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SYMMETRIC BASES FOR FINITE ELEMENT EXTERIOR

CALCULUS SPACES

YAKOV BERCHENKO-KOGAN

Abstract. In 2006, Arnold, Falk, and Winther developed finite ele-
ment exterior calculus, using the language of differential forms to gener-
alize the Lagrange, Raviart–Thomas, Brezzi–Douglas–Marini, and Nédélec
finite element spaces for simplicial triangulations. In a recent paper,
Licht asks whether, on a single simplex, one can construct bases for
these spaces that are invariant with respect to permuting the vertices
of the simplex. For scalar fields, standard bases all have this symmetry
property, but for vector fields, this question is more complicated: such
invariant bases may or may not exist, depending on the polynomial de-
gree of the element.

In dimensions two and three, Licht constructs such invariant bases
for certain values of the polynomial degree r, and he conjectures that his
list is complete, that is, that no such basis exists for other values of r.
In this paper, we show that Licht’s conjecture is true in dimension two.
However, in dimension three, we show that Licht’s ideas can be extended
to give invariant bases for many more values of r; we then show that this
new larger list is complete. Along the way, we develop a more general
framework for the geometric decomposition ideas of Arnold, Falk, and
Winther.

1. Introduction

As a starting example, consider the space of quadratic real-valued func-
tions on a tetrahedron T . Via barycentric coordinates, we can map T onto
the standard simplex T 3 ⊂ R

4 consisting of all nonnegative quadruplets
(λ0, λ1, λ2, λ3) satisfying λ0 + λ1 + λ2 + λ3 = 1. Here, we have a natural
basis for the 10-dimensional space of quadratic polynomials:

(1) {λ2
0, λ

2
1, λ

2
2, λ

2
3, λ0λ1, λ0λ2, λ0λ3, λ1λ2, λ1λ3, λ2λ3}.

We immediately see that if we permute the coordinates {λ0, λ1, λ2, λ3}, this
basis is mapped to itself. Equivalently, this basis is invariant with respect
to isometries T 3 → T 3 that permute the vertices of the tetrahedron.

This symmetry invariance is convenient. For example, suppose we wanted
to compute the matrix of the bilinear map a(u, v) :=

∫

T 3 ∇u · ∇v dvol with
respect to this basis. Naively, we would have to do 100 computations, or
55 if we take into account the fact that a(u, v) = a(v, u). However, if we
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FEEC space classical counterpart
PrΛ

0(T n) = P−
r Λ0(T n) Lagrange elements

PrΛ
n(T n) = P−

r+1Λ
n(T n) discontinuous elements

PrΛ
1(T 2) Brezzi–Douglas–Marini H(div) elements

P−
r Λ1(T 2) Raviart–Thomas H(div) elements

PrΛ
1(T 3) Nédélec H(curl) elements of the second kind

P−
r Λ1(T 3) Nédélec H(curl) elements of the first kind

PrΛ
2(T 3) Nédélec H(div) elements of the second kind

P−
r Λ2(T 3) Nédélec H(div) elements of the first kind

Table 1. A summary of [2, Tables 5.1 and 5.2] listing the
correspondences between the finite element exterior calculus
spaces and the classical finite element spaces; here T n denotes
the n-dimensional simplex. See also [2, Tables 2.1 and 2.2].

also take into account the permutation symmetry, it suffices to do just 7
computations:

(2) a(λ2
0, λ

2
0), a(λ2

0, λ
2
1), a(λ2

0, λ0λ1), a(λ2
0, λ1λ2),

a(λ0λ1, λ0λ1), a(λ0λ1, λ0λ2), a(λ0λ1, λ2λ3).

All other computations can be handled by symmetry. For instance, a(λ2
2, λ0λ2) =

a(λ2
0, λ0λ1) via a permutation that sends λ2 to λ0 and λ0 to λ1.
In this example, our domain was a regular tetrahedron T 3 for simplicity,

but we note here that we can exploit symmetry to compute forms such as
a(u, v) =

∫

T ∇u · ∇v dvol(T ) even on an arbitrary tetrahedron T . A brief

sketch of the procedure is as follows: On the reference simplex T 3, we com-
pute A(u, v) :=

∫

T 3 du ⊗ dv dvol(T 3) =:
∑

i,j Aij(u, v) dλi ⊗ dλj for the 7

pairs (u, v) in (2); the values of a(u, v) for all 55 pairs can then be quickly
computed from row/column permutations of the Aij and the Jacobian ma-
trix of the affine barycentric coordinate transformation sending T 3 to T .

For scalar functions, the symmetric basis construction in (1) works in all
dimensions and all polynomial degrees. However, for vector fields, the situ-
ation is more complicated. In a recent paper [10], Licht attacks the question
of when such symmetric bases exist for the Raviart–Thomas elements [14],
the Brezzi–Douglas–Marini elements [6], and the Nédélec elements [12, 13],
using the general framework of finite element exterior calculus [1, 2, 3, 4].
Henceforth in this paper, we will also adopt the framework of finite element
exterior calculus, but, for reference, we list the correspondences between the
classical finite element spaces and the finite element exterior calculus spaces
in Table 1.

In the above example with scalar fields, we saw that our basis of P2Λ
0(T 3)

was invariant with respect to the permutation group S4 that permutes the
vertices of the simplex. However, in both Licht’s paper [10] and our paper,
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we want to weaken the notion of invariance to allow basis elements to map to
other basis elements up to sign. We can motivate this definition by consid-
ering the space P2Λ

3(T 3) consisting of densities with quadratic coefficients.
Initially, it may seem that the situation is no different from the scalar field
situation; we can just use the same basis multiplied by the volume form:

{λ2
0 dvol, λ

2
1 dvol, λ

2
2 dvol, λ

2
3 dvol,

λ0λ1 dvol, λ0λ2 dvol, λ0λ3 dvol, λ1λ2 dvol, λ1λ3 dvol, λ2λ3 dvol}.

However, whereas the volume form is invariant under orientation-preserving
isometries of T 3, it will change sign if we apply an orientation-reversing
isometry. Thus, if we permute the vertices of T 3 with an odd permutation,
we will send dvol to −dvol and, therefore, send each basis element to the
negative of another basis element.

This issue is pervasive: Even if we were to try to restrict to orientation-
preserving isometries of T 3, such isometries can still reverse the orientation
of edges, and so we will have similar issues with bases of one-forms. On
the other hand, there is not much downside if basis elements can map to
negatives of other basis elements: We must keep track of signs, but otherwise
we have the same kind of advantages as in our example of computing the
matrix of a(u, v) =

∫

T 3 ∇u ·∇v dvol above. Thus, we establish the following
definition.

Definition 1.1. Let V be a G-representation, that is, a (real) vector space
with an action of a group G. We say that a basis ξ1, . . . , ξn is a G-invariant

basis up to sign if for every g ∈ G and every i, we have that gξi = ±ξi′ for
some i′.

Remark 1.2. Invariance up to sign is the only notion of basis invariance
discussed in this paper, so we will often simply write G-invariant basis. The
group G will also be omitted if it is clear from context. We also remark
that Licht [10] uses different terminology, using the term R-invariant basis
to denote a basis that is invariant up to sign, in order to distinguish from
C-invariance, which we do not discuss in the present paper.

Remark 1.3. Representations that have a G-invariant basis up to sign are
sometimes referred to as monomial representations.

Another motivation comes from Whitney forms [16]. In our notation,
the Whitney forms are the space P−

1 Λk(T n), the lowest-order incarnation
of the P−

r Λk(T n) spaces. The main property of Whitney k-forms is that
they are uniquely determined by their integrals on k-dimensional faces. As
such, they have a natural basis, the Whitney elementary forms: a Whitney
elementary form has integral one on a particular k-dimensional face F of T n

and integral zero on all the others. One can check that this basis is invariant,
but only up to sign, due to the fact that isometries of T n take k-dimensional
faces to k-dimensional faces, but may reverse their orientations. From this
perspective, our question is: Does this symmetry property continue to hold
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for the higher-order analogues P−
r Λk(T n) of the Whitney forms? What

about the other family, the PrΛ
k(T n) spaces? The Whitney forms enjoy

many nice geometric properties [9], such as a geometric interpretation of the
exterior derivative; the symmetry property addressed in this paper appears
necessary for those geometric properties to persist in the generalization to
the higher-order forms of finite element exterior calculus.

Main results. Each of the finite element spaces PrΛ
k(T n) and P−

r Λk(T n)
has an action of the symmetric group Sn+1 that permutes the n+1 vertices
of the simplex T n. Our question then is: Which of these spaces have invari-
ant bases up to sign, and which do not? Licht [10] gives a partial answer to
this question in dimensions two and three, constructing invariant bases for
certain values of r (depending on the family). In this paper, we develop a
more general theory that lets us give a complete answer in dimensions two
and three (and could, with some computation, be applied to higher dimen-
sions as well). In two dimensions, we show that, for the spaces where Licht
did not find invariant bases, there are indeed no such bases, thereby showing
that Licht’s list in complete. On the other hand, in three dimensions, we
find many additional spaces that have invariant bases; we then show that
our new expanded list is complete.

Techniques. In both Licht’s work [10] and in the current paper, we induct
using the geometric decomposition and duality properties of the finite ele-
ment exterior calculus spaces. The geometric decomposition allows us to
decompose finite element spaces on T n in terms of finite element spaces on
the faces F of T n that vanish on the boundary ∂F . Meanwhile, duality gives
an isomorphism between spaces of forms that vanish on the boundary and
spaces of forms of lower degree (with no boundary conditions). Together,
these two facts allow us to inductively construct invariant bases. The main
innovations in this paper that allow us to prove the stronger results are the
following.

• We give a representation-theoretic obstruction to the existence of
invariant bases.

• We develop a more thorough understanding of the representation
theory of the geometric decomposition.

