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Abstract

Quantum key distribution (QKD) is a technique to establish a secret key between
two parties through a quantum channel. Several QKD protocols have been proposed
and implemented over optical fibers or free-space links. The main challenge of oper-
ating QKD protocols over a free-space link is atmospheric losses. In this paper, we
have studied and compared the performance of single and entangled photon based
QKD protocols by evaluating the quantum bit error rate and secure key rate for ter-
restrial free-space quantum communication by considering different free-space losses,
such as geometrical losses, atmospheric losses as well as device imperfections.

Keywords: Quantum key distribution, Quantum bit error rate, Secure key rate, Geo-
metrical losses, Atmospheric losses, Bell parameter.

1 Introduction

Classically, the security of information sent from one place to the other is mainly based
on the popular Rivest-Shamir-Adleman (RSA) algorithm [1], which relies on the com-
putationally extensive task of factorizing the product of two large prime numbers. This
method hinges on the computational complications of certain mathematical tasks and
is thus vulnerable to technological progress. Hence, there is a need to develop robust
protocols to secure the shared information. Quantum cryptography and in particular,
quantum key distribution (QKD) fulfills this criterion by taking advantage of the funda-
mental quantum physical properties such as (i) no cloning theorem, where any unknown
quantum state cannot be copied; (ii) measurement collapse the quantum system to one
of the possible quantum state, and (iii) irreversiblity of measurements implying that an
output state cannot be used to generate an input state. The first QKD protocol was
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proposed by C. H. Bennett and G. Brassard in 1984 [2] utilizing qubits encoded through
the polarization property of single photons. Later, several QKD protocols and their se-
curity proofs against an eavesdropper have been studied [3–14]. Various sources of single
and/or entangled photons (flying qubits) have proved to be good candidates for quantum
communication.

In 1989, the first table-top QKD experiment has been performed over a 32 cm quantum
channel length [15]. Quantum communication schemes can be performed using optical
fibers, terrestrial free-space optical (FSO), and satellite-based FSO implementations. Al-
though there have been numerous implementations of QKD protocols that are optical-fiber
based, the length of communication achieved have been only a few hundreds of kilometeres
due to the limitation of an exponential increase of fiber losses with length [16–19]. On the
other hand, a FSO (terrestrial and satellite) channel has proved to be a promising quan-
tum channel providing secure quantum communication for longer distances (globally) and
overcoming the problem of limited distant quantum communication through fibers [20–30]
for longer distances. The main challenge of implementing QKD protocols over free-space
link is due to atmospheric losses [31]. Other parameters such as timing, weather, protocol,
place (ground), etc. [32] also play important roles. The free-space losses can be broadly
categorized into geometrical losses and atmospheric losses. Every protocol has distance
limitations due to these losses that grow with the transmission distance. Several studies
mention these losses however a thorough quantitative study of the effect of the free-space
losses (particularly geometrical and atmospheric losses) for various standard QKD proto-
cols are not sufficiently investigated so far. Some of the FSO-based QKD protocols are-
Bennett and Brassard, 1984 (BB84) [2], six-state [3], Ekert, 1991 (E91) [4], and Bennett,
Brassard, and Mermin, 1992 (BBM92) [5]. Their performance comparison for particular
distances (different length scales) have not been studied in detail. In this paper, we have
theoretically compared the performance of free-space prepare-and-measure-based (BB84
and six-state) and entanglement-based (BBM92 and Ekert91) QKD protocols for differ-
ent channel lengths and studied the effect of atmospheric losses on the quantum bit error
rate (QBER) and the secure key rate (SKR). We have also explored the impact of device
imperfections through detection efficiencies, losses and other parameters.

The paper is organized as follows: in Sections 2 and 3, we discuss QBER, SKR and free-
space losses, the calculation of QBER and SKR for single-photon based QKD protocols
(BB84 and six-state) are discussed in Section 4. In Section 5, entangled-photon based
QKD protocols (E91 and BBM92) have been discussed. Finally, in Section 6, we have
concluded the results.
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Figure 1: Flow chart showing the steps involved in a general QKD protocol. In Ekert’s
protocol, one step is added that is Bell’s inequality test which is performed during sifting
process.

