
Secure and Efficient General Matrix Multiplication
On Cloud Using Homomorphic Encryption

1st Yang Gao
University of Central Florida

yang.gao@ucf.edu

4th Wujie Wen
Lehigh University

wuw219@lehigh.edu

2nd Gang Quan
Florida International University

gaquan@fiu.edu

5th Liqiang Wang
University of Central Florida

liqiang.wang@ucf.edu

3rd Soamar Homsi
Air Force Research Laboratory

soamar.homsi@us.af.mil

Abstract—Despite the enormous technical and financial advan-
tages of cloud computing, security and privacy have always been
the primary concerns for adopting cloud computing facilities,
especially for government agencies and commercial sectors with
high-security requirements. Homomorphic Encryption (HE) has
recently emerged as an effective tool in ensuring privacy and
security for sensitive applications by allowing computing on
encrypted data. One major obstacle to employing HE-based
computation, however, is its excessive computational cost, which
can be orders of magnitude higher than its counterpart based
on the plaintext. In this paper, we study the problem of how
to reduce the HE-based computational cost for general Matrix
Multiplication (MM), i.e., a fundamental building block for
numerous practical applications, by taking advantage of the
Single Instruction Multiple Data (SIMD) operations supported
by HE schemes. Specifically, we develop a novel element-wise
algorithm for general matrix multiplication, based on which we
propose two HE-based General Matrix Multiplication (HEGMM)
algorithms to reduce the HE computation cost. Our experimental
results show that our algorithms can significantly outperform the
state-of-the-art approaches of HE-based matrix multiplication.

Index Terms—Homomorphic Encryption, privacy protection,
Matrix Multiplication

I. INTRODUCTION

Cloud computing has become an attractive solution for
industry and individuals due to its flexibility, scalability,
reliability, sustainability, and affordability [3], [57]. Despite
the tremendous technical and business advantages of cloud
computing, security has been one of the primary concerns
for cloud users, especially for those with high-security re-
quirements [15], [41]. Even though cloud platforms allow
their users to have full control over security settings and
policies, public cloud infrastructures are commonly shared
among different users and applications, making the applica-
tions vulnerable to malicious attacks.

Homomorphic Encryption (HE) [73], [74], [77] has emerged
as an effective tool to address the security and privacy concerns
associated with outsourcing data and computation to untrusted
third parties, such as public cloud service providers. HE
maintains data secrecy while in transit and during processing

Source Code: https://github.com/EchizenG/HEGMM
Approved for Public Release on 06 Mar 2024. Distribution is Unlimited.

Case Number: 2024-0184 (original case number(s): AFRL-2024-0944)

and assures that the decrypted results are identical to the
outcome when the same operations are applied to the data in
plaintext. HE has raised growing interest from researchers and
practitioners of many security- and privacy-sensitive cloud ap-
plications in various domains such as health care, finance, and
government agencies. One of the grand challenges, however,
is how to deal with the tremendous computational cost for HE
computations, which can be orders of magnitude higher than
that in the plaintext space [52]. Unless HE computation cost
can be effectively reduced, it would be infeasible to apply HE
schemes in practical cloud applications.

In this paper, we study the problem of how to reduce
HE computation cost for general matrix multiplications (MM)
by taking advantage of the single instruction multiple data
(SIMD) scheme for HE operations [67]. The SIMD scheme
enables multiple data values to be packed into one ciphertext,
and one single HE operation can be performed on all data
elements in the ciphertext simultaneously. Accordingly, we
develop a novel approach for HE-based MM operations,
focusing on source matrices of arbitrary shapes. Specifically,
we make the following contributions.

1) We present a novel element-wise method for MM. This
method is general and can be applied to source matri-
ces of arbitrary shapes with a significant performance
improvement;

2) We develop two HE MM algorithms, with the second
one improving the first one significantly. Our HE MM al-
gorithms pack matrix elements judiciously in encrypted
message “slots” and perform pertinent operations by
taking advantage of the SIMD structure in HE schemes
to reduce the number of primitive HE operations, such
as HE multiplications, rotations, and additions, which
are computationally expensive, and therefore can signif-
icantly reduce the computational cost;

3) We perform a rigorous analysis for the logical correct-
ness of the algorithms and their complexities;

4) We implement our algorithms using a Python HE library,
Pyfhel [58]. Extensive experimental results show that
our proposed algorithms can significantly outperform the
state-of-the-art approaches.

ar
X

iv
:2

40
5.

02
23

8v
2

 [
cs

.C
R

]
 2

2
M

ay
 2

02
4

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce the relevant background
of HE and discuss the related work.

A. Homomorphic Encryption (HE)

Homomorphic encryption (e.g. BGV [77], BFV [75], [76],
and CKKS [78]) enables computations to be performed based
on encrypted data, with results still in encrypted form. As such,
HE represents a promising tool to greatly enhance data privacy
and security, especially when outsourcing computations to
the public cloud. In the meantime, HE can be extremely
computationally intensive [32], and improving its computation
efficiency is key to making this technology practical for real
applications.

When performing HE matrix multiplication on the cloud,
source matrices are first encrypted by clients and transferred
to the cloud, and the results are transferred back to clients for
decryption. Encrypting each individual element of a matrix
into one cyphertext can lead to excessive encryption, decryp-
tion, and communication costs, in addition to a large number
of HE operations. Table I shows our profiling results on en-
cryption/decryption latency, message size, and computational
costs with different HE operations (More detailed experimental
settings are discussed in Sec. IV-A).

To this end, Gentry and Halevi [67] proposed an efficient
key generation technique that enables SIMD operations in HE.
By encrypting multiple data items into one ciphertext, one
single operation can be applied to all encrypted elements in the
same ciphertext simultaneously, and thus, space and computing
resources can be used more efficiently.

As an example, BFV [75], [76] can support a num-
ber of primitive HE operations such as HE-Add (Addi-
tion), HE-Mult (Multiplication), HE-CMult (Constant Multi-
plication), and HE-Rot (Rotation). Given ciphertexts ctx =
Enc(x0, x1, ..., xn), cty = Enc(y0, y1, ..., yn) and a plaintext
pt = (p0, p1, ..., pn), we have

• HE-Add: ctx + cty = Enc(x0 + y0, x1 + y1, ..., xn + yn)
• HE-Mult: ctx× cty = Enc(x0×y0, x1×y1, ..., xn×yn)
• HE-CMult: ctx×pt = Enc(x0×p0, x1×p1, ..., xn×pn)
• HE-Rot: Rot(ctx, i) = Enc(xi, xi+1, .., xn, x0, .., xi−1)

The HE operations are computationally intensive and can
consume excessive computational time. In addition, HE op-
erations also introduce noises when performed on encrypted
data [35], which must be well under control for the results to
be decrypted successfully. Several HE operations, especially
HE-Mult, can be extremely time-consuming (approximately
600× higher than its counterpart as shown in Table I) and
introduce much larger noise [34]. Therefore, reducing the
number of HE operations (especially the HE-Mult operations)
becomes critical in designing practical applications, such as
matrix multiplication, under the HE framework.

B. Related Work

There are numerous research efforts on improving the
computational efficiency of MM (e.g. [48], [50], [46], [49],
[50], [47], [51]). However, none of them can be readily adapted

to optimize the computation efficiency of MM in the context
of HE computation.

A naive method for HE MM is to encrypt each row/column
in each matrix and then compute it using the traditional MM
method. For the HE MM of Am×l × Bl×n, this would result
in excessive storage requirements and computation times:
m × n encrypted messages and totally m × l × n HE-Mult
operations. Another simple and intuitive approach (e.g. [70])
is to transform the MM problem into the matrix-vector mul-
tiplication problem and then adopt the SIMD scheme [66],
[67] to perform the calculation. However, this requires m+n
ciphertexts and m×n homomorphic multiplication operations,
which are still very costly.

Duong et al. [1] and Mishra et al. [2] presented approaches
to pack the source matrix into a single polynomial, and
then perform HE MM based on secure computation of inner
product of encrypted vectors. It works for one single HE MM
with well-defined dimensions but becomes problematic when
multiple successive HE MMs are required in a cloud center.

Jiang et al. [61] proposed an intriguing HE MM approach
for square matrix with O(d) computational complexity. They
expanded their HE MM algorithm to handle rectangle MM
(Al×d × Bd×d) with l ≤ d and d mod l = 0. Source
matrices can be enlarged to suit shape requirements for MM
with variable shapes, although this may increase processing
time and resource utilization. Huang et al. [59] advocated
using blocking to better handle rectangular MM with source
matrices as block matrices with square matrices. This method
is appealing for big matrices that cannot fit in one ciphertext.
However, it is limited to square or two source rectangular
matrices with integer multiple columns and rows.

Rathee et al. [68] proposed to encrypt source matrices
into the two-dimensional hypercube structure [66] and then
transform the MM problem to a series of matrix-vector multi-
plication problems. Huang et al. [60] extended this approach to
make it applicable to general MM. As shown in section III-C,
we have developed a more effective algorithm with higher
computational efficiency.

III. APPROACHES

When performing HE matrix multiplication in the SIMD
manner, we need to make sure that two operands are aligned
and located at the same location, i.e., the same slot in the
two encoded ciphertexts. Rearranging individual slots in an
encrypted message can be costly. Therefore, a key to the
success of reducing the computational complexity of the HE
MM is how to perform the MM using element-by-element ad-
ditions and multiplication operations. In what follows, we first
introduce a novel algorithm to calculate MM with arbitrary
dimensions using element-wise additions and multiplications.
We then discuss in more detail how we implement the HE MM
algorithm on packed ciphertexts in the SIMD manner and its
enhanced version.

2

TABLE I
COMPARISON OF COMPUTATIONAL COST FOR HE VS. PLAINTEXT OPERATIONS.

Operations Encryption (ms) decryption (ms) Message Size (MB) Addition (ms) Multiplication (ms)† Rotation (ms)
HE 5.50 2.57 0.5 0.550 20.874(CC) 4.138(CP) 5.350

Plaintext - - - 0.009 0.035 0.035 0.130
Ratio - - - 61.1 596.4(CC) 118.23(CP) 41.15

† CC is the Multiplication between two ciphertexts while CP is the Multiplication between ciphertext and plaintext.

A. The Matrix Multiplication Method using Element-Wise
Computations

Consider an MM problem, Cm×n = Am×l × Bl×n, where
m, l, and n ∈ Z+. Our goal is to develop an algorithm
such that Cm×n =

∑
iAi ⊙ Bi, where Ai, Bi are certain

transformations of Am×l, Bl×n, respectively, and ⊙ represents
the element-wise multiplication. For ease of our presentation,
we define four matrix transformation operators as follows:

σ(A)i,j = Ai,[i+j]l , 0 ≤ i < m, 0 ≤ j < l (1)
τ(B)i,j = B[i+j]l,j , 0 ≤ i < l, 0 ≤ j < n (2)

ϵkm×n(A)i,j = Ai,[j+k]l , 0 ≤ i < m, 0 ≤ j < n (3)

ωk
m×n(B)i,j = B[i+k]l,j , 0 ≤ i < m, 0 ≤ j < n (4)

where [x]y denotes x mod y.
The two transformation operators, σ and τ , are similar to

those introduced in [61], but more general and applicable to
an arbitrary shape matrix instead of a square matrix alone.
Essentially, a σ transformation rotates each row of a matrix
horizontally by its corresponding row index (for example,
each element in the 2nd row is cyclically rotated 2 positions
to the left), and a τ transformation rotates a column by its
corresponding column index. Figures 1(a) and 1(b) illustrate
examples of σ and τ transformations.

