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Abstract Facial expressions bring human interactions

to life with nonverbal cues that convey hues of

emotions, feelings, and cultural intent. Analyzing

these expressions is essential in the age of digital

transformation. Traditional approaches to real-time

facial expression analysis have limitations in capturing

the complexity of these expressions and consume

enormous computational power. The promising

computing capacity of quantum computers is poised

to solve current problems and set new standards

by meeting growing demands. We have created a

hybrid model that leverages the capabilities of the

classical and quantum domains. The proposed model

uses a quantum distance-based classifier along with

classical artificial neural networks to perform real-time

facial expression analysis and classification. Based on
a thorough review of the literature, this novel and
comprehensive work is, to the best of our knowledge,
one of the few that addresses eight different emotions

in the quantum domain. The implementation of a

novel quantum error correction method has improved

the accuracy of this hybrid model. Our model was

trained on the CK+ facial expression database. To
ensure fairness of the study, we tested our model on
the largest facial expression database, AffectNet-8,
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and compared the performance with state-of-the-art

models. Our model accuracy is 10.83% higher than

that of the state-of-the-art models. From a holistic

perspective, our proposed novel hybrid model appears

to have universal value for all kinds of real-time image

analysis and classification problems. As we move

forward, we planned to focus on quantum neural

networks for image processing and facial expression

analysis.

Keywords Quantum Facial Expression Analysis ·
Quantum Image Classification · Quantum-Classical

Hybrid Model · Quantum Distance-based Classifier ·
Hybrid ANN FEA

1 Introduction

The emotional aspects of facial expressions are
crucial for pragmatic study, interpretation and deeper
assimilation of human behaviour. Traditional facial
expression analysis (FEA) models typically rely on

machine learning (ML) algorithms [1] running on

classical computers. However, the ever-growing demand

for faster and more efficient real-time image processing

[2] has spurred interest in exploring the potential of
novel approaches such as quantum computing [3], to
accelerate FEA tasks.

In this work, we present QUADCANN, a

novel hybrid FEA model, which combines classical
artificial neural networks (ANN) [4] with a quantum
distance-based classifier (QDC) [5]. Our proposed

hybrid model leverages the strengths of both deep

learning (DL) and quantum computing [6] to enhance

the accuracy and performance of facial expression

classification tasks [7]. The distances between test

instances and training instances were measured by
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the QDC [5]. The measured distances and its labels

were used to train the ANN model [4]. Subsequently,

we account for error handling [8, 9] and normalize

the output to improve the model’s accuracy. In this

paper, we considered 8 facial expressions: {Angry

(A), Contempt (C), Disgust (D), Fear (F), Happy
(H), Neutral (N), Sad (S), and Surprise (O)} for

classification.
The rest of the paper is organized as follows. Recent

works in FEA [5, 10–12] and QDC [4, 9] research are

summarized in Section 2. Specifics of QUADCANN

model, QDC, ANN architecture, and novel error

correction method are detailed in Section 3. Our

computational experiment setup and findings from the

comparative study are presented in Section 4. Section

5 concludes with our conclusions and recommendations

for further research.

2 Related Work

This section presents recent studies on image

classification, encompassing facial recognition, feature

extraction, and emotion detection. With the rise of

neural networks in computer vision, many FEA models

combined with neural networks have emerged. Razuri

et al. [10] developed an automated emotion recognition

system using an ANN. In this study, neural networks

are static networks that do not have any temporal

relationships between inputs and outputs. Nath et

al. [11] presented a comprehensive survey of image

classification techniques, and Giuseppe et al. [12]

compared face verification methods. Owayjan et al.

[4] used a multilayer perceptron with backpropagation

in the development of an ANN model for feature

extraction and classification. Only three expressions

can be classified by the model: neutral, angry, and

happy. Nonetheless, these results are highly precise and

have opened the door for the further development of

real-time FEA applications.

Fathallah et al. [13]. presented a novel convolutional
neural network (CNN) architecture for FEA. The

network was refined using the visual geometry group

(VGG) model to achieve better accuracy. The results

demonstrate that the refined CNN approach shows

improvements in facial expression analysis. The model

has also been tested on numerous public databases and
shows consistent results. Jain et al. [14] developed a
deep CNN model that contains two residual blocks,

each containing four convolutional layers. The model

was trained on Japanese female facial expression

(JAFFE) [15] and extended Cohn-Kanade CK+ [16]

databases following a preprocessing step that allows

image cropping and intensity normalization. Yue et

al. [17] used a modular multichannel deep convolutional

neural network to construct an FEA model. A global
average layer was used in the network output to
prevent overfitting. Data enhancement on the dataset

prior to training increased the model’s capacity for

generalization.

