′) + 4 + δG(v

′, v) = δG(u, v) + 4.

If σ has less than 2c2n log2 n
h2 missing edges then a path between c1 and some x ∈ C2 is added to

H in the path buying phase, satisfying δH(c1, x) ≤ δG(c1, v
′) ≤ δG(u

′, v′) + 1. Hence, δH(u, v) ≤
δH(u, u′)+δH(u′, c1)+δH(c1, x)+δH(x, v′)+δH(v′, v) ≤ δG(u, u

′)+1+δG(u
′, v′)+1+2+δG(v

′, v) =
δG(u, v) + 4, as required.

3.4.3 Implementing Algorithm 4P

Lemma 16. Algorithm 4P can be implemented in O (τ(P) +D) rounds in the CONGEST model
w.p. at least 1− o (n−c).

Proof. We can implement the clustering and path buying phases in O(h+D) rounds with success
probability 1− o (n−c), as seen in the proof of Lemma 4.

The prefix-suffix buying phase is implemented as follows: run a BFS from each u appearing in
P, counting missing edges on each path. Roll back the BFS, and when passing a node v such that
(u, v) ∈ P, it sends a “buy-suffix” message with a counter initiated to ℓ; when a node receives such
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a counter it adds the edge to the parent to H and decreases the counter by 1, unless the edge is
already on H; if the counter reaches another node in v′ satisfying (u, v′) ∈ P, it is set to ℓ again.
When the counter is 0, no more edges are bought but the counter is passed up the tree, until it
arrives at a node whose count of missing edges in the original BFS was ℓ. This node replaces it with
a simple “buy” message, adds the edge to its parent to H and sends it to the parent; each receiver
of the “buy” message does the same, all the way to the tree root. This phase takes O(τ(P) +D)
rounds.

The choice of A is simple, requiring no communication.
The path buying phase is implemented similarly to its implementation in Algorithm 2S, in the

proof of Lemma 4. Measuring distances and counting missing edges on a path from each c1 ∈ A to
each other node is done by running a BFS from each cluster center with the appropriate counters;
each clustered node reports its cluster’s center the above parameters in O(|A|) rounds; each c2 ∈ A
then chooses which paths to buy, and reports the appropriate node in its cluster; running the BFS
searches backwards, each node may send “buy” messages up the trees, as decided by c2. This phase
takes O(|A|+D) rounds.

The proof of Lemma 14 implies |A| = O
(

|P|3/7 log2/7 n
)

w.p. at least 1 − O (n−c). This, to-

gether with the assumption |P| ≥ log4(n) and with the choice of h, imply O (h+ |A|+ τ(P) +D) =
O (τ(P) +D); hence, the above implementation takes O (τ(P) +D) rounds with the same proba-
bility.

3.5 Subsetwise Spanners

Recall that a (+β)-subsetwise spanner for a set S ⊆ V is a subgraph H of G satisfying δH(u, v) ≤
δG(u, v) + 2 for all pairs (u, v) ∈ S × S. We show how to build such spanners for β = 2 and β = 4,

with O(n |S|2/3 log2/3 n) edges and O(n |S|4/7 log6/7 n) edges respectively, in O(|S| + D) rounds
w.h.p.

The algorithms follow immediately from Algorithm 2P and Algorithm 4P: set P = S × S and
run Algorithm 2P or Algorithm 4P. The number of edges follows from the fact |P| = |S|2, and the
running time from τ(P) = |S|.

Finally, note that in the case |S| > n3/5 log1/5 n, Algorithm 2S gives a sparser spanner than
Algorithm 2P in the same running time, and with a stretch of +2 for all S × V pairs. Similarly,
when |S| > n7/10 log−1/10 n, Algorithm 4AP gives a sparser spanner than Algorithm 4P in a shorter
running time, with a stretch of +4 on all pairs of nodes in the graph.

Corollary 17. Given a graph G on n nodes and a set S of nodes, a (+2)-subsetwise span-

ner with O
(

min
{

n |S|2/3 log2/3 n, n5/4 |S|1/4 log3/4 n
})

edges and a (+4)-subsetwise spanner with

O
(

min
{

n |S|4/7 log6/7 n, n7/5 log4/5 n
})

edges, can both be constructed in at most O(|S|+D) rounds

in the CONGEST model w.h.p.