We define two new transformation operators, ϵkm×n and
ωk
m×n, with respect to a matrix of arbitrary shape. Given
Cm×n = Am×l×Bl×n, operator ϵkm×n(A) generates a matrix
with size of m × n from Am×l (duplicating or cropping
columns when necessary), by shifting matrix Am×l to the
left for k columns. Similarly, ωk

m×n(B) generates a matrix
with size of m× n from Bl×n (duplicating or cropping rows
when necessary), by shifting matrix Bl×n upward for k rows.
Figures 1(c) and 1(d) illustrate the transformation operators
ϵ03×5(A), ϵ13×5(A), ω0

3×5(B), and ω1
3×5(B), respectively.

With the operators defined above, we can perform a general
MM using the element-wise operations as follows:

Am×l × Bl×n =

l−1∑
k=0

(ϵkm×n ◦ σ(A))⊙ (ωk
m×n ◦ τ(B)), (5)

where ◦ represents the composition operation. Note that the
multiplication (i.e., ⊙) in Equation (5) is element-wise and
applied to the entire operands. Figure 2 shows an example of
how an MM can be conducted based on Equation (5). Given
two source matrices, i.e., A5×3×B3×4, with m = 5, l = 3, and
n = 4, σ and τ transformations are conducted on A and B,
respectively. Then three iterations of ϵ and ω transformations

are performed to obtain three partial products, which are
accumulated to get the final product. We have the following
proof sketch to show that the above method indeed produces
the correct MM results for arbitrary matrices.

l−1∑
k=0

(ϵkm×n ◦ σ(A))i,j · (ωk
m×n ◦ τ(B))i,j

=

l−1∑
k=0

σ(A)i,[j+k]l · τ(B)[i+k]l,j

=

l−1∑
k=0

Ai,[i+j+k]l · B[i+j+k]l,j

=

l−1∑
k=0

Ai,k · Bk,j = (A · B)i,j

(6)

(a) σ operator: rotating ith row left by i slots.

(b) τ operator: rotating jth column upward
by j slots.

(c) ϵ03×5(A3×2) and ϵ13×5(A3×2) with C3×5 = A3×2 × B2×5.

(d) ω0
3×5(B2×5) and ω1

3×5(B2×5) with C3×5 = A3×2 × B2×5.

Fig. 1. The illustration of σ, τ , ϵ, and ω transformation operators

B. The HE-based General Matrix Multiplication (HEGMM)

With the element-wise matrix multiplication method intro-
duced above, we are now ready to present our approach for
HE matrix multiplication in the SIMD manner. As mentioned
before,

3

4321
8765
1211109

321
654
987
121110
151413

321
465
879
121110
131514

41161
83105
12729

1321
5465
9879
10121110
14131514

41161
83105
12729
41161
83105

2132
6546
7987
11101211
15141315

3213
4654
8798
12111012
13151413

83105
12729
41161
83105
12729

12729
41161
83105
12729
41161

433121
40126025
108561481
401326610
1123915070

1633010
7235854
2899487
883012055
1809826135

3614227
1666304
64219040
1447720108
521658413

56504438
1281139883
200176152128
272239206173
344302260218

Fig. 2. An illustration example of the element-wise MM for A5×3 ×B3×4

with m = 5, l = 3, and n = 4, σ and τ transformations are first conducted
on A and B, respectively. Then three iterations of ϵ and ω transformations
are performed to obtain three partial products, which are accumulated to get
the final product.

it is critical to minimize the number of HE operations (such
as those, especially the HE-Mult, as shown in Table I) and
thus reduce the computational cost. In this subsection, we first
introduce how transformations, such as σ, τ, ϵkm×n, and ωk

m×n,
are performed using the primitive HE operations. We then
present our first algorithm for HE MM based on the element-
wise matrix multiplication strategy presented above.

1) Linear Transformation: To perform MM under the HE
framework, two-dimensional matrices need to be flattened
(either with column-major or row-major order) into one-
dimensional ciphertexts, and all operations are performed on
the ciphertexts. Therefore, a critical challenge to implement
the computational strategy in Equation (5) is how to efficiently
conduct σ, τ, ϵkm×n, and ωk

m×n, k = {0, ..., (l − 1)} transfor-
mation operations. Note that an arbitrary linear transformation
over a vector m, i.e., L : Rx → Ry , can be expressed as
L : m→ U ·m, where U ∈ Ry×x is the transformation matrix.
As shown by Halevi and Shoup [66], matrix-vector multipli-
cations can be calculated using the combination of rotation
and element-wise multiplication operations. Specifically, for
0 ≤ z < x, let the z-th diagonal vector of U be

uz =

(U0,z, U1,z+1, ..., Ux−z−1,x−1, 0, ..., 0︸ ︷︷ ︸)

|x|

if z ≥ 0

(0, ..., 0, Uz,0, Uz+1,1, ..., Uy−1,y−z−1︸ ︷︷ ︸)
|x|

if z < 0

where x and y are the matrix dimensions and z is the index
of diagonal vector.

Then we have

U ·m =
∑

−y≤z<x

(uz ⊙HE-Rot(m; z)), (7)

where ⊙ denotes the component-wise multiplication.
According to Equation (7), we can construct the transfor-

mations defined in Equations (1)-(4) with flattened matrix Ã
and B̃ such that

σ(Ã) = Uσ · Ã, (8)
τ(B̃) = Uτ · B̃, (9)

ϵkm×n(Ã) = Uϵkm×n · Ã, (10)

ωk
m×n(B̃) = Uωk

m×n · B̃. (11)

Let Ã and B̃ be source matrices flattened in the column-
major order. By generalizing the location change patterns for
the operators, we can define Uσ , Uτ , Uϵkm×n and Uωk

m×n as
follows:

Uσ
i+j·m,h =

{
1 if h = i+ [i+ j]l ·m,

0 otherwise;
(12)

Uτ
i+j·l,h =

{
1 if h = [i+ j]l + j · l,
0 otherwise;

(13)

Uϵkm×n

i,j =

{
1 if j = [k ·m+ i]m·l

0 otherwise;
(14)

Uωk
m×n

i,j =

{
1 if j = [k + [i]m]l + ⌊i/m⌋ · l
0 otherwise;

(15)

For the sake of clarity, scopes of i, j and h in Equation (12)-
(15) are listed below.

i j h
Uσ [0,m) [0, l) [0,ml)
Uτ [0, l) [0, n) [0, nl)

Uϵkm×n [0,mn) [0,ml) N/A

Uωk
m×n [0,mn) [0, nl) N/A

When Ã and B̃ are matrices flattened in the row-major
order, similar transformation matrices can be constructed. We
omit it due to page limit.

Note that, from equation (7), the σ, τ, ϵkm×n, and ωk
m×n

operations can be realized using a sequence of HE-Rot, HE-
CMult, and HE-Add operations. Figure 3 shows examples of
transformations ϵ15×3(A) and ω1

3×5(B) as well as the associ-
ated matrices Uϵ15×3 and Uω1

3×5 for matrix A5×3 and B3×5,
respectively. In the meantime, equation (7) clearly shows
that the computational cost depends heavily on how many
diagonal vectors (i.e., uz in equation (7)) in the corresponding
transformation matrices, i.e., Uσ , Uτ , Uϵkm×n , and Uωk

m×n , are
non-zeros. The more the non-zero diagonal vectors are, the
higher the computation costs become. To this end, we have
the following theorems that reveal important properties related
to non-zero diagonal vectors in these transformation matrices.

4

Theorem III.1. Let σ(A) = UσA for A with a dimension of
m× l. There are at most 2 ·min(m, l)− 1 non-zero diagonals
in Uσ no matter whether the matrix is flattened with a column-
major or row-major order.

Theorem III.2. Let τ(B) = UτB for B with a dimension of
l× n. There are at most 2 ·min(n, l)− 1 non-zero diagonals
in Uτ no matter if the matrix is flattened with a column-major
or row-major order.

Theorem III.3. Let ϵkm×n(A) = Uϵkm×nA be the linear
transformation ϵm×n : Rm×l → Rm×n with matrix A having
a dimension of m × l. There are at most

⌊
n
l

⌋
+ 1 non-zero

diagonal vectors in Uϵkm×n when the matrix is flattened with
the column-major order; There are at most (

⌊
n
l

⌋
+2) ·m non-

zero diagonal vectors in Uϵkm×n when matrix A is flattened
with the row-major order. Specifically, when n = l, there are
no more than 2 non-zero diagonals in Uϵkm×n , no matter if the
matrix is flattened in column-major or row-major order.

Theorem III.4. Let ωk
m×n(B) = Uωk

m×nB be the linear
transformation ωm×n : Rl×n → Rm×n with matrix B having
a dimension of l×n. There are at most (

⌊
m
l

⌋
+2) ·n non-zero

diagonal vectors in Uωk
m×n when the matrix is flattened with

column-major order; There are at most
⌊
m
l

⌋
+ 1 non-zero

diagonal vectors in Uωk
m×n when matrix B is flattened with

row-major order. Specifically, when m = l, there are no more
than 2 non-zero diagonals in Uωk

m×n , no matter if the matrix
is flattened in column-major or row-major order.

The proofs for Theorems III.1-III.4 can be found in the
appendix A.

According to Theorems III.1 and III.2, the numbers of non-
zero diagonal vectors in Uσ and Uτ depend solely on the
dimensions of corresponding matrices and are independent of
how the matrices are flattened. However, as shown in Theo-
rems III.3 and III.4, the numbers of non-zero diagonal vectors
in Uϵkm×n and Uωk

m×n depend on not only the dimensions of
matrices but also the way they are flattened.

2) The HEGMM Algorithm: HEGMM is a straightforward
implementation of Equation (5). We first conduct σ and τ
transformations (lines 2-3) on the source matrices of A and
B. We then go through a loop (lines 5-9) that apply ϵkm×n

and τkm×n transformations and element-wise multiplication
and addition to calculate and accumulate the partial product.
The final result can be obtained by decrypting the sum of the
product (line 11).

The computational complexity of Algorithm 1 mainly
comes from the required HE operations associated with the
σ, τ, ϵkm×n, and ωk

m×n operations. Assuming A and B are
encrypted, from Theorem III.1 and Theorem III.2, we know
that there are 2min(m, l) − 1 (resp. 2min(n, l) − 1) non-
diagonals for the σ (resp. τ) operation. Therefore, according to
equation (7), the σ (resp. τ) operation requires 2min(m, l)−1
(resp. 2min(n, l) − 1) HE-CMult, HR-Rot, and HR-Add

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1
1
1
1
1
1
1
1
1
1
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0

(a) The process of linear transformation for ϵ15×3 transformation on matrix
A5×3. u5 is the vector with 10 1’s and 5 0’s while u-10 with 10 0’s and
5 1’s. Therefore, according to Equation 7, it rotates flattened Ã 5 slots and
times u5. Then it rotates flattened Ã 10 slots reversely and times u-10.
Finally, add all above partial products together.