2 Quantum Bit Error Rate (QBER) and Secret Key

rate (SKR)

Quantum bit error rate (QBER) evaluates the information leakage to an unauthorized
third party (Eve) or due to imperfection of the physical devices. It is an important
criterion to evaluate the performance of various QKD systems and has been calculated
for various fiber-based or free-space QKD protocols [16–28]. It is defined as the ratio of
the wrong bits to the total number of bits received and can be expressed as [9]

Q =
Nwrong

Ntotal

=
Nerror

Ncorrect+error

∼=
Nerror

Nsift

, (1)

where Nsift is the sifted key when Alice and Bob choose the compatible basis and
Nerror(«Nsift) represents the error in the total number of bits. When, the QBER that
determines the security of the QKD protocol (ideally Q = 0; lower the value of QBER,
higher the security of the protocol or vice versa) is higher than the threshold value (vary
for different QKD protocols; e.g., 11% for BB84 and 12.6% for six-state protocol [13])
then they discard and repeat the QKD protocol. The non-zero value of QBER is due
to free-space losses, Eve's presence, noises, imperfections in the physical devices, etc. A
secret key can only be generated if the mutual information (IAB) of Alice and Bob is
greater than Eve’s information

(
IE(n)

)
[6, 13]. The secret key rate (SKR) is expressed as

S = nsift

[
IAB − IE(n)

]
, (2)

where IAB = 1−h(Q) = 1+Q log2(Q)+(1−Q) log2(1−Q), h(Q) is the Shannon entropy,
h(Q) = −Q log2(Q)− (1−Q) log2(1−Q) and nsift is the basis reconciliation factor (when
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Alice and Bob choose compatible bases).

3 Free-space losses (Geometrical/Atmospheric)

The main challenge of implementing QKD protocols over free-space optical (FSO) channel
is the free-space losses such as absorption, scattering, diffraction, turbulence, etc. and
are categorized in two parts (1) geometric (2) atmospheric [6] that hinder the photon
propagation in FSO channel. The geometric losses occur due to the spreading of the
beam propagating from the transmitter to the receiver [33–35]. It can be calculated as[

dr
dt+DL

]2
, where dr and dt are the diameters of the receiver and transmitter apertures,

respectively, D is the beam divergence and L is the channel length. The atmospheric
attenuation is described by the Beer-Lambert’s law τ = exp(−αL) dB/km, where α is
the atmospheric attenuation coefficient that include the absorption and scattering of the
atmospheric medium [35]. Thus, the total atmospheric loss can be expressed as

T =

[
dr

dt +DL

]2
exp (−αL) . (3)

Table1 shows the total channel losses that one can expect from geometrical and atmo-
spheric losses considered for different channel length scales: lab-scale, outside-lab and
larger-scale distances. As evident, for large channel lengths, the loss is mainly dominated
by the atmospheric losses (α) that exponentially increases with L. While for smaller chan-
nel lengths (lab scale), the channel loss is mainly dominated by the geometrical losses.

Table 1: Typical values of the total channel losses for different channel lengths.

L(m) dt(mm) dr(mm) D(mrad) α(dB/km) Channel loss (dB)
10 (lab-scale) 10 10 0.025 0.1 0.02

500 (outside-lab) 10 12 0.025 0.1 5.68
30,000 (larger-scale) 10 100 0.025 0.1 30.64

4 Single-photon based QKD protocols (BB84 and six-

state)

QKD protocols, based on single-photons, are routinely implemented using attenuated
pulsed lasers due to the challenge of obtaining sources of true single-photons. Such at-
tenuated laser sources are prone to information leakage through photon number splitting
(PNS) attack due to multiphoton pulse generation. A need for true single photon sources
have led to the research efforts in color centers [36], quantum dots [37], atoms [38], trapped
ions in a cavity [39], etc. Another popular technique for single-photon sources exploits the