3.6 A (+8)-All-Pairs Spanner

Recall that a subgraph H of G is a (+8)-all-pairs spanner if δH(u, v) ≤ δG(u, v) + 8 for all pairs
(u, v) ∈ V × V . We present an algorithm, based on Algorithm 4P, which builds a (+8)-all-pairs
spanner and has the properties guaranteed by the next theorem.
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Theorem 18. Given a graph G on n nodes, a (+8)-all-pairs spanner with O
(

n15/11 log10/11 n
)

edges can be constructed in O(n7/11 log1/11 n+D) rounds in the CONGEST model w.h.p.

Lemmas 19 and 20 provide the required size and stretch of Algorithm 8AP below, while Lemma 21
gives the running time f its distributed implementation, proving Theorem 18.

3.6.1 Algorithm 8AP

Input: G = (V,E)
Output: a subgraph H
Initialization: n = |V |, h = n4/11 log10/11 n, and H = (V, ∅)

Clustering Run clustering as in Algorithm 4P.

Rest of Algorithm 4P Run the rest of Algorithm 4P on all pairs of cluster centers, i.e. P = C×C.

3.6.2 Analysis of Algorithm 8AP

Lemma 19. Given a graph G = (V,E) with |V | = n, Algorithm 8AP outputs a graph H = (V,E′),

E′ ⊆ E, with |E′| = O
(

n15/11 log10/11 n
)

edges w.p. at least 1−O(n−c+2).

Proof. We follow the outline of previous proofs. By the proof of Lemma 2, the BFS phase adds
O(nh) edges, and |C| ≤ 4cn logn

h , w.p. at least 1 − O
(

n−c+2
)

. In Algorithm 8AP, |P| = |C|2, and
substituting |P| = O

(

n2 log2 n
h2

)

and h = n4/11 log10/11 n in Lemma 14 gives that the graph created

by Algorithm 8AP contains O(n15/11 log10/11 n) edges w.p. at least 1−O
(

n−c+2
)

.

Lemma 20. Given a graph G = (V,E) with |V | = n, Algorithm 8AP outputs a graph H satisfying
δH(u, v) ≤ δG(u, v) + 8 for each pair of vertices (u, v) ∈ V × V w.p. at least 1−O(n−c).

Proof. Let (u, v) ∈ V × V be an arbitrary pair of nodes, and set a shortest path ρ in G between
them.

If ρ is not incident on any clustered node, then all its nodes are unclustered and all its edges are
present in H. Otherwise, let x be the first clustered node on ρ, when traversing it from u to v, and
let y the last clustered node on ρ. Let C1 be the cluster containing x, and C2 the cluster containing
y. The sub-paths of ρ from u to x and from y to v exist in H, as all the nodes on these sub-path
except for x and y are unclustered. By Lemma 15, δH(c1, c2) ≤ δG(c1, c2) + 4 as c1, c2 ∈ C = S;
moreover, δG(c1, c2) ≤ δG(x, y) + 2 by the triangle inequality. Finally,

δH(u, v) ≤ δH(u, x) + δH(x, c1) + δH(c1, c2) + δH(c2, y) + δH(y, v)

≤ δG(u, x) + 1δG(x, y) + 6 + δG(y, v) + 1 = δG(u, v) + 8

as desired.
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3.6.3 Implementing Algorithm 8AP

Running Algorithm 8AP is done by executing Algorithm 4P with a specific set P; thus, their running
times are identical, as stated in the next lemma.

Lemma 21. Algorithm 8AP can be implemented in the CONGEST model in O(n7/11 log1/11 n+D)
rounds w.p. at least 1− o(n−c).

Proof. The lemma follows from the proof of Lemmas 2 and 16: in Algorithm 8AP, τ(P) = |C|,
and by the proof of Lemma 2, |C| = O

(

n logn
h

)

w.p. at least 1− O(n−c+2). Substituting this and

h = n4/11 log10/11 n in Lemma 16, we get that the algorithm completes in O(n7/11 log1/11 n + D)
rounds with the desired probability.

