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Abstract A method was developed to recognize anatomical
site and image acquisition view automatically in 2D X-ray
images that are used in image-guided radiation therapy. The
purpose is to enable site and view dependent automation and
optimization in the image processing tasks including 2D-2D
image registration, 2D image contrast enhancement, and inde-
pendent treatment site confirmation. The X-ray images for
180 patients of six disease sites (the brain, head-neck, breast,
lung, abdomen, and pelvis) were included in this study with
30 patients each site and two images of orthogonal views each
patient. A hierarchical multiclass recognition model was de-
veloped to recognize general site first and then specific site.
Each node of the hierarchical model recognized the images
using a feature extraction step based on principal component
analysis followed by a binary classification step based on sup-
port vector machine. Given two images in known orthogonal
views, the site recognition model achieved a 99% average F1
score across the six sites. If the views were unknown in the
images, the average F1 score was 97%. If only one image was
taken either with or without view information, the average F1
score was 94%. The accuracy of the site-specific view recog-
nition models was 100%.

Keywords Image processing . Classification .Machine
learning . Principal component analysis . Image-guided
radiation therapy

Introduction

The patient positioning using kV imaging onboard a medical
linear accelerator represents the state of the art for image-
guided radiation therapy (IGRT). After the patient is posi-
tioned on the treatment couch on the treatment day based on
skin markers, the radiation therapist operates the onboard X-
ray image system to acquire two X-ray images in orthogonal
cardinal directions (e.g., in the anterior-posterior direction and
in the right-lateral direction). The two X-ray images will then
be registered to the digital reconstructed radiography (DRR)
images, which were previously computed using treatment
planning CT images in the same cardinal directions, to deter-
mine the amount of the treatment couch table translational
shifts. After the couch table shifts are applied so that the pa-
tient on the couch table is aligned to the planned treatment
position, the therapist can then turn on the radiation treatment
beams. This procedure is referred to as 2D-2D image guid-
ance, by which the patient positional alignment of the treat-
ment day is determined under the guidance of two 2D X-ray
images acquired in the orthogonal directions.

To ensure the image guidance accuracy, the radiation ther-
apists commonly perform 2D image registrations manually at
treatment machines. The radiation oncology physician will
then spend 1 h or so daily to review the image guidance results
manually for his/her patients performed by the therapist.
Examples of incorrect patient setup detected by physicians
include (1) the head of a head-neck cancer patient being not
centered or straight and (2) a breast cancer patient being reg-
istered based on bones instead of breast surface. Incorrect or
inaccurate alignments detected by physicians in the post-
treatment reviews are estimated to be ~5% among all the 2D
IGRT cases at authors’ institution. Considering over tens of
thousand treatments annually using 2D-2D image guidance at
authors’ intuition, there is a clear need to automate this manual
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and time-consuming process to ensure accurate and safe
treatment.

There have been multiple efforts to automate 2D X-ray
image registration [1, 2]. However, studies have shown that
automatic image registration methods may work relatively
well for certain treatment sites, e.g., head, chest, and breast
cases, but perform poorly for some other treatment sites, e.g.,
pelvis [3]. Therefore, 2D registration needs to be optimized for
each treatment site to ensure accuracy and robustness [4, 5].
To our knowledge, there is no published method on automated
anatomical site detection in 2D X-ray images. We are there-
fore motivated to develop a method to determine anatomical
site automatically. Our aim is, by providing an anatomical site
detection method, to enable site-dependent optimization, and
therefore to improve both robustness and accuracy in 2D reg-
istration methods. Our ultimate future goal is to replace the
manual registration and manual secondary confirmation pro-
cesses with automatic, robust, and accurate 2D image regis-
tration algorithms therefore to improve the positional accura-
cies in radiation treatments for cancer patients.

To improve 2D image registration’s robustness, it is also
important to recognize image acquisition orientations, i.e., im-
age views, automatically because the X-ray images acquired
from the anterior or posterior direction of the patient are sig-
nificantly different from those acquired from the left or right
lateral direction due to varying body thickness. There are lim-
ited studies in the literature that are relevant to image view
detection. These studies focused on chest radiographs only,
using either heuristic algorithm [6] or artificial neural network
[7]. Template-based method [8], nearest-neighbor classifier
[9], and artificial neural network [10] have also been proposed
to identify posterior-anterior and lateral views of the chest
radiographs.