4



0 1 0 2 0 3 00

1 0

2 0

3 0

4 0

0 1 0 2 0 3 01 0 0

1 0 2

1 0 4

1 0 6

0 1 0 2 0 3 00
2 0
4 0
6 0
8 0

1 0 0

0 1 0 2 0 3 01 0 0

1 0 2

1 0 4

1 0 6

QB
ER

(%
)

 η =  0 . 4
 η =  0 . 6
 η =  0 . 8

Se
cre

t k
ey

 ra
te 

(bi
ts/

s)  η =  0 . 4
 η =  0 . 6
 η =  0 . 8

QB
ER

(%
)

C h a n n e l  L o s s  ( d B )

 P n c  =  1 0 - 5

 P n c  =  1 0 - 4

 P n c  =  1 0 - 3

Se
cre

t k
ey

 ra
te 

(bi
ts/

s)

C h a n n e l  L o s s  ( d B )

 P n c  =  1 0 - 5

 P n c  =  1 0 - 4

 P n c  =  1 0 - 3

Figure 2: Variation of QBER and SKR for BB84 protocol as a function of channel loss
(T ) for different detector efficiency (η) and noise count probability (Pnc).

second-order susceptibility (χ(2)) of a nonlinear material through spontaneous parametric
down-conversion (SPDC) in which an intense laser interacts with a nonlinear material to
generate two down-converted photons (idler/signal). Conditioned on the detection of an
idler photon, the signal photon can be used as a resource of heralded single photon source.
Such heralded sources can be a promising candidate for implementing the single photon
based QKD protocols such as BB84 [2] and six-state [3].

BB84 is a four non-orthogonal state-based protocol in which Alice (sender) prepares
a string of single photons in one of the four polarization states | ↑⟩, | ↓⟩, | ↗⟩ and | ↖⟩
and send it to Bob (receiver) who randomly performs the measurement in the rectilinear
{| ↑⟩, | ↓⟩} or diagonal {| ↗⟩, | ↖⟩} bases and use the photons for key generation measured
in the same basis. An extended version of BB84 (six-state protocol) has been proposed
with more tolerance to noise that enhances the security compared to BB84 [3]. In this
protocol, six states | ↑⟩, | ↓⟩, | ↗⟩, | ↖⟩, | ⟳⟩, and | ⟲⟩ in three bases 1 (rectilinear,
diagonal and circular) is used. The extra choice of basis creates an obstacle on Eve's
measurement path and produces higher error rate. Consequently, Alice and Bob can
easily detect the Eve's presence. In both the protocols, Alice and Bob keep the photons
which are measured in the same basis (1

2
and 1

3
probability for BB84 and six-state protocol,

respectively [13]). For both the protocols, the error in the shifted key is calculated by
measuring the QBER [Eq.1]. There are mainly two contributions to Nerror (Popt and Pnc)
for single-photon based protocols. Thus, the total QBER can be calculated as [9]

Q = Popt + β
Pncn

Tηqµ
, (4)

where β = 1
2

for BB84 protocol and 2
3

for the six-state protocol, Popt is the probability of

1where | ↑⟩(| ↓⟩) = |H⟩(|V ⟩), | ↗⟩(| ↖⟩) = |H⟩+|V ⟩√
2

( |H⟩−|V ⟩√
2

), | ⟳⟩(| ⟲⟩) = |H⟩+i|V ⟩√
2

( |H⟩−i|V ⟩√
2

).
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Figure 3: Variation of QBER and SKR for six-state protocol as a function of channel loss
(T ) for different detector efficiency (η) and noise count probability (Pnc). For top row
graphs, Pnc = 10−5 and for bottom row graphs, η = 0.6.

incorrect detections of the photons due to imperfect interference or polarization contrast,
Pnc is the probability of overall noise counts that include the detector dark counts and the
background counts, q (1 or 0.5) is used to correct the non-interfering path combinations,
n is the number of detectors, η is the detector efficiency, T is the channel transmittance,
and µ is the mean photon number (µ = 1 for single photon sources). The secret key rate
for BB84 and six-state protocol is calculated as [13]

SBB84 =
1

2
νST [1 + 2Q log2Q+2(1−Q) log2(1−Q)] , (5)

Ssix−state =
1

3
νST

[
1 +

3Q

2
log2

Q

2
+

(
1− 3Q

2

)
log2

(
1− 3Q

2

)]
. (6)

where νS is the heralded single photon counts at the sender’s side. For the present
study, we have considered a type-0 SPDC source with a brightness (photon-pairs per unit
mW pump power) of νS = 0.64× 106 cps/mW from Ref. [40].