As stated by Christopher et al. [18], due to

computational constraints, the majority of the classical

models are trained using low resolution grayscale

image datasets. To obtain the required accuracy, a

large dataset of training images and high processing

power are needed. Quantum computing (QC) has

the potential to revolutionize image processing and

offers a new approach to solving these problems. QC

can execute certain complex image processing ML
algorithms much faster and more efficiently [19] than
classical computers.

Schuld et al. [5] built a quantum interference

circuit using Hadamard gates to compute the distance
between the image features in a quantum parallel and

explored the potential of the QDC. The model by

Mengoni et al. [20] utilizes Schuld et al.’s [5] quantum

interference circuit for classifying facial expressions.

However, Mengoni et al. [20] identified the closest
match by evaluating the distance between a test
instance and a random instance from each training
batch. Hence, representative selection becomes crucial

for the model. Khurelsukh et. al. [21] attempted

to solve the data re-uploading concept of the FEA

problem on the qubit(s) of parameterized quantum

circuits in the model’s convolutional layer. This resulted
in a validation accuracy of 70.25% on the test set.
Subsequently, an ensemble model averaging method

was used, and the results encouraged further research.

Bhatt et al. [22] created a model by applying meta

heuristic algorithm inspired by quantum mechanics.

The deep CNN receives features and adds residual

blocks for classification. As the yaw angle increases, the
algorithm performance decreases.

Several types of noise can affect the output of

quantum computing. Therefore, it is important to
consider the different types of quantum error to achieve
near-error-free output. Majumdar et al. [23] offer an

error estimation technique through sparse scheduling,

that can help lower the quantity of error correcting

blocks needed. Swathi et al. [24] proposed a qubit

encoding method for the correction of quantum errors.

Kukulski et al. [8] used probabilistic error correction

methods to correct the measurement errors. The

probability of successful error correction required an

additional physical qubit to restore a qubit state.

Rengasamy et al. [25], aimed to solve the FEA

problem by combining QDC with a classical linear
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support vector machine in a hybrid model. The model

reached its maximum accuracy of 85% against the

custom-built FEA dataset, leaving scope for further

improvement. Zheng et al. [26] created a two-stream

pyramid cross-fusion transformer network (POSTER)

model to merge image features with facial landmark

features. However, POSTER’s enormous computational

effort has led researchers to look for ways to further
improve the model. Mao et al. [27] sought to resolve
this problem. To achieve the required accuracy,

the architecture of POSTER was enhanced and

POSTER++ was proposed, which combines images

with multiscale features of landmarks. Nevertheless, the

model achieved a maximum accuracy of 63.77% on the

AffectNet-8 [28] dataset, which leaves room for further

improvement.

The QUADCANN model draws inspiration from

Owayjan et al.’s [4] use of artificial neural networks,

Mengoni et al.’s [20] QDC, Kukulski et al.’s [8] quantum

error correction method and Rengasamy et al.’s [25]
hybrid approach to further increase the accuracy.

3 Quantum-Classical Hybrid Model

Current research shows that there is a growing interest

in combining different models [11]. Aligned with the

current trend, we propose a quantum classical hybrid

classifier model, as shown in Fig. 1. This model

combines the computational power of QC with the

accuracy of the classical DL algorithm for better

prediction. In a classical computer, an image is

constructed as an array of pixels with corresponding

RGB color intensities and locations. It is merely a

matrix representation of classical bits. On a quantum

computer, all types of images or data are represented

as qubits, denoting the quantum states that hold the

data. Image analysis and conversion into a quantum

state representation [29] in qubits are performed before

processing the image using a quantum algorithm.

We have briefly illustrated the proposed work in the
following subsections.