In this study, to detect anatomical site and image view
automatically in 2D IGRT images, we developed a hierarchi-
cal multiclass recognition model. Principal component analy-
sis (PCA) was employed to extract robust and low dimension-
al feature representation. Support vector machine (SVM) was
then employed to model binary classifiers. A dataset including
clinical images from six anatomical sites was used to train and
test the model.

Methods and Materials

Materials

With an IRB approval, 360 kV X-ray images acquired from
180 patients with two each patient (one in AP view and one in
RT view) were included in this study. The images were retro-
spectively obtained as DICOM image files from MOSAIQ
(Elekta, Stockholm, Sweden), the treatment management sys-
tem (TMS) used at author’s institution. The treatment site and

view information for each image as also obtained from the
patient treatment prescriptions and treatment delivery records
in MOSAIQ. Six treatment sites were included in this study
(the brain, head-neck, breast, lung, abdomen, and pelvis), and
30 patients each site were randomly selected. Note that the
patients received radiation treatment on multiple days, and
the two X-ray images for each patient were randomly selected
from the same treatment day.

The images were originally acquired in seven treatment
rooms. Each room is equipped with different treatment ma-
chines from a single vendor (Varian Medical System, Palo
Alto, CA, USA) but of different models (three 10-year-old
Trilogy models, one 5-year-old IX model, and three 1 to 3-
year-old TrueBeam models). The kV X-ray imaging system
on each treatment machine consists of a kV X-ray generator,
which operates at 40 to 160 kVp and configurable ms and mA
settings, and a flat-panel X-ray detector (1024 × 768 pixels,
40 × 30 cm, 0.39 mm pixel resolution) of different ages. The
imaging parameters (kVp, mAs) were manually configured by
the radiation therapist at the time of image acquisition, de-
pending on body sizes, anatomical sites, and imaging views.
These imaging parameters were not stored in MOSAIQ and
therefore not available to be considered in this study. Note that
common imaging parameter settings were often used: 80–
120 kVp, 40–60 ms, and 80–120 mA for the thorax and
breast; 100–140 mVp, 150–200 ms, and 90–100 mA for the
abdomen and pelvis; and 60–70 kVp, 50 ms, and 100 mA for
the head, neck, and brain. The distance from the X-ray source
to the patient’s midline is 100 cm and the source-to-detector
distance is 150 cm.

As shown in Fig. 1, the 2D X-ray images obtained in the
2D image guidance process have significantly inferior image
quality than diagnostic X-ray images, e.g., chest radiographs.
Common problems are image intensity inconsistency, ana-
tomical overlap between different treatment sites, and interfer-
ence resulted from treatment accessories, such as thermoplas-
tic head masks, patient immobilization devices, and motion
management devices. The images for three patients are pre-
sented for each site to demonstrate image variation for the
same site.

Overview of the Site and View Recognition Method

We approached the site and view recognition problem as an
image classification problem. Treatment sites or views can be
defined as classes. As shown in the flowchart in Fig. 2, the
method has two phases: model training and testing. There are
two steps in the model training phase: (1) to transform the high
dimensional X-ray image representative vectors into low di-
mensional vectors and (2) to train the class recognition model
with the low dimensional vectors. In the testing phase, i.e., the
application of the recognition model to recognize an X-ray
image, a new X-ray image is projected onto the lower-
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dimensional space with the transformation matrix learned in
the training phase to yield a low 290,400 dimensional vector,

which is then used by the learned classifier to recognize the
class of the image.