Figures 2 and 3 show the calculated QBER and SKR for BB84 and six-state protocols,
as a function of the channel loss at different detector efficiencies (η = 0.4, 0.6, 0.8) and
noise count probabilities (Pnc = 10−5, 10−4, 10−3) for q = 0.5, µ = 1, Popt = 0.001,

νS = 0.64 × 106 cps , n = 4. In these figures, the black dashed-dotted line shows the
threshold value of QBER for the respective protocols. A maximum threshold of 11% and
12.6% (η = 0.4, black dotted line in Figures 2 and 3) for BB84 and six-state protocol
yield a noise tolerance of 33dB and 36dB, respectively. The noise tolerance increases with
an increase (decrease) of the detector efficiency (noise count probability). Moreover, the
SKR is high when channel losses are low and decreases sharply to the threshold limit of
33dB and 36dB, respectively, corresponding to the threshold value of QBER. We infer
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that detectors with high efficiency, that affect the overall noise counts, are required to
tolerate high channel losses or longer channel lengths.

Figure 4 shows the calculated SKR of BB84 and six-state protocol at different channel
losses for η = 0.6 and Pnc = 10−5. Since, the six-state protocol utilizes three MUBs, more
information about the Eve’s presence can be obtained, resulting in a higher bit error rate
threshold and higher noise tolerance.
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Figure 4: Comparison between the BB84 and six-state protocol with respect to channel
loss for η = 0.6 and Pnc = 10−5.

5 Entanglement-based QKD protocols

Artur Ekert proposed the first entanglement-based QKD protocol [4] by exploiting the
maximally entangled states that violate the Clauser-Horne-Shimony-Holt (CHSH) in-
equality [41]. It utilizes the three randomly selected bases to measure the polarization of
the entangled-photon. The extra basis is required to perform the Bell’s inequality test that
directly detects the presence of an eavesdropper without revealing the key information.
Nonlinear optical techniques like, SPDC and spontaneous four-wave mixing (SFWM) have
been capitalized to generate the polarization entangled-photon. Such entangled-states in-
trinsically increase the security of the shared information, govern by the inherent quantum
nature of the source. The degree of violation of a Bell inequality is used to quantify the
quality of entanglement between the photon-pairs, for which Bell parameter (SCHSH) is
calculated as

SCHSH = |E
(
θ1A, θ

1
B

)
+ E

(
θ1A, θ

3
B

)
− E

(
θ3A, θ

1
B

)
+ E

(
θ3A, θ

3
B

)
|, (7)

where E
(
θiA, θ

j
B

)
is the correlation coefficient at two different orientation of the ana-

lyzers of Alice and Bob corresponding to different chosen bases, i and j, respectively.
Here are the different cases of the calculated S parameter:

• |SCHSH | ≤ 2 implies an extreme case of destruction of entanglement signifying the
classical nature of the source with no chance of a key generation.
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• |SCHSH | = 2
√
2 represents a perfectly entangled state (maximum value of the vio-

lation of the Bell’s inequality). This is an ideal scenario.

• For 2 < |SCHSH | < 2
√
2 implies a real situation with Eve’s presence and/or noise

detection. The sifted key may not be discarded and can be used to generate a secret
key after classical post-processing algorithms, used for error correction and privacy
amplification.

