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Abstract
This study focuses on the remarkable progress made by the agricultural sector in utilizing image
processing techniques for early detection and classi�cation of leaf plant diseases. Timely identi�cation
of diseases is crucial, but it often poses a challenge for the human eye to discern subtle differences. To
address this issue, the researchers propose a novel approach that employs E�cientNet, a deep learning
model, to accurately recognize various diseases affecting tomato plant leaves. Transfer learning is
applied to three different datasets comprising 3000, 8000, and 10,000 images of diseased tomato
leaves. The experimental results demonstrate impressive overall accuracies of 97.3%, 99.2%, and 99.5%
when using 3000, 8000, and 10,000 images, respectively, for the detection of common tomato plant
diseases. This research underscores the effectiveness of image processing and deep learning
techniques in achieving precise and e�cient detection of tomato leaf diseases. It signi�cantly
contributes to the advancement of precision agriculture and enhanced crop management practices.

I. Introduction
India's economy depends heavily on the agricultural sector, which generates a sizeable share of both
employment and GDP. Plant diseases, on the other hand, present a signi�cant problem by impeding
organic development and harming leaves, stems, and seeds. It's essential to �nd plant diseases early on
to boost overall productivity. Specialist manual diagnosis of leaf diseases is antiquated, ineffective, and
time-consuming. In order to increase agricultural output, effective methods for plant disease
identi�cation, particularly through leaf inspection, are crucial.

In order to identify and classify plant leaf diseases, this research provides a machine learning-based
strategy using proposed model. The model facilitates the diagnosis and classi�cation of plant illnesses
by fusing machine learning with digital image processing techniques. By avoiding the problems
associated with too large, deep models or high resolutions that may result in ine�ciency and parameter
saturation, E�cientNet offers a more methodical scaling strategy.[9, 12, 15]

The performance evaluation on the testing set utilizing the Plant Village dataset with growing dataset
size and the development of a more accurate disease recognition model for tomato plant leaves are the
main contributions of this study. This research proposes a novel method that makes use of a public
dataset of 10,000 images of healthy and diseased tomato leaves, and with different size in contrast to
earlier methods that rely on pre-trained models. On a different test set, the model correctly identi�ed nine
tomato leaf diseases with a 99.5% accuracy rate. The usefulness and practicality of the suggested
approach in detecting illness on tomato plant leaves are strongly supported by these data.

An E�cientNet with changes in training layer is used to categorize diseases into one of the
classi�cations. Using a dataset of tomato leaves, we put our suggested model to the test. It is structured
as follows: The Literature Review is included in Section II. Section III looked at the proposed system for
recognizing and classifying leaf diseases. Laboratory conditions are covered in Section IV. Results and
discussion are included in Section V. The conclusion is covered in Section VI.
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II. Literature Review
Numerous studies that have been conducted on identifying leaf diseases were covered in this section.
The development of computer-aided leaf disease detection in a range of plants was the focus of this
�eld's study. Computer vision and machine learning have been widely used by researchers to identify
plant leaf disease in earlier years.

Anil A. Bharate[1].In this article, they assess methods developed by several image processing
researchers for the purpose of identifying plant diseases. Research on spotting plant diseases early in
crops like tomato, apple, grapes, pepper, and pomegranate are covered in this article.

Jayme Garcia Arnal Barbedo[2]This essay analyses each of those di�culties, focusing on the issues they
could raise along with how they might have impacted earlier suggested solutions. There are a few
suggested potential solutions that might perhaps overcome at least some of those di�culties, but only
under certain circumstances.

J.Nithiswara Reddy[3]With minimal computing effort, the proposed method can greatly support a precise
diagnosis of leaf diseases. They developed framework software in Matlab to identify plant leaf diseases
by using methods for processing images. The program is intended to enable even a person without prior
knowledge of plants or their diseases to spot diseased leaves. By applying k-means clustering, the
a�icted portion of the plant leaf was located. Obtaining pictures, processing images before
segmentation and feature extraction, and SVM classi�cation are all included in the diseased recognition
section.

Durjoy Sen Maitra[4]This paper aims to demonstrate a feature extraction approach that may accustomed
to any character recognition problem. Here, we've demonstrated that a from any other character set,
CNN the ability to extract characteristics after being trained on a su�ciently big class issue, and the
resulting system is still capable of delivering high recognition accuracies.

Nikhil Shah[5]The main goal of the study is to identify the various diseases that affect cotton using an
arti�cial neural network tool, which applies an image pre-processing approach to pictures. Based on
color changes on the image, the main area of the affected leaf is highlighted, and the disease's type is
determined using data.