• In three dimensions, we expand the base case of the inductive con-
struction, allowing us to construct invariant bases for more spaces.

Outline. Section 2 is devoted to preliminaries: We define the finite element
exterior calculus spaces and how the symmetric group acts on them, and we
introduce the results we will need from representation theory. In Section 3,
we develop a generalization of the geometric decomposition theory of Arnold,
Falk, and Winther [3] that is well-suited for easily understanding the rep-
resentation theory of these spaces. We relegate most of the discussion of
the correspondence between these two notions of geometric decomposition
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to Appendix A, as it does not impact our results. The results themselves
are in Section 4.

2. Preliminaries

This preliminaries section is split into four subsections. The first three
are devoted to representation theory, with the general theory in Subsec-
tion 2.1, the theory of induced representations in Subsection 2.2, and rele-
vant examples in Subsection 2.3, relying on the references [7, 8]; see also [15].
Meanwhile, in Subsection 2.4, we briefly introduce the finite element spaces
PrΛ

k(T n) and P−
r Λk(T n) and discuss how the symmetric group Sn+1 acts on

them; this subsection culminates with the duality isomorphism that, along
with the geometric decomposition, is the main ingredient of the inductive
basis construction.

2.1. Representation theory. While there are many equivalent perspec-
tives on representation theory, in this paper we will view a representation
as a vector space endowed with additional structure. We briefly review the
key definitions and theorems we will use in this paper. For this paper, all
vector spaces are over the real numbers, though the results in this section
hold more generally for fields of characteristic zero.

Definition 2.1. Given a group G, a G-representation or simply represen-

tation V is a vector space endowed with a product G × V → V denoted
(g, v) 7→ gv, such that

• for all g ∈ G the induced map V → V defined by v 7→ gv is linear,
and

• g(hv) = (gh)v for all g, h ∈ G and v ∈ V .

Definition 2.2. Any group G has a trivial one-dimensional representation,
which we denote 1. The action is gv = v.

Proposition 2.3. The trivial representation 1 has an G-invariant basis.

Proof. Let v be a nonzero element of 1. Then {v} is an invariant basis. �

Representations have a stronger notion of isomorphism than vector spaces
do.

Definition 2.4. Given two representations V and W , a linear map f : V →
W is equivariant if f(gv) = g(f(v)). If, moreover, f is a bijection, then we
say that V and W are isomorphic representations.

Definition 2.5. If V is a G-representation and W is a linear subspace of
V , then W is an invariant subspace or subrepresentation if gW = W for all
g ∈ G. If so, W itself has the structure of a G-representation.

If the only subrepresentations of V are 0 and V , then V is irreducible.

Given two G-representations V and W , the vector spaces V ⊕ W and
V ⊗W inherit a canonical action of G.
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Definition 2.6. Let V and W be two G-representations.
The direct sum representation, denoted V ⊕W , is defined on the vector

space V ⊕W by g(v,w) := (gv, gw) for all elements (v,w) ∈ V ⊕W . For a
nonnegative integer n, we will let nV denote the direct sum of n copies of
V .

The tensor product representation, denoted V ⊗W , is defined on the vector
space V ⊗W by g(v ⊗ w) = gv ⊗ gw for all v ∈ V and w ∈ W .

We observe here that these operations preserve the property of having
invariant bases.

Proposition 2.7. Let V and W be G-representations. If V and W have

G-invariant bases up to sign, then so do V ⊕W and V ⊗W .

Proof. Let ξ1, . . . , ξm and η1, . . . , ηn be invariant bases for V and W , respec-
tively. Then one can see that ξ1, . . . , ξm, η1, . . . , ηn is an invariant basis for
V ⊕W . Likewise, {ξi⊗ ηj} is an invariant basis of V ⊗W . Indeed, we know
that gξi = ±ξi′ for some i′ and gηj = ±ηj′ for some j′, so

g(ξi ⊗ ηj) = (gξi)⊗ (gηj) = (±ξi′)⊗ (±ηj′) = ±(ξi′ ⊗ ηj′),

as desired. �

A key result of the representation theory of finite (or, more generally,
compact) groups is the unique decomposition into irreducibles.

Theorem 2.8 (Maschke). If G is a finite group, then any finite-dimensional

representation V decomposes as a direct sum of irreducible subrepresenta-

tions.

V ∼= V1 ⊕ · · · ⊕ Vk.

Since every finite group has finitely many irreducible representations up
to isomorphism, Maschke’s theorem yields a powerful method for assess-
ing which representations satisfy a representation-theoretic property such
as having an invariant basis:

• Identify all of the irreducible representations of G.
• For each possible direct sum of these representations, determine
whether the property holds.

• For a given representation V , compute its decomposition into irre-
ducibles. Based on this decomposition and the results of the previous
step, conclude whether the property holds.

There is a straightforward way of identifying the irreducible representa-
tions of G using the regular representation.

Definition 2.9. Any finite group G has a representation called the regular

representation, denoted R[G]. As a vector space, R[G] is the space of formal
linear combinations

∑

gi∈G
aigi of elements of G. The group action is

g
∑

gi∈G

aigi :=
∑

gi∈G

ai(ggi).
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An important property of the regular representation is that it contains
all irreducible representations.

Proposition 2.10. Any irreducible representation of a group G is a sub-

representation of the regular representation of G.

This allows us to identify all irreducible representations of a group G
by decomposing the regular representation into irreducibles. All irreducible
representations of G will be present in this decomposition (generally with
multiplicity).

Definition 2.11. Given a G-representation V and a subgroup H of G, we
can also view V as an H-representation by “forgetting” the additional struc-
ture of multiplication by elements of g that are not inH. This representation
is called the restriction of the G-representation V to H. When there is no
risk of ambiguity, we will refer to this restricted H-representation simply as
V . When we must disambiguate, we will refer to it as ResGH(V ).

Less trivially, given an H-representation W , we can construct a canonical
G-representation V ; this construction is the subject of the next subsection.

2.2. Induced representations. It turns out that we can characterize the
G-representations that admit G-invariant bases up to sign using the theory
of induced representations. We give a brief introduction, largely following
[8, Subsection 3.3].

Definition 2.12. Let V be a G-representation. Let W be a subspace of V
that is invariant under the action of a subgroup H of G. Then the translate
gW depends only on the left coset gH ∈ G/H, so it makes sense to write σW
for σ ∈ G/H. If it so happens that V is the direct sum of these translates,
that is

V =
⊕

σ∈G/H

σW,

then we say that V is induced by W and write V = IndGH W .

Proposition 2.13 ([8, Subsection 3.3]). The induced representation is unique.

That is, the isomorphism class of V = IndGH W as a G-representation de-

pends only on the isomorphism class of W as an H-representation.

Proposition 2.14 ([8, Example 3.15]). Induction respects direct sums, that

is,

IndGH
⊕

Wi
∼=

⊕

IndGH Wi.

Proposition 2.15 ([8, Exercise 3.16(b)]). Induction is transitive, that is,

if H is a subgroup of K, which is a subgroup of G, and W is an H-

representation, then

IndGH W ∼= IndGK IndKH W.
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Proposition 2.16 ([7, Section 12D]). Induction sends regular representa-

tions to regular representations.

IndGH R[H] ∼= R[G].

In particular, if H is the trivial subgroup, we have the following.

Corollary 2.17. Let e be the trivial subgroup of G, and let 1 = R[e] be the

trivial e-representation. Then

IndGe 1 ∼= R[G].

Finally, we have the following property relating induction, restriction, and
the tensor product.

Proposition 2.18 ([8, Exercise 3.16(a)]). Let H be a subgroup of a group

G, let V be a G-representation, and let W be an H-representation. Then

V ⊗ IndGH W ∼= IndGH
(

ResGH(V )⊗W
)

.

Corollary 2.19. Tensoring a representation V with the regular representa-

tion yields the direct sum of dimV copies of the regular representation.

V ⊗R[G] ∼= (dimV )R[G].

Proof. In Proposition 2.18, let H be the trivial group e and let W be the
trivial e-representation 1. Then the left-hand side of Proposition 2.18 yields

V ⊗ IndGe 1 ∼= V ⊗ R[G]

by Corollary 2.17. Meanwhile, to compute the right-hand side, first observe
that if we view V as an e-representation, it is simply a vector space with no
additional structure, and therefore its decomposition as an e-representation
is

ResGe (V ) ∼= 1⊕ · · · ⊕ 1 = (dimV )1.

Thus, using Proposition 2.14 and Corollary 2.17, we have

IndGe
(

ResGe (V )⊗ 1
)

∼= IndGe
(

ResGe (V )
)

∼= IndGe ((dimV )1)

∼= (dimV ) IndGe 1 ∼= (dimV )R[G]. �

We can rephrase Definition 1.1 in terms of induced representations. The
intuition is that a basis is equivalent to a decomposition of a vector space
into a direct sum of lines, that is, one-dimensional subspaces. With this
perspective, a basis being invariant up to sign means that the group action
permutes these lines. Focusing on a single orbit of this action, the direct
sum of the lines in this orbit is precisely the definition of a representation
induced by one of the lines. Summing over the orbits gives the following
characterization.

Proposition 2.20 ([7, page 347]). Let G be a finite group. A G-representation

V has a G-invariant basis up to sign if and only if it is the direct sum of
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G-representations that are induced by one-dimensional representations, that

is,

V =
⊕

i

IndGHi
Li,

where each Hi is a subgroup of G and each Li is a one-dimensional Hi-

representation.