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1
1
0
1
1
0
1
1
0
1
1
0
1
1
0 0

0
0
1
0
0
1
0
0
1
0
0
1
0
0
1

0
0

(b) The process of linear transformation for ω1
3×5 transformation on matrix

B3×5. u1 is the vector with ten 1’s and five 0’s while u-2 with 10 0’s and
5 1’s. Therefore, according to Equation 7, it rotates flattened B̃ 1 slots and
times u1. Then it rotates flattened Ã 2 slots reversely and times u-2. Finally,
add all above partial products together.

Fig. 3. The permutation matrices Uϵ15×3 and Uω1
3×5 and linear transforma-

tions of ϵ15×3(A5×3) and ω1
3×5(B5×3).

Algorithm 1: HEGMM: HE-based General Matrix
Multiplication
Input: matrix Am×l and matrix Bl×n

Output: Cm×n

1 [Step1]
2 ct.A(0) ← σ(A)
3 ct.B(0) ← τ(B)
4 [Step2]
5 for k = 0 to l − 1 do
6 ct.A(k) ← ϵkm×n(ct.A(0))
7 ct.B(k) ← ωk

m×n(ct.B(0))
8 ct.C ← ct.C + ct.A(k) ⊙ ct.B(k)
9 end

10 [Step3]
11 Cm×n ← ct.C
12 return Cm×n

operations. These computational costs have nothing to do

5

with how the matrices are flattened (e.g., in column-major
or in row-major order), and they also become trivial if they
are performed on A and B in plaintext. However, the ϵ and
ω operations, which must be performed multiple times in
the cloud, require HE operations depending on not only the
dimensions of matrices but also the way they are flattened. As
a result, the computational complexities can be dramatically
different under different scenarios, as shown in Theorems III.3
and III.4. In the next sub-section, we show how we can
take advantage of this fact to reduce the computational cost
effectively.

C. The Enhanced HEGMM Algorithm

In this section, we introduce a more elaborated approach
for HEGMM that can be more computationally efficient. The
fundamental principle we rely on to develop this algorithm
is presented in Theorem III.3 and III.4. For the HE matrix
multiplication of Am×l × Bl×n, the proposed new algorithm
can significantly improve the computation efficiency when
m = min{m, l, n} and/or n = min{m, l, n}. If not, we can
always resort to Algorithm 1 to find the solution. Therefore, in
what follows, we first discuss the new approach based on two
cases: (i) m = min{m, l, n}; and (ii) n = min{m, l, n}. We
then present the algorithm and related discussions in detail.

1) m = min{m, l, n}: For the HE MM of Am×l × Bl×n,
Algorithm 1 needs to perform l iterations, with each iteration
including one ϵ transformation, one ω transformation, one
HE-Add, and one HE-Mult operation. Assuming the ma-
trix is flattened with the column-major order, according to
Theorem III.3 and III.4, one ϵ transformation and one ω
transformation would result in no more than ((

⌊
n
l

⌋
+1)+2n)

non-zero diagonals in corresponding transformation matrices,
with each non-zero diagonal requiring one HE-Add, one HE-
Rot, and one HE-CMult operations. However, if we can expand
matrix Am×l to Āl×l, then the number of non-zero diagonals
becomes no more than ((

⌊
n
l

⌋
+ 1) + 2) instead. Since n ≥ 1

and
((
⌊n
l

⌋
+ 1) + 2n) ≥ ((

⌊n
l

⌋
+ 1) + 2),

the number of non-zero diagonals and, thus, the computational
cost can be dramatically reduced.

Note that, if we assume the matrix is flattened with the row-
major order, one ϵ transformation and one ω transformation
would result in no more than ((

⌊
n
l

⌋
+ 2)m + 1) non-zero

diagonals in corresponding transformation matrices. When
expanding matrix Am×l to Āl×l, the total number of non-
zero diagonals in the corresponding transformation matrices
becomes ((

⌊
n
l

⌋
+ 2)l + 1), according to Theorems III.3 and

III.4. It becomes obvious that using the column-major order
is a better choice than using the row-major order in this case,
since when m > 1, we have

((
⌊n
l

⌋
+ 2)m+ 1) ≥ ((

⌊n
l

⌋
+ 1) + 2).

The question now becomes how to expand Am×l to Āl×l

and maintain the logical correctness of the MM result. One
intuitive approach is to expand Am×l by filling zeroes to the

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35

1 2 3 4 5
6 7 8 9 10

1 2 3 4 5
6 7 8 9 10
1 2 3 4 5
6 7 8 9 10
1 2 3 4 5
6 7 8 9 10

1 2 3 4 5
7 8 9 10 6
3 4 5 1 2
9 10 6 7 8
5 1 2 3 4
6 7 8 9 10

1 2 3 4 5 1 2
7 8 9 10 6 7 8
3 4 5 1 2 3 4
9 10 6 7 8 9 10
5 1 2 3 4 5 1
6 7 8 9 10 6 7

1 9 17 25 33 6 14
8 16 24 32 5 13 21
15 23 31 4 12 20 28
22 30 3 11 19 27 35
29 2 10 18 26 34 7
1 9 17 25 33 6 14

2 3 4 5 1 2 3
8 9 10 6 7 8 9
4 5 1 2 3 4 5
10 6 7 8 9 10 6
1 2 3 4 5 1 2
7 8 9 10 6 7 8

8 16 24 32 5 13 21
15 23 31 4 12 20 28
22 30 3 11 19 27 35
29 2 10 18 26 34 7
1 9 17 25 33 6 14
8 16 24 32 5 13 21

1 18 51 100 165 6 28
56 128 216 320 30 91 168
45 92 155 4 24 60 112
198 300 18 77 152 243 350
145 2 20 54 104 170 7
6 63 136 225 330 36 98

16 48 96 160 5 26 63
120 207 310 24 84 160 252
88 150 3 22 57 108 175
290 12 70 144 234 340 42
0(1) 0(18) 0(51) 0(100)0(165) 0(6) 0(28)

0(56) 0(128)0(216)0(320) 0(30) 0(91) 0(168)

17 66 147 260 170 32 91
176 335 526 344 114 251 420
133 242 158 26 81 168 287
488 312 88 221 386 583 392
145 2 20 54 104 170 7
6 63 136 225 330 36 98

295 310 325 340 355 370 385
670 710 750 790 830 870 910

1 9 17 25 33 6 14
8 16 24 32 5 13 21
15 23 31 4 12 20 28
22 30 3 11 19 27 35
29 2 10 18 26 34 7

Fig. 4. An illustration example of the Enhanced HEGMM Algorithm for
multiplying two matrices A2×5 and B5×7, with m = 2, l = 5 and n =
7. Ā is the matrix by duplicating A 3 times, i.e., t = ⌈5/2⌉ = 3 and
B5×7 remains unchanged. The partial products are accumulated to obtain the
final product. Note ϵ02×7(σ(A))⊙ ω0

2×7(τ(B)) is generated twice, and the
duplicated partial products should be excluded from the final results.

newly added elements, i.e., the elements in rows from row
m to (l − m − 1). The final product, as a sub matrix, can
be extracted from the product of Āl×l × Bl×n easily. Note
that expanding the matrix dimension does not increase the
computational complexity in the SIMD scheme as long as the
result matrix can fit in one message.

Rather than simply filling zeroes, we can expand Am×l by
duplicating the rows of Am×l repeatedly. This helps to reduce
the number of iterations (lines 5-9) in Algorithm 1, thanks to
our observations that are formulated in the following theorem.

Theorem III.5. Let Am×l and Bl×n with m < l, and let Ā
be matrix expanded with t =

⌈
l
m

⌉
copies of A vertically, i.e.,

Ā = {Ā0; Ā1; ...; Ā(t−1)}T with Ā0 = Ā1 = ... = Ā(t−1) =
Am×l. Then

• ϵktm×n(σ(Ā)) ⊙ ωk
tm×n(τ(B)) contains t items of

ϵpm×n(σ(A)) ⊙ ωp
m×n(τ(B)), with p ∈ {[k]l, [k +

m]l, ..., [k + (t− 1)m]l}.
• ϵktm×n(σ(Ā)) ⊙ ωk

tm×n(τ(B)), k = 0, 1, ..., (m − 1)
contains all items of ϵpm×n(σ(A)) ⊙ ωp

m×n(τ(B)), with
p ∈ {0, 1, ..., (l − 1)}.

6

According to Theorem III.5, after expanding Am×l with t
copies of Am×l vertically to form Ātm×l, each iteration of
Algorithm 1 can now produce t partial products ϵpm×n(A) ⊙
ωp
m×n(B). As a result, the required HE computations can

be greatly reduced, which can be better illustrated using the
example in Figure 4.

Figure 4 shows two source matrices A2×5 and B5×7,
with m = 2, l = 5 and n = 7. Ā is the matrix
by duplicating A three times, i.e., t = ⌈5/2⌉ = 3.
Note that, each ϵ6×7(σ(Ā)) ⊙ ω6×7(τ(B)) contains three
copies of ϵ2×7(σ(A)) ⊙ ω2×7(τ(B)), as shown in the figure:
ϵ06×7(σ(Ā))⊙ω0

6×7(τ(B)) contains ϵ02×7(σ(A))⊙ω0
2×7(τ(B)),

ϵ22×7(σ(A))⊙ω2
2×7(τ(B)), and ϵ42×7(σ(A)⊙ω4

2×7(τ(B)). We
then need to add all the partial products together to get the
final result.

As such, by duplicating Am×l into Ātm×l, we can reduce
not only the HE operations associated with the ϵ and ω
operations but also the HE-Mult operations (i.e., at most m
HE-Mult operations according to Theorem III.5) for partial
production calculations, which is highly costly. Even though
extra HE rotations are needed to extract the partial results,
the computation cost is much smaller than that of HE-Mult
as shown in Table I. It is worth mentioning that, while one
ϵkm×n(Ā) ⊙ ωk

m×n(B) helps to produce multiple copies of
ϵpm×n(A) ⊙ ωp

m×n(B), as shown in Figure 4, some of them
may be produced repeatedly. These redundant copies should
be identified, which can be easily identified according to
Theorem III.5, and excluded from the final results.

2) n = min{m, l, n}: We can employ the same analysis
flow as above. There are two major differences compared with
the case of m = min{m, l, n}. (i) We duplicate matrix B
horizontally to expand B instead of A; (ii) The row-major
order is a better option than the column-major order in this
case.

When n = min{m, l, n}, if the matrix is flattened with
the row-major order, according to Theorem III.3 and III.4,
one ϵ transformation and one ω transformation would result
in no more than (2m+

⌊
m
l

⌋
+ 1) non-zero diagonals in cor-

responding transformation matrices. When expanding Bl×n to
B̄l×l, the total number of non-zero diagonals in corresponding
transformation matrices is reduced to (2 +

⌊
m
l

⌋
+ 1) instead.