4 Lower Bounds

In this section we prove lower bounds on the number of rounds that are needed for constructing
spanners in the CONGEST model. All previous lower bounds for the distributed construction of
spanners [Pet10] use an indistinguishability argument: while many edges should be omitted from the
graph in order to create a sparse spanner, there are few edges that must not be omitted. However,
in order to distinguish these few edges from the rest, some nodes must learn a considerable part of
the graph. In a nutshell, the heart of the proof is that information must travel a constant portion
of the diameter D, and thus the lower bound is Ω(D).

The lower bounds from [Pet10] apply also to the LOCAL model, where the message sizes are
unbounded. Here, we present the first lower bound that is specific for the CONGEST model. As in
previous lower bounds for the CONGEST model, our proof uses a reduction from a communication
complexity problem. However, previous lower bounds used reductions either from the equality
problem [PR99] or from set-disjointness, e.g., [DSHK+12,DKO14,FHW12,HP14,CGK14,GK13].
These seem unsuitable for our purposes, and hence we diverge from this approach and define a new
communication complexity problem we call partial complement. We bound the communication
complexity of this problem from below, using information theory.

We first prove a lower bound for the construction of a (+2)-pairwise spanner. Then, we gener-
alize the bound for the construction of an (α, β)-pairwise spanner, for any α ≥ 1, β ≥ 0.

4.1 A Communication Complexity Problem

Letm, p be two positive integers so that p ≤ m/3. The partial complement communication problem,
denoted PART-COMPm,p, is defined as follows: Alice has a set x ⊆ {1, . . . ,m} of size |x| = p, and
Bob has to output a set y ⊆ {1, . . . ,m} of size |y| = m/2 so that x ∩ y = ∅. Note that the goal of
this communication problem is to compute a relation, not a function. In this section we prove that
the randomized communication complexity of the partial complement problem is high (for formal
definitions in communication complexity see the textbook [KN97]).

Theorem 22. If π is a (1/3)-error randomized protocol computing PART-COMPm,p then the length
of π is at least p/100.

The proof uses information theory. The basic idea is to prove that any protocol that solves
PART-COMPm,p must contain Ω(p) bits of information about the set x. We now define the basic
notions we use in the proof (see the textbook [CT06] for more background and useful properties).
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The entropy of a random variable X is defined as

H(X) =
∑

x

Pr[X = x] log(1/Pr[X = x]).

It is well-known that entropy is maximal for the uniform distribution: if X is an element chosen at
random from a set T of size t, then, by convexity,

H[X] =
∑

x∈T
Pr[X = x] log(1/Pr[X = x]) ≤ log t. (1)

Shannon’s coding theorem says that H[X] is a lower bound on the expected length of a prefix-free
encoding of X. The entropy of a random variable X conditioned on a random variable Y is defined
as

H(X|Y ) = H(X,Y )−H(Y ).

The mutual information between X and Y is

I[X;Y ] = H[X]−H[X|Y ].

Intuitively, it measures the reduction in uncertainty about X given the value of Y .

Proof of Theorem 22. Let π be a randomized protocol computing PART-COMPm,p with c bits of
communication and error probability 1/3. Note that we can assume without loss of generality
that only Alice speaks in π. Below, we feed into π a random set X, so we may assume that π is
deterministic. Denote by Π = Π(x) the transcript of π with input x. Denote by Y = Y (x) the
subset of {1, . . . ,m} of size m/2 that Bob outputs when receiving message Π(x).

The distribution onX is defined as follows. Let I1, . . . , Ip be p consecutive intervals in {1, . . . ,m},
each of size k = ⌊m/p⌋. From each interval Ii, choose one element Xi uniformly at random and
independently. Set

X = {X1, . . . ,Xp}.
First, we compute the entropy of X. For each i, we have H[Xi] = log k. Thus, independence

implies that

H[X] =

p
∑

i=1

H[Xi] = p log k.

Second, we analyze the entropy of X conditioned on Y and on the protocol outputting the
correct answer. Let E be the indicator of the event

{x ⊂ {1, . . . ,m} : |x| = p, Y (x) ∩ x = ∅}.

Note that since the protocol has an error probability bounded by 1/3, it holds that Pr[E = 1] ≥ 2/3.
Given y of size m/2, split the intervals into two sets:

S1(y) =

{

i ∈ {1, . . . , p} : |Ii ∩ y| ≤ k

10

}

, S2(y) =

{

i ∈ {1, . . . , p} : |Ii ∩ y| > k

10

}

.
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Since |S1(y)|+ |S2(y)| = p, it holds that

m

2
= |y|

≤ |S1(y)|
k

10
+ |S2(y)| k + k

≤ pk

10
+ |S2(y)|

9k

10
+ k,

which by a simple calculation implies

|S2(y)| ≥
4

9
p− 10

9
.