Proof. Assume that V is a direct sum of G-representations that are induced
by one-dimensional representations. By Proposition 2.7, it suffices to show
that an individual summand IndGH L has an invariant basis up to sign. By
definition,

IndGH L =
⊕

σ∈G/H

σL,

a sum of one-dimensional subspaces. Thus, if ξ is a nonzero element of
the line L, then {gσξ}σ∈G/H is a basis for IndGH L, where gσ ∈ G is a fixed
representative of the coset σ. We claim that this basis is invariant up to
sign. First, since L is an H-invariant subspace, for h ∈ H, we have that
hξ is in the line L, so hξ = αξ for some real number α. Since h|H| is the
identity, α|H| = 1, so α = ±1. Next, for g ∈ G, we have g = gσh for some
σ ∈ G/H and h ∈ H, so gξ = gσhξ = gσ(±ξ) = ±gσξ. Finally, applying this
result to ggσ ∈ G, we see that g(gσξ) = (ggσ)ξ = ±gσ′ξ for some σ′ ∈ G/H,
proving our claim.

Conversely, assume that V has a G-invariant basis {ξj}
dimV
j=1 up to sign.

Let lj be the line spanned by ξj. Since any g ∈ G sends each ξj to ±ξj′ for
some j′, we see that the group G permutes the set of lines {lj}. This action
partitions the set of lines into orbits. For each orbit i, let Vi denote the span
of the lines in the orbit, and so we have V =

⊕

i Vi.
Focusing on a single orbit, let Ji denote set of all j such that lj is in

the orbit i. Let Li be an arbitrarily chosen line among the lj in this orbit.
Let the subgroup Hi be the stabilizer of Li with respect to the action of
G. By the orbit-stabilizer theorem, for every j ∈ Ji we have lj = σLi for

a unique σ ∈ G/Hi. Therefore, Vi =
⊕

σ∈G/Hi
σLi, so Vi = IndGHi

Li by

definition. �

Together, Propositions 2.14, 2.15 and 2.20 show that induction preserves
the property of having invariant bases.

Proposition 2.21. Let K be a subgroup of a finite group G, and let V =
IndGK W . If W has a K-invariant basis up to sign, then V has a G-invariant

basis up to sign.

Proof.

V = IndGK W = IndGK
⊕

i

IndKHi
Li

∼=
⊕

i

IndGK IndKHi
Li

∼=
⊕

i

IndGHi
Li. �
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2.3. Examples of representations. In this subsection, we will give ex-
amples of representations that will be relevant in this paper. We will often
denote representations by a bold number representing its dimension, such
as 2 for a two-dimensional representation. Of course, occasionally there
can be non-isomorphic representations of the same dimension that are both
relevant, in which case we will disambiguate.

2.3.1. Representations of the symmetric group.

Definition 2.22. We denote the permutation group by Sn+1 and view it as
the group of permutations of the set {0, . . . , n}.

Definition 2.23. The symmetric group Sn+1 has a nontrivial one-dimensional
irreducible representation, which we denote 1′, called the sign representa-

tion. The action is πv = v if π ∈ Sn+1 is an even permutation and πv = −v
if π is an odd permutation.

Proposition 2.24. The sign representation 1′ has an Sn+1-invariant basis

up to sign.

Proof. Let v be a nonzero element of 1′. Then {v} is a basis and πv = ±v
depending on whether π is even or odd. �

Example 2.25. Let V be any Sn+1-representation, and let W = V ⊗ 1′.
Since 1′ is one-dimensional, we have that V and W are isomorphic as vector
spaces via the map v 7→ v ⊗ ξ, where ξ is a fixed nonzero vector in 1′.
However, this map is not Sn+1-equivariant. Indeed, π(v⊗ ξ) = (πv)⊗ ξ only
if π is an even permutation; if π is odd then π(v ⊗ ξ) = −(πv)⊗ ξ.

In short, writing W ∼= V ⊗ 1′ is a formal way of capturing the idea that
W is the same vector space as V with the same action of the permutation
group, except that whenever we apply an odd permutation we multiply the
resulting vector by −1. In general, V and W may or may not be isomorphic
as Sn+1-representations.

For example, consider R
3 with coordinates (x, y, z), where the group S3

permutes the axes. Let V be the set of constant one-forms, so it is spanned
by dx, dy, and dz. Let W be the set of constant 2-forms, so it is spanned by
dy∧dz, dz∧dx, and dx∧dy. The Hodge star yields an isomorphism between
V and W as vector spaces, but it is not S3-equivariant. Indeed, consider
the permutation that fixes the z-axis and swaps the x-axis with the y-axis.
This permutation sends dz to dz but it sends dx∧dy to dy∧dx = −dx∧dy.
To get an S3-equivariant map, we must instead use the Hodge star to map
W to V ⊗ 1′, sending, for instance, dx ∧ dy to dz ⊗ ξ. Then, we see that
the above permutation sends dz ⊗ ξ to dz ⊗ (−ξ) = −dz ⊗ ξ, as needed for
equivariance. See also Remark 2.48.

We remark here that V has an invariant basis up to sign if and only if W
does.

Proposition 2.26. Let V be an Sn+1-representation. Then V has an in-

variant basis up to sign if and only if V ⊗ 1′ does.
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Proof. By Proposition 2.7, if V has an invariant basis, then so does V ⊗ 1′.
The converse follows from the fact that

(V ⊗ 1′)⊗ 1′ ∼= V ⊗ (1′ ⊗ 1′) ∼= V ⊗ 1 ∼= V. �

Definition 2.27. The symmetric group Sn+1 has an (n + 1)-dimensional
representation, which we denote (n+ 1), defined by permuting the basis
vectors. That is, we let e0, . . . , en denote a basis of Rn+1, and then we let
πei = eπ(i) and extend linearly.

By construction, the basis e0, . . . , en is invariant.

Proposition 2.28. The representation (n+ 1) has an Sn+1-invariant basis.

For the representation (n+ 1), for any permutation π ∈ Sn+1, we have
that π(e0 + · · ·+ en) = e0 + · · ·+ en. Hence, the line spanned by the vector
e0+ · · ·+en is an invariant subspace of (n+ 1) and is isomorphic to 1. Since
Sn+1 acts by rotations or reflections, the orthogonal complement of this line
is also an invariant subspace.

Definition 2.29. The standard representation of the symmetric group Sn+1

is the n-dimensional representation that is the orthogonal complement of the
line spanned by the vector 〈1, 1, . . . , 1〉 in (n+ 1). We will let n denote this
representation for n ≥ 2.

Remark 2.30. We excluded the case n = 1 from the above definition of the
notation n to avoid a notational conflict, due to the fact that the standard
representation of the group S2 is the sign representation 1′, not the trivial
representation 1.

Example 2.31. One often introduces the symmetric group S3 as the group
of rotations and reflections of an equilateral triangle in the plane, or, equiv-
alently, as the group of rotations and reflections of the plane that permute
the vertices of the triangle. The plane with this action of S3 is precisely the
standard representation 2. We can see this more generally as follows.

Consider the points ei −
1

n+1(e0 + · · · + en) for 0 ≤ i ≤ n. Observe that
they form the vertices of an equilateral simplex in n, and observe that the
action of Sn+1 on n permutes these vertices, sending ei −

1
n+1(e0 + · · ·+ en)

to eπ(i) −
1

n+1(e0 + · · · + en).

A well-known fact is that n is irreducible.

Proposition 2.32. The standard representation n of Sn+1 is irreducible.

Consequently, the irreducible decomposition of (n+ 1) is

(n+ 1) ∼= n⊕ 1.

On the surface, it appears that there is some ambiguity of notation. On
the one hand, the symbol 3 denotes the representation of S3 that permutes
the basis vectors of R3. On the other hand, 3 denotes the standard repre-
sentation of S4; concerningly, since S3 is a subgroup of S4, we can restrict
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the action of S4 to S3 to obtain a three-dimensional representation of S3.
Fortunately for our choice of notation, these two representations of S3 are
isomorphic.

Proposition 2.33. Let V be the standard representation of Sn+1. Then the

subgroup Sn of Sn+1 acts by permuting a basis of V .

Proof. As in Definitions 2.27 and 2.29, we take e0, . . . , en to be the basis of
R
n+1 and view V as the subspace that is orthogonal to e0 + · · · + en. We

can check that {ei − en | 0 ≤ i ≤ n− 1} is a basis for V . The subgroup Sn

of Sn+1 consists of those permutations π of {0, . . . , n} such that π(n) = n.
Thus, for π ∈ Sn, we have π(ei − en) = eπ(i) − en, as desired. �

2.3.2. Representations of Z/3. We will make use of the following three rep-
resentations of Z/3.

• Per Definition 2.2, Z/3 has the trivial representation 1.
• Per Definition 2.27, the group S3 has a representation 3. Viewing
the group Z/3 as the subgroup of S3 consisting of cyclic permuta-
tions of {0, 1, 2}, we can restrict this S3-representation to a Z/3-
representation. Abusing notation slightly, we will also refer to this
Z/3-representation as 3. Explicitly, letting g be the generator of Z/3
that sends 0 to 1, 1 to 2, and 2 to 0, we have that g acts on 3 via
ge0 = e1, ge1 = e2, and ge2 = e0.

• Likewise, per Definition 2.29, the group S3 has the standard rep-
resentation 2, which we can restrict to a Z/3-representation that
we also denote by 2. Explicitly, the group Z/3 acts on 2 by 120◦

rotations. Indeed, v = e0 − e1 ∈ 2 per Definition 2.29, and the
generator g of Z/3 sends v to w = e1 − e2. One can check that the
angle between v and w is 120◦. As a consequence, we have that 2 is
irreducible as a Z/3-representation.

Per the above discussion, Proposition 2.32 still holds in the context of
Z/3-representations.

Proposition 2.34. As Z/3-representations, the irreducible decomposition

of 3 is 3 ∼= 2⊕ 1.

We also have the following easy observations.

Proposition 2.35. 1 and 3 have Z/3-invariant bases.

Proof. If a basis is S3-invariant, then it is also Z/3-invariant, so 1 and 3 have
Z/3-invariant bases by Propositions 2.3 and 2.28 (or by observation). �

Proposition 2.36. The representation 3 is isomorphic to the regular rep-

resentation of Z/3.