However, if the column-major order is used, the total number
of non-zero diagonals after expanding is (1 + (2 +

⌊
m
l

⌋
) · n),

which makes the row-major order a better option to flatten the
matrices.

Similarly, when we expand B by duplicating Bl×n, we can
generate multiple partial products, i.e., ϵpm×n(A)⊙ωp

m×n(B),
using one HE-Mult operation, as supported by the following
theorem. The proof is quite similar to that for Theorem III.5
and thus omitted due to page limit.

Theorem III.6. Let Am×l and Bl×n with n < l, and let B̄ be
matrix expanded with t =

⌈
l
n

⌉
copies of B horizontally, i.e.,

B̄ = {B;B; ...;B}. Then

• ϵkm×tn(σ(A)) ⊙ ωk
m×tn(τ(B̄)) contains t items of

ϵpm×n(σ(A)) ⊙ ωp
m×n(τ(B)), with p = [k]l, [k +

n]l, ..., [k + (t− 1)n]l;
• ϵkm×tn(σ(A)) ⊙ ωk

m×tn(τ(B̄), k = 0, 1, ..., (n − 1)
contains all items of ϵpm×n(σ(A)) ⊙ ωp

m×n(τ(B)), with
p = 0, 1, ..., (l − 1).

1 2
3 4
5 6
7 8

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20

1 2 3 4
6 7 8 5
11 12 9 10
16 13 14 15
17 18 19 20

1 2 1 2
3 4 3 4
5 6 5 6
7 8 7 8

1 4 5 8
3 6 7 2
5 8 1 4
7 2 3 6

1 2 3 4
6 7 8 5
11 12 9 10
16 13 14 15
17 18 19 20

1 4 5 8
3 6 7 2
5 8 1 4
7 2 3 6
1 4 5 8

2 3 4 1
7 8 5 6
12 9 10 11
13 14 15 16
18 19 20 17

3 6 7 2
5 8 1 4
7 2 3 6
1 4 5 8
3 6 7 2

1 8 15 32
18 42 56 10
55 96 9 40
112 26 42 90
17 72 95 160

6 18 28 2
35 64 5 24
84 18 30 66
13 56 75 128
54 114 140 34

7 26 43 34
53 106 61 34
139 114 39 106
125 82 117 218
71 186 235 194

50 60
114 140
178 220
242 300
306 380

Fig. 5. This is an illustrative example of the enhanced HE MM algorithm for
multiplying two matrices A5×4 and B4×2, with m = 5, l = 4 and n = 2. B̄
is the matrix by duplicating B horizontally for two times, i.e., t = ⌈4/2⌉ = 2
and A5×4 remains unchanged. The partial products are accumulated to obtain
the final product.

Figure 5 shows an illustrative example of HE MM with
two source matrices A5×4 and B4×2, with m = 5, l = 4
and n = 2. B̄ is the matrix by duplicating B horizon-
tally for two times, i.e., t = ⌈4/2⌉ = 2. Note that,
each ϵ5×4(σ(A)) ⊙ ω5×4(τ(B̄)) using one HE-Mult opera-
tion can produce two copies of ϵ5×2(σ(A)) ⊙ ω5×2(τ(B)),
as shown in the figure: ϵ05×4(σ(A)) ⊙ ω0

5×4(τ(B̄)) contains
ϵ05×2(σ(A)) ⊙ ω0

5×2(τ(B)) and ϵ25×2(σ(A)) ⊙ ω2
5×2(τ(B)).

ϵ15×4(σ(A))⊙ω1
5×4(σ(B̄)) contains ϵ15×2(σ(A))⊙ω1

5×2(τ(B))
and ϵ35×2(σ(A)) ⊙ ω3

5×2(τ(B)). We then need to add all the
partial products together to get the final result. As such, we
only need to perform at most n HE-Mult operations according
to Theorem III.6 to obtain all the partial products. Redundant
copies may also be generated during this process, which
should be identified according to Theorem III.6 and excluded
from the final results.

The overall algorithm for the enhanced HE-based General

7

Algorithm 2: HEGMM-Enhanced
Input: matrix Am×l, Bl×n

Output: matrix Cm×n = Am×l × Bl×n

1 p← min(m, l, n)
2 t← ⌈l/p⌉
// Determine M and N by shape

3 if p=m then
4 ĀM×l ← [A;A;A; ...;A︸ ︷︷ ︸]T

t

5 B̄l×N ← B
6 M = t×m,N = n
7 else if p=n then
8 ĀM×l ← A
9 B̄l×N ← [B;B;B; ...;B︸ ︷︷ ︸]

t

10 M = m,N = t× n
11 else
12 ĀM×l ← A
13 B̄l×N ← B
14 M = m,N = n
15 end

// Prepossessing on client
16 ct.sĀ ← ϵ0M×max(l,N)(σ(Ā))
17 ct.tB̄ ← ω0

max(l,M)×N (τ(B̄))
// Multiplication on Cloud

18 ct.Cm×n ← ct.sĀ ⊙ ct.tB̄
19 for k = 0, 1, ..., (p− 1) do
20 ct.Ā(k) ← ϵkM×N (ct.sĀ)
21 ct.B̄(k) ← ωk

M×N (ct.tB̄)
22 ct.Ctemp ← ct.Ā(k) ⊙ ct.B̄(k)

// ct.Ctemp contains of t items of

ϵk+i·p
m×n (σ(A))⊙ ωk+i·p

m×n (τ(B))(0 ≤ i < t).

23 for i = 0, 1, ..., (t− 1) do
24 j = [k + i · p]l
25 if ϵjm×n(σ(A))⊙ ωj

m×n(τ(B)) ∈ ct.Ctemp has
not been accumulated in ct.Cm×n then

26 ct.Cm×n ←
ct.Cm×n + ϵjm×n(σ(A))⊙ ωj

m×n(τ(B))
27 end
28 end
// Return encrypted result to client

29 return ct.Cm×n

MM, named HEGMM-En, is presented in Algorithm 2. Note
that, when m < l and n < l, we can choose to duplicate
either A or B. In Algorithm 2, we choose the smaller of
m and n and expand either A or B accordingly (lines 3 -
10). When l = min{m, l, n}, we make no change of A and
B (lines 11 - 15). After initializing several relevant variables
(lines 16 - 18), Algorithm 2 goes through a loop to compute
and accumulate the partial products (lines 19-28). To be more
specific, we first conduct ϵ and ω transformations based on the
expanded matrix (A or B) (lines 20 - 21), which are combined

together into Ctemp using the element-wise HE multiplication
(line 22). The algorithm then extracts the possible t copies
of ϵm×n(σ(A)) ⊙ ωm×n(τ(B)) from Ctemp and accumulates
them to Cm×n, according to Theorems III.5 and III.6, and the
redundant copies are excluded from the Cm×n.

Note that, compared with Algorithm 1, Algorithm 2 only
needs to perform p = min{m, l, n} loops (line 19) instead of
l. We assume that the proper order is adopted when flattening
the matrix: When p = min{m, l, n} = m, A is expanded and
the column-major order is adopted to flatten matrices; When
p = min{m, l, n} = n, B is expanded and the row-major order
is adopted to flatten matrices; When p = min{m, l, n} = l,
neither A and B is expanded, and either major order can be
adopted to flatten matrices.

IV. EXPERIMENTS

In this section, we evaluate the performance of the two algo-
rithms developed in this paper, i.e., HEGMM and HEGMM-
Enhanced, and compare them with the state-of-the-art schemes
for HE-based matrix multiplication.

A. Experimental platform

We implemented HEGMM and HEGMM-Enhanced using
a Python HE library, named Pyfhel [58] with BFV scheme
[76], [75]. We set the HE scheme based on the RLWE (Ring
Learning With Errors) [33] assumption over the cyclotomic
ring Rq = Zq[X]/(XN + 1) with N = 212. Thus each
ciphertext can hold up to N = 212 slots for plaintext values,
the largest square matrix that can be accommodated in one
ciphertext is thus 64× 64.

In our experiments, we studied the following approaches.
• E2DM-S, which is presented in [61] on square matrix

multiplication. For a general MM Am×l ×Bl×n, we can
transform Am×l and Bl×n to two square matrices, A′

d×d

and B′d×d with d = max{m, l, n} and use this algorithm
to calculate the result;

• E2DM-R, which is presented in [61] on rectangular
matrix multiplication Ar×d × Bd×d. For a general MM
Am×l×Bl×n, we can expand Am×l and/or Bl×n accord-
ingly and use this algorithm to calculate the result;

• Huang-MM, which is introduced in [60] and imple-
mented with Pyfhel [58].

• HEGMM, which is shown in Algorithm 1.
• HEGMM-En, which is shown in Algorithm 2.
We randomly generated 2000 pairs of matrices, with column

and row numbers evenly distributed with [1, 64], as the test
cases. Note that, even though Huang et al. [60], HEGMM
and HEGMM-Enhanced can handle MM with column or row
numbers exceeding 64, as long as the total element is no more
than 212, we limited the largest dimension size to 64 so that
E2DM-S and E2DM-R can always apply. We assume that σ
and τ transformations of E2DM and HEGMM are performed
on plaintext, and to be fair, we assume the portion of Huang et
al.’s algorithm, i.e., extracting diagonal vector from matrix, is
also performed on plaintext. All experiments were conducted

8

on a server with Intel Xeon Silver 4114 with 10 cores at
2.2GHz.

B. Computational time evaluations

To better understand the performance of the five different
algorithms listed above, we categorize the test cases into 5
groups: (1) m = min{m, l, n}; (2) l = min{m, l, n}; (3)
n = min{m, l, n}; (4) l mod m = 0; (5) m = l = n (the
square matrix). Note that cases in (4) and (5) are the most
favorable ones for E2DM-R and E2DM-S, respectively. For
test cases in each group, execution times were collected for the
five different approaches. We use the better ones by E2DM-S
and E2DM-R as the performance that can achieved by E2DM.
We then calculate the speedups that can be achieved using
HEGMM, HEGMM-En over E2DM and Huang et al..

The average, median, and maximum speedup for each
group, as well as the overall results, are listed in Tables II
and III.

As in Table II, HEGMM outperforms Huang el al. in all
groups, with a speedup of 1.93 on average and the maximum
of over 4.96. Compared with E2DM, HEGMM can achieve
better performance in all cases other than if the matrices are
square or when m = min(m, l, n). As shown in Table II,
HEGMM can achieve a speedup of 3.3 on average with the
maximum of over 154.12 over the best of E2DM. When
source matrices are square, HEGMM is equivalent to E2DM
with slight overhead for taking care of generality of matrices.
When m = min(m, l, n), the time complexity of E2DM-
R is O(m) while HEGMM is O(l). Therefore, E2DM-R
can potentially achieve better performance, especially when
m << l.

The enhanced algorithm, i.e., HEGMM-En, can signifi-
cantly outperform the rest of the approaches for arbitrary
HE MM, as shown in Table III. This is because HEGMM-
En can reduce HE-Mult operations significantly by properly
duplicating the source matrices. Specifically, HEGMM-En
can achieve an average speedup of 4.13 with the maximum of
132.42 over best of E2DM, and an average speedup of 4.50
with the maximum of 23.68 over the Huang et al.. For square
matrices, HEGMM-En is equivalent to E2DM and requires
slightly more time than due to the overhead for taking care of
the generality of matrices.