Fig. 1. Quantum-Classical Hybrid Model

3.1 Proposed Algorithm

Our algorithm considers the FEA techniques described

in the introduction, as shown in Fig. 2. We begin

by identifying facial landmarks using the 68-point

landmark detection method. Following the detection

of landmark points, the Delaunay triangulation [30]

method is used to extract features from mouth points,

which are represented as eigenvectors and values in a

hollow symmetric matrix. The distances between each

training and test instances are then computed using

the QDC and normalized, accounting for quantum
measurement errors. The training set of an ANN is
constructed with these normalized distances and used

for classification prior to putting the model under test.

After training, the model is used to classify the given

facial expression.

Fig. 2. Quantum-Classical Hybrid Model Algorithm

3.2 FEA Image Dataset

The CK+ [16] database is regarded as most widely

used facial expression database in FEA models.

QUADCANN model also required high resolution RGB

and grayscale images to study efficiency. Using images

with the resolution of 640×480 from CK+ database,
we were able to generate high resolution (2048×1080)

image dataset. Therefore, the CK+ database was

used to train the QUADCANN model. The AffectNet

database [28] was used to benchmark the efficiency

of SOTA models. For fair comparison, the AffectNet

database was used to test the efficiency of the

QUADCANN model.
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3.3 Image Segmentation using 68-points Landmark

Detection

Detection of facial landmarks forms the basis for FEA,

and 68-point landmarks on a human face are detected

using the histogram of oriented gradients (HOG) DL

method [12], as shown in Fig. 3.

Fig. 3. Histogram of Orientated Gradient Extraction

from Face

These points are represented as an array of 68

(x, y) coordinates, with x, y ∈ R mapped to the facial

structures, as shown in Fig. 4a. Features of lips are the

anchors for all known facial expressions. For lip feature

extraction, the outer (49-60) and inner (61-68) lip

points are selected from the 68-point facial landmarks,
as shown in Fig. 4b.

(a) (b)

Fig. 4. (a) 68 Landmark Points Marked (b) Region of
Interest from 68 Landmark Points

After successfully detecting these inner and outer
lip landmark points, feature extraction was performed.

3.4 Feature Extraction

Feature extraction creates a weighted undirected

graph using Delaunay Triangulation [30] and chordal

graph [31] methods. The resulting chordal graph is

represented by anN×N matrix, whereN is the number

of vertices. Each vertex is represented in the form of

(x, y), as shown in Fig. 5.

Fig. 5. Chordal Graph Encoding using Delaunay

Triangulation

After feature extraction, image classification is
performed using the QDC algorithm. In addition to

the QDC, we conducted a comparative analysis with
the classical distance-based classifier (CDC).

3.5 Quantum Distance-based Classifier(QDC)

A QDC is constructed based on quantum computing
principles such as superposition, entanglement, and

interference to calculate the distance between data
points. This involves encoding the data into quantum
states, using quantum algorithms to measure the

distances and classify the data. Ten quantum registers

were used to build the QDC circuit [9] for the specific

FEA problem addressed in this context, as shown in

Fig. 6. This circuit was constructed using auxiliary [|a⟩],
index [|i⟩], data [|d⟩], and class [|c⟩] registers.

In quantum computing, for a feature vector G =

[g1, g2, ..., gd] represents the chordal graph, and the

corresponding quantum state of the vector |G⟩ is
represented by elements d and normalization constant

γ, as in Eq. (1).

|G⟩ = 1

γ

d
∑

k=1

gk|k⟩ where γ =

√

√

√

√

d
∑

k=1

|gk|2 (1)

The distance between the vectors (qdtest→x) is
calculated using quantum interference with Gtest
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Fig. 6. Quantum Distance-based Classifier Circuit

(vector of test face) and Gx (vector of 8 expression

faces), as in Eq. (2).

qdtest→x = QuantumDistance(|Gtest⟩, |Gx⟩)

=
1

2
√
2
(|0⟩a(|Gtest⟩+ |Gx⟩)d)

+ (|1⟩a(|Gtest⟩ − |Gx⟩)d)|x⟩i|yx⟩c

=
1

2
√
2

|1⟩
∑

Q=|0⟩

(Qa(|Gtest⟩+ |Gx⟩)d)|x⟩i|yx⟩c

(2)

The accuracy of the QDC is determined solely by
the representatives of each emotion in the training

set. This made us think about making further

improvements to achieve better accuracy. To increase

the accuracy, we combined the QDC model with an

ANN, as it has the ability to learn from input data.