We consider a SPDC source that generates entangled photon-pairs and sends them
through the turbulent medium (atmosphere) to the receiver stations A(Alice) and B (Bob).
One of the maximally entangled polarization state can be expressed as:

|ψ⟩ = 1√
2

(
|H⟩A|V ⟩B + eiφ|V ⟩A|H⟩B

)
, (8)

where, H and V are the polarizations of the photon-pair and φ is the relative phase.
The randomly chosen orientation of the analyzer angles at A and B are (θ1A, θ

2
A, θ

3
A

= 0, π
8
, π

4

)
and

(
θ1B, θ

2
B, θ

3
B = −π

8
, 0, π

8

)
, respectively. For φ = π and (θ1A, θ

3
A, θ

1
B, θ

3
B )

=
(
0, π

4
, −π

8
, π

8

)
, a maximal value (2

√
2) of SCHSH is reached for the |ψ⟩ state, for which

the correlation coefficient can be calculated as [42]

E (θA, θB) = N [−cos2θAcos2θB + cosφ sin2θAsin2θB] ,

where N is a constant that depends on the noise counts and atmospheric losses, leading
to a reduction in SCHSH and defined as [42]

N =
psη

2
t

ps [ηt + 2Pnc (1− ηt)]
2 + 2p1Pnc [ηt + 2Pnc (1− ηt)] + 4p0P 2

nc

.

where, ps = TA · TB is the Bell state probability with TA(B) (Eq. 3) being the tranmission
cofficient of the receiver stations A(B) 2, p1 = pHA

+ pVA
+ pHB

+ pVB
is the sum of

the probability of a single-photon state calculated as: pHA
= 1

2
(TA (1− TB)), pHB

=
1
2
(TB (1− TA)), pVA

= pHA
, pVB

= pHB
(H and V are the horizontal and vertical modes,

respectively). Here ηt is the total detection efficiency which is the product of detector
efficiency (η) and photon collecting efficiency (ηc = 0.6).

The variation of the Bell parameter as a function of channel loss with different detection
efficiencies (η) and probability of noise counts (Pnc) is shown in Figure 5. It is evident that
entanglement can survive and tolerate higher losses for lower noise counts (black dashed
line). The purple solid line shows the threshold of Bell’s inequality (SCHSH = 2) signifying
a witness of the entanglement or non-locality (quantum phenomenon). Although an
implementation of the Ekert’s (E91) protocol is partly complicated as it requires the
Bell’s inequality test to detect Eve’s presence, however it has the quality of utmost and
unconditional security (more secure even for devices that are not trusted) and can be

2We have considered Alice’s and Bob’s stations to be exposed to equal losses (TA = TB).
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Figure 5: Effect of the channel losses on the entanglement quality for different detection
efficiencies and noise counts.

used in a special case where other protocols (e.g., BBM92, BB84) fail to perform. The
E91 protocol is a fully device-independent QKD (DIQKD) protocol, which facilitates the
unconditional security without any trusting the QKD device [43].

In 2007 [44], Acin et al. derived a formula for unconditional security bound IE =

h

(
1+
√

S2/4−1

2

)
and the relation SCHSH = 2

√
2 (1− 2Q) for the E91 protocol. It is clear

that when Q ∼= 14.6% then SCHSH = 2, and therefore no secure key can be generated. In
Figure 6, we have plotted the QBER and SKR as a function of channel loss for different
detection efficiences and probabilities noise counts using

SE91 =
1

3
νsT

[
1− h(Q)− h

(
1 +

√
S2
CHSH/4− 1

2

)]
. (9)

The necessary condition (Bell’s inequality violation) or the need of an extra basis to
calculate the amount of information leaked by eavesdropper was removed by Bennett,
Brassard, and Mermin in their 1992 protocol (BBM92) [5]. In this entanglement-based
BBM92 protocol, Alice and Bob use two mutually unbiased bases (rectilinear or diagonal)
to randomly perform the measurement on the entangled photons (entanglement version
of the BB84 protocol). The classical error correction and privacy amplification part is
similar to the BB84 protocol. In this protocol, a central SPDC source generates entangled
photon pairs, one of which is sent to Alice while the other photon is sent to Bob. Alice and
Bob randomly choose the basis to perform the measurement on the incoming photons. In
an ideal scenario (no eavesdropping), if Alice and Bob choose the same basis, then their
measurement outcome will always be same or completely correlated as the two photons
of an Einstein–Podolsky–Rosen (EPR) pair are correlated. Thus a symmetric key (sifted
key) is generated (which is discarded when they measure in the different bases). Then,
they perform classical error correction and privacy amplification to estimate the QBER.
Any attempt of an eavesdropper to intervene (on the source or on the photons) will
destroy the entanglement and introduce an error in the sifted key. This is the witness
of entanglement in BBM92 protocol, while Eve’s information is bounded by evaluating

9
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Figure 6: Plots of the QBER and SKR in terms of channel loss with varying η and Pnc

for E91 protocol. For top row graphs, Pnc = 10−5 and for bottom row graphs, η = 0.6.