We also use Figure 6 to compare the performance of these
approaches from a different perspective. Specifically, Figure 6
shows the number of test cases that can achieve speedups
between (0, 1], [1, 2], and (2,+∞) by HEGMM, HEGMM-
En and Huang et al. over the best results by E2DM-S and
E2DM-R. In a total of 2000 test cases, there were 1324
cases that HEGMM outperform both E2DM-S and E2DM-
R, while it is 1805 for HEGMM-En, which indicates that
HEGMM-En performs significantly better than HEGMM.
For Huang et al., only 610 samples outperform E2DM.
Overall, the experimental findings indicate that the algorithms
HEGMM and HEGMM-EN exhibit a significant performance
superiority compared to current methodologies in 66.2% and
90.2% of the samples, respectively.

1390

279
331

676
717

607

195

843

962

0

200

400

600

800

1000

1200

1400

1600

(0,1] (1,2] (2,+∞)

N
u

m
b

e
r

o
f

C
a
s
e
s

Speedup

HUANG et al. v.s. E2DM

HEGMM v.s. E2DM

HEGMM-En v.s. E2DM

Fig. 6. The statistics of the speedups for the algorithms HEGMM, HEGMM-
En, E2DM [61], and Huang et al. [60].

630
548

822

17

703

1280

30

705

1265

0

200

400

600

800

1000

1200

1400

(0,1] (1,2] (2,+∞)

N
u

m
b

e
r

o
f

c
a
s
e
s

Memory Usage Ratio

E2DM v.s. HUANG et al.

E2DM v.s. HEGMM

E2DM v.s. HEGMM-En

Fig. 7. The statistics of memory usage ratio for the algorithms HEGMM,
HEGMM-En, E2DM [61], and Huang et al. [60].

C. Memory evaluations

HE computations may demand not only excessive compu-
tation time but also memory usage as well. We are therefore
interested in studying the memory usage of these approaches.
We collected the memory usage for each algorithm during its
runtime for our test cases with results normalized against the
memory usage by E2DM and presented in Figure 7, where a
total of 2000 experimental sets were conducted. In comparison
to E2DM, both HEGMM and HEGMM-En tend to consume
less memory. As shown in Figure 7, less than 17 (resp. 30)
out of the total 2000 test results show that E2DM consumes
less memory than HEGMM (resp. HEGMM-EN). In contrast,
630 test cases using Huang et al. have higher memory usage
compared to E2DM. Overall, the experimental results clearly
demonstrate the advantage of memory usage efficiency of
HEGMM and HEGMM-En over the existing approaches.

D. Evaluation of large matrix multiplication

Our test cases above are limited to the maximum matrix
dimension of 64x64, the largest one that can fit into one ci-
phertext in our setting. When matrix sizes exceed this limit, we

9

TABLE II
THE PERFORMANCE COMPARISON OF HEGMM, E2DM [61] AND HUANG et al. [60] IN DIFFERENT SCENARIOS.

m = min(m, l, n) l = min(m, l, n) n = min(m, l, n) l mod m = 0 square overall
s-up1† s-up2 s-up1 s-up2 s-up1 s-up2 s-up1 s-up2 s-up1 s-up2 s-up1 s-up2

Average 0.90 2.21 10.74 1.99 1.83 2.29 1.49 2.12 1.00 1.67 3.30 1.93
Median 0.58 2.21 3.61 1.95 1.20 2.35 0.52 2.10 1.00 1.72 1.04 2.04

Max 39.50 3.25 154.12 4.96 136.82 3.28 39.50 3.07 1.02 2.36 154.12 4.96
[†]s-up1 is the speedup achieved by HEGMM over the best of E2DM [61]; s-up2 is the speedup achieved by HEGMM over Huang
et al. [60];

TABLE III
THE PERFORMANCE COMPARISON OF HEGMM-EN, E2DM [61] AND HUANG et al. [60] IN DIFFERENT SCENARIOS.

m = min(m, l, n) l = min(m, l, n) n = min(m, l, n) l mod m = 0 square overall
s-up3‡ s-up4 s-up3 s-up4 s-up3 s-up4 s-up3 s-up4 s-up3 s-up4 s-up3 s-up4

Average 1.69 6.60 10.32 2.01 4.06 6.55 2.74 7.28 0.99 1.66 4.13 4.50
Median 1.13 4.88 3.70 1.97 2.56 4.83 1.37 6.23 1.00 1.72 1.38 2.48

Max 33.28 23.29 132.42 4.26 113.31 23.68 33.28 21.75 1.01 2.36 132.42 23.68
[‡]s-up3 is the speedup achieved by HEGMM-En over the best of E2DM [61]; s-up4 is the speedup achieved by HEGMM-En over
Huang et al. [60];

can resort to the traditional blocking algorithm, i.e., by dividing
a large matrix into a series of smaller blocks, to perform the
MM calculation. We want to study the performance of our
proposed approaches when incorporated into MM blocking
algorithms for A100×100 × B100×100.

Partitioning large source matrices properly based on differ-
ent MM algorithms is an interesting problem but beyond the
scope of this paper. In our experiments, we hire two intuitive
partition methods: P1: partitioning the matrix 100× 100 to
four equal-size square matrices of 50× 50; P2: partitioning
the matrix 100× 100 to four sub matrices of 64× 64, 64× 36,
36× 64, and 36× 36.

Different HE MM algorithms were employed for blocking
MMs. We ran the experiments 10 times, and the average results
were collected and shown in Table IV. As expected, for P1
when all matrices are square, E2DM-S, E2DM-R, HEGMM
and HEGMM-EN perform quite similarly, while HEGMM
and HEGMM-EN take a little longer due to overhead in
dealing with the generality of the matrices. Huang et al. shows
a much slower performance than the others. We believe this
is because that Huang et al. approach requires duplicating
diagonals of a source matrix with the complexity of O(logN),
with N the size of the matrix. The duplication operation
involves expensive HE-CMult and HE-Rot operations. This is
particularly computationally expensive when N is not a power
of two. In contrast, the time complexity of same step in E2DM
and HEGMM is O(2) for P1.

For P2, HEGMM, HEGMM-EN, and Huang et al. can
perform better because they can take advantage of the irregular
shapes of the matrices. In particular, HEGMM-EN (resp.
HEGMM) has a complexity of O(min(m, l, n)) (resp. O(l)).
In contrast, E2DM-S runs much longer because it needs
to expand matrices 64× 36 and 36× 64 to form 64× 64
matrix. E2DM-R is incapable of processing matrices with
such irregular shapes, as it has a tendency to enlarge matrix
of 36×64 to 72×72, which is larger than the ciphertext size.

TABLE IV
TIME EVALUATION OF THE BLOCKING ALGORITHM

Partition E2DM-S E2DM-R Huang et al. HEGMM HEGMM-EN
P1 39.06s 39.01s 74.34s 39.12s 39.15s
P2 29.76s N/A 37.51s 26.17s 26.23s

V. CONCLUSIONS

HE has great potential for security and privacy protection
when outsourcing data processing to the cloud. However,
the excessive computational overhead associated with the HE
operations makes it prohibitive for many practical cloud ap-
plications. We study how to reduce the HE computational cost
for general MM operation, an essential building block in many
computational fields. We present two HE MM algorithms,
with one improving another, to reduce the computational
complexity of MM by taking advantage of the SIMD structure
in the HE scheme. We also conduct rigorous analytical studies
on the correctness and computational complexity of these
two algorithms. Experiment results show that our proposed
approach can significantly outperform the existing methods.
In our future research, we plan to investigate how to reduce
the HE computational cost for sparse matrix multiplication.

ACKNOWLEDGEMENTS

This work was supported in part by the Air Force Office
of Scientific Research (AFOSR) and the Air Force Research
Laboratory / Information Directorate (AFRL/RI), Rome, NY
under the 2021 Summer Faculty Fellowship Program, and
Information Directorate Internship Program, respectively. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of the Air Force Research Laboratory or the U.S.
Government. Approved for Public Release on 06 Mar 2024.
Distribution is Unlimited. Case Number: 2024-0184 (original
case number(s): AFRL-2024-0944

10

REFERENCES

[1] D. H. Duong, P. K. Mishra, and M. Yasuda, “Efficient secure
matrix multiplication over lwe-based homomorphic encryption,” Tatra
Mountains Mathematical Publications, vol. 67, no. 1, pp. 69–83, 2017.
[Online]. Available: https://doi.org/10.1515/tmmp-2016-0031

[2] P. K. Mishra, D. H. Duong, and M. Yasuda, “Enhancement for secure
multiple matrix multiplications over ring-lwe homomorphic encryption,”
in Information Security Practice and Experience, J. K. Liu and P. Sama-
rati, Eds. Springer, 2017, pp. 320–330.

[3] B. Varghese and R. Buyya, “Next generation cloud computing: New
trends and research directions,” Future Generation Computer Systems,
vol. 79, pp. 849–861, 2018.

[4] J. H. Cheon, A. Kim, and D. Yhee, “Multi-dimensional packing for
heaan for approximate matrix arithmetics,” Cryptology ePrint Archive,
2018.

[5] M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. E. Spafford, “Se-
cure outsourcing of scientific computations,” in Advances in Computers.
Elsevier, 2002, vol. 54, pp. 215–272.

[6] X. Lei, X. Liao, T. Huang, and F. Heriniaina, “Achieving security, robust
cheating resistance, and high-efficiency for outsourcing large matrix
multiplication computation to a malicious cloud,” Information sciences,
vol. 280, pp. 205–217, 2014.

[7] S. Fu, Y. Yu, and M. Xu, “A secure algorithm for outsourcing matrix
multiplication computation in the cloud,” in Proceedings of the Fifth
ACM international workshop on security in cloud computing, 2017, pp.
27–33.

[8] S. Zhang, C. Tian, H. Zhang, J. Yu, and F. Li, “Practical and secure
outsourcing algorithms of matrix operations based on a novel matrix
encryption method,” IEEE Access, vol. 7, pp. 53 823–53 838, 2019.

[9] P. K. Mishra, D. Rathee, D. H. Duong, and M. Yasuda, “Fast secure
matrix multiplications over ring-based homomorphic encryption,” In-
formation Security Journal: A Global Perspective, vol. 30, no. 4, pp.
219–234, 2021.

[10] S. Wang and H. Huang, “Secure outsourced computation of multiple
matrix multiplication based on fully homomorphic encryption,” KSII
Transactions on Internet and Information Systems (TIIS), vol. 13, no. 11,
pp. 5616–5630, 2019.

[11] J. H. Cheon and A. Kim, “Homomorphic encryption for approximate
matrix arithmetic,” Cryptology ePrint Archive, 2018.

[12] Y. Tian, M. Al-Rodhaan, B. Song, A. Al-Dhelaan, and T. H. Ma,
“Somewhat homomorphic cryptography for matrix multiplication using
gpu acceleration,” in 2014 International Symposium on Biometrics and
Security Technologies (ISBAST). IEEE, 2014, pp. 166–170.