After training, the ANN can predict the right output

for the given input that it has never ”seen” before.

3.6 Quantum Error Correction (QEC)

Quantum computers are vulnerable to multiple sources
of noise, such as qubit decoherence, individual gate

errors, and measurement errors. During measurement,

errors are added to the qubits. Due to quantum

measurement errors [32], it is possible that a class

receives greater weight. Therefore, QDC predictions are

prone to bias. To address these errors, we propose to

modify Kukulski et al’s [8] probabilistic error correction

method, as shown in Fig. 7. This was achieved by using

the auxiliary qubit as a probabilistic error checker.

The auxiliary qubit was set to either |0⟩ or |1⟩ before

executing the circuit. After execution, output of the

auxiliary qubit was compared to it’s original state.

If the final state of the auxiliary qubit differed from

its initial state, the output was deemed to be an

error. As a result, the overall output does not include
this measurement and was excluded. The output was
regarded as expected only if the initial and final states

of the auxiliary qubit were measured and found to be

the same.

Fig. 7. Modified probabilistic error-correcting

procedure

To accommodate this QEC method, we propose
a change in the distance function, as in Eq. (3). To

the best of our knowledge, this novel quantum error
correction method is the first of its kind for real-time
image processing.

QEC = D(|test⟩, |x⟩) = εcorr(qdtest→x)

= N × qdtest→x
∑

v∈[X]

P (|Gv⟩)

=
N

2
√
2
×

|1⟩
∑

Q=|0⟩

(Qa(|Gtest⟩+ |Gx⟩)d)|x⟩i|yx⟩c
∑

v∈[X]

P (|Gv⟩)

(3)

where [X] = {A,C,D, F,H,N, S,O} . To enhance

accuracy, unlike classical models, N shots were

taken with the same representatives, and probabilities

P (|Gv⟩) were calculated. Adjusting for errors and

normalized distances, a training set is then created
by transforming the symmetric N × N matrix into

eigenvectors and eigenvalues.

3.7 Creation of Training Set for ANN

Training sets for all eight emotions are created using the

distance measured by the QDC, as in Eq. 4, as shown

in Fig. 8.
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Fig. 8. Training Set Creation Using the Distances

Measured by the QDC as Features

SX =
m−1
⋃

i=1

[D(|xi⟩, |ai+1⟩), D(|xi⟩, |ci+1⟩), D(|xi⟩, |di+1⟩),

D(|xi⟩, |fi+1⟩), D(|xi⟩, |hi+1⟩), D(|xi⟩, |ni+1⟩),
D(|xi⟩, |si+1⟩), D(|xi⟩, |oi+1⟩), Yi] (4)

where X is the test emotion instance vector, x

is the eigenvalue of the emotion instance vector X,

a, c, d, f, h, n, s, and o are the eigenvalues of the emotion

instance vectors, m is the number of instances, and Y is

an actual class of the vector. To build the QUADCANN

model, the datasets generated above are then merged

together, as in Eq. 5.

S =
⋃

vϵ[X]

Sv

= SA ∪ SC ∪ SD ∪ SF ∪ SH ∪ SN ∪ SS ∪ SO (5)

Table I shows the complete training set generated

from the Eq. 5.

3.8 Feed Forward to Classical ANN

Multiclass classification of the nonlinear inputs is

performed via the ANN architecture, as shown in Fig. 9.

A network is constructed with the input layer accepting

eight input features and two hidden layers each having

25 neurons with ReLU [33] activation functions, as in

Eqs. 6 & 7.

z =

N−1
∑

i=0

WiFx + b

= W0Fa +W1Fc +W2Fd +W3Ff

+W4Fh +W5Fn +W6Fs +W7Fo + b (6)

where N = The number of input features, Wi

= The weights calculated using gradient descent

[34], Fxϵ[a,c,d,f,h,n,s,o] = Dxϵ[a,c,d,f,h,n,s,o] (distance to

respective emotion instance vectors), and b = bias.

R(z) = max(0, z) = Zj (7)

A softmax [35] function is employed in the

classifier’s output layer to provide class decision

probabilities, as shown in Eq. 8.

Softmax(Zj) = σ(Zj)

=
eZj

N
∑

i=1

eZi

(8)

where Zj = Input of the softmax function.