In addition, for each y and i ∈ S1(y), using (1), we have

H[Xi|Y = y,E = 1] ≤ log k.

For each y and i ∈ S2(y), conditioned on E = 1 and Y = y, the element Xi is chosen from Ii \ y,
whose size is at most k − k

10 = 9k
10 . Thus, for each y and i ∈ S2(y),

H[Xi|Y = y,E = 1] ≤ log
9k

10
.

We can conclude this part as follows:1

H[X|Y,E = 1] ≤
∑

y

Pr[Y = y|E = 1]





∑

i∈S1(y)

H[Xi|Y = y,E = 1] +
∑

i∈S2(y)

H[Xi|Y = y,E = 1]





(sub-additivity)

≤
∑

y

Pr[Y = y|E = 1]

(

(p − |S2(y)|) log k + |S2(y)| log
k

10

)

≤
∑

y

Pr[Y = y|E = 1]

(

p log k − |S2(y)| log
10

9

)

≤ p

(

log k − 4

9
log

10

9

)

+ 2.

Thus, using (1),

H[X|Y,E] = Pr[E = 1] ·H[X|Y,E = 1] + Pr[E = 0] · H[X|Y,E = 0]

≤ 2

3

(

p

(

log k − 4

9
log

10

9

)

+ 2

)

+
1

3
· p log k (Pr[E = 1] ≥ 2/3)

≤ 2 + p log k − 4p

9
log

10

9
.

We now have

I[X;Y ] = I[X;Y,E] − I[E;X|Y ] (chain rule)

= H[X]−H[X|Y,E] − I[E;X|Y ]

≥ 4p

9
log

10

9
− 3,

1Note the difference between conditioning on an event and conditioning on a random variable.
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where the last inequality holds since E contains at most one bit of information. Therefore,

c ≥ H(Π) (Shannon’s coding theorem)

≥ I(X; Π)

≥ I(X;Y ) (information processing inequality)

≥ 4p

9
log

10

9
− 3

≥ p/100; (we may assume p > 100)

where c is the length of π, completing the proof.

4.2 A Lower Bound for constructing a (+2)-Pairwise Spanner

In this section we prove the following lower bound.

Theorem 23. There is a constant c > 0 so that the following holds. Any distributed protocol for
the CONGEST model with success probability at least 2/3 which, given a graph with n nodes and
a set of p ≤ cn3/2 pairs of nodes, outputs a (+2)-pairwise spanner with at most cn3/2 edges, must
take Ω( p

n logn) rounds to complete. The lower bound holds even for graphs with constant diameter.

The theorem implies a lower bound of Ω (
√
n/ log n) on the number of rounds needed for an

algorithm in the CONGEST model to output a (+2)-pairwise spanner, when |P| = Θ(n3/2). For
comparison, the time for constructing such a spanner using Algorithm 2P can (roughly) vary be-
tween n3/4 and n, depending on the structure of P.

The graph G for which the lower bound is proved is defined as follows. Let n be such that there
is a finite projective plane with n/4 points and n/4 lines. Let G′ be the point-line incidence graph
with n/2 nodes (see e.g. [Mat02, §4.5]). The graph G′ has Θ(n3/2) edges, girth 6 and diameter 3.2

We denote the nodes of G′ by VB = {v′1, . . . , v′n/2}. The graph G consists of G′, an additional n/2

nodes denoted VA = {v1, . . . , vn/2}, and an additional n/2 edges of the form (vi, v
′
i).

In the pairwise spanner we construct, we wish to approximately preserve distances between
pairs of nodes in VA, i.e. P ⊆ VA × VA. The main observation is that, since the girth of G′ is 6,
if e′ = {v′i, v′j} is an edge of G′ then the following holds. If (vi, vj) ∈ P then any (+2)-pairwise
spanner must contain the edge e′, as otherwise the distance is stretched from 3 to 7, which exceeds
the required +2 stretch. On the other hand, if (vi, vj) /∈ P then the edge e′ can be safely omitted
from the spanner.