[13] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-
preserving machine learning as a service.” Proc. Priv. Enhancing Tech-
nol., vol. 2018, no. 3, pp. 123–142, 2018.

[14] R. Hiromasa, M. Abe, and T. Okamoto, “Packing messages and optimiz-
ing bootstrapping in gsw-fhe,” IEICE TRANSACTIONS on Fundamen-
tals of Electronics, Communications and Computer Sciences, vol. 99,
no. 1, pp. 73–82, 2016.

[15] R. Scale, “State of the cloud report,” Tech. Rep, Tech. Rep., 2015.
[16] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Single

database, computationally-private information retrieval,” in Proceedings
38th annual symposium on foundations of computer science. IEEE,
1997, pp. 364–373.

[17] J. D. C. Benaloh, Verifiable secret-ballot elections. Yale University,
1987.

[18] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[19] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play
mental poker keeping secret all partial information,” in Proceedings of
the fourteenth annual ACM symposium on Theory of computing, 1982,
pp. 365–377.

[20] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE transactions on information theory,
vol. 31, no. 4, pp. 469–472, 1985.

[21] J. Benaloh and D. Tuinstra, “Receipt-free secret-ballot elections,” in
Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing, 1994, pp. 544–553.

[22] D. Naccache and J. Stern, “A new public key cryptosystem based
on higher residues,” in Proceedings of the 5th ACM Conference on
Computer and Communications Security, 1998, pp. 59–66.

[23] T. Okamoto and S. Uchiyama, “A new public-key cryptosystem as secure
as factoring,” in International conference on the theory and applications
of cryptographic techniques. Springer, 1998, pp. 308–318.

[24] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in International conference on the theory and applications
of cryptographic techniques. Springer, 1999, pp. 223–238.

[25] I. Damgård and M. Jurik, “A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system,” in Interna-
tional workshop on public key cryptography. Springer, 2001, pp. 119–
136.

[26] A. Kawachi, K. Tanaka, and K. Xagawa, “Multi-bit cryptosystems
based on lattice problems,” in International Workshop on Public Key
Cryptography. Springer, 2007, pp. 315–329.

[27] S. C. U. M. B. Tackmann, “Constructing confidential channels from
authenticated channels—public-key encryption revisited.”

[28] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-dnf formulas on
ciphertexts,” in Theory of cryptography conference. Springer, 2005,
pp. 325–341.

[29] T. Sander, A. Young, and M. Yung, “Non-interactive cryptocomputing
for nc/sup 1,” in 40th Annual Symposium on Foundations of Computer
Science (Cat. No. 99CB37039). IEEE, 1999, pp. 554–566.

[30] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,”
in Proceedings of the forty-fourth annual ACM symposium on Theory
of computing, 2012, pp. 1219–1234.

[31] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption
from ring-lwe and security for key dependent messages,” in Annual
cryptology conference. Springer, 2011, pp. 505–524.

[32] S. Ames, M. Venkitasubramaniam, A. Page, O. Kocabas, and T. Soyata,
“Secure health monitoring in the cloud using homomorphic encryp-
tion: A branching-program formulation,” in Enabling Real-Time Mobile
Cloud Computing through Emerging Technologies.

[33] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in 29th Intl. Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2010, pp.
1–23.

[34] B. Reagen, W.-S. Choi, Y. Ko, V. T. Lee, H.-H. S. Lee, G.-Y. Wei,
and D. Brooks, “Cheetah: Optimizing and accelerating homomorphic
encryption for private inference,” in IEEE International Symposium on
High-Performance Computer Architecture (HPCA).

[35] M. Nocker, D. Drexel, M. Rader, A. Montuoro, and P. Schöttle, “He-
man–homomorphically encrypted machine learning with onnx models,”
arXiv preprint arXiv:2302.08260, 2023.

[36] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Annual international
conference on the theory and applications of cryptographic techniques.
Springer, 2010, pp. 24–43.

[37] Y. Ishai and A. Paskin, “Evaluating branching programs on encrypted
data,” in Theory of Cryptography Conference. Springer, 2007, pp. 575–
594.

[38] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Computing Surveys (Csur), vol. 51, no. 4, pp. 1–35, 2018.

[39] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, “An autonomic
resource provisioning approach for service-based cloud applications: A
hybrid approach,” Future Generation Computer Systems, vol. 78, pp.
191–210, 2018.

[40] V. R. Pancholi and B. P. Patel, “Enhancement of cloud computing
security with secure data storage using aes,” International Journal for
Innovative Research in Science and Technology, vol. 2, no. 9, pp. 18–21,
2016.

[41] V. Rajaraman, “Cloud computing,” Resonance, vol. 19, no. 3, pp. 242–
258, 2014.

[42] B. Power and J. Weinman, “Revenue growth is the primary benefit of
the cloud,” IEEE Cloud Computing, vol. 5, no. 4, pp. 89–94, 2018.

[43] S. Becker, G. Brataas, M. Cecowski, D. Huljenić, S. Lehrig, and I. Stu-
par, “The cloudscale method for managers,” in Engineering Scalable,
Elastic, and Cost-Efficient Cloud Computing Applications. Springer,
2017, pp. 149–165.

[44] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes,
M. Barekatain, A. Novikov, F. J. R Ruiz, J. Schrittwieser, G. Swirszcz
et al., “Discovering faster matrix multiplication algorithms with rein-
forcement learning,” Nature, vol. 610, no. 7930, pp. 47–53, 2022.

11

https://doi.org/10.1515/tmmp-2016-0031

[45] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, D. Leaf et al.,
“Nist cloud computing reference architecture,” NIST special publication,
vol. 500, no. 2011, pp. 1–28, 2011.

[46] P. Jiang, C. Hong, and G. Agrawal, “A novel data transformation and
execution strategy for accelerating sparse matrix multiplication on gpus,”
in Proceedings of the 25th ACM SIGPLAN symposium on principles and
practice of parallel programming, 2020, pp. 376–388.

[47] P. Valero-Lara, I. Martı́nez-Pérez, S. Mateo, R. Sirvent, V. Beltran,
X. Martorell, and J. Labarta, “Variable batched dgemm,” in 2018
26th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), 2018, pp. 363–367.

[48] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou,
and J. Dongarra, “Algorithms and optimization techniques for high-
performance matrix-matrix multiplications of very small matrices,”
Parallel Computing, vol. 81, pp. 1–21, 2019.

[49] W. Liu and B. Vinter, “An efficient gpu general sparse matrix-matrix
multiplication for irregular data,” in IEEE 28th international parallel
and distributed processing symposium. IEEE, 2014, pp. 370–381.

[50] Y. Nagasaka, S. Matsuoka, A. Azad, and A. Buluç, “High-performance
sparse matrix-matrix products on intel knl and multicore architectures,”
in Proceedings of the 47th International Conference on Parallel Pro-
cessing Companion, 2018, pp. 1–10.

[51] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient
architecture for sparse matrix multiplication,” in 2020 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2020, pp. 261–274.

[52] R. Ran, N. Xu, W. Wang, Q. Gang, J. Yin, and W. Wen, “Cryptogcn: Fast
and scalable homomorphically encrypted graph convolutional network
inference,” arXiv preprint arXiv:2209.11904, 2022.

[53] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “{ABY2. 0}:
Improved {Mixed-Protocol} secure {Two-Party} computation,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 2165–
2182.

[54] J. I. Choi, D. Tian, G. Hernandez, C. Patton, B. Mood, T. Shrimpton,
K. R. Butler, and P. Traynor, “A hybrid approach to secure function
evaluation using sgx,” in Proceedings of the 2019 ACM Asia Conference
on Computer and Communications Security, 2019, pp. 100–113.

[55] N. Husted, S. Myers, A. Shelat, and P. Grubbs, “Gpu and cpu paralleliza-
tion of honest-but-curious secure two-party computation,” in Proceed-
ings of the 29th Annual Computer Security Applications Conference,
2013, pp. 169–178.

[56] Y. Zhang, A. Steele, and M. Blanton, “Picco: a general-purpose compiler
for private distributed computation,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, 2013, pp.
813–826.

[57] T. Vasiljeva, S. Shaikhulina, and K. Kreslins, “Cloud computing:
Business perspectives, benefits and challenges for small and medium
enterprises (case of latvia),” Procedia Engineering, vol. 178, pp. 443–
451, 2017.

[58] A. Ibarrondo and A. Viand, “Pyfhel: Python for homomorphic encryp-
tion libraries,” in Proceedings of the 9th on Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, 2021, pp. 11–16.

[59] Z. Huang, C. Hong, C. Weng, W.-j. Lu, and H. Qu, “More efficient
secure matrix multiplication for unbalanced recommender systems,”
IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 1,
pp. 551–562, 2023.

[60] H. Huang and H. Zong, “Secure matrix multiplication based on fully
homomorphic encryption,” Journal of Supercomputing, pp. 1–22, 2022.

[61] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure outsourced matrix
computation and application to neural networks,” in Proceedings of
the 2018 ACM SIGSAC conference on computer and communications
security, 2018, pp. 1209–1222.

[62] V. Gupta, S. Wang, T. Courtade, and K. Ramchandran, “Oversketch:
Approximate matrix multiplication for the cloud,” in 2018 IEEE Inter-
national Conference on Big Data (Big Data). IEEE, 2018, pp. 298–304.

[63] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of cryptography
conference. Springer, 2006, pp. 265–284.

[64] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[65] C. Dwork, “A firm foundation for private data analysis,” Communica-
tions of the ACM, vol. 54, no. 1, pp. 86–95, 2011.

[66] S. Halevi and V. Shoup, “Algorithms in helib,” in Annual Cryptology
Conference. Springer, 2014, pp. 554–571.

[67] N. P. Smart and F. Vercauteren, “Fully homomorphic simd operations,”
Designs, codes and cryptography, vol. 71, no. 1, pp. 57–81, 2014.

[68] D. Rathee, P. K. Mishra, and M. Yasuda, “Faster pca and linear
regression through hypercubes in helib,” in Proceedings of the 2018
Workshop on Privacy in the Electronic Society, 2018, pp. 42–53.

[69] A. C. Yao, “Protocols for secure computations,” in 23rd annual sympo-
sium on foundations of computer science (sfcs 1982). IEEE, 1982, pp.
160–164.

[70] W.-j. Lu, S. Kawasaki, and J. Sakuma, “Using fully homomorphic
encryption for statistical analysis of categorical, ordinal and numerical
data,” Cryptology ePrint Archive, 2016.

[71] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba,
“New packing method in somewhat homomorphic encryption and its
applications,” Security and Communication Networks, vol. 8, no. 13,
pp. 2194–2213, 2015.

[72] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?” in Proceedings of the 3rd ACM workshop on
Cloud computing security workshop, 2011, pp. 113–124.

[73] R. L. Rivest, L. Adleman, M. L. Dertouzos et al., “On data banks and
privacy homomorphisms,” Foundations of secure computation, vol. 4,
no. 11, pp. 169–180, 1978.