During training, the network employs a

backpropagation technique to minimize the binary

cross-entropy loss function, as shown in Eq. 9. This

network calculates the weights of all classes.

H(Yj , Ŷj) = −
∑

jϵ[a,c,d,f,h,n,s,o]

Yj logŶj (9)

where Ŷj is the predicted label, which is

Softmax(Zj) and Yj is the true label. After training

the model, predictions were made based on decision
probabilities. The model was observed to be consistent

with its informed prediction by churning out either

an extremely positive or negative output even in an

imperfect situation.

4 Results Analysis

Along with the construction and assessment of the

QUADCANN model, we studied the performance of the

CDC and QDC models in isolation. Subsequently, the

results of these studies were compared and interpreted.

4.1 Results on the CK+ dataset

The QUADCANN model was trained using a nonlinear
dataset (a subset of the CK+ dataset [16]) as shown
in Fig. 10. For comparison, grayscale and RGB
images comprising low-resolution (LD) (96×96) and

high-resolution (HD) (1024×1024) images were used.

We used both training and testing accuracy as the
basis for our evaluation. Note that there would be

minor variations in the model’s accuracy between its
independent training phase and the testing phase.
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TABLE I. Training set generated from the QDC for ANN classifier with normalized distances as features

(Fa, Fc, Fd, Ff, Fh, Fn, Fs, Fo) of respective emotions instance vector

Fa1 Fc2 Fd3 Ff4 Fh5 Fn6 Fs7 Fo8 Y 9

0 D(|ai⟩, |ci+1⟩) D(|ai⟩, |di+1⟩) D(|ai⟩, |fi+1⟩) D(|ai⟩, |hi+1⟩) D(|ai⟩, |ni+1⟩) D(|ai⟩, |si+1⟩) D(|ai⟩, |oi+1⟩) Anger
0 ... ... ... ... ... ... ... Anger
D(|ci⟩, |ai+1⟩) 0 D(|ci⟩, |di+1⟩) D(|ci⟩, |fi+1⟩) D(|ci⟩, |hi+1⟩) D(|ci⟩, |ni+1⟩) D(|ci⟩, |si+1⟩) D(|ci⟩, |oi+1⟩) Contempt
... 0 ... ... ... ... ... ... Contempt
D(|di⟩, |ai+1⟩) D(|di⟩, |ci+1⟩) 0 D(|di⟩, |fi+1⟩) D(|di⟩, |hi+1⟩) D(|di⟩, |ni+1⟩) D(|di⟩, |si+1⟩) D(|di⟩, |oi+1⟩) Disgust
... ... 0 ... ... ... ... ... Disgust
D(|fi⟩, |ai+1⟩) D(|fi⟩, |ci+1⟩) D(|fi⟩, |di+1⟩) 0 D(|fi⟩, |hi+1⟩) D(|fi⟩, |ni+1⟩) D(|fi⟩, |si+1⟩) D(|fi⟩, |oi+1⟩) Fear
... ... ... 0 ... ... ... ... Fear
D(|hi⟩, |ai+1⟩) D(|hi⟩, |ci+1⟩) D(|hi⟩, |di+1⟩) D(|hi⟩, |fi+1⟩) 0 D(|hi⟩, |ni+1⟩) D(|hi⟩, |si+1⟩) D(|hi⟩, |oi+1⟩) Happy
... ... ... ... 0 ... ... ... Happy
D(|ni⟩, |ai+1⟩) D(|ni⟩, |ci+1⟩) D(|ni⟩, |di+1⟩) D(|ni⟩, |fi+1⟩) D(|ni⟩, |hi+1⟩) 0 D(|ni⟩, |si+1⟩) D(|ni⟩, |oi+1⟩) Neutral
... ... ... ... ... 0 ... ... Neutral
D(|si⟩, |ai+1⟩) D(|si⟩, |ci+1⟩) D(|si⟩, |di+1⟩) D(|si⟩, |fi+1⟩) D(|si⟩, |hi+1⟩) D(|si⟩, |ni+1⟩) 0 D(|si⟩, |oi+1⟩) Sad
... ... ... ... ... ... 0 ... Sad
D(|oi⟩, |ai+1⟩) D(|oi⟩, |ci+1⟩) D(|oi⟩, |di+1⟩) D(|oi⟩, |fi+1⟩) D(|oi⟩, |hi+1⟩) D(|oi⟩, |ni+1⟩) D(|oi⟩, |si+1⟩) 0 Surprise
... ... ... ... ... ... ... 0 Surprise

1 Distance to Anger, 2 Distance to Contempt, 3 Distance to Disgust, 4 Distance to Fear, 5 Distance to Happy, 6 Distance to Neutral, 7 Distance to Sad,

8 Distance to Surprise, 9 Actual Class Label

Fig. 9. ANN Architecture for FEA

4.1.1 Model Accuracy

The accuracy of CDC and QDC [9] in isolation

is in the range of 35-50% for all types of image

datasets, indicating scope for further improvement.