Proof. As discussed, 3 has basis {e0, e1, e2}, and the generator g of 3 sends
e0 to e1 to e2 back to e0. Meanwhile, by Definition 2.9, the regular repre-
sentation R[Z/3] has basis Z/3 = {e, g, g2}, and g sends e to g to g2 back
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to e. Therefore, the linear map sending e0, e1, e2 to e, g, g2, respectively, is
a Z/3-equivariant isomorphism between 3 and R[Z/3]. �

Corollary 2.37. The only irreducible representations of Z/3 are 1 and 2.

Proof. By Proposition 2.10, every irreducible representation of Z/3 is a sub-
representation of R[Z/3] ∼= 3 ∼= 1⊕ 2. �

Consequently, by Maschke’s theorem, we have the following corollary.

Corollary 2.38. Any finite-dimensional representation of Z/3 is isomor-

phic to m1⊕ n2 for some nonnegative integers m and n.

Applying Corollaries 2.17 and 2.19 to the regular representation 3 of Z/3,
we obtain the following results.

Corollary 2.39. Let e be the trivial subgroup of Z/3 and 1 the trivial e-
representation. Then

IndZ/3e 1 ∼= 3.

Corollary 2.40. If V is a Z/3-representation, then V ⊗ 3 ∼= (dimV )3.

2.4. Finite element exterior calculus and its symmetries. Arnold,
Falk, and Winther define the PrΛ

k(T ) and P−
r Λk(T ) of k-forms with piece-

wise polynomial coefficients of degree at most r on a simplicial triangulation
T . For a more detailed introduction to these spaces and for the correspon-
dences between these spaces and standard finite element spaces of scalar
fields and vector fields, see [2], as well as [1, 3, 4]. In this paper, we focus
on a single simplex T , which we may map via barycentric coordinates to
a standard reference simplex T n ⊂ R

n+1 consisting of nonnegative tuples
(λ0, . . . , λn) with λ0 + · · · + λn = 1. In this context, PrΛ

k(T n) is the space
of all k-forms on T n with polynomial coefficients of degree at most r, and
P−
r Λk(T n) is a slightly smaller space, between Pr−1Λ

k(T n) and PrΛ
k(T n).

For the original definition, see [2]; however, in this context we give a natural
definition from [5].

Definition 2.41. Let PrΛ
k(Rn+1) denote k-forms on R

n+1 with polynomial
coefficients of degree at most r. If r < 0, we let PrΛ

k(Rn+1) = 0. Let X
denote the position vector field on R

n+1; that is, the value of X at any point
(λ0, . . . , λn) ∈ R

n+1 is just the vector with components 〈λ0, . . . , λn〉. For a
(k + 1)-form α, let iXα denote the contraction with X, that is, iXα is the
k-form defined by iXα(Y1, . . . , Yk) = α(X,Y1, . . . , Yk). Let P−

r Λk(Rn+1) be
the image of Pr−1Λ

k+1(Rn+1) under iX .
As before, let T n be the subset of Rn+1 consisting of those nonnegative

tuples (λ0, . . . , λn) such that λ0 + · · · + λn = 1. Given a k-form on R
n+1,

we can restrict it to a k-form on T n. Let PrΛ
k(T n) and P−

r Λk(T n) denote
the images of PrΛ

k(Rn+1) and P−
r Λk(Rn+1) under this restriction map,

respectively.
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The symmetric group Sn+1 acts naturally on R
n+1 by permuting the coor-

dinates. This action induces an isometry of T n that permutes the vertices.
A map T n → T n induces a pullback map Λk(T n) → Λk(T n). One can
check using the invariance of the vector field X that both the PrΛ

k(T n)
and P−

r Λk(T n) spaces are preserved under this pullback map. However,
because pullback is contravariant, we must be somewhat careful in how we
define the action of Sn+1 on Λk(T n) so that it has the structure of an Sn+1-
representation.

Definition 2.42. Let π be a permutation in Sn+1, so, with notation as
before, π is a bijection from the set {0, . . . , n} to itself. We define a corre-
sponding map T n → T n via

Sπ(λ0, . . . , λn) = (λπ(0), . . . , λπ(n)).

Remark 2.43. Let vi be the ith vertex of T n, that is, vi = (0, . . . , 0, 1, 0, . . . , 0),
where the 1 is in the ith position. Observe that the image of vi under Sπ

depends on the inverse of π at i, that is, Sπ(vi) = vπ−1(i).

Proposition 2.44 ([10]). If π and σ are two permutations in Sn+1, then we

have the contravariant formula Sπ◦σ = Sσ ◦ Sπ. Consequently, the pullback

maps Λk(T n) → Λk(T n) satisfy the covariant formula S∗
π◦σ = S∗

π ◦S
∗
σ. Thus,

Λk(T n) is an Sn+1-representation with respect to this action, and hence so

are the spaces PrΛ
k(T n) and P−

r Λk(T n).

Remark 2.45. Concretely, one can check that S∗
π(λi) = λπ(i). Since pull-

backs commute with the exterior derivative, we have S∗
π(dλi) = dλπ(i). Using

the fact that pullbacks commute with wedge products, we can see that, more
generally, S∗

π acts on PrΛ
k(T n) by replacing all instances of λi (including in

dλi) with λπ(i).

We give some relevant examples. We begin with constant one-forms.

Proposition 2.46. The representation P0Λ
1(T n) is isomorphic to the stan-

dard representation n of Sn+1.

Proof. Using the notation in Definition 2.27, consider the map (n+ 1) →
P0Λ

1(T n) defined by ei 7→ dλi. This map is equivariant, as πei = eπ(i) and
S∗
πdλi = dλπ(i). This map is surjective, and its kernel is the space spanned by

e0 + · · ·+ en, which maps to dλ0 + · · ·+ dλn = d(λ0 + · · ·+ λn) = d(1) = 0.
Therefore, this map is an isomorphism when restricted to the orthogonal
complement of the kernel, namely n → P0Λ

1(T n). �

Recalling Definition 2.23 and Example 2.25, our next example is constant
(n− 1)-forms.

Proposition 2.47. The representation P0Λ
n−1(T n) is isomorphic to n⊗1′.

Proof. As vector spaces, the Hodge star on T n is an isomorphism between
P0Λ

n−1(T n) and P0Λ
1(T n). If π is an even permutation, then Sπ is a ro-

tation, and if π is an odd permutation, then Sπ is a reflection. The Hodge
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star commutes with rotations and anti-commutes with reflections. Thus,
S∗
π(∗α) = ∗(S∗

πα) if π is even and S∗
π(∗α) = −∗(S∗

πα) if π is odd. Thus, as
Sn+1-representations, the Hodge star gives an isomorphism P0Λ

n−1(T n) ∼=
P0Λ

1(T n)⊗ 1′ ∼= n⊗ 1′. �

Remark 2.48. We can, more generally, view n as the standard represen-
tation of the orthogonal group O(n), of which Sn+1 is a subgroup. In this
context, vectors in n⊗ 1′ are called pseudovectors: they rotate like normal
vectors, but upon reflection they acquire an additional minus sign. A stan-
dard example is cross-products. If we rotate v and w in R

3 to v′ and w′,
then if we apply that rotation to v × w we arrive at v′ × w′. In contrast,
if we reflect v and w to v′ and w′, then if we apply the same reflection to
v × w we arrive at −v′ × w′.

Next, we discuss the concept of trace in this context.

Definition 2.49. Let F be a face of a simplex T . Then the inclusion map
F →֒ T induces a restriction or trace map Λk(T ) → Λk(F ), which we denote
trT,F .

Definition 2.50. Let P̊rΛ
k(T n) and P̊−

r Λk(T n) denote those forms in PrΛ
k(T n)

and P−
r Λk(T n), respectively, that have vanishing trace on ∂T n, that is, van-

ishing trace on the (n− 1)-dimensional faces of T n.

One can check that because permutations in Sn+1 permute the faces of

T n, the spaces P̊rΛ
k(T n) and P̊−

r Λk(T n) are preserved under the action of
Sn+1 and are thus Sn+1-representations in their own right.

The duality isomorphism. We are now ready to discuss the duality isomor-
phism that is one of the key ingredients in finite element exterior calculus.
Without considering the symmetric group, this isomorphism was first dis-
cussed in [2] and developed in greater depth in [5, 11]. Viewing these spaces
as Sn+1-representations, this isomorphism was first proved by Licht [10], and
we provide an alternate proof here. It may be helpful to recall Definition 2.23
and Example 2.25.

Proposition 2.51 (reformulation of [10, Theorem 2]). We have the isomor-

phisms of Sn+1-representations

PrΛ
k(T n) ∼= P̊−

r+k+1Λ
n−k(T n)⊗ 1′, P−

r Λk(T n) ∼= P̊r+kΛ
n−k(T n)⊗ 1′,

except for the case P−
0 Λ0(T n) ∼= 0 6∼= P̊0Λ

n(T n).

Alternate proof. In [5, Corollary 3.3], we construct vector space isomor-

phisms PrΛ
k(T n) → P̊−

r+k+1Λ
n−k(T n) and P−

r Λk(T n) → P̊r+kΛ
n−k(T n).

Specifically both of these isomorphisms are the function (Φ∗)−1◦(u0 · · · un)∗Sn◦
Φ∗, where the notation is as follows. The map Φ maps the unit sphere
Sn ⊂ R

n+1 to the standard simplex T n ⊂ R
n+1 by sending (u0, . . . , un) 7→

(u20, . . . , u
2
n). We can thus think of the pullback map Φ∗ : Λk(T n) → Λk(Sn)

as the change of coordinates defined by λi = u2i , dλi = 2ui dui. The map
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∗Sn : Λk(Sn) → Λn−k(Sn) is the Hodge star on the unit sphere, and u0 · · · un
denotes multiplication by the product of all the coordinate functions.