Bell’s inequality whose violation (non-locality) is the witness of entanglement in Ekert91
protocol.

In an entanglement-based QKD protocol, imperfections in the entangled photon pair
sources are characterized by the two photon interference visibilites based on the polariza-
tion correlations VHV and V±45 in the HV and ± bases, respectively. Intrinsic QBER of
a QKD system is calculated as qi = 1−Vtot

2
, where Vtot = VHV +V±45

2
which can be directly

calculated by performing two-photon interference measurements [30].
We consider two situations in the BBM92 protocol:
(1) When the source at Alice’s side
(2) When the source placed in the middle.
In both cases, the raw key rate is half of the detected coincidence rate,

rsig =
1

2
rcT, (10)

where rc is the coincidence rate corresponding to single event rates r1 (Alice’s detector)
and r2 (Bob’s detector) which include detector efficiencies and T is the transmission of
the entire quantum channel. The accidental coincidence rate where only one detector is
exposed to the background events is given by [28] ,

ra(single) =
1

2
(r1 − Trc) (rbg + T (r2 − rc)) τc, (11)

When the source is in the middle, both detectors are exposed to the background events
in which case the accidental coincidence rate is expressed as:

ra(both) =
1

2
(rbg + T (r1 − rc)) (rbg + T (r2 − rc)) τc, (12)

10
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Figure 7: Variation of QBER and SKR with respect to channel loss for different values of
η and Pnc, when source at Alice’s side (BBM92). For top row graphs, Pnc = 10−5 and for
bottom row graphs, η = 0.6.

where rbg is an external background event rate calculated as rbg = Pncr1(r2), τc is a
coincidence time interval. The total QBER is [28],

Q =
1

rsig + ra

(
qirsig +

1

2
ra

)
. (13)

We have adapted the value of the parameters from an experimental study that con-
siders [40]: νS = r1 = r2 = 0.64 × 106, rc = η2η2cr1; where ηc is the photon collection
efficiency into the fiber and η is the detector efficiency, and τc = 2 ns, qi = 0.043 [28].

When the source is in the middle both arms are exposed to detector error, background
counts and other losses. Hence there impact is doubled in comparison to the situation
when the source is at Alice’s or Bob’s side (only one arm exposed to the losses and errors),
therefore QBER is always higher in the second case of BBM92. Figures 7 and 8 show the
effect of free-space losses on QBER and SKR for different detector efficiencies and noise
count probabilities. The entanglement-based QKD is a basis-independent QKD because
the state emitted from the EPR source is independent of the measurement bases in Alice’s
and Bob’s side [45]. The unconditional security in these cases are established by Koashi
and Preskill [12] and improved by Ma, Fung, and Lo [45]. The secret key generation rate
for the BBM92 protocol at the QBER threshold value of 11% is,

SBBM92 =
1

2
νST [1− f (Q)h2 (Q)− h2 (Q)] . (14)

here, f (Q) is the bidirection error correction efficiency as a function of error rate. The
values of f (Q) for different error rates may be found in Ref. [46].