AP (Anterior-Posterior) RT (Right lateral)

Brain

Head-neck

Breast

Lung

Abdome

Pelvis

Fig. 1 Sample X-ray images from six sites in two views. AP and RT X-
ray images of the same site for three patients are shown in each row. The
first three images from left in every row are AP images. The last three

images from left in every row are RT images. From top to bottom, the
images in each row are from the brain, head-neck, breast, lung, abdomen,
and pelvis, respectively

Fig. 2 The proposed site or view
recognition workflow. The
modules labeled with a star are
applied to every binary classifier
in the proposed hierarchical site
and view recognition model
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Prior to training and testing, the X-ray images were down-
sampled from 1024 × 768 to 128 × 96 pixels by using a bi-
cubic interpolation algorithm [11]. The purpose of down-
sampling was to reduce space and time complexity of both
training and test process; however, down-sampling may wors-
en accuracy.We tested the flat site recognition algorithm using
the original images and the images with lower resolutions
(512 × 384, 256 × 192, 128 × 96, and 64 × 48) to determine
an optimal resolution for site and view recognition task. We
found that the accuracy was identical for images with
1024 × 768, 512 × 384, 256 × 192, and 128 × 96 resolutions
and worse for a 64 × 48 resolution. Therefore, the optimal
resolution was deemed to be 128 × 96.

A window/level contrast enhancement [12] was then
employed to enhance the contrast of the down-sampled image.
The level was set at the middle of the intensity range. The
upper boundary of the window was set at the lowest intensity
value of those 1% pixels with highest intensity values. The
lower boundary of the window was set at the highest intensity
value of those 1% pixels with lowest intensity values.

Feature Representation and Dimension Reduction

The pixel intensities of X-ray images after down-sampling and
contrast enhancement are used as features to represent images.
The rows of a processed X-ray image are concatenated into a
vector of 12,288 elements. To significantly reduce the

dimension of representation vectors so that the site or view
can be detected faster and more accurately, PCA is employed
to project the X-ray image feature representation vector onto a
low dimensional feature space [13]. The new feature space is
spanned by the principal components, which are obtained by
maximizing the sum of the variance of sample images. The
uncorrelated eigenvectors of the data covariance matrix are
used to map the data into a new representation. Larger eigen-
values indicate the larger total variance in the sample data set.
We use m eigenvectors corresponding to the m largest eigen-
values to project the vectorized image data x onto the PCA
space ℳ such that:

t ¼ UTx ð1Þ

where,U is the transformationmatrix in which i-th column is a
eigenvector corresponding to i-th largest eigenvalue, and t i s a
projection of an vector x representing image inℳ, having m
elements. Site or view recognition is then performed in the PCA
space ℳ, where the data points are optimally distributed.

The eigenvectors obtained by performing PCA on the col-
lected X-ray images, rearranged back to 2D images of
128 × 96 pixels, are shown in Fig. 3. We computed the eigen-
vectors using the X-ray images for all six treatment sites. One
can recognize the general treatment sites in these images of
eigenvectors to be the brain, head-neck, breast, lung, and
abdomen/pelvis in Fig. 3a–e, respectively. Fig. 3e, which

a b c d e

Fig. 3 Demonstration of the eigenvectors obtained by PCA on the sample X-ray images for all treatment sites. One can see the brain, head-neck, breast,
lung, and abdomen/pelvis in the images (a–e), respectively

Fig. 4 Hierarchical site and view
recognition model. Dashed
boundary lines refer to optional
modules
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represents both pelvis and abdomen, demonstrates that simple
single-step, multi-site recognition might be ineffective in
distinguishing pelvis images from abdomen images due to
the high similarity between these two sites.

Site and View Recognition with a Hierarchical
Recognition Model

Introduction—a Basic Binary Classifier

We employed a support vector machine (SVM) [14] to build a
recognition model in the PCA spaceℳ for recognizing sites
and views. By finding an optimal discriminative function with
largest separation between the two classes, an SVM efficiently
performs a non-linear classification by implicitly mapping in-
puts into high-dimensional feature spaces. The general linear
discriminative function is written as follows:

y ¼ wTΦ tð Þ ð2Þ

where, w is a projection direction in the feature space, Φ(t) is a
vector of the basis functions that could be nonlinear functions,
and t is a vector representation of an image. An image is
assigned to one of the two categories according to the sign
of y value.