It remains then to see what happens to the map (Φ∗)−1◦(u0 · · · un)∗Sn◦Φ∗

when we permute the coordinate directions. The map Φ commutes with per-
muting the coordinate directions. Likewise, the bubble function u0 · · · un is
invariant under permuting the coordinate directions. Finally, the Hodge
star ∗Sn commutes with orientation-preserving isometries of Sn, but anti-

commutes with orientation-reversing isometries. Whether or not a per-
mutation of the coordinates preserves or reverses orientation is precisely
the sign of that permutation. We conclude that the maps PrΛ

k(T n) →

P̊−
r+k+1Λ

n−k(T n) and P−
r Λk(T n) → P̊−

r+kΛ
n−k(T n) commute with even per-

mutations of the coordinates and anti-commute with odd permutations of
the coordinates, as desired. �

3. Geometric Decompositions

The geometric decomposition of Arnold, Falk, and Winther [2, 3] de-
composes the PrΛ

k(T n) and P−
r Λk(T n) spaces as a direct sum of spaces of

forms on the faces F of the simplex T n. This result is key to defining these
finite element spaces on a triangulation, and also key to Licht’s recursive
basis construction [10]. In this section, we distill the essential features of
the geometric decomposition, giving a general theory that is well-suited to
understanding the representation theory of these spaces, thereby helping us
not only to construct invariant bases but also to prove when such bases do
not exist.

We discuss the geometric decomposition in two subsections: first we dis-
cuss the vector space decomposition, and then we show that it is in fact a
decomposition of Sn+1-representations. Subsection 3.1 is essentially a gener-
alization of [3, Section 4], and Subsection 3.2 is essentially a generalization of
[10, Section 7]. We establish our theory for a general finite-dimensional sub-
space V ⊂ Λk(T n), but, in practice, V will be either PrΛ

k(T n) or P−
r Λk(T n).

3.1. Vector space decomposition.

Definition 3.1. Given a finite-dimensional subspace V ⊂ Λk(T n), for a

face F ⊆ T n, let V (F ) = trTn,F (V ), and let V̊ (F ) be those forms in V (F )
whose traces vanish on ∂F .

Example 3.2. If V = PrΛ
k(T n), then V (F ) = PrΛ

k(F ), and V̊ (F ) =

P̊rΛ
k(F ), and likewise for the P−

r Λk(T n) spaces. (For the compatibility of
P−
r Λk with traces, see [3, Subsection 3.2].)

Definition 3.3. We define a filtration

V = V0 ⊇ V1 ⊇ · · · ⊇ Vn = V̊ (T n) ⊇ Vn+1 = 0

by letting Vd denote those forms in V whose traces vanish on all of the
(d− 1)-dimensional faces of T n.
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Example 3.4. If V = P2Λ
0(T 2), then

V = V0 ⊇ V1 = span{λ1λ2, λ2λ0, λ0λ1} ⊇ V2 = 0 ⊇ V3 = 0.

Definition 3.5. We let Wd be a complement to Vd+1 in Vd, so Vd = Wd ⊕
Vd+1. For now, the particular choice of Wd does not matter, but we note
that there are some natural options.

• One natural option is to use orthogonal complements with respect
to the the inner product (α, β) 7→

∫

Tn〈α, β〉, that is, we define Wd to
contain those forms in Vd that are orthogonal to Vd+1 with respect
to this inner product.

• Another natural option, if available, is to use consistent extension
operators as defined in [3, Section 4]. We discuss this option in more
detail in Appendix A.

Proposition 3.6.

V = W0 ⊕ · · · ⊕Wn.

Proof. The proposition follows from induction on the claim that Vn−d =
Wn−d ⊕ · · · ⊕Wn. �

To further decompose the Wd, we need the following lemma.

Lemma 3.7. If α ∈ Wd and F is a d-dimensional face of T n, then trTn,F α
has vanishing trace on ∂F .

Proof. The boundary of F is composed of (d − 1)-dimensional faces of T n.
Since Wd ⊆ Vd, forms in Wd have vanishing trace on (d − 1)-dimensional
faces of T n by definition. �

Lemma 3.7 yields a map Wd → V̊ (F ). Taking the direct sum of these
maps for all F , we obtain our geometric decomposition.

Definition 3.8. Given complements Wd as in Definition 3.5, the geometric

decomposition map

D : V →
n

⊕

d=0

⊕

F⊆Tn

dimF=d

V̊ (F )

is defined as follows.
For α ∈ Wd, let

(3) D(α) =
⊕

F⊆Tn

dimF=d

trTn,F α ∈
⊕

F⊆Tn

dimF=d

V̊ (F ),

and extend by linearity to V .

Remark 3.9. Note that our definition of the geometric decomposition map
depends not only on V but also on the choice of complements Wd. This
choice is not unique, and different choices will yield different decomposition
maps.
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Nonetheless, the useful properties of the map D do not depend on these
choices.

Proposition 3.10. The geometric decomposition map D is injective.

Proof. It suffices to prove that if α ∈ Wd and trTn,F α = 0 for all d-
dimensional faces F , then α = 0. This trace condition implies that α ∈ Vd+1

by definition. Since α is in both summands of Vd = Wd ⊕ Vd+1, it must be
zero. �

Remark 3.11. We usually want the geometric decomposition map to be
an isomorphism, but proving surjectivity requires assumptions. Indeed, one
can check that the map D is not an isomorphism when V = P0Λ

k(T n) and
0 ≤ k < n.

Proposition 3.12. Let r ≥ 1. If V is PrΛ
k(T n) or P−

r Λk(T n), then the

geometric decomposition map D is a vector space isomorphism.

Proof. In light of Proposition 3.10, we only need to know that the dimensions
of the domain and codomain of D are equal. This fact follows by combining
[2, Theorem 4.9, Theorem 4.13, Theorem 4.16, Theorem 4.22]. �

Remark 3.13. In the case where the geometric decomposition map

D : V →
n

⊕

d=0

⊕

F⊆Tn

dimF=d

V̊ (F ) =
⊕

F⊆Tn

V̊ (F )

is surjective (and thus an isomorphism), then for each face F ⊆ T n we obtain
inverse maps

EF,Tn : V̊ (F ) → V.

As suggested by the notation, these are extension operators, in the sense
that trTn,F ◦EF,Tn is the identity, as we will soon see.

Proposition 3.14. Let α ∈ V , and assume that the geometric decomposi-

tion map D sends α ∈ V to a single summand, that is, D(α) = β for some

β ∈ V̊ (F ) for some d-dimensional face F of T n. Then the following holds.

• trTn,F α = β.
• trTn,F ′ = 0 for all faces F ′ such that dimF ′ < d.
• trTn,F ′ = 0 for all faces F ′ 6= F such that dimF ′ = d.

Proof. Since the geometric decomposition map is defined as a direct sum of
maps and is injective, if D(α) is in a single summand then α itself must be
in a single summand, namely Wd. Since Wd ⊆ Vd, the trace of α vanishes
on all (d−1)-dimensional faces of T n, and hence also on all faces of T n with
even smaller dimension.

Next, considering Equation (3) in Definition 3.8, since D(α) lands in a
single summand, we have that trTn,F ′ α = 0 for all d-dimensional faces F ′

of T n other than F .
Finally, considering the summand that D(α) does land in, we have that

β = D(α) = trTn,F α as desired. �
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Corollary 3.15. If the geometric decomposition map is an isomorphism

and EF,Tn is defined as in Remark 3.13, then if β ∈ V̊ (F ), we have the

following.

• trTn,F EF,Tnβ = β.
• trTn,F ′ EF,Tnβ = 0 for all faces F ′ such that dimF ′ < dimF .

• trTn,F ′ EF,Tnβ = 0 for all faces F ′ 6= F such that dimF ′ = dimF .

Proof. Let α = EF,Tnβ. By definition of EF,Tn as an inverse map, we have

D(α) = β, which lies in a single summand of
⊕

V̊ (F ). �

In particular, by Proposition 3.12, we have extension operators for the
standard finite element spaces that enjoy all of the properties in Corol-
lary 3.15. However, we remark that the notion of a consistent family of
extension operators from [3] is strictly stronger than what we have here.
We discuss the relationship between these extension operators in Appen-
dix A. Specifically, if we start with a consistent family of extension opera-
tors, then Proposition A.2 shows how to choose the Wd in Definition 3.5 to
recover that notion of geometric decomposition here. On the other hand,
Remark A.4 highlights the fact that, for a consistent family of extension
operators, trTn,F ′ EF,Tnβ = 0 for all faces F ′ not containing F , which is
a stronger property than Corollary 3.15. The remark gives a specific ex-
ample showing that, at the cost of having weaker properties, the geometric
decomposition theory in this paper is strictly more general than the geo-
metric decomposition theory stemming from consistent families of extension
operators.

3.2. The action of Sn+1. We now assume that V is Sn+1-invariant and
show that the geometric decomposition map is equivariant, assuming that
the choice of the complements Wd respects the symmetry.

First, observe that the spaces Vd are also Sn+1-invariant. Indeed, the
action of any π ∈ Sn+1 permutes the (d − 1)-dimensional faces of T n, so if
α has vanishing trace on all of them, then so does S∗

πα.
Next, we must choose the complements Wd to be Sn+1-invariant. Finding

invariant complements is always possible by Maschke’s theorem, but we can
also use the explicit choices given in Definition 3.5. Indeed, observe that
the inner product (α, β) 7→

∫

Tn〈α, β〉 is invariant under isometries, so if we
set Wd to be the orthogonal complement of Vd+1 in Vd, then Wd is Sn+1-
invariant. For the construction via extension operators, see Appendix A.