T. Rumpf [6] This work's main contribution a process for early diagnosisand isolation of sugar beet
illnesses based on spectral vegetation indicators and Support Vector Machines. The objective of the
research was to detect infections in sugar beet leaves before visible symptoms appeared.

MiaomiaoJi[7],Thisresearch suggests a hybrid PSO-based ANN model (PSO-ANN) for the problem of
soybean diseases identi�cation based on the condition of the environment and different features of the
soybean, such as the plant stand, the leaves and the seed, etc.
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Muzaiyanah Binti Ahmad Supian [8],For the bene�t of agriculturalists working in the agrarian industry,
this study investigates image processing methods a means to locate and categorization of leaf plant
diseases.There are several phases included in it, including acquisition of images, image processing,
extraction of features from segments, followed by categorization.

Jayme G.A. Barbedo[9],The main elements that in�uence this article which examines the construction
and performance of deep neural networks used for plant pathology. Realistic conclusions on the topic
should result from an extensive analysis of the issue that highlights its bene�ts and drawbacks.

Bin Liu[10],This study demonstrates how the picture-generating technique suggested the ability to
strengthen the convolutional neural network model and how the suggested deep learning model provides
a better option for Disease prevention for apple leaf diseases with more precision and speedier
convergence.
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Table 1
Comparison of research papers

Method Performance Limitation

[1] ANN along with SVM was used for crop
disease classi�cation (2017)

NA Review Paper

[2]Proposed solution with busy background
and different scenarios (2016)

NA All proposed methods are
expected to operate under
certain time constraints.

[3] K-means clustering with SVM & KNN
classi�er (2019)

Accuracy

94% (SVM)

85% (KNN)

Better segmentation technique
require, working on small
dataset

[4] CNN with SVM classi�er (2015) Accuracy 95% This approach is slow and time-
consuming

[5]ANN with t-test (2019) NA Performance needs further
improvement

[6] SVM classi�er with Vis & PCs (2010) Accuracy 97%
& 86%

With multiple classi�cations
accuracy is less.

[7] ANN for classi�cation & PSO for
identi�cation (2019)

Accuracy 92% Performance can be improved

[8]Review Paper (2019) NA Various frameworks wrongly
recognize and classify plant
diseases.

[9] A CNN-based architecture was presented to
localize and categorize the tomato crop
Disease (2018)

Accuracy 87% This framework is not robust for
noisy images

[10] Deep CNN with Google Net approach
(2018)

Accuracy
97.62%

Working with 4 type of diseases

[11] A deep Siamese network together with
KNN classi�er was used for plant disease
classi�cation (2020)

Accuracy 96% This method is suffering from
the problem of over-�tting for a
large-size dataset

[12] The DL framework namely AlexNet along
with the KNN classi�er was used to classify
the tomato leaves as being healthy or affected
(2020)

Accuracy
76.1%

This approach is slow and time-
consuming

[13] The HOG approach with the RF classi�er
was employed to categorize the diseased
plant samples into various classes (2018)

Accuracy
70.14%

Performance needs further
improvement

[14] The K-means clustering, GLCM methods
along with SVM classi�er were utilized to
classify turmeric leaf diseases (2019)

Accuracy 91% Classi�cation performance
degrades for samples having
huge brightness variations
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III. Proposed Methodology for Plant Leaf Disease Detection and
Classi�cation
Convolution neural networks can be built up to increase accuracy by adding more layers, and their
resource costs are �xed. The standard approaches to model scaling, however, are inconsistent. Some
models scale in depth, while others scale in width. Some models merely consume higher-resolution
images to obtain better results. When models are scaled arbitrarily, it often results in little or no
performance improvement and requires extensive human tweaking. E�cientNet uses a technique known
as compound coe�cient to quickly and simply scale up models. Instead of arbitrarily growing width,
depth, or resolution, compound scaling consistently scales each dimension with a preset �xed set of
scaling factors. By combining scaling with AutoML, the developers of E�cientNet created seven models
in various dimensions that outperformed state-of-the-art convolution neural networks in terms of
accuracy and e�ciency.

Model Scaling

According to the logic, scaling all three dimensions—width, depth, and picture resolution—while taking
into account the various resources available, can best increase the model's performance overall. Scaling
one dimension can help improve model performance. The compound scaling method is shown in �gure.

1. Scaling Convnet- It can be described as modifying the network's dimensions to improve
performance based on the most popular de�nitions. Depth, width, and resolution make up the
dimensions.

2. Compound scaling- The authors of E�cientNet suggest starting with a baseline network (N) and
concentrating on expanding its length (L), width (C), and resolution (W, H) while maintaining the