A Hierarchical Model for Multi-Site Recognition

Flat multiclass SVM classifiers, e.g., one-against-one and one-
against-rest SVM classifiers, are often used to recognize mul-
tiple classes (sites or views in this study), and voting processes
[15] are used to determine a final classification from the re-
sults of multiple binary classifiers. Such flat multiclass SVM
classifiers have severe deficiencies, notably including that a
one-against-one SVM classifier might be applied to unrelated
classes thus introducing a potential source for misclassifica-
tion. One-against-rest SVM classifiers suffer from the prob-
lem that the scale of the confidence values may differ between
the binary classifiers.

To avoid the potential problem of flat multiclass SVM
classifiers and to improve the overall recognition accura-
cy, we have therefore designed a hierarchical multiclass
recognition model. As illustrated in Fig. 4, the hierarchi-
cal model is a binary tree with binary SVM classifiers as
nodes. The model is designed to recognize general sites
first and then to recognize the more specific sites within a
recognized general site. A general site is defined as a
collection of multiple sites with similar appearances. We
group the treatment sites in two levels, from general to
more specific, as (1) the brain and head-neck (SBH), (2)
the breast, lung, abdomen, and pelvis (SBLAP), and under
SBLAP, (2.1) the breast and lung (SBL), and (2.2) the
abdomen and pelvis (SAP).

The differences between the proposed hierarchical
model and the previous general hierarchical SVM model
[16] are (1) considering the appearance similarity between
the site images to design the topology of hierarchical
model and (2) designing a hierarchical subspace corre-
sponding to the hierarchical classification model by using
PCA. That is, the PCA transformation is performed for
each binary classification model.

Three site recognition scenarios are supported by the hier-
archical models: (1) two X-ray images in orthogonal views are
available with known view information, (2) two X-ray images
in orthogonal views are available but the view information is
unknown, and (3) a single X-ray image is available with or
without the view information. The nodes in Fig. 4 with dashed
boundary lines are optional nodes for the second scenario.

For the first scenario, the view information is known, and
the view classifiers (indicated by the dashed boundary line)
will not be applied. For the second scenario, an image will be
randomly picked from two available unknown views, and a
general site will be recognized by using the TL classifier be-
fore the views are recognized using the view classifier of a
general site.

Similarly, for the third scenario, if a single image is given
with view information, the view recognition will not be ap-
plied. If the view information is not available for the single
image, the site will be recognized before the site-specific view
classifier is applied to recognize the view of the image. The
site-specific view recognition accuracy is 100%, as shown in
our results. The overall accuracy of site recognition with two
images in orthogonal views is greater than with a single image
in any view, because the information provided in two images
is more comprehensive.

The site classifiers below the view classifiers use both im-
ages in AP and RT views if two images are available. The
feature vectors of two views are concatenated together (AP
before RT) before PCA is employed to reduce the feature
dimensions. If one or both images are in views other than
the required AP or RT view (e.g., in LT or left), the images
will be flipped accordingly and be converted fromLT to RT, or
PA to AP.

Implementation

We implemented the hierarchical recognition algorithms in
Python, with the binary classifiers specifically implemented
by using PCA and SVM algorithms within the Scikit-learn
library.1

For each binary recognition model, we used the eigenvec-
tors corresponding to the top N largest eigenvalues to create a
transformation matrix. The number N for each binary recog-
nition model was determined by the eigenvectors achieving

1 http://scikit-learn.org/stable/
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best results in the measurement of F1 score in the cross-
validation experiments with the training data of the model.
We found that less than 30 eigenvectors corresponding to
largest eigenvalues are sufficient to create a PCA model with
good performance. Therefore, we choose N in the range from
1 to 30.

For SVMs, we employed a series of leave-one-out experi-
ments to determine the optimal choices of the kernel functions
and associated parameters. In the experiments, we choose be-
tween linear and Gaussian kernel functions, the tradeoff coef-
ficient C of the SVM from {2k| k ∈ [−3, 3]}, and the variance
of the Gaussian kernel function δ in {2k| k ∈ [−4, 3]}. The X-
ray image set introduced in Section Materials was used to test
the performance of the proposed site and view recognition
methods. A cross-validation experiment was conducted in
which the image set was evenly divided into 30 sets such that
we use 29 images (per site) to train a model in each set, and
then use the remaining one image to test the model.