[74] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the forty-first annual ACM symposium on Theory of
computing, 2009, pp. 169–178.

[75] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, 2012.

[76] Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical gapsvp,” in Annual Cryptology Conference. Springer,
2012, pp. 868–886.

[77] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[78] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in International conference
on the theory and application of cryptology and information security.
Springer, 2017, pp. 409–437.

[79] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter et al., “Homomorphic
encryption standard,” in Protecting Privacy through Homomorphic En-
cryption. Springer, 2021, pp. 31–62.

[80] Inferati, “Introduction to the bfv encryption scheme,” https://inferati.
com/blog/fhe-schemes-bfv, accessed Oct 4, 2022.

[81] Wikipedia contributors, “Single instruction, multiple data — Wikipedia,
the free encyclopedia,” 2022, [Online; accessed 4-October-2022].
[Online]. Available: https://en.wikipedia.org/w/index.php?title=Single
instruction, multiple data&oldid=1112117357

[82] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” in Annual international conference on the theory
and applications of cryptographic techniques. Springer, 2011, pp. 129–
148.

[83] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with
relatively small key and ciphertext sizes,” in International Workshop on
Public Key Cryptography. Springer, 2010, pp. 420–443.

[84] S. Halevi and V. Shoup, “Bootstrapping for helib,” Journal of Cryptol-
ogy, vol. 34, no. 1, pp. 1–44, 2021.

12

https://inferati.com/blog/fhe-schemes-bfv
https://inferati.com/blog/fhe-schemes-bfv
https://en.wikipedia.org/w/index.php?title=Single_instruction,_multiple_data&oldid=1112117357
https://en.wikipedia.org/w/index.php?title=Single_instruction,_multiple_data&oldid=1112117357

APPENDIX A
THE PROOF FOR THE THEOREM III.1∼THEOREM III.4

Theorem. III.1 Let σ(A) = UσA for A with a dimension of
m× l. There are at most 2 ·min(m, l)− 1 non-zero diagonals
in Uσ no matter if the matrix is flattened with a column-major
or row-major order.

Proof. When applying σ transformation on matrix Am×l in
column-major order, Uσ is formulated in Equation (12). Note
that Uσ

i+j·m,h = 1 when h = i + [i + j]l · m and, for all
elements of Uσ

i+j·m,h that belong to the same diagonal, we
have h− (i+ j ·m) as a constant.

Considering all the non-zero elements in Uσ
i+j·m,h, we have

h− (i+ j ·m) = i+ [i+ j]l ·m− (i+ j ·m)

= i+ (i+ j −
⌊
i+ j

l

⌋
· l) ·m− (i+ j ·m)

= (i−
⌊
i+ j

l

⌋
· l) ·m.

Since
⌊
i
l

⌋
+

⌊
j
l

⌋
≤

⌊
i+j
l

⌋
≤

⌊
i
l

⌋
+

⌊
j
l

⌋
+ 1 and 0 ≤ j < l,

we have
⌊
i
l

⌋
≤

⌊
i+j
l

⌋
≤

⌊
i
l

⌋
+ 1.

Now consider two different scenarios: 1) m < l; 2) m ≥ l.
When m < l, for each i = {1, 2, ...,m − 1}, h − (i + j ·m)
can at most take two constant values since

⌊
i
l

⌋
= 0 and 0 ≤⌊

i+j
l

⌋
≤ 1. When i = 0, h− (i+j ·m) can only be zero since⌊

i+j
l

⌋
= 0. Therefore, Uσ

i+j·m,h has at most 2m− 1 non-zero
diagonals under this case.

When m ≥ l, we have

h− (i+ j ·m) = (i−
⌊
i+ j

l

⌋
· l) ·m

= (

⌊
i

l

⌋
· l + p−

⌊
i+ j

l

⌋
· l) ·m,

with 0 ≤ p < l. Since −1 ≤ (
⌊
i
l

⌋
−
⌊
i+j
l

⌋
) ≤ 0, Uσ

i+j·m,h has
at most 2l − 1 non-zero diagonals under this case.

Therefore, in summary, there are at most 2 ·min(m, l)− 1
non-zero diagonals in Uσ when the matrix is flattened with a
column-major. Similar proof can be obtained when the matrix
is flattened with the row-major order.

Theorem. III.2 Let τ(B) = UτB for B with a dimension of
l× n. There are at most 2 ·min(n, l)− 1 non-zero diagonals
in Uτ no matter if the matrix is flattened with a column-major
or row-major order.

Proof. When applying τ transformation on matrix Bl×n in
column-major order, Uτ is formulated in Equation (13). Note
that Uτ

i+j·l,h = 1 when h = [i+j]l+j·l and, for all elements of
Uτ

i+j·l,h that belong to the same diagonal, we have h−(i+j ·l)
as a constant.

Considering all the non-zero elements in Uτ
i+j·l,h, we have

h− (i+ j · l) = [i+ j]l + j · l − (i+ j ·m)

= i+ j −
⌊
i+ j

l

⌋
· l + j · l − (i+ j ·m)

= j −
⌊
i+ j

l

⌋
· l.

Since
⌊
i
l

⌋
+
⌊
j
l

⌋
≤

⌊
i+j
l

⌋
≤

⌊
i
l

⌋
+
⌊
j
l

⌋
+1 and 0 ≤ i < l, we

have
⌊
j
l

⌋
≤

⌊
i+j
l

⌋
≤

⌊
j
l

⌋
+ 1.

Now consider two different scenarios: 1) n < l; 2) n ≥ l.
When n < l, for each j = {1, 2, ..., n − 1}, h − (i + j · l)
can at most take two constant values since

⌊
j
l

⌋
= 0 and 0 ≤⌊

i+j
l

⌋
≤ 1. When i = 0, h− (i+ j · l) can only be zero since⌊

i+j
l

⌋
= 0. Therefore, Uτ

i+j·l,h has at most 2n − 1 non-zero
diagonals under this case.

When n ≥ l, we have

h− (i+ j · l) = j −
⌊
i+ j

l

⌋
· l

=

⌊
j

l

⌋
· l + p−

⌊
i+ j

l

⌋
· l,

with 0 ≤ p < l. Since −1 ≤ (
⌊
j
l

⌋
−
⌊
i+j
l

⌋
) ≤ 0, Uτ

i+j·l,h has
at most 2l − 1 non-zero diagonals under this case.

Therefore, in summary, there are at most 2 ·min(n, l) − 1
non-zero diagonals in Uτ when the matrix is flattened with a
column-major. Similar proof can be obtained when the matrix
is flattened with the row-major order.

Theorem. III.3 Let ϵkm×n(A) = Uϵkm×nA be the linear
transformation ϵm×n : Rm×l → Rm×n with matrix A having
a dimension of m × l. There are at most

⌊
n
l

⌋
+ 1 non-zero

diagonal vectors in Uϵkm×n when the matrix is flattened with
the column-major order; There are at most (

⌊
n
l

⌋
+2) ·m non-

zero diagonal vectors in Uϵkm×n when matrix A is flattened
with the row-major order. Specifically, when n = l, there are
no more than 2 non-zero diagonals in Uϵkm×n , no matter if the
matrix is flattened in column-major or row-major order.

Proof. When applying ϵ transformation on matrix Am×l in
column-major order, Uϵ is formulated in Equation (14). Note
that Uϵkm×n

i,j = 1 when j = [k ·m+ i]m·l and, for all elements

of Uϵkm×n

i,j that belong to the same diagonal, we have j − i as
a constant.

Considering all the non-zero elements in Uϵkm×n

i,j , we have

j − i = [k ·m+ i]m·l − i

= k ·m+ i−
⌊
k ·m+ i

m · l

⌋
·m · l − i

= k ·m−
⌊
k ·m+ i

m · l

⌋
·m · l

Since max(k) = l − 1 and max(i) = m · n− 1, we have

max(
k ·m+ i

m · l
) <

l − 1 + n

l

≤
⌊
l − 1

l

⌋
+
⌊n
l

⌋
+ 1

=
⌊n
l

⌋
+ 1

Therefore, we get
⌊
k·m+i
m·l

⌋
∈ {0, 1, ...,

⌊
n
l

⌋
}. Then, j− i =

k ·m−
⌊
k·m+i
m·l

⌋
·m · l. k, m and l are all constant number for

one transformation. The set {0, 1, ...,
⌊
n
l

⌋
} is of size

⌊
n
l

⌋
+1.

13

In summary, Uϵkm×n has at most
⌊
n
l

⌋
+1 constant values when

Am×l in column-major.
Special circumstances is when n = l,

⌊
n
l

⌋
= 1. Therefore,⌊

n
l

⌋
+ 1 = 2 and this means Uϵkm×n has only 2 non-zero

diagonals when n = l..
When applying ϵ transformation on matrix Am×l in row-

major order, we can formulate permutation matrix according
to formula (15), but apply on Al×m instead of Al×n. Note

that Uϵkm×n

i,j = 1 when j = [k + [i]n]l + ⌊i/n⌋ · l and, for all

elements of Uϵkm×n

i,j that belong to the same diagonal, we have
j − i as a constant.

Considering all the non-zero elements in Uϵkm×n

i,j , we have

j = k + [i]n −
⌊
k + [i]n

l

⌋
· l +

⌊
i

n

⌋
· l

= k + [i]n + (

⌊
i

n

⌋
−
⌊
k + [i]n

l

⌋
) · l

Since i ∈ [0,mn), we split i to m circumstances that i ∈
[pn, (p + 1)n) where p = {0, 1, 2, ...,m − 1}. For for each
circumstance that i ∈ [pn, (p+ 1)n), we have

j = k + i− pn+ (p−
⌊
k + [i]n

l

⌋
) · l

and
j − i = k − pn+ (p−

⌊
k + [i]n

l

⌋
) · l

Note that we have⌊
[pn]n
l

⌋
≤

⌊
k + [i]n

l

⌋
<

⌊
[pn]n
l

⌋
+
⌊n
l

⌋
+ 1 + 1

which has 2 +
⌊
n
l

⌋
constant values. And this means j − i ,

which represents the number of non-zero diagonals in Uϵkm×n ,
has (2+

⌊
n
l

⌋
) ·m in total when Am×l in row-major because

there are m circumstances.
Special circumstances is when n = l, j − i ∈ {0, 1}. The

reason is that, since⌊
k

l

⌋
+

⌊
[i]n
l

⌋
≤

⌊
k + [i]n

l

⌋
≤

⌊
k

l

⌋
+

⌊
[i]n
l

⌋
+ 1

and we also have k < l and [i]n < l, thus

0 ≤
⌊
k + [i]n

l

⌋
≤ 1

On the other hand, we have

j − i = k −
⌊
k + [i]n

l

⌋
· l

for each i ∈ [pn, (p+1)n). j − i has the same constant value
in each i ∈ [pn, (p + 1)n) and this means Uϵkm×n has only 2
non-zero diagonals when n = l.