Proof of Theorem 23. Fix a distributed protocol σ for constructing a (+2)-pairwise spanner with
at most m/2 edges. Let G be the graph described above, and denote the edges of G′ by e1, . . . , em.

We describe a reduction from PART-COMPm,p to σ. Assume Alice has a set x ⊆ {1, . . . ,m} of
size p, and Bob has to output a set y ⊆ {1, . . . ,m} of size m/2 satisfying x ∩ y = ∅. Alice and Bob

simulate σ on the graph G with the set of pairs

P =
{

(vi, vj) : ∃k ∈ x ek = {v′i, v′j}
}

.

That is, a pair (vi, vj) is in P if the corresponding pair (v′i, v
′
j) is an edge ek whose index k is in

x. Alice simulates the nodes in VA, and Bob simulates the nodes VB and the edges among them.

2The girth of a graph is the length of the shortest simple cycle in it.
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To simulate communication on edges of the form (vi, v
′
i), Alice and Bob communicate. Note that P

contains only pairs of nodes that are simulated by Alice.
The spanner constructed is a subgraph H of G with at most m/2 edges, satisfying δH(vi, vj) ≤

δG(vi, vj) + 2 for all (vi, vj) ∈ P. For each such pair, by definition of P, we have δG(vi, vj) = 3,
which implies δH(vi, vj) ≤ 5 and δH(v′i, v

′
j) ≤ 3. The fact that G′ has girth 6 implies that the edge

{v′i, v′j} must be in H. Let
y = {k : ek ∈ EG \EH} .

The spanner size implies |y| ≥ m/2, while the above discussion implies x ∩ y = ∅. Thus, Bob can
output a subset of y of size m/2, solving the communication complexity problem.

By the communication complexity lower bound, Alice and Bob must communicate Ω(p) bits
during the simulation. The number of edges they simulate together is n/2, and O(log n) bits are

sent over each edge at each round. Thus, the protocol must take Ω
(

|P|
n logn

)

rounds to complete.

4.3 Generalization: A Lower bound for constructing an (α, β)-Pairwise Spanner

Recall that an (α, β)-pairwise spanner for a graph G and a set P of pairs of nodes is a subgraph H
of G satisfying δH(u, v) ≤ αδG(u, v) + β for every (u, v) ∈ P.

To obtain our lower bound for any α ≥ 1, β ≥ 0, we first study the tradeoff between the girth
and number of edges in a graph. The most relevant claim for this question is Erdős’ girth conjecture:

Conjecture 24 (Erdős’ Girth Conjecture [Erd64]). For every g there is a constant c such that

there exists a graph on n nodes with girth g and cn
1+ 1

⌈g/2⌉−1 edges.

For example, for g = 3, the complete graph on n nodes has roughly n2/2 edges, and for g = 4
the full bipartite graph has n2/4 edges. For g = 5 and g = 6 there exist a graph with n3/2 edges,
which we used in the last section.

The conjecture is known to be true for a few values of g, while for the other values there are
constructions with slightly less edges:

Theorem 25 (see, e.g. [Mat02, §15.3]). For every g ≥ 3 and n ≥ 2 there is a graph on n vertices

with girth g and Ω
(

n
1+ 4

3g−10

)

edges. For g ∈ {3, 4, 5, 6, 9, 10} there is a constant c such that for

every n ≥ 2 there is a graph on n vertices with girth g and cn
1+ 1

⌈g/2⌉−1 edges.

Theorem 23 and its proof extend to (α, β)-pairwise spanners for any α ≥ 1 and β ≥ 0, with the
appropriate choice of G′. The only thing left is to make sure the diameter is constant even if the
diameter of G′ is not. Bounding the diameter also allows us to derive a lower bound conditioned
on Erdős’ girth conjecture, a conjecture which claims nothing about the diameter of the graph.

Theorem 26. Let α ≥ 1, β ≥ 0 be constants, and g = 3α + β. There is a constant c = c(g) so
that the following holds. Any distributed protocol for the CONGEST model with success probability

at least 2/3 which, given a graph with n nodes and a set of p ≤ cn1+ 4

3g−10 pairs of nodes, outputs

an (α, β)-pairwise spanner with at most cn
1+ 4

3g−10 edges, must take Ω
(

p
n logn

)

rounds to complete.