Evaluation

Three metrics including precision, recall, and F1 score were
used to evaluate the proposed methods. Precision is the num-
ber of true predicted positive instances divided by the number
of all predicted positive instances. Recall is the number of true

predicted positive instances divided by the number of all pos-
itive instances. The F1 score is defined by the following:

F1 ¼ 2
precision� recall

precisionþ recall

� �
ð3Þ

The F1 score considers both precision and recall. Its best
value is 1 and its worst is 0. All of the recognition perfor-
mances given in the tables are the average results of 30
cross-validation experiment.

The paired sample t test [17] was employed to determine
whether performances of two models are statistically signifi-
cantly different, e.g., whether a hierarchical site recognition
model and a flat site recognition model are statistically signif-
icantly different. For each model, the F1 scores were obtained
from a 30-fold cross-validation experiment. The paired sam-
ple t test was then performed on the two samples obtained
from the cross-validation experiment of two models. The sig-
nificance level was set as 0.05.

The more images used to train the site recognition model,
the more robust the models could become. We plotted the
learning curve of the site recognition models to test the
model’s performance change with increasing number of the
training images. The cross-validation experiments were per-
formed ten times. The mean and standard deviation of the

Table 1 Performances of
hierarchical site recognition
models using three evaluation
metrics. Each entry in the table is
a mean value of a metric of 20
cross-validation experiments

Methods Metrics Brain Head-neck Breast Lung Abdomen Pelvis Average

AP-RT Precision 1.0 1.0 0.975 1.0 1.0 1.0 0.9958

Recall 1.0 1.0 1.0 0.95 1.0 1.0 0.9916

F1 1.0 1.0 0.9833 0.9744 1.0 1.0 0.9930

TU Precision 1.0 1.0 0.9473 0.9298 1.0 0.9824 0.9766

Recall 0.9736 1.0 0.9736 0.9473 0.9736 1.0 0.9780

F1 0.9824 1.0 0.9561 0.9368 0.9824 0.9894 0.9745

OU Precision 0.9857 0.9833 0.9188 0.9033 0.9214 0.9428 0.9417

Recall 0.9666 0.95 0.9333 0.8833 0.9 0.9833 0.9361

F1 0.9741 0.9651 0.926 0.9107 0.9087 0.9601 0.9408

TU two unknown views, OU one unknown view

Table 2 Performances of the binary classifiers in the hierarchical site
recognition model AP-RTwhere two known views are available for each
site. In a same given row, two neighboring cells with same shading style
show the F1 scores of two Bsites^ (general sites or more specified sites)

handled by a binary classifier. Each cell crosses one or more columns of
sites. Each cell shows theF1 score of recognizing a general or specific site
with a binary classifier

Brain Head-neck Breast Lung Abdomen Pelvis

Top Layer 1.0 1.0

Middle Layer 1.0 1.0 1.0 1.0

Bottom Layer 0.9833 0.9744 1.0 1.0
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computed F1 score were then shown on the learning curve. In
the first experiment, the training set included the images for 12
patients from six sites with two patients each site. In subse-
quent experiments, the images for 12 additional patients from
six sites were added into the training set prior to re-training the
model. Only the classifiers with images in two views were
included in this learning curve experiment.

Results

The proposed hierarchical site and view recognition models
were experimentally tested for the three scenarios outlined in
Section of the hierarchical recognition model. The models
applied for the three scenarios are named AP-RT, TU (two
unknown views), and OU (one unknown view), respectively.
The experimental results of the three scenarios are given in
Table 1. AP-RTachieved the best average accuracy and 100%
recognition accuracy on four of six sites. For the cases of two
unknown views, the view prediction errors affect the accuracy
of recognizing more specific sites in the lower layer.

The performance of the binary classifiers in the hierar-
chical model for the AP-RT scenario, which would be the
most used scenario clinically, is shown in Table 2. All the

higher-layer binary classifiers have 100% recognition accuracy,
and the breast-lung classifier in the lower layer also shows very
good performance. The performance of the higher layer classi-
fiers assures a good overall performance of the hierarchical
model.