With a combination of CDC and ANN [5] models,

we observed a significant improvement in accuracy

(85%) for high-resolution RGB images. However, we

deemed this model to be underfitting, as it performed

very well on training data, albeit poorly on all types

of test image dataset. We attributed this to the

fact that the extraction of the CDC features was

highly consistent, which may not be the case in

reality. After incorporating the QEC, the QUADCANN

model achieved a maximum accuracy of 95% for

high-resolution RGB image datasets, as shown in Fig.

11.

4.1.2 Accuracy Comparison

For high-resolution grayscale image datasets, the

QUADCANN model achieved an accuracy of 75%,

which is 25% greater than that of distance-based

classifiers on both classical and quantum methods.

QUADCANN has 2% greater accuracy than the

classical counterpart model, CDC-ANN. The

QUADCANN model achieved 95% accuracy on

high resolution RGB image datasets, which is

10% better than that of its classical counterpart,

CDC-ANN. QUADCANN achieved at least 20%
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Fig. 10. Custom Training dataset (subset of the CK+

dataset)

Fig. 11. Accuracy Comparison between CDC, QDC and

Hybrid Models

higher accuracy when compared to pure distance-based

classifiers. These observations reiterate the importance

of utilizing error correction methods while developing

quantum models. Furthermore, the model achieved

significantly higher accuracy with fewer high-resolution

RGB images, as shown in Fig. 12.

Fig. 12. Accuracy w.r.t. High-resolution RGB Image

Dataset

Although high-resolution RGB images delivered

better accuracy in the ANN models, grayscale images

were consistent across all models. Because it is
primarily in 2 spatial dimensions (2D) with 1 layer

(Gray) rather than 2D with 3 layer (RGB), it enables
easy differentiation of shadow details and highlights of
given image features.

4.1.3 Loss vs Accuracy

As the initial weights of the QUADCANN model were
assigned at random, it experienced a high initial average
loss. However, as the model progresses through the
training process, the average loss gradually decreases

and reaches a saturation point after 800 epochs, as
shown in Fig. 13a.

Compared to classical models, the QUADCANN

model requires fewer training datasets. As a result,
the accuracy of the QUADCANN model reached
its peak in approximately 200 epochs, as shown in

Fig. 13b. We attribute this to the deployment of

QEC to optimize the features extracted from QDC.

This approach enabled the QUADCANN model to

identify the optimal classification parameters and

achieve maximum accuracy in a relatively small
number of epochs. The results also highlight the
potential benefits of incorporating QEC techniques

into QC models. To avoid overfitting, early stopping

was implemented at approximately 300 epochs when

parameter optimization no longer resulted in a

significant increase in accuracy, as shown in Fig. 13b.

(a)

(b)

Fig. 13. (a) Loss w.r.t. Epoch (b) Training Accuracy
w.r.t. Epoch
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4.2 Results on the AffectNet-8 dataset

To ensure fairness in the study and for comparison with
the SOTA models, QUADCANN model was also tested

using the AffectNet-8 dataset, as shown in Figs. 14a,
14b & 14c. AffectNet is a sizable FEA dataset with 0.4
million images that have been meticulously tagged with

the presence of eight different emotions, as mentioned

in Section 1, along with their corresponding valence and

intensity of arousal. The QUADCANNmodel is capable

of classifying complex nonlinear dataset effectively and

eventually achieved greater accuracy.

(a)

(b)

(c)

Fig. 14. (a) AffectNet-8 dataset (b) Class Distribution

(c) Sample Images

4.2.1 Model Accuracy

With respect to the images in the AffectNet-8 dataset,
the QUADCANN model achieved a maximum accuracy
of 74.6% at 200 epochs and learning rate of .001. Hence,
we stop training the model at 200 epochs to reduce

computational costs and additional complexities.