The lower bound holds even for graphs with diameter O(g).
For g ∈ {3, 4, 5, 6, 9, 10}, and for any constant g if Erdős’ girth conjecture is true, the bound on

p and on the number of edges can be replaced by cn
1+ 1

⌈g/2⌉−1 .
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The theorem implies a lower bound of Ω (n/ log(n)) rounds for any algorithm in the CONGEST
model which outputs pairwise preserver with o(n2) edges, when |P| = Θ(n2). The trivial algorithm
that builds a BFS tree from any node appearing in P runs in O(n) rounds and returns a spanner
with O(n2) edges. Hence, we cannot expect to asymptotically improve upon the running time and
upon the number of edges simultaneously.

For (+4)-pairwise spanners, the theorem implies a lower bound of Ω(n4/11/ log n) rounds for
|P| = Θ(n15/11). Algorithm 4P constructs such a spanner in roughly O(n107/77 log6/7 n) rounds.
Assuming Erdős’ conjecture, we can choose P satisfying |P| = Θ(n4/3), and get a lower bound of
Ω(n1/3/ log n) rounds and an algorithm running in O(n29/21 log6/7 n) rounds.

The graph G for which the lower bound is proved is defined similarly to the graph in the proof
of Theorem 23, with an extra construction that ensures that the diameter of G is constant. Let G′

be a graph on n′ nodes with girth g = 3α + β and m edges, where m = m(n′, g) is the maximal
possible number of edges for these n′ and g. Let v′1, . . . , v

′
n′ be the nodes of G′. Add to G′ a new

node u and connect each node v′i to u by a disjoint path of ⌊g/2⌋ new nodes. This increases the
number of nodes in G′ and the number of edges by a multiplicative g factor, does not decrease the
girth, and ensures the diameter is O(g).

The lower bound graph G consists of G′, the node u, the nodes and paths connecting each v′i to
u, and for each v′i another node vi connected to it by an edge (vi, v

′
i). Let VA = {v1, . . . , vn′} and

VB be the set of all other nodes.
The pairwise spanner we construct approximately preserves distances between pairs of nodes

in VA, i.e. P ⊆ VA × VA. Since the girth of G′ is 3α + β, if e′ = {v′i, v′j} is an edge in G′ and
(vi, vj) ∈ P, then any (α, β)-pairwise spanner must contain the edge e′: in G, the distance between
vi and vj is 3; and if there is a path in H connecting vi and vj with length at most 3α + β, then
this path connects v′i and v′j in G′ with 3α + β − 2 edges, which together with e′ closes a cycle of
length 3α + β − 1 < g in G′. On the other hand, if (vi, vj) /∈ P then the edge e′ can be omitted
from the spanner.

Proof of Theorem 26. Fix a distributed protocol σ for constructing an (α, β)-pairwise spanner. Let
G be the graph described above, and denote the edges of G′ by e1, . . . , em. Theorem 25 gives the

bound m ≥ 2cn1+ 4

3g−10 for some constant c > 0.
We use the same reduction from PART-COMPm,p to σ: Alice has a set x ⊆ {1, . . . ,m} of size

p, and Bob has to output a set y ⊆ {1, . . . ,m} of size m/2 satisfying x ∩ y = ∅. They simulate σ

on the graph G and the set of pairs P =
{

(vi, vj) : ∃k ∈ x ek = {v′i, v′j}
}

; Alice simulates the nodes

in VA and Bob simulates the nodes VB and the edges among them. To simulate communication on
edges of the form (vi, v

′
i), Alice and Bob communicate. The bound on p in the theorem statement

comes from the fact that |P| ≤ m/2.
The spanner constructed is a subgraph H of G with at most m/2 edges, satisfying δH(vi, vj) ≤

α ·δG(vi, vj)+β for all (vi, vj) ∈ P. For each such pair, the edge {v′i, v′j} must be in H, as explained
above. Let y = {k : ek ∈ EG \EH} . The spanner size implies |y| ≥ m/2, while the above discussion
implies x ∩ y = ∅. Thus, Bob can output a subset of y of size m/2, solving the communication
complexity problem.

By the communication complexity lower bound, Alice and Bob must communicate Ω(p) bits
during the simulation. The number of edges they simulate together is at most n, and O(log n) bits

are transferred over each edge at each round. Thus, the protocol must take Ω
(

|P|
n logn

)

rounds to

complete.
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5 Discussion

This paper presents various algorithms for computing sparse purely additive spanners in the CON-
GEST model. Our algorithms exhibit tradeoffs between the running time and the sparsity of the
constructed spanners. By choosing different values for the parameter h, one can obtain a spanner
with the same stretch in a smaller number of rounds but at the expense of increasing the density.
This tradeoff is an important direction for future work.

Our lower bound uses a new communication complexity problem, and leverages the distributed
nature of the system by using the fact that each node initially only knows the pairs in P to which
it belongs3. That is, the topology of the graph used for the lower bound reduction is known
completely to both Alice and Bob, regardless of their inputs to the PART-COMPm,p instance, while
the uncertainty about the identity of the pairs in P is what makes the problem hard. While it might
be unnatural to assume that other nodes know about these pairs, it is theoretically interesting to
ask whether one can design faster distributed constructions given this information.

Finally, we believe that our new lower bound technique can be useful for proving additional
lower bounds in the CONGEST model, as it diverges from reducing to the set-disjointness problem.
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[Par14] Merav Parter. Bypassing erdős’ girth conjecture: Hybrid stretch and sourcewise span-
ners. In 41st International Colloquium on Automata, Languages, and Programming,
ICALP, pages 608–619, 2014.

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Monographs on
Discrete Mathematics and Applications. Society for Industrial and Applied Mathe-
matics, 2000.

[Pet09] Seth Pettie. Low distortion spanners. ACM Trans. Algorithms, 6(1), 2009.

[Pet10] Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons.
Distributed Computing, 22(3):147–166, 2010.

[PR99] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complex-
ity of distributed MST construction. In 40th Annual Symposium on Foundations of
Computer Science, FOCS, pages 253–261, 1999.

[PS89] David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory,
13(1):99–116, 1989.

[PU89a] David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. SIAM
J. Comput., 18(4):740–747, 1989.

[PU89b] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables.
J. ACM, 36(3):510–530, 1989.

[RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approx-
imate distance oracles and spanners. In 32nd International Colloquium on Automata,
Languages and Programming, ICALP, pages 261–272, 2005.

[RZ11] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica,
61(2):389–401, 2011.

[TZ01] Mikkel Thorup and Uri Zwick. Compact routing schemes. In SPAA, pages 1–10, 2001.

[TZ05] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52(1), 2005.

[TZ06] Mikkel Thorup and Uri Zwick. Spanners and emulators with sublinear distance errors.
In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 802–809, 2006.

[Woo10] David P. Woodruff. Additive spanners in nearly quadratic time. In 37th International
Colloquium on Automata, Languages and Programming, ICALP, pages 463–474, 2010.

26


	1 Introduction
	1.1 The Challenge
	1.2 Our Contribution
	1.3 Related Work

	2 Preliminaries
	3 Building Spanners
	3.1 A (+2)-Sourcewise Spanner
	3.1.1 Algorithm 2S
	3.1.2 Analysis of Algorithm 2S
	3.1.3 Implementing Algorithm 2S in the CONGEST Model

	3.2 A (+4)-All-Pairs Spanner
	3.2.1 Algorithm 4AP
	3.2.2 Analysis of Algorithm 4AP
	3.2.3 Implementing Algorithm 4AP

	3.3 A (+2)-Pairwise Spanner
	3.3.1 Algorithm 2P
	3.3.2 Analysis of Algorithm 2P
	3.3.3 Implementing Algorithm 2P

	3.4 A (+4)-Pairwise Spanner
	3.4.1 Algorithm 4P
	3.4.2 Analysis of Algorithm 4P
	3.4.3 Implementing Algorithm 4P

	3.5 Subsetwise Spanners
	3.6 A (+8)-All-Pairs Spanner
	3.6.1 Algorithm 8AP
	3.6.2 Analysis of Algorithm 8AP
	3.6.3 Implementing Algorithm 8AP


	4 Lower Bounds
	4.1 A Communication Complexity Problem
	4.2 A Lower Bound for constructing a (+2)-Pairwise Spanner
	4.3 Generalization: A Lower bound for constructing an (,)-Pairwise Spanner

	5 Discussion