Figure 9 shows the QBER and SKR comparing the two above situations of the BBM92
protocol. We see that when the source is in the middle, the protocol tolerates higher
channel losses, almost double compared to the situation when the source is at Alice’s

11



0 2 0 4 0 6 0 8 0 1 0 0 1 2 00

1 0

2 0

3 0

4 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 01 0 - 8
1 0 - 6
1 0 - 4
1 0 - 2
1 0 0
1 0 2
1 0 4
1 0 6

0 2 0 4 0 6 0 8 00
1 0
2 0
3 0
4 0
5 0

0 2 0 4 0 6 0 8 01 0 - 5
1 0 - 3
1 0 - 1
1 0 1
1 0 3
1 0 5

QB
ER

(%
)

 η =  0 . 4
 η =  0 . 6
 η =  0 . 8

Se
cre

t k
ey

 ra
te 

(bi
ts/

s)  η =  0 . 4
 η =  0 . 6
 η =  0 . 8

QB
ER

(%
)

C h a n n e l  L o s s  ( d B )

 P n c  =  1 0 - 5

 P n c  =  1 0 - 4

 P n c  =  1 0 - 3

Se
cre

t k
ey

 ra
te 

(bi
ts/

s)

C h a n n e l  L o s s  ( d B )

 P n c  =  1 0 - 5

 P n c  =  1 0 - 4

 P n c  =  1 0 - 3

Figure 8: QBER and SKR with varying η and Pnc in terms of channel loss, when source
placed in the middle (BBM92). For top row graphs, Pnc = 10−5 and for bottom row
graphs, η = 0.6.
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Figure 9: Comparison of BBM92 QKD protocol as a function of channel losses when
source is Alice 's side and at the middle for η = 0.6 and Pnc = 10−5.

side.

6 Conclusion

We have theoretically studied and compared four different QKD protocols based on single-
photon (BB84 and six-state) and entanglement-photons (Ekert91 and BBM92) by eval-
uating the QBER and SKR for free-space losses and device imperfections. The role of
detector efficiency and noise counts for different channel losses is studied and shown in
Figures 2, 3, 5-8. It is shown that an increment in the channel loss leads to a higher
QBER resulting in a lower SKR for both single-photon and entangled-photon based QKD
protocols. The detector efficiency greatly affects the QBER and SKR for larger chan-
nel loss (channel length) due to the exponential rise of channel losses compared to lower
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channel lengths (especially in lab-scale implementations). The numerically calculated val-
ues of the QBER and SKR are considered for QKD protocols at different length scales:
lab-scale, outside-lab and larger-scale distances is shown in Table 2.

Table 2: The expected QBER and SKR for different QKD protocols at different channel
lengths for η = 60% and Pnc = 10−5.

Channel BB84 Six-state BBM92 E91
Length QBER SKR QBER SKR QBER SKR QBER SKR

(%) (bits/sec) (%) (bits/sec) (%) (bits/sec) (%) (bits/sec)
10 m 0.107 3.11× 105 0.105 2.09× 105 5.18 1.16× 105 0.006 2.1× 105

500 m 0.125 0.84× 105 0.12 0.57× 105 5.22 0.31× 105 0.007 1.8× 105

30 km 7.6 86 5.21 132 5.24 106 7.17 4.42

Since, the atmospheric losses are inevitable and cannot be controlled, to obtain a
low QBER, near-to-perfect devices are desirable that have high efficiency and minimal
losses. In this study, we have considered practical values of different parameters (de-
tector’s efficiency, background counts, coincidence rates, diameter of the receiver and
transmitter apertures, beam divergence etc.) for different QKD protocols pertaining to
practical systems. We have shown that secret key generation is possible even under at-
mospheric losses within certain ranges of parameter values. Also, a comparative study
of the protocols under the single photon/ prepare-and-measure technique as well as the
entanglement-based technique (Figures 4 and 9) show that the single (entangled) pho-
ton based six-state (BBM92) protocol tolerates higher channel losses compared to BB84
(E91) protocol. Two cases of source (entangled photon) position for BBM92 protocol are
considered and compared (Figure9), which proves that when the source is placed in the
middle it can tolerate higher channel losses (almost double) as compared to the situation
when the source is placed at Alice’s side. A benefit of such comparative studies is to
facilitate researchers with parameters and values from a practical consideration helping
them to select high performace based QKD protocol for free-space under considered at-
mospheric conditions. The present theoretical work can be utilized by experimentalists to
implement practical QKD protocols under different conditions and can be extended for
longer distances or for satellite based applications.
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