4.2.2 Accuracy Comparison with SOTA FEA Models

We performed a study comparing the accuracy of our

QUADCANN model with that of other SOTA models,

using the AffectNet-8 dataset. The accuracy of all the
SOTA models considered in our study was restricted to
the range of 61.09% to 63.77%. Compared to the most
recent model, QUADCANN demonstrated a higher

accuracy of 74.60%, a 10.83% increase in accuracy, as

shown in Fig. 15. This is because the features produced

by the classifier based on quantum distance are superior

to those extracted directly from the images. We have
taken into consideration the two models from the top
of the table, POSTER and POSTER++, for additional

comparisons at the emotional level.

Fig. 15. Comparison of Accuracy with State-of-the-art

Models using the AffectNet-8 dataset

4.2.3 Accuracy Comparison at the Emotional Level

Subsequently, we performed a study at the

emotional level between POSTER (3rd best from

our previous study), POSTER++ (2nd best from
our previous study) and QUADCANN. The accuracy

of QUADCANN outperformed that of both the
POSTER and POSTER++ models for each emotion.
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QUADCANN exhibited at least 3.8% and at maximum

21.2% greater accuracy for all emotions, except for

contempt (2. 48%) and fear (2. 4%), as shown in

Fig. 16. This is because of the lip features that we

considered for classification. Eyes will show more signs

of fear than lips can. Similarly, features with yaw

angles are more indicative of contempt than lips [22].

As a result, we observe decreased accuracy for these
two expressions.

Fig. 16. Accuracy Comparison at the Emotional Level

between POSTER, POSTER++, and QUADCANN

4.2.4 Confusion Matrix

The normalized confusion matrices of the POSTER,

POSTER++, and QUADCANN models are shown in

Figs. 17a, 17b & 17c. The best classification accuracies

from each model on the AffectNet-8 dataset are

depicted in the figure. For the given predicted class, the

zero value represents no misclassification. Compared

to other models, QUADCANN has a greater number

of zero values in both the upper and lower diagonal

matrix, indicating a lower rate of misclassification.

A lower degree of accuracy is the consequence of

more classification errors, which are linked to higher

values in the upper and lower diagonal matrix. The

QUADCANN model’s confusion matrix demonstrated

that it had higher values only for contempt and fear,

which were categorized as happy. We have provided an
explanation for this observation in Section 4.2.3. The
correct predictions are represented by diagonal values,

and a higher value represents higher accuracy.

(a)

(b)

(c)

Fig. 17. Normalized Confusion Matrices of the SOTA

models on AffectNet-8 Dataset (a) POSTER (b)
POSTER++ (c) QUADCANN
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4.2.5 Loss vs Accuracy

As we observed earlier in section 4.1, our QUADCANN
model experienced a high initial average loss. However,

as the model progresses through the training process,

the average loss gradually decreases and the accuracy

increases, as shown in Fig. 18a. The model achieved its

maximum accuracy at 200 epochs, as shown in Fig. 18b.

(a)

(b)

Fig. 18. (a) Loss w.r.t. Epoch (b) Training Accuracy
w.r.t. Epoch

5 Conclusion and Future Work

In summary, the QUADCANN model exhibits superior

accuracy and performance compared to the CDC,

QDC, and SOTAmodels in isolation. Although classical

models are observed to deliver superior results for a

limited number of features, quantum-classical hybrid

models become more efficient as the number of features

increases. QUADCANN demonstrated relatively higher

accuracy compared to other state-of-the-art FEA

models.

Further study is needed to determine the

significance of RGB images for improving the

classification accuracy of the models we highlighted.

Similarly, additional improvements to the ANN models

are required to increase efficiency, which will be

a future focus of this work. We acknowledge that

classification accuracy could be further enhanced
by optimizing the model that incorporates quantum
error as a key constraint. Encouraging results show

promising future prospects for quantum computing and

quantum image processing with remarkable advances

in accuracy and performance. Our study affirms the

possibility of improving classification accuracy using

hybrid classifiers. Quantum algorithms considerably

improve the performance of ML and DL models while

handling complex feature extraction tasks. We hope

that these findings will enable upcoming developments

in quantum computing and machine learning.
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