Theorem. III.4 Let ωk
m×n(B) = Uωk

m×nB be the linear
transformation ωm×n : Rl×n → Rm×n with matrix B having
a dimension of l×n. There are at most (

⌊
m
l

⌋
+2) ·n non-zero

diagonal vectors in Uωk
m×n when the matrix is flattened with

column-major order; There are at most
⌊
m
l

⌋
+ 1 non-zero

diagonal vectors in Uωk
m×n when matrix B is flattened with

row-major order. Specifically, when m = l, there are no more
than 2 non-zero diagonals in Uωk

m×n , no matter if the matrix
is flattened in column-major or row-major order.

Proof. When applying ω transformation on matrix Bl×n in
column-major order, Uω is formulated in Equation (15). Note
that Uωk

m×n

i,j = 1 when j = [k + [i]m]l + ⌊i/m⌋ · l and, for

all elements of Uωk
m×n

i,j that belong to the same diagonal, we
have j − i as a constant.

Considering all the non-zero elements in Uωk
m×n

i,j , we have

j = k + [i]m −
⌊
k + [i]m

l

⌋
· l +

⌊
i

m

⌋
· l

= k + [i]m + (

⌊
i

m

⌋
−

⌊
k + [i]m

l

⌋
) · l

Since i ∈ [0,mn), we split i to n circumstances that
i ∈ [pm, (p + 1)m) where p = {0, 1, 2, ..., n − 1}. For each
circumstance that i ∈ [pm, (p+ 1)m), we have

j = k + i− pm+ (p−
⌊
k + [i]m

l

⌋
) · l

and

j − i = k − pm+ (p−
⌊
k + [i]m

l

⌋
) · l

Note that we have⌊
[pm]m

l

⌋
≤

⌊
k + [i]m

l

⌋
<

⌊
[pm]m

l

⌋
+

⌊m
l

⌋
+ 1 + 1

which has 2 +
⌊
m
l

⌋
constant values. And this means j − i ,

which represents the number of non-zero diagonals in Uωk
m×n ,

has (2 +
⌊
m
l

⌋
) · n in total when Bm×l in row-major because

there are n circumstances.
Special circumstances is when m = l, j − i ∈ {0, 1}. The

reason is that, since⌊
k

l

⌋
+

⌊
[i]l
l

⌋
≤

⌊
k + [i]l

l

⌋
≤

⌊
k

l

⌋
+

⌊
[i]l
l

⌋
+ 1

and we also have k < l and [i]l < l, thus

0 ≤
⌊
k + [i]l

l

⌋
≤ 1

On the other hand, we have

j − i = k −
⌊
k + [i]l

l

⌋
· l

for each i ∈ [pm, (p+1)m). j− i has the same constant value
in each i ∈ [pm, (p + 1)m) and this means Uωk

m×n has only
2 non-zero diagonals when m = l.

When applying ω transformation on matrix Bl×n in row-
major order, we can formulate permutation matrix according
to formula (14), but apply on Bn×l instead of Bm×l. Note that

Uωk
m×n

i,j = 1 when j = [k · n + i]n·l and, for all elements of

14

Uωk
m×n

i,j that belong to the same diagonal, we have j − i as a
constant.

Considering all the non-zero elements in Uωk
m×n

i,j , we have

j − i = [k · n+ i]n·l − i

= k · n+ i−
⌊
k · n+ i

n · l

⌋
· n · l − i

= k · n−
⌊
k · n+ i

n · l

⌋
· n · l

Since max(k) = l − 1 and max(i) = m · n− 1, we have

max(
k · n+ i

n · l
) <

l − 1 +m

l

≤
⌊
l − 1

l

⌋
+
⌊m
l

⌋
+ 1

=
⌊m
l

⌋
+ 1

Therefore, we get
⌊
k·n+i
n·l

⌋
∈ {0, 1, ...,

⌊
m
l

⌋
}. Then, j− i =

k·n−
⌊
k·n+i
n·l

⌋
·n·l. Here, k, n and l are all constant number for

one transformation. The set {0, 1, ...,
⌊
m
l

⌋
} is of size

⌊
m
l

⌋
+1.

In summary, Uωk
m×n has at most

⌊
m
l

⌋
+1 constant values when

Bm×l in row-major.
Special circumstances is when m = l,

⌊
m
l

⌋
= 1. Therefore,⌊

m
l

⌋
+ 1 = 2 and this means Uωk

m×n has only 2 non-zero
diagonals when m = l..

Theorem. III.5 Let Am×l and Bl×n with m < l, and let Ā
be matrix expanded with t =

⌈
l
m

⌉
copies of A vertically, i.e.,

Ā = {Ā0; Ā1; ...; Ā(t−1)}T with Ā0 = Ā1 = ... = Ā(t−1) =
Am×l. Then

• ϵktm×n(σ(Ā)) ⊙ ωk
tm×n(τ(B)) contains t items of

ϵpm×n(σ(A)) ⊙ ωp
m×n(τ(B)), with p ∈ {[k]l, [k +

m]l, ..., [k + (t− 1)m]l}.
• ϵktm×n(σ(Ā)) ⊙ ωk

tm×n(τ(B)), k = 0, 1, ..., (m − 1)
contains all items of ϵpm×n(σ(A)) ⊙ ωp

m×n(τ(B)), with
p ∈ {0, 1, ..., (l − 1)}.

Proof. Consider a sub matrix of (ϵktm×n ◦ σ(Ā)) with dimen-
sion of m × n, i.e., (ϵktm×n ◦ σ(Ā))hm+i,j , where 0 ≤ i <
m, 0 ≤ j < n. h is a constant with 0 ≤ h < t. Based on
equation (1) and (3), we have

(ϵktm×n ◦ σ(Ā))hm+i,j = σ(Ā)hm+i,[j+k]l

= Āhm+i,[hm+i+j+k]l

= Ai,[hm+i+j+k]l (16)

On the other hand, let p = [k + hm]l, for 0 ≤ i < m, 0 ≤
j < n, we have

(ϵpm×n ◦ σ(A))i,j = σ(A)i,[j+p]l

= Ai,[i+j+k+hm]l (17)

Similarly, consider the sub matrix of (ωk
tm×n ◦ τ(B)) with

dimension of m × n, i.e., (ωk
tm×n ◦ τ(B))hm+i,j , with 0 ≤

i < m, 0 ≤ j < n. Based on equation (2) and (4), we have

(ωk
tm×n ◦ τ(B))hm+i,j = τ(B)[hm+i+k]l,j

= B[hm+i+j+k]l,j (18)

If we let p = [k + hm]l, for 0 ≤ i < m, 0 ≤ j < n, and
0 ≤ h < t, we have

ωp
m×n ◦ τ(B)i,j = τ(B)[i+p]l,j

= B[i+k+hm+j]l,j (19)

Since 0 ≤ h < t, there are total t sub matrices in
ϵktm×n(σ(Ā)) and ωk

tm×n(τ(B)), the conclusion for the first
part of the theorem follows naturally from equation (16) to
(19).

To prove the second part of the theorem, we only need to
note that since t =

⌈
l
m

⌉
, we have tm ≥ l. Therefore, for

any p ∈ {0, 1, ..., (l − 1)}, we must be able to find at least
one set of k and h, with 0 ≤ k < m, 0 ≤ h < t, and
p = [k + hm]l. Together with equation (16) to (19), we thus
prove the theorem.

Theorem. III.6 Let Am×l and Bl×n with n < l, and let B̄
be matrix expanded with t =

⌈
l
n

⌉
copies of B horizontally,

i.e., B̄ = {B;B; ...;B}. Then
• ϵkm×tn(σ(A)) ⊙ ωk

m×tn(τ(B̄)) contains t items of
ϵpm×n(σ(A)) ⊙ ωp

m×n(τ(B)), with p = [k]l, [k +
n]l, ..., [k + (t− 1)n]l;

• ϵkm×tn(σ(A)) ⊙ ωk
m×tn(τ(B̄), k = 0, 1, ..., (n − 1)

contains all items of ϵpm×n(σ(A)) ⊙ ωp
m×n(τ(B)), with

p = 0, 1, ..., (l − 1).

Proof. Consider a sub matrix of (ϵkm×tn ◦ σ(A)) with dimen-
sion of m × n, i.e., (ϵkm×tn ◦ σ(A))i,hn+j , where 0 ≤ i <
m, 0 ≤ j < n. h is a constant with 0 ≤ h < t. Based on
equation (1) and (3), we have

(ϵkm×tn ◦ σ(A))i,hn+j = σ(A)i,[hn+j+k]l

= Ai,[i+hn+j+k]l (20)

On the other hand, let p = [k + hn]l, for 0 ≤ i < m, 0 ≤
j < n, we have

(ϵpm×n ◦ σ(A))i,j = σ(A)i,[j+p]l

= Ai,[i+j+k+hn]l . (21)

Similarly, consider the sub matrix of (ωk
m×tn ◦ τ(B̄)) with

dimension of m×n, i.e., (ωk
m×tn ◦ τ(B̄))i,hn+j , with 0 ≤ i <

m, 0 ≤ j < n. Based on equation (2) and (4), we have

(ωk
m×tn ◦ τ(B̄))i,hn+j = τ(B̄)[i+k]l,hn+j

= B̄[hn+i+j+k]l,hn+j

= B[hn+i+j+k]l,j (22)

If we let p = [k + hn]l, for 0 ≤ i < m, 0 ≤ j < n, and
0 ≤ h < t, we have

ωp
m×n ◦ τ(B)i,j = τ(B)[i+p]l,j

= B[i+k+hn+j]l,j (23)

Since 0 ≤ h < t, there are total t sub matrices in
ϵkm×tn(σ(A)) and ωk

m×tn(τ(B)), the conclusion for the first
part of the theorem follows naturally from equation (20) to
(23).

15

To prove the second part of the theorem, we only need
to note that since t =

⌈
l
n

⌉
, we have tn ≥ l. Therefore, for

any p ∈ {0, 1, ..., (l − 1)}, we must be able to find at least
one set of k and h, with 0 ≤ k < m, 0 ≤ h < t, and
p = [k + hn]l. Together with equation (20) to (23), we thus
prove the theorem.

APPENDIX B
MEANING OF SYMBOLIZE

TABLE V
MEANING OF SYMBOLIZE

Symbolize Meaning
A left matrix for matrix multiplicaiton
B right matrix for matrix multiplicaiton
m the number of row of matrix A

l
the number of column of matrix A
the number of row of matrix B

n the number of column of matrix B
σ The transformation that permute each row
τ The transformation that permute each column
ϵ The transformation that permute mutiple columns
ω The transformation that permute mutiple rows
ct the prefix of ciphertext
U permutation matrix
⊙ elemenwise multiplication

16

	Introduction
	Background and Related Work
	Homomorphic Encryption (HE)
	Related Work

	Approaches
	The Matrix Multiplication Method using Element-Wise Computations
	The HE-based General Matrix Multiplication (HEGMM)
	Linear Transformation
	The HEGMM Algorithm

	The Enhanced HEGMM Algorithm
	m={m,l,n}
	n={m,l,n}

	Experiments
	Experimental platform
	Computational time evaluations
	Memory evaluations
	Evaluation of large matrix multiplication

	Conclusions
	References
	Appendix A: The proof for the theorem III.1theorem III.4
	Appendix B: meaning of symbolize