We compared the performances of the proposed hierarchi-
cal classification models and the flat multiclass classification
models for the first and third scenarios. The flat models are
named as AP-RT-Flat and OU-Flat, respectively. The experi-
mental results of these two methods, are given in Table 3,
together with the results listed in Table 1, demonstrate that
the proposed hierarchical classification models have better
performance. The second scenario was skipped from the com-
parison due to additional and unrelated uncertainties associat-
ed with view recognition. The p value from a paired sample t
test on experimental results of AP-RT and AP-RT-Flat was
0.045. The p value from a paired sample t test on experimental
results of OU and OU-Flat was 0.048. The p values suggest
that the hierarchical site recognition models statistically sig-
nificantly outperform the flat site recognition models.

Two confusion matrices are shown in Fig. 5. Each entry of
the confusion matrix is a number of instances that the site
specified in a given row were actually identified as the site
labeled by a corresponding column.

Table 3 Performances of the flat site recognitionmethods using three evaluationmetrics. Each entry of the table is a mean value of a metric of 20 cross
validation experiments

Methods Metrics Brain Head-neck Breast Lung Abdomen Pelvis Average

AP-RT-Flat Precision 0.95 1 0.975 0.95 0.883333 0.975 0.9513

Recall 1 0.975 0.975 0.95 0.9 1 0.9625

F1 0.9740 0.9873 0.9666 0.95 0.89 0.9833 0.9585

OU-Flat Precision 0.9714 0.969 0.8907 0.893 0.8678 0.9071 0.9165

Recall 0.9666 0.9333 0.8666 0.8333 0.8666 0.9666 0.9055

F1 0.9664 0.9483 0.8734 0.8505 0.8604 0.9315 0.9051

 a  Confusion Matrix for AP-RT        b  Confusion Matrix for AP-RT-Flat

Fig. 5 The confusion matrices of
the site recognition results of the
hierarchical AP-RT mode and the
AP-RT-Flat model. Each row
corresponds to a true class. Each
column corresponds to a
predicted treatment site. Each
entry in the matrices is the total
number of test instances of 20
cross-validation experiments
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The confusion matrix for AP-RT (Fig. 5a) shows that only
one lung image was misclassified as a breast image. The cause
of the error was confirmed to be that the lung image in AP
view had similar appearance with some breast images in AP
view.

More recognition errors can be found in the confusion ma-
trix of AP-RT-Flat in Fig. 5b. The classifier became confused
between the brain and head-neck, breast and lung, lung and
abdomen, and abdomen and pelvis. Compared to Fig. 5a, one
can see that most recognition errors of AP-RT-Flat were
corrected in AP-RT. This comparison confirms that the hier-
archical design of the multiclass recognition model is able to
reduce the recognition errors between sites with distinct ap-
pearances, e.g., the lung and abdomen, and to improve the
recognition results between sites with similar appearances,
e.g., the brain and head-neck, and abdomen and pelvis.

We conducted experiments to generate the learning curve
of the hierarchical site recognition model AP-RT and the flat

site recognition model AP-RT-Flat. From the two learning
curves are shown in Fig. 6, one can see that the recognition
accuracies improve as the number of training images increase.
The hierarchical model only needs images of four patients
from each site to achieve an averaged accuracy of 96%. The
flat model AP-RT-Flat needs images from 28 patients per site
to achieve an accuracy of 95%, averaged for the six sites.

Most X-ray images have low contrast, making it difficult
for analysis by eye and computer algorithm. Therefore, we
applied window/level contrast enhancement algorithm to im-
prove the contrast of X-ray images. The results of performing
the three hierarchical site recognition models with the original
X-ray images are given in Table 4. Comparing the results in
Tables 1 and 4, we can see that the performance of site recog-
nition is improved by processing the X-ray images with the
contrast enhancement algorithm. The p value from a paired
sample t test on experimental results of the AP-RT site recog-
nition model with and without image contrast enhancement
without image contrast enhancement was 0.477. This sug-
gested that the contrast enhancement step did not statistically
improve the site recognition accuracy of the AP-RT model.
Similarly, a p value = 0.12 was obtained for the TUmodel and
suggested that contrast enhancement did not statistically im-
prove the site recognition accuracy of the TU model.
However, a p value = 0.01 was obtained for the OU models
and suggested that image contrast enhancement could signif-
icantly improve the accuracy of the site recognition on a single
X-ray image.

We also tried other more advanced contrast enhancement
methods, including adaptive histogram equalization (AHE)
[11] and contrast limited adaptive histogram equalization
(CLAHE) [18]. Our results however suggested that the site
and view recognition performances have not been further im-
proved by using AHE and CLAHE.

We also tested the accuracy in recognizing the right lateral
(RT) and left lateral (LT) views in the view recognition step.
To generate data in order to train the view classifier, we ran-
domly selected half of the RT view images from six sites in the

Table 4 Performances of the hierarchical site recognition models on the original X-ray images without contrast enhancement

Methods Metrics Brain Head-neck Breast Lung Abdomen Pelvis Average

AP-RT Precision 1.0 1.0 0.9666 1.0 1.0 0.95 0.9861

Recall 0.925 1.0 1.0 0.975 0.975 1.0 0.9791

F1 0.95 1.0 0.98 0.9833 0.9833 0.97 0.9777

TU Precision 0.9473 1.0 0.9473 0.8508 0.9649 0.9210 0.9385

Recall 0.8421 0.9736 1.0 0.8684 0.9736 1.0 0.9429

F1 0.8771 0.9824 0.9684 0.8491 0.9614 0.9508 0.9315

OU Precision 0.9333 1.0 0.825 0.95 0.7916 0.8583 0.8930

Recall 0.9 1.0 1.0 0.875 0.85 0.775 0.9

F1 0.9066 1.0 0.885 0.9 0.805 0.7983 0.8825

TU two unknown views, OU one unknown view

Fig. 6 Learning curves of the AP-RT and AP-RT-Flat models. For each
number of patients (NPat), the number of images included in training the
models was NPat × 2 (views) × 6 (sites)
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data set and flipped them into LT views. A leave-one-out
method was employed to test the view recognition accuracy.
The experimental results indicate that the accuracy of recog-
nizing view in RT and LT is 100% for each site.

Discussion

The proposed hierarchical model has demonstrated overall
good performance in site and view recognition using online
kV images acquired from a variety of treatment sites. The
model is useful as a step to automatically determine site and
view information in the onboard kV images, thereby allowing
site and view dependent optimization in the subsequent image
processing tasks. The primary clinical application is an auto-
mated 2D-2D image registration for more precise patient po-
sitioning in IGRT. Collaborating with a RT software vendor,
we envision the following steps in terms of clinical implemen-
tation. The proposed method will first be integrated into clin-
ical systems to provide anatomical site and view information
automatically, and the 2D-2D image registration algorithms in
the clinical systems will then be improved to select optimal
parameters automatically based on the site and view informa-
tion. In this way, the 2D-2D registration methods in the clin-
ical image guidance systems would be more robust and accu-
rate. The improved and more robust 2D-2D registration
methods are expected to be able to outperform manual regis-
tration in many cases, and, in other cases, be used confidently
as a pre-registration step preceding manual registration. In
either scenario, the accuracy of the image-guided treatment
setup can be improved. The proposed method could also be
useful for supporting a secondary independent verification of
patient setup that has been performed using a similar 2D-2D
image registration method. The third clinical application is
enabling automatic and site-dependent image contrast en-
hancement to assist manual RT image reviewing.

In the future work, we will extend the proposed model to
recognize more sites, e.g., the shoulder and leg, and to recog-
nize localized areas of a disease site, e.g., right and left sides of
the lung or breast.Wewill also extend the model to distinguish
images in more views including left lateral and posterior-an-
terior. The robustness of the proposed approach could be fur-
ther improved by developing more image preprocessing func-
tions to identify the artifacts in images such as the bowtie filter
and couch table, which could affect site and view recognition
accuracy.

Conclusions

In this study, we developed a hierarchical site and view rec-
ognition model to support three clinical scenarios of site and
view recognition. The results demonstrate that the proposed

method achieved good performance in both automated site
and view recognition in radiation therapy localization X-ray
images. The proposed method could be useful for automating
site and view dependent X-ray image processing for various
clinical applications and for automating the DICOM tag
correction.
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