To show that the geometric decomposition map D is equivariant, we must
first understand the natural action of the permutation group Sn+1 on the

space
⊕

V̊ (F ). Our first observation is that for π ∈ Sn+1, the map Sπ

sends a face F to a face F ′ (possibly the same as F ) of the same dimension.
Moreover, Sπ sends ∂F to ∂F ′. We thus have the following commutative
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diagram, yielding a corresponding diagram of pullback maps.

T n T n Λk(T n) Λk(T n)

F ′ F Λk(F ′) Λk(F )

∂F ′ ∂F Λk(∂F ′) Λk(∂F )

Sπ S∗

π

trTn,F ′ trTn,F

Sπ |F S∗

π

trF ′,∂F ′ trF,∂F

Sπ |∂F S∗

π

Here we abuse notation and abbreviate (Sπ|F )
∗ and (Sπ|∂F )

∗ to just S∗
π.

Next, because V is Sn+1-invariant and because V (F ) is defined to be the
image of V under the trace map, we can restrict the above diagram to the
following.

(4)

V V

V (F ′) V (F )

Λk(∂F ′) Λk(∂F )

S∗

π

trTn,F ′ trTn,F

S∗

π

trF ′,∂F ′ trF,∂F

S∗

π

Moreover, the lower part of the diagram shows that S∗
π preserves the van-

ishing trace property; that is, if α ∈ V̊ (F ′), then S∗
πα ∈ V̊ (F ). In short, we

have a map S∗
π : V̊ (F ′) → V̊ (F ), which induces an action

S∗
π :

⊕

F⊆Tn

dimF=d

V̊ (F ) →
⊕

F⊆Tn

dimF=d

V̊ (F ).

It is at this point that we remark that Sn+1 acts transitively on the d-
dimensional faces of T n and that the stabilizer of T d ⊆ T n is Sd+1 ⊆ Sn+1.

Consequently, with respect to the above action, V̊ (T d) is an Sd+1-invariant

subspace, and each V̊ (F ) is a translate of V̊ (T d). We conclude that

⊕

F⊆Tn

dimF=d

V̊ (F ) = Ind
Sn+1

Sd+1
V̊ (T d).

We can now prove our desired claim.

Proposition 3.16. If V is Sn+1-invariant and the Wd are chosen to be

Sn+1-invariant subspaces, then the geometric decomposition map D is equi-

variant.
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Proof. Since the Wd are assumed to be Sn+1-invariant, it suffices to show
equivariance of the map

Wd →
⊕

F⊆Tn

dimF=d

V̊ (F )

α 7→
⊕

F⊆Tn

dimF=d

trTn,F α

This claim follows by restricting diagram (4) to Wd, obtaining

Wd Wd

V̊ (F ′) V̊ (F )

0 0

S∗

π

trTn,F ′ trTn,F

S∗

π

trF ′,∂F ′ trF,∂F

S∗

π

Here, dimF = d, and we used Lemma 3.7, along with the above observation
that S∗

π sends V̊ (F ′) to V̊ (F ). �

Corollary 3.17. For r ≥ 1, we have the following isomorphisms of Sn+1-

representations.

PrΛ
k(T n) ∼=

n
⊕

d=0

⊕

F⊆Tn

dimF=d

P̊rΛ
k(F ) ∼=

n
⊕

d=0

Ind
Sn+1

Sd+1
P̊rΛ

k(T d),

P−
r Λk(T n) ∼=

n
⊕

d=0

⊕

F⊆Tn

dimF=d

P̊−
r Λk(F ) ∼=

n
⊕

d=0

Ind
Sn+1

Sd+1
P̊−
r Λk(T d).

Proof. Proposition 3.12 tells us that D is a vector space isomorphism and
Proposition 3.16 tells us that D is equivariant. �

As a result, we obtain the following claim, which is also discussed by Licht
in [10, Section 8].

Corollary 3.18. Let r ≥ 1. If P̊rΛ
k(T d) has an Sd+1-invariant basis up to

sign for every d ≤ n, then PrΛ
k(T n) has an Sn+1-invariant basis up to sign.

Likewise, the same holds for the P− spaces.

Proof. Proposition 2.21 tells us that the property of having an invariant
basis up to sign is preserved under induction, and Proposition 2.7 tells us
that this property is preserved under direct sums. �

As Licht discusses at the end of [10], the completeness of his invariant
basis construction is equivalent to the converse of Corollary 3.18. As we will
see, the converse holds in dimension two, but not in dimension three.
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4. Invariant bases

Here, we prove which finite element exterior calculus spaces have invariant
bases and which do not, first in dimension two and then in dimension three.
At the end, we give some remarks about explicitly constructing these bases
when it is possible to do so, as well as how one could approach proving
analogous results in higher dimensions.

4.1. Base cases. As illustrated by our example in the introduction and
noted in [10], the case of scalar functions is easy.

Proposition 4.1. The spaces PrΛ
0(T n) = P−

r Λ0(T n) and the spaces PrΛ
n(T n) =

P−
r+1Λ

n(T n) always have Sn+1-invariant bases up to sign.

Proof. One can check that the monomials in the variables λ0, . . . , λn of de-
gree exactly r form a basis for PrΛ

0(T n); this basis is Sn+1-invariant. Mul-
tiplying these monomials by the volume form on T n, we obtain a basis for
PrΛ

n(T n); this basis is Sn+1-invariant up to sign. �

Hence, our focus will be on vector fields, which in dimension two cor-
respond to one-forms and in dimension three correspond to one-forms or
two-forms.

In three dimensions, something very special happens: there is a basis of R3

that is invariant up to sign with respect to the group S4 of symmetries of the
regular tetrahedron. A geometric way of seeing this basis is as follows. The
tetrahedron has three pairs of opposite edges. For each such pair, consider
the vector joining the midpoints of the two edges. (This vector is determined
up to sign, which can be chosen arbitrarily.) One can see that these three
vectors form a basis of R3. Moreover, the symmetries of a tetrahedron send
pairs of opposite edges to pairs of opposite edges, and hence preserve this
basis up to sign. An alternative geometric viewpoint is that, starting from
a cube, we can select four vertices so that they are pairwise non-adjacent.
These vertices determine a regular tetrahedron, so the group of symmetries
of the regular tetrahedron is a subgroup of the group of symmetries of a cube.
From this perspective, the edge directions of the cube are the invariant basis
up to sign.

Recalling Example 2.31, the above discussion shows that 3 has an S4-
invariant basis up to sign, and thus so does 3 ⊗ 1′ by Proposition 2.26.
Recalling Propositions 2.46 and 2.47, we obtain the following result, which
also appears in [10] with algebraic justification.

Proposition 4.2 ([10, Lemmas 9 and 10]). The spaces P0Λ
1(T 3) and P0Λ

2(T 3)
have S4-invariant bases up to sign.

This proposition has far-reaching consequences.

Corollary 4.3. The spaces PrΛ
k(T 3) have S4-invariant bases up to sign for

all r and k.
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Proof. Observe that PrΛ
k(T 3) ∼= PrΛ

0(T 3)⊗P0Λ
k(T 3) and apply Proposi-

tions 2.7, 4.1, and 4.2. �

4.2. The obstruction. Our main results include not only constructions
of invariant bases but also obstructions to the existence of invariant bases.
Fundamentally, our obstruction stems from the following easy fact: There
is no basis for R

2 that is invariant up to sign with respect to the group
of symmetries S3 of the equilateral triangle. Indeed, it suffices to consider
the subgroup Z/3 of S3; there is no way to pick two vectors in R

2 so that
120◦ rotations take each of them to the other up to sign. Note the contrast
between the situation here and the exceptional situation in dimension three
discussed in Subsection 4.1.

Recalling Corollary 2.38, any finite-dimensional representation of Z/3
is isomorphic to m1 ⊕ n2 for some nonnegative integers m and n. The
main result of this subsection is the following characterization of which Z/3-
representations have invariant bases up to sign.

Proposition 4.4. Let V ∼= m1⊕ n2 be a Z/3-representation. Then V has

a basis that is Z/3-invariant up to sign if and only if m ≥ n.

Proof. If m ≥ n, then

V ∼= (m− n)1⊕ n1⊕ n2 ∼= (m− n)1⊕ n(1⊕ 2) ∼= (m− n)1⊕ n3

Recalling Proposition 2.35, 1 and 3 have Z/3-invariant bases, so V has an
invariant basis by Proposition 2.7.

Conversely, assume that V has a basis that is Z/3-invariant up to sign.

Then Proposition 2.20 tells us that V =
⊕

i Ind
Z/3
Hi

Li, where Hi is a sub-

group of Z/3 and Li is a one-dimensional representation of Hi. The group
Z/3 has only two subgroups, the trivial group and itself.

Consider the case whereHi is the trivial group e. The only one-dimensional

representation of the trivial group is Li = 1. Thus, in this case, Ind
Z/3
Hi

Li
∼=

3 by Corollary 2.39. Consider now the case where Hi = Z/3. Once again,
the only one-dimensional representation of Z/3 is the trivial representation

Li = 1. In this case, Ind
Z/3
Hi

Li = Ind
Z/3
Z/3

1 = 1.

Therefore, V ∼= k1 ⊕ n3 for some nonnegative integers k and n. We
compute

V ∼= k1⊕ n(1⊕ 2) ∼= (k + n)1⊕ n2,

and we observe that k + n ≥ n as desired. �

Corollary 4.5. For any n, a representation V has a Z/3-invariant basis up
to sign if and only if V ⊕ n3 does.

Finally, we will make frequent use of the following easy result.

Proposition 4.6. Let V be a Z/3-representation, and let g be a generator

of Z/3. Assume that we have a vector space decomposition V = V0 ⊕ V1 ⊕
V2 such that g(V0) = V1, g(V1) = V2, and g(V2) = V0. Then, as Z/3-
representations, we have V ∼= (dimV0)3.
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Proof. Let ξ1, . . . , ξn be a basis of V0. Then gξ1, . . . , gξn is a basis of V1 and
g2ξ1, . . . , g

2ξn is a basis of V2. Thus,

V =

n
⊕

i=1

span{ξi, gξi, g
2ξi} ∼=

n
⊕

i=1

3,

as desired.
Alternatively, let e denote the trivial group, whose one-dimensional rep-

resentation we also denote by 1. Thinking of V0 as an e-representation, we
see that

V = IndZ/3e V0
∼= IndZ/3e

dimV0
⊕

i=1

1 ∼=

dimV0
⊕

i=1

IndZ/3e 1 ∼=

dimV0
⊕

i=1

3. �

4.3. Main results.

Theorem 4.7. The following spaces have S3-invariant bases up to sign if

and only if the corresponding condition holds.

PrΛ
1(T 2) if and only if r /∈ 3N0,

P−
r Λ1(T 2) if and only if r /∈ 3N0 + 2,

P̊rΛ
1(T 2) if and only if r /∈ 3N0 + 3,

P̊−
r Λ1(T 2) if and only if r /∈ 3N0 + 2.

Proof. The first direction of this theorem, that is, constructing the invariant
bases, is due to Licht [10, Theorem 7]. It remains to prove the converse,
that Licht’s construction is complete: There are no invariant bases in the
remaining cases.

As before, let Z/3 denote the subgroup of S3 consisting of cyclic permuta-
tions of {0, 1, 2}; these give rotations of T 2. We observe that a basis that is
S3-invariant up to sign is also Z/3-invariant up to sign. Our strategy, then, is
to decompose the finite element spaces into irreducible Z/3-representations
and then to apply the obstruction to having invariant bases given by Propo-
sition 4.4.

If r ≥ 1, then applying the geometric decomposition Corollary 3.17, we
have the isomorphism of Z/3-representations

PrΛ
1(T 2) ∼=

(

P̊rΛ
1(F12)⊕ P̊rΛ

1(F20)⊕ P̊rΛ
1(F01)

)

⊕ P̊rΛ
1(T 2),

where Fij denotes the edge joining vertices i and j. We observe that

the factor
(

P̊rΛ
1(F12)⊕ P̊rΛ

1(F20)⊕ P̊rΛ
1(F01)

)

satisfies the hypotheses

of Proposition 4.6, so

PrΛ
1(T 2) ∼=

(

dim P̊rΛ
1(T 1)

)

3⊕ P̊rΛ
1(T 2).

Thus, by Corollary 4.5, if r ≥ 1, then PrΛ
1(T 2) has an Z/3-invariant rep-

resentation up to sign if and only if P̊rΛ
1(T 2) does. Following the same

reasoning, P−
r Λ1(T 2) has a Z/3-invariant representation up to sign if and

only if P̊−
r Λ1(T 2) does.
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Moreover, noting that the sign representation is trivial when restricted to
Z/3 ⊂ S3, Proposition 2.51 tells us that PrΛ

1(T 2) has a Z/3-invariant basis

up to sign if and only if P̊−
r+2Λ

1(T 2) does, and P−
r Λ1(T 2) has a Z/3-invariant

basis up to sign if and only if P̊r+1Λ
1(T 2) does.

We then proceed by induction, starting from the base case that P0Λ
1(T 2) ∼=

2 does not have a Z/3-invariant basis up to sign. For the inductive step,
let r ≥ 0 and assume that PrΛ

1(T 2) does not have a Z/3-invariant basis

up to sign. Following the above observations, we conclude that P̊−
r+2Λ

1(T 2)

does not have such a basis, so neither does P−
r+2Λ

1(T 2), so neither does

P̊r+3Λ
1(T 2), and so neither does Pr+3Λ

1(T 2). The claim follows by induc-
tion. �

We now prove a similar claim in dimension three, but here our list differs
substantially from Licht’s, so we must prove both directions.

Theorem 4.8. The following spaces have S4-invariant bases up to sign if

and only if the corresponding condition holds.

PrΛ
1(T 3) always,

P−
r Λ1(T 3) if and only if r /∈ 3N0 + 2,

PrΛ
2(T 3) always,

P−
r Λ2(T 3) always,

P̊rΛ
1(T 3) always,

P̊−
r Λ1(T 3) always,

P̊rΛ
2(T 3) if and only if r /∈ 3N0 + 3,

P̊−
r Λ2(T 3) always.

Proof, part 1: Constructing invariant bases. This proof essentially follows
Licht’s inductive construction [10] as expressed here in Corollary 3.18, ex-
cept that we additionally include as base cases that PrΛ

k(T 3) always has an
S4-invariant basis up to sign by Corollary 4.3, from which it also follows that
P̊−
r Λk(T 3) always has an S4-invariant basis up to sign by Proposition 2.51.
We begin with P−

r Λ2(T 3). By Corollary 3.18, we can construct an invari-

ant basis for P−
r Λ2(T 3) if we can construct an invariant basis for P̊−

r Λ2(T 3)

and P̊−
r Λ2(T 2). As just discussed, we can always construct an invariant

basis for P̊−
r Λ2(T 3), and we can always construct an invariant basis for

P̊−
r Λ2(T 2) because it is a space of top-level forms. Thus, P−

r Λ2(T 3) always

has an invariant basis, from which we can conclude that so does P̊rΛ
1(T 3)

by Proposition 2.51.
Next, consider P−

r Λ1(T 3). By Corollary 3.18, we can construct an invari-

ant basis for P−
r Λ1(T 3) if we can construct an invariant basis for P̊−

r Λ1(T 3),

P̊−
r Λ1(T 2) and P̊−

r Λ1(T 1). As we discussed at the beginning of the proof,

doing so is always possible for P̊−
r Λ1(T 3). By Theorem 4.7, we can construct

such a basis for P̊−
r Λ1(T 2) if r /∈ 3N0 + 2. Finally, we can always construct

an invariant basis for P̊−
r Λ1(T 1). We conclude that an invariant basis for
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P−
r Λ1(T 3) exists if r /∈ 3N0 + 2. In this case, Proposition 2.51 gives an iso-

morphism up to sign between P−
r Λ1(T 3) and P̊r+1Λ

2(T 3), so we conclude

that an invariant basis for P̊rΛ
2(T 3) exists if r /∈ 3N0 + 3. �

Proof, part 2: Obstructing invariant bases. To prove the converse, we follow
a similar strategy to the proof of Theorem 4.7. Assume that P−

r Λ1(T 3) has
an S4-invariant basis up to sign. Then it also has a Z/3-invariant basis up
to sign, where, following earlier notation, we take Z/3 ⊂ S3 ⊂ S4 to be the
subgroup consisting of permutations of {0, 1, 2, 3} that fix 3 and cyclically
permute 0, 1, and 2. By Corollary 3.17, we have the following isomorphism
of Z/3-representations.

P−
r Λ1(T 3) ∼=

(

P̊−
r Λ1(F12)⊕ P̊−

r Λ1(F20)⊕ P̊−
r Λ1(F01)

)

⊕
(

P̊−
r Λ1(F03)⊕ P̊−

r Λ1(F13)⊕ P̊−
r Λ1(F23)

)

⊕
(

P̊−
r Λ1(F123)⊕ P̊−

r Λ1(F203)⊕ P̊−
r Λ1(F013)

)

⊕ P̊−
r Λ1(T 2)

⊕ P̊−
r Λ1(T 3).

Here, as before, the subscript notation F··· denotes the face spanned by the
given vertices, and we take T 2 to mean F012. Each of the first three lines
satisfies the hypotheses of Proposition 4.6, so the first three lines are sums
of copies of the representation 3. Next, using Proposition 2.51, we have, as
Z/3-representations, the isomorphisms

P̊−
r Λ1(T 3) ∼= Pr−3Λ

2(T 3) ∼= Pr−3Λ
0(T 3)⊗ P0Λ

2(T 3) ∼= Pr−3Λ
0(T 3)⊗ 3,

which is also a sum of copies of the representation 3 by Corollary 2.40. We
conclude by Corollary 4.5 that P−

r Λ1(T 3) has a Z/3-invariant basis up to sign

if and only if P̊−
r Λ1(T 2) does, which we showed in the proof of Theorem 4.7

happens precisely when r /∈ 3N0 + 2.
As above, Proposition 2.51 then implies that P̊rΛ

2(T 3) has a Z/3-invariant
basis up to sign if and only if r /∈ 3N0 + 3; in particular, it cannot have an
S4-invariant basis up to sign if r ∈ 3N0 + 3. �

Licht [10] also asks whether these bases can be geometrically decomposed.
All of the bases construct by Licht can be, and, additionally, Licht shows
that if there are bases not found by his construction, then at least one of
them cannot be geometrically decomposed. To have this discussion, we first
define a notion of a geometrically decomposable basis.

Definition 4.9. Let V be a space of k-forms, and let D be the geometric
decomposition map as in Definition 3.8. We say that a basis for V can be
geometrically decomposed if for every ξ in the basis, D(ξ) lies in one of the

direct summands V̊ (F ) for a face F of T n.
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If the geometric decomposition map is surjective, then such a basis for V
yields bases for each V̊ (F ), and, in particular, for each V̊ (T d). Moreover, if

this basis is Sn+1-invariant up to sign, then the corresponding bases of V̊ (T d)
are Sd+1-invariant up to sign. Thus, asking whether an Sn+1-invariant basis
can be geometrically decomposed amounts to asking whether the converse
to Corollary 3.18 holds. In light of Theorems 4.7 and 4.8, we can quickly
answer this question.

Corollary 4.10. Let r ≥ 1. The following spaces have S4-invariant bases up

to sign that can be geometrically decomposed if and only if the corresponding

condition holds.

PrΛ
1(T 3) if and only if r /∈ 3N0 + 3,

P−
r Λ1(T 3) if and only if r /∈ 3N0 + 2,

PrΛ
2(T 3) if and only if r /∈ 3N0 + 3,

P−
r Λ2(T 3) always.

Proof. For PrΛ
1(T 3), we must check whether P̊rΛ

1(T 3), P̊rΛ
1(T 2), and

P̊rΛ
1(T 1) all have invariant bases up to sign, which happens if and only

if r /∈ 3N0 + 3.
For P−

r Λ1(T 3), we must check whether P̊−
r Λ1(T 3), P̊−

r Λ1(T 2), and P̊−
r Λ1(T 1)

all have invariant bases up to sign, which happens if and only if r /∈ 3N0+2.
For PrΛ

2(T 3), we must check whether P̊rΛ
2(T 3) and P̊rΛ

2(T 2) have in-
variant bases up to sign, which happens if and only if r /∈ 3N0 + 3.

For P−
r Λ2(T 3), we must check whether P̊−

r Λ2(T 3) and P̊−
r Λ2(T 2) have

invariant bases up to sign, which is always the case. �

Remark 4.11. As in Licht’s work [10], the inductive argument gives an
explicit way of constructing invariant bases. The extension maps defined
in [3] and used by Licht [10] give an explicit way of combining invariant
bases for the summands of the geometric decomposition to give an invari-
ant basis for the full space, and the duality isomorphism is an explicit map
that allows one to take an invariant basis for a finite element space and
obtain an invariant basis for the corresponding space with vanishing trace,
and vice versa. The new ingredient in this paper for constructing invariant
bases is the invariant basis for PrΛ

k(T 3), which is once again given explic-
itly by tensoring the monomial basis for PrΛ

0(T 3) with the explicit bases
for P0Λ

1(T 3) and P0Λ
2(T 3) described geometrically in Subsection 4.1 and

written algebraically in [10].

Remark 4.12. While the special situation in dimension three allowed us to
take some shortcuts, the ideas in this paper can be used in any dimension to
determine exactly which finite element spaces have invariant bases. The geo-
metric decomposition in Corollary 3.17 along with the duality isomorphism
in Proposition 2.51 allow us to recursively decompose the PrΛ

k(T n) and
P−
r Λk(T n) spaces into irreducible Sn+1-representations. In turn, the ideas

of Proposition 4.4 can be used for any group, including Sn+1, to determine
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which representations have invariant bases. Specifically, one would compute

Ind
Sn+1

H L for all subgroups H of Sn+1 and all one-dimensional representa-
tions L of H. Writing each of these as a sum of irreducible representations,
we obtain a generating set for the representations with invariant bases, al-
lowing us to use a given representation’s decomposition into irreducibles to
determine whether or not it has an invariant basis.

Appendix A. Consistent extension operators

In this appendix, we show that the extension operators discussed in [3]
yield valid choices of complements Wd as discussed in Section 3, and so, in
this context, the notion of geometric decomposition in Section 3 matches
the one in [3]. However, we also show that our notion of geometric decom-
position is more general (and hence weaker). For our results, our simpler
and more general setup suffices, but we expect that other work in finite ele-
ment exterior calculus may require the more stringent requirements on the
extension maps in [3].

In our notation, we take the following definition from [3, Section 4].

Definition A.1. For faces K ⊆ F ⊆ T n, an operator EK,F : V (K) → V (F )
is an extension operator if trF,K EK,F α = α for all α ∈ V (K).

A family of such extension operators {EF,F ′ | F ⊆ F ′ ⊆ T n} is consistent
if the diagram

V (F ) V (H)

V (K) V (F ′)

EF,H

trF,K trH,F ′

EK,F ′

commutes for any subfaces F and F ′ of a face H, where K = F ∩ F ′.

Given a consistent family of extension operators, we can construct corre-
sponding complements Wd as in Definition 3.5.

Proposition A.2. Given a consistent family of extension operators, let

Wd :=
⊕

F⊆Tn

dimF=d

EF,TnV̊ (F ).

Then Vd = Wd ⊕ Vd+1, where the Vd are defined in Definition 3.3.

Proof. First, the direct sum notation in the definition of Wd implicitly as-
sumes that EF,TnV̊ (F ) ∩ EF ′,TnV̊ (F ′) = 0; this is a consequence of [3,
Equation 4.9]. Moreover, by [3, Lemma 4.1], if F ′ and F are d-dimensional
faces and F ′ 6= F , then the composition trTn,F ′ EF,Tn is the zero map on

V̊ (F ). On the other hand, if F ′ = F , then the composition trTn,F ′ EF,Tn is
the identity map. Consequently, for any β ∈ Wd written as

β =
⊕

F⊆Tn

dimF=d

EF,TnβF ,
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where βF ∈ V̊ (F ), we have

(5) trTn,F ′ β = βF ′

for any d-dimensional face F ′. From equation (5), it is easy to see that
Wd ∩ Vd+1 = 0. Indeed, with β as above, if β ∈ Vd+1 then by definition
trTn,F ′ β = 0 for any d-dimensional face F ′, so βF ′ = 0 for all d-dimensional
F ′, and so β = 0.

Now, let α ∈ Vd; we aim to write α = β + γ where β ∈ Wd and γ ∈ Vd+1.
By definition of Vd, we know that α vanishes on any (d − 1)-dimensional

face of T n, and hence trTn,F α ∈ V̊ (F ) for any d-dimensional face F of T n.
Thus, we can let

β =
⊕

F⊆Tn

dimF=d

EF,Tn trTn,F α ∈ Wd.

By equation (5), if F ′ is a d-dimensional face, then

trTn,F ′ β = trTn,F ′ α.

Thus, if we let γ = α− β, then trTn,F ′ γ = 0 for any d-dimensional face F ′,
so γ ∈ Vd+1 by definition. �

Remark A.3. The decomposition V = W0 ⊕ · · · ⊕Wn in Proposition 3.6
then exactly yields the decomposition V =

⊕

F⊆Tn EF,TnV̊ (F ) given in

[3, Equation 4.9]. Moreover, by equation (5), the geometric decomposition

map D in Definition 3.8 is just the natural map
⊕

F⊆Tn EF,TnV̊ (F ) →
⊕

F⊆Tn V̊ (F ).

Remark A.4. Only some of the converse holds. Given complements Wd,
we obtain an injective geometric decomposition map D as in Definition 3.8.
If this map is furthermore an isomorphism, then we have extension maps
EF,Tn : V̊ (F ) → Wd ⊆ V as discussed in Remark 3.13. As discussed in
Corollary 3.15, these extension maps enjoy several properties. In particular,
if α ∈ EF,TnV̊ (F ), then its restriction trTn,F ′ α to any other d-dimensional
face F ′ 6= F is zero. However, [3, Lemma 4.1] makes a stronger claim, that
trTn,F ′ α is zero for any face F ′ (of any dimension) not containing F ; this
may fail if F ′ has higher dimension than F .

Indeed, in the case where V = P2Λ
0(T 2) discussed in Example 3.4, the

choice of ofW0 is quite flexible. The natural choice isW0 = span{λ2
0, λ

2
1, λ

2
2},

but, even if we require invariance with respect to the S3 symmetry, nothing
stops us from choosing

W0 = span{λ2
0 + 17λ1λ2, λ

2
1 + 17λ2λ0, λ

2
2 + 17λ0λ1}.

With this latter choice, if F is the vertex 0 and F ′ is the edge 12, one can
check that EF,T 2(1) = λ2

0 + 17λ1λ2 and trT 2,F ′(λ2
0 + 17λ1λ2) = 17λ1λ2 6= 0.
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Sn+1-invariance. In the context where V is Sn+1-invariant, we want Wd

to be Sn+1-invariant as well. In light of the construction in Proposition A.2,
it suffices to require that the extension operators respect this action, in the
sense that the diagram

V V

V (F ′) V (F )

S∗

π

S∗

π

EF ′,Tn EF,Tn

commutes, where F ′ = SπF , analogously to diagram (4) in Subsection 3.2.
There is no reason to expect this property to be true in general, but it holds
for extension operators defined by “natural” properties, including the exten-
sion operators constructed in [3] for the PrΛ

k(T n) and P−
r Λk(T n) spaces.

We roughly sketch the arguments below; see also [10, Section 7].
There are actually two sets of extension operators constructed in [3]. The

first, denoted with the symbols F k,r
F,Tn and F k,r,−

F,Tn in [3, Section 5], is de-

fined in terms of degrees of freedom: the degrees of freedom of F
k,r,(−)
F,Tn α

must match those of α on all subfaces K ⊆ F and be zero on all other
faces of T n; this uniquely determines the extension. One then checks that if

α′ ∈ P
(−)
r Λk(F ′), then the condition that the degrees of freedom of F

k,r,(−)
F ′,Tn α′

match those of α′ implies that the degrees of freedom of S∗
πF

k,r,(−)
F ′,Tn α′ match

those of S∗
πα

′, and likewise for the degrees of freedom required to be zero.
(Intuitively, rotating T n “rotates” the degrees of freedom.) Since this con-

dition uniquely determines the extension, we conclude that S∗
πF

k,r,(−)
F ′,Tn α′ is

indeed the extension of S∗
πα

′, as desired.

The reasoning is similar for the extension operators Ek,r
F,Tn and Ek,r,−

F,Tn

defined in [3, Sections 7 and 8]. In [3, Theorems 7.4 and 8.4], the authors

show that E
k,r,(−)
F,Tn α is the unique extension of α that satisfies a certain

vanishing condition on the face F ∗ that is “opposite” F . As above, one

checks that if α′ ∈ P
(−)
r Λk(F ′), then this vanishing condition for E

k,r,(−)
F ′,Tn α′

on F ′∗ implies the corresponding vanishing condition for S∗
πE

k,r,(−)
F ′,Tn α′ with

respect to F ∗. Since this condition uniquely determines the extension, we

conclude that S∗
πE

k,r,(−)
F ′,Tn α′ is indeed the extension of S∗

πα.
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