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Abstract
We investigate the viability of statistical relational machine learning algorithms for the task of identifying malignancy of renal
masses using radiomics-based imaging features. Features characterizing the texture, signal intensity, and other relevant metrics of
the renal mass were extracted from multiphase contrast-enhanced computed tomography images. The recently developed
formalism of relational functional gradient boosting (RFGB) was used to learn human-interpretable models for classification.
Experimental results demonstrate that RFGB outperforms many standard machine learning approaches as well as the current
diagnostic gold standard of visual qualification by radiologists.
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Background

The National Cancer Institute projects that at least $5.1 billion
will be spent on kidney cancer care in the USA by 2020 [1],
assuming survival rates follow current trends. Renal cancer is,
clinically, a heterogeneous disease characterized by a wide
spectrum of tumor behavior. Accurate characterization of re-
nal masses is necessary to determine the most beneficial
course of treatment. Conventional diagnosis is based on visual
qualification, where it is often difficult to discriminate be-
tween malignant tumors such as renal cell carcinomas
(RCC) and benign lesions such as oncocytomas and lipid-
poor angiomyolipomas [2–6]. A substantial number of renal
masses also turn out to be benign (15–20%) at surgery [7]. A

major contributor for false positives and overdiagnosis is that
many small renal mass lesions (particularly, T1 tumors less
than 7 cm in size) are difficult to characterize with conven-
tional imaging or even after a biopsy. Factors beyond tumor
size and contrast enhancement, such as tumor texture and
shape, have been associated with tumor behavior but are cur-
rently not commonly used in clinical decision-making.
Radiomics, the high-throughput extraction of such quantifi-
able image features, is a natural next step [8, 9].

Recently, powerful machine-learning (ML) algorithms [10]
are being used to explore complex interactions in clinical data
to provide diagnosis, prognosis, and treatment planning.
However, applications of these algorithms come at the cost
of loss of interpretability and explainability, particularly when
incorporated into routine clinical decision-support (CDS)
tools [11–16]. Interpretability refers to the end user under-
standing the rationale behind classification of a test case by a
machine-learning algorithm based on extracted feature values.
Explainability refers to the CDS providing a text-based and/or
image-based information explaining the rationale behind clas-
sification decision.

Commercially available decision-support systems are ei-
ther simple rule-based systems or include mathematical/
physiological models to assess patient risk towards a certain
disease (see Table 1). To fully exploit the heterogeneity of all
available patient data (unstructured doctor’s notes, multimod-
al imaging, epigenetic data, medical and family histories, etc.),
methods that can learn complex models, identify subtle rela-
tions in data, and provide explainability must be investigated.
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Statistical relational learning (SRL) methods provide an at-
tractive framework for modeling CDS problems in a data-
rich environment.

SRL has been applied to several relationship discovery
problems [17] and has been successful because it combines
the inferential power of probabilistic graphical models with
the expressiveness of first-order logic (FOL). Current ML
methods are based on one of two approaches: logical models,
which capture relationships between objects, and statistical
models, which efficiently handle noise and uncertainty. In
the last decade, a great deal of progress has been made in
unifying both approaches leading to the framework of SRL
[18]. In this paper, we model renal cancer decision-support
using relational functional gradient boosting (RFGB; [19,
20]), an SRL method . RFGB has been previously applied to
several text-mining-based medical informatics tasks including
predicting myocardial infarction from electronic health re-
cords (EHRs) [21], extracting adverse drug events from a drug
database [22], and identifying rare diseases from patient be-
havioral data [23]. RFGB was also recently applied to an
imaging-based medical informatics task: Alzheimer’s diagno-
sis from MRI [24], where it significantly outperformed con-
ventional ML approaches (AUC-ROC of 0.77 vs. 0.62; see
BResults^ for a discussion of AUC-ROC as an evaluation
metric). The current work will be one of the earliest, if not

the first attempt, to employ RFGB as a decision-support tool
for cancer diagnosis using radiomics-based imaging features.

RFGB uses FOL to represent the domain and data and
learns decision tree-like models that capture relationships be-
tween features and are human interpretable. In addition to
inferring the most-likely diagnosis, RFGB can also provide
explanations in terms of tumor shape, size, and texture metrics
as well as clinical, demographic, and other factors when they
are available. Explainability can greatly enhance effectiveness
of decision-support and clinician confidence. Considering that
FOL allows for seamless fusion of data modalities (clinical,
demographic) with radiomics features, the resulting CDS tool
can be thought of as an evidence-based guide for clinicians
and not simply an inscrutable black box [11–16].

We showcase our development of a robust ML-based
radiomics pipeline for deriving diagnostically significant
radiomics features and reliable tumor classification models.
Our goals are twofold: (1) by exploiting the strengths of both
the radiomic features and machine-learning classifiers, we aim
to reduce overfitting and maximize data parsimony, that is,
learn effective models with a small amount of data and (2)
learn/identify potentially complex patterns from data, which
can in turn be used for making actionable predictions/deci-
sions. At this preliminary stage of our work, we focus on the
binary classification problem of distinguishing between ma-
lignant and benign tumors. Future work will address cancer
subtype classification, nuclear grade classification, and other
tasks beyond diagnosis such as prognosis and treatment
planning.

Methods

One hundred and fifty subjects from an IRB-approved,
HIPAA-compliant study who had pre-operative, multiphase
contrast-enhanced computed tomography (CECT) of the ab-
domen and pelvis and post-resected tumor pathology evalua-
tion with expert graded histology were retrospectively select-
ed. The post-resected tumor pathology evaluation was used as
gold standard. All 150 renal masses are solid, enhancing lipid
poor tumors, which is the group of masses that is responsible
for the vast majority of diagnostic errors (see Table 2 for tumor
distribution).

CT scans were performed on a 64-detector row helical CT
scanner (Brilliance, Philips Healthcare, CT) using the follow-
ing parameters: 120 kVp, variable tube current, and slice
thickness of 0.5 mm with reconstruction interval of 2 mm.
Images were obtained at four phases of the contrast-
enhanced computed tomography. Pre-contrast CT of the ab-
domen was first obtained, followed by three post-contrast CT
scans obtained in corticomedullary (30 s), nephrographic
(90 s), and excretory (5–7 min) phases.

Table 1 A list of commercially available CDS tools. This list is not
exhaustive

CDS tool Features Core algorithm

IndiGO
(Archimed-
es)

Estimates risk for diabetes,
stroke, heart attacks;
personalized risk
management strategy

Mathematical equations;
physiology models

Auminence
(Autonomy
Health)

Diagnosis support with
symptoms entered by
clinician

Rule-based/decision trees

VisualDx
(VisualDx)

Differential diagnosis,
curated images to support
diagnosis (emergency
medicine, dermatology,
primary care)

Proprietary

Watson
(IBM)

Research tool; mines from
patient history, EHR,
doctor notes, research
papers; commercial use:
lung cancer treatment
planning

Deep learning for text
mining; natural
language processing

RadWise
(Sage
Health)

Helps in determining the
appropriate imaging tests
to be orders based on
physician inputs

Evidence-based
reasoning

LI-RADS
(University
of
Colorado)

Diagnosis/categorization of
liver carcinomas from
CECT images (not
commercial)

Decision flow to mimic
natural thought
process of radiologists
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Tumor Segmentation

Tumors were manually segmented by an experienced radiologist
in 3D using image-rendering software (Synapse 3D, Fujifilm,
Stamford CT). Tumor margins were then sampled in the trans-
verse, sagittal, and coronal dimensions. In general, the
nephrographic phase provided the best delineation of the tumor;
it was used as the reference template co-registering the other
phases. The series of images were then co-registered with all
other series using normalized mutual information cost function
implemented in Statistical Parametric Mapping software package
(Wellcome Trust, UK). Custom MATLAB (Mathworks, Natick
MA) code was used to extract voxel data corresponding to the
regions of interest (ROI). 2D CT-based texture analysis (CTTA)
was performed on the largest tumor diameterwithin each imaging
plane, and 3D CTTAwas conducted on the entire tumor volume.

Radiomics-Based Feature Extraction

Texture characteristics ranging from first-order (mean, medi-
an, etc. of the intensity distribution), second-, and higher-order
measures (including features such as contrast, homogeneity,
entropy, etc.) were analyzed. We derived features using vari-
ous techniques ranging from simple histogram analysis to
more advanced techniques such as gray-level co-occurrence

matrix (GLCM) and gray-level difference matrix (GLDM) [8,
9, 25, 26]. The techniques (summarized in Table 3) have been
described in greater detail in previous studies [27–32].

1. Histogram analysis: We extract first-order statistical
texture measures by assessing image intensity (gray-
level distribution of an image), with no regard for the
spatial location of the intensities. This includes features
extracted from the histogram of the grayscale values
making the tumor ROI [29] as well as histogram anal-
ysis of the 3D volume (eight features).

2. 2D and 3D GLCM and GLDM analysis: We performed
second-order statistical texture analysis, which included
2D and 3D-GLCM and GLDM analysis [28]. These anal-
yses took into account both pixel intensities and inter-
relationships, thereby providing spatial information (sec-
ond order) of the intensities in various forms. For
workflow implementation, the number of gray levels
was reduced to 12-bit, which was determined to be suffi-
ciently accurate for the study of texture. The co-
occurrence and differences matrices were obtained in four
directions (horizontal, vertical and two diagonals in the x-
y plane) to capture directional texture information.
Twenty different metrics were calculated: 13 based on
the method by Haralick [31] and 7 additional metrics. In
the 3D analysis, 5 additional directions in the z plane were
added and the same 20 texture metrics were calculated (20
GLCM + 20 GLDM features).

3. 2D Fourier analysis: A 512-point fast Fourier transform
(FFT) was applied to all images using Matlab, after which
we extracted individual frequencies, their amplitude
(amount of individual frequencies), and phase (location
of the frequency in the image). FFT metrics were assessed
between 10 and 90% of the maximum frequency to avoid
high- and low-frequency noise typical of medical images.
The frequency boundary was set based on maximization
of the signal-to-noise ratio [32] (three features).

Fig. 1 RFGB learns tree models that can be easily explained (left), while
SVM models (right) are far harder to interpret. RFGB’s decision can be
explained using intuitive comparisons and conjunctions (AND), while the

SVM learns a non-linear function. Both models use radiomics features:
SQVand HOM. CECT phases: corticomedullary (C) and nephrographic
(N) are also captured. Illustrative example only

Table 2 Tumor type distribution within the acquired CECT data set

Tumor type No. of tumors Class

Clear-cell renal cell carcinoma (ccRCC) 70 Malignant
100Papillary renal cell carcinoma (pRCC) 20

Chromophobe renal cell carcinoma (chRCC) 10

Lipid-poor angiomyolipoma (lpAML) 20 Benign
50Renal oncocytoma 30
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From each phase of each subject’s multiphase CECT im-
age, we extract 51 2D and 3D radiomics-based texture fea-
tures. Recall that we obtain a four-phase CECT image from
each subject, which ultimately results in 51 × 4 = 204 total
features per subject.

Feature Selection

The feature extraction stage produces a large number (204) of
radiomics texture features that capture various characteristics
of the CECT image across four phases. While it may be ben-
eficial to develop machine-learning models that consider all
the available features, we are also interested in developing
models that are efficient and explainable for the purposes of
incorporation into a clinical decision-support system. An effi-
cient model should provide a diagnosis within a reasonable
amount of time. An explainable model should be able to ex-
plain its decision and reasoning in terms of the data features to
a non-machine learning domain expert (in this case, the urol-
ogist). These two critical requirements motivate us to explore
feature selection as a means of identifying the most informa-
tive features for this classification/diagnosis task.

We use a well-known technique called Recursive Feature
Elimination (RFE; [33]), which has been extensively applied
for feature selection from gene-expression DNA microarray
data. Our pipeline, however, uses RFE on CECT-based
radiomics features. RFE uses support vector machines
(SVMs; [34]) to recursively rank and filter features with the
least diagnostic value. At a high level, RFE ranks features by
empirically measuring the degradation in predictive accuracy
of a model if that feature was dropped. This procedure is
repeated until a sufficient number of features have been recur-
sively identified and dropped as required.

Since the data set contains 204 features over four phases, we
insteadconsideravariantcalledblockRFE,whichdropsgroupsof
features at a time to improve efficiency of feature selection. In our
case, we score the predictive accuracy of each radiomics texture
across all phases taken together and drop textures with low

diagnostic value. That is, when a texture is dropped, it is dropped
across all phases. For instance, at iteration i, if RFE scores the
texture (GLDM entropy) the lowest, then the entire
block of features , ,

and ( fea-
tures from all four CECT phases are dropped for all subjects).
We refer to this step as recursive texture elimination; our
pipeline currently uses linear SVMs for recursive texture
elimination. We selected 10 radiomics texture features per
phase, which produces 40 features (over the four CECT
phases) per subject, that is, per training sample (see
Table 4).

Machine Learning Methods

The learning task is to build a classifier to distinguish between
malignant and benign tumors. We consider the following clas-
ses of methods:

1. Conventional machine learning methods can be cate-
gorized into two types: generative (that model the actual
distribution of each class) and discriminative (that mod-
el the decision boundary between classes). The simplest
form of a generative classifier is the Naïve Bayes clas-
sifier [35], Chap. 3.5, which assumes independence be-
tween features (radiomics textures) and applies Bayes
theorem to predict the correct class. In the case of dis-
criminative classifiers, such as logistic regression (LR;
[36]), kernel machines [37] such as SVMs [34], and
decision trees [38], single or multiple decision bound-
aries are learned either on the original features or by
transforming the feature into higher dimensions.

2. Conventional ensemble methods combine the decision
output of multiple weakly trained classifiers (called base
classifiers) to improve generalizability and robustness in
estimation. In boosting [39], several weak classifiers are
learned sequentially, where each subsequent weak learner
is trained explicitly on samples missed by the previous
ones. In bagging (also known as bootstrap aggregating)

Table 3 The feature extraction
stage of the pipeline uses the
radiomics CT-based texture anal-
ysis (CTTA) panel to extract a
large number of features, includ-
ing first-order, second-order, and
FFT features. Specifically, 51
features are extracted per phase.
Recall that we have a four-phase
CECT image for each subject;
feature extraction produces a total
of 51 × 4 = 204 features for each
subject

Extracted CTTA features from multiphase CECT images of renal masses

Gray-level histogram (3D) analysis (8
features/phase)

Mean, median, skewness, kurtosis, minimum, maximum,
quartile range, standard deviation

Gray-level co-occurrence matrix (GLCM
2D/3D) analysis (20 features/phase)

Angular second moment, contrast, correlation, dissimilarity,
entropy, homogeneity, inverse difference moment mean,
information measures of correlation 1 mean, information
measures of correlation 2 mean, maximum correlation
coefficient, root mean square, standard deviation, uniformity,
variance, sum of average, sum of entropy, sum of variance,
mean

Gray-level difference matrix (GLDM
2D/3D) analysis (20 features/phase)

Fast Fourier transform (FFT 2D) analysis (3
features/phase)

Entropy of FFT magnitude, entropy of FFT phase, complexity
index

932 J Digit Imaging (2018) 31:929–939



[40], base classifiers are trained independent of each other
and their decisions are combined using voting or
weighting schemes. Random forests [41] further extend
bagging by using a random subset of features at each
iteration. Ensemble methods have been highly successful
over a diverse variety of tasks; as we show below, the
extension of such ensemble methods with richer represen-
tations can yield powerful and explainable models.

3. Deep learning: Artificial neural networks (ANNs) have
seen renewed interest with the emergence of deep learning
[42]. Deep learning has been successful for image segmen-
tation and classification [43] and is now being applied to
medical imaging [44]. Deep learning is often applied to
images directly, and successive hidden layers realize vari-
ous image-processing steps. For instance, the first one to
three layers of a deep network behave like Gabor filters,
performing edge detection and are not robust classifiers
[45]. In our setting, the radiomics features, rather than raw
CECT images, are used as the features. A significant draw-
back of deep learning is a large amount of labeled training
data that is required in order to build an effective model.

4. Statistical relational learning: In the last decade, consid-
erable progress has been made in SRL, which combines
statistical methods (that model uncertainty) with a rela-
tional representation (to provide a richer, more natural
representation of data) [17]. Numerous SRL approaches
such as Markov logic networks [46] have been success-
ful. However, many such methods require domain rules
to be specified by the user or learned sequentially via
structure learning methods before model (parameter
learning). We, instead, focus on a state-of-the-art SRL
approach called relational functional gradient boosting
(RFGB) that can learn the structure and parameters

simultaneously, efficiently, and produces explainable
models.

Relational Functional Gradient Boosting

This approach is motivated by the intuition that finding many
simple and rough rules-of-thumb to model probabilistic fea-
ture interactions locally can be much easier than finding a
single, large, highly accurate model. Specifically, this ap-
proach turns the problem of learning SRLmodels into a series
of relational function approximation problems using the en-
semble method of gradient-based boosting. This is achieved
by the application of Friedman’s [47] gradient boosting to
SRL models, where each conditional probability distribution
(that models the relationship between the variables) is repre-
sented as a weighted sum of regression models [48]. That is,
instead of representing the relationship between the various
variables (or radiomics features) as a single giant relational
probability tree, we use a collection of smaller relational re-
gression trees [49].

Relational Representation Recall that a key strength of SRL
methods such as RFGB is the ability to represent complex
relationships between objects and attributes in a domain using
first-order logic (FOL). In this domain, phases and radiomics
features are the primary attributes of the various entities, that
is, patients. Thus, radiomics features can be easily represented
using relational features for any patient ( ) and CECT
phase:

Table 4 The feature selection
stage of the pipeline uses
Recursive Feature Elimination to
select 10 discriminative textures,
which were used for classification
of renal masses. Recall that we
have a four-phase CECT image
for each subject; feature selection
produces a total of 10 × 4 = 40
features for each subject

Feature Description

ASM Angular second moment/sum of squared elements in the GLCM

CON Contrast/local intensity variations between a pixel and neighbors in the GLCM

COR Correlation of gray-level linear dependence between pixels relative to each other

DIS Dissimilarity/difference average in the GLDM

ENT Entropy/amount of image information needed for image compression

HOM Homogeneity/closeness of the distribution of GLCM elements to the diagonal

IDM Inverse difference moment/measure local homogeneity in the GLCM

SQV Square root of variance/measure of how much elements differ from the mean

SUMAVE Sum of averages

VAR Variance/measure of heterogeneity

J Digit Imaging (2018) 31:929–939 933



F o r i n s t a n c e , t h e r e l a t i o n a l f e a t u r e
tells us that the ho-

mogeneity in patient38’s image in the excretory ( ) phase is 0.74.
To fully utilize the representational power of FOL, we also

incorporated domain knowledge by capturing the ordering of
the phases, that is pre-contrast ( ) fol lowed by
corticomedullary ( ), nephrographic ( ), and excretory ( ).
This is done through a predicate ( ,

), which is only true when follows
. For instance, will be true,

while will not. There is no way to
express this information in conventional ML algorithms with-
out considerable feature engineering as their representation is
propositional or tabular. In contrast, as RFGB uses a logical
representation, it is relational and can capture complex feature
interactions beyond non-linear functional interactions of con-
ventional machine learning. Intuitively, a relational represen-
tation can be thought of as a table-of-tables in a database
(RDBMS).

We can also specify additional domain rules that tell us if a
certain radiomics feature is increasing or decreasing between
two consecutive phases. In a propositional representation, as
used in classical machine learning, we would have to explic-
itly construct such features by considering all exhaustive com-
binations of features and phase-pairs. However, using first-
order logic, such relational features can be represented com-
pactly. To see this, consider the texture feature entropy
( ), from which we can identify two relational features

(the entropy in-
c r e a s e s f r o m t o ) a n d

( the entropy de-
creases from to ) through simple and natural rules.
The rule(s) Bentropy is increasing (decreasing) from to

if its value in phase 2 is greater (lesser) than its value in
phase 1^ can be easily written in first-order logic as follows:

This representation is beneficial for three reasons: (1) RFGB
only adds features as needed, which means that exhaustive enu-
meration of all combinations is avoided; (2) the rules depend on
the background information ,
which means that only meaningful feature combinations will
be considered during learning; and finally, (3) features such as

are intuitive and interpretable to clinicians, who are
not machine-learning experts. The last point is of considerable
importance as we are interested in developing explainable diag-
nostic models, and the use of features such as leads
to more natural explanations.

Relational Regression Trees RFGB uses relational regression
trees (RRTs) to represent local relationships and interactions
between features. A regression tree [38] contains conditions
on features at each node, and as we descend down the tree, we
reach a leaf node that provides the regression value for that
example. An RRT [49] can be viewed similarly, except the
nodes define relationships between feature combinations rath-
er than feature thresholds. These represent the diagnostically
relevant discovered relationships in the data. The advantage of
RRTs is that they incorporate domain knowledge in addition
to radiomic features using FOL to represent features compact-
ly in an interpretable tree structure. Figure 1 (left) shows an
example of an RRT learned during training to classify a tumor

as malignant. When a new case is presented, it is classified
into a leaf node: the classification path (highlighted in orange)
is the explanation and the leaf node probability is the likeli-
hood of malignancy.

Learning of RFGB Models Recall that the learning task is to
build a classifier to distinguish between malignant and benign
tumors (training labels, y) using training examples, x. RFGB
tries to fit a probabilistic model P (y | x); when given a patient
case x, the model returns the probability of P (y =

), that the tumor is malignant. Thus, RFGB
learns a joint distribution over the labeled examples (super-
vised learning). The high-level idea behind RFGB is to learn
multiple RRTs in a stage-wise manner by optimizing the log-

likelihood over all the examples, LL ¼ ∑N
i¼1logP yijxið Þ.

The approach learns RRTs such that the probability of ob-
served outcomes yi is the maximized given data xi. Most
methods choose a family of distributions (e.g., normal distri-
bution), and parameters of the distribution are learned from
data via gradient ascent. RFGB, on the other hand, is a non-
parametric approach, which does not require a family of dis-
tributions to be chosen a priori. Instead, it models the distri-
bution using a potential function, ψ. The goal is to fit a model
P(y |x) ∝ eψ(y, x), where ψ is a collection of RRTs, each learned
during a single iteration of RFGB.

934 J Digit Imaging (2018) 31:929–939



At each step, RFGB learns a single RRT by computing the
functional gradient, that is, by learning a tree that represents
the gradient of the potential function ψ and adding features
and relations only as needed. RFGB starts with an initial po-
tential ψ0 and iteratively adds gradients (represented as RRTs)
Δm. After m iterations, the potential is given by ψm =ψ0 +
Δ1 +… + Δm, where Δm is an RRT-based functional gradient.
This iterative learning procedure is visualized in Fig. 2. The
functional gradient, while represented as tree, actually has the
following form:

∂ log P yi ¼ malignant j xið Þ
∂ψ yi ¼ malignant j xið Þ
¼ I yi ¼ malignant j xið Þ−P yi ¼ malignant j xið Þ

where I is the indicator function, that is 1, if yi =
, and 0 if yi = . This expression

is simply the adjustment required to match the predicted prob-
ability with the true label of the example. If the example is
malignant, and the predicted probability of malignancy is less
than 1 (indicating that the model still has uncertainty about
malignancy), this gradient is positive indicating that the pre-
dicted probability could be better and should move towards 1
(thus reducing uncertainty). Conversely, if the example is be-
nign and the predicted probability is greater than 0 (indicating
that the model thinks this example is more likely to be malig-
nant), the gradient is negative, which drives its value the other
way (thus reducing uncertainty).

Guarding Against Overfitting As RRTs are relational exten-
sions of classical regression trees, they can be regularized in
similar ways to guard against overfitting. Similar to decision
trees, controlling the maximum number of nodes from root to
leaf (depth) in the learned tree will lead to learning simpler
trees. Note that RFGB does not learn large trees and then
prune them but limits learning to shorter trees at the very
outset in order to improve training efficiency and scalability.
As RFGB is an ensemble approach, this strategy is effective

since it is looking for several small, weak models rather than a
giant, strong model. In addition, as each RRT also contains
logical clauses in its nodes, we can also control the maximum
number of clauses in the tree (paths from root to leaf), which is
the maximum number of leaves. A third regularization strate-
gy is to control the number of literals (splitting conditions) in
each node. As with any other machine-learning approach,
these regularization parameters and settings must be identified
via cross validation for the best results.

Results

We compare the performance of several ML algorithms on the
data set of radiomics features on a binary classification task of
discriminating between malignant and benign tumors. All ML
approaches but RFGB were evaluated using Waikato
Environment for Knowledge Analysis (WEKA) software1

(Waikato, New Zealand). Hyper-parameters (such as regular-
ization and kernel parameters) for each method were selected
using tenfold cross-validation, and all results are averaged
over 10 runs, each with a different random split of training
and test sets. We used the publicly available Java implemen-
tation of RFGB called RDN-Boost, which is a part of the
Boost-SRL package2. Relational regression tree depth was
limited to 3, and the node size per branch was set to 2.

We consider three metrics to compare the ML algo-
rithms from different perspectives: (1) accuracy; (2) F-
measure, also known as F1 score (2 P�R

PþR, the harmonic

mean of precision and recall); and (3) area under the
receiver-operator characteristic (AUC-ROC). While accu-
racy is a standard performance metric, as the application is
a clinical diagnostic system, minimizing misdiagnoses,
that is, false negatives, is a priority. For this reason, we
also compare the methods using F-measure and the AUC-
ROC. Higher F-measure means that the classifier is better

1 https://www.cs.waikato.ac.nz/ml/weka/
2 https://starling.utdallas.edu/software/boostsrl/

Fig. 2 RFGB visualized
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at handling the class imbalance, while higher AUC-ROC
means that the classifier broadly achieves low false-
negative rates across a variety of thresholds. These results
are shown in Figures 3, 4, and 5. At a high-level, these
results show that RFGB consistently outperforms several
standard ML algorithms on all three evaluation metrics
significantly at p = 0.05. Finally, note that visual classifi-
cation by experts only achieves AUC-ROC of 0.65 using
the pathological gold standard [50], which suggests that
many ML approaches can already outperform human diag-
nostic baselines on this difficult task.

Comparison with Tree-Based and Ensemble Methods RFGB
significantly outperforms decision trees [38] and ensemble
methods such as AdaBoost with decision stumps [39], bag-
ging with regression trees [40], and performs comparably
to Random Forest [41]. This shows that relational features
such as entInc(N, E) (which indicates increasing entropy
from the nephrographic to the excretory phase; Fig. 1, left)
can considerably improve classification rates. This is in
stark contrast to the flat-feature representation of conven-
tional machine learning methods (that is, a single table),
which would require extensive feature engineering to
achieve.

k x; zð Þ ¼ exp −γ x−zk k2
� �

¼ ∑∞
n¼0

γn

n!
xT z
� �n

;

which enables us to compute the similarity of these two
points in an infinite-dimensional space without explicit trans-
formation (which is impossible anyway). This elegant proper-
ty is also the SVM’s most serious limitation for our purposes:
we cannot visualize feature combinations expressed algebrai-
cally [37, Remark 9.9], which seriously limits explainability
in terms of features (Figure 1, right). On the other hand, ex-
planation of RFGBs result can be expressed using comparison
(≥, ≤, ≈) and conjunction (∧) operators (Figure 1, left). Further,
as more significant features are identified by RFGB, they can
be added to the model as it is learned stage-wise. Finally,
RFGB comprehensively outperforms linear, polynomial, and
Gaussian-kernel SVMs (Figure 1, right).

Comparison with Deep Learning/Neural Networks A deep
network for an application such as this requires several layers,
thousands of training examples, powerful computing, and
long training times. More worryingly, as the network becomes
deeper, the model identifies increasingly complex combina-
tions of features that depend on previous layers, making the
model difficult to interpret or explain. Instead of letting a deep
network identify potentially unintelligible features, we use
radiomic features that have proven clinical relevance [8, 9,
25, 26] as well as explainability. Using RFGB, we identify
combinations of these features and discover relationships.
So, given useful radiomics features, can ANNs do as well as

Fig. 3 Accuracy of various ML
models (averaged over 10 runs) in
renal mass classification
compared to RFGB (bold
numbers over the bars are
significantly different from
RFGB at p = 0.05)
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Comparison with Kernel Methods SVMs [34] have long been
a de facto standard for many classification applications. One
compelling reason for this is that SVMs can learn non-linear
classifiers to represent complex decision boundaries through a
kernel function. The kernel function k(x, z) measures similar-
ity between two training examples x and z in a high-
dimensional space without explicitly transforming x and z into

this space. For example, the Gaussian kernel is an infinite-
dimensional polynomial kernel [37], p. 297:



RFGB?Aswe are limited by the data set size, we are only able
to consider shallow neural networks. Figures 3, 4, and 5 show
that shallow networks perform consistently worse than RFGB
on all metrics. The key advantage of our pipeline is that we are
able to exploit radiomics features to learn effective models
with much fewer training examples.

Conclusions

We considered the task of differentiating between malignant
and benign renal cell carcinomas using radiomics-based fea-
tures. Our work demonstrates the usefulness of statistical re-
lational learning, specifically, RFGB as a promising CDS tool
for renal mass diagnosis as it learns models that are effective

and explainable. This is beneficial from a clinical decision-
support standpoint as it allows us to develop diagnostic sys-
tems that can support their decisions with explanations that are
understandable to non-machine-learning domain experts such
as urologists and radiologists. We are currently expanding our
data set to include more cases. We are also currently
expanding the radiomics platform to include shape-based
and spectral/frequency-domain features [51].

Our next steps are to look beyond the binary classification
task considered here. Consequently, we will extend RFGB to
ident ify (1) subtype of tumors for benign (e.g. ,
angiomyolipoma or oncocytoma) and malignant (e.g., clear
cell or papillary RCC) and (2) nuclear grade: to categorize
RCC according to genitourinary pathology expert classifica-
tion. In addition, we are also exploring means to improve

Fig. 4 F-measures of various ML
models (averaged over 10 runs) in
renal mass classification
compared to RFGB (bold
numbers over the bars are
significantly different from
RFGB at p = 0.05). The F-
measure is the harmonic mean of
precision and recall

Fig. 5 Area under the receiver
operator curve (AUC-ROC) of
various ML models (averaged
over 10 runs) in renal mass clas-
sification compared to RFGB
(bold numbers over the bars are
significantly different from
RFGB at p = 0.05). The AUC-
ROC is a measure of the proba-
bility that a classifier will rank a
randomly chosen positive exam-
ple (malignant) higher than a ran-
domly chosen negative example
(benign)

J Digit Imaging (2018) 31:929–939 937



RFGB performance by including domain rules recommended
by radiologists; the underlying first-order logic representation
allows for the direct incorporation of such rules into the mod-
el. Also, multiple modalities beyond imaging features such as
clinical and demographic information can be included as fea-
tures/rules, which should also substantially improve the dis-
criminating power of the method. Another potential pitfall we
seek to address in future work is class imbalance (Table 2), an
unequal number of malignant and benign examples. This risk
can be mitigated by considering an alternative approach with-
in the RFGB framework known as soft-RFGB [20], which
implicitly weights examples to account for class imbalance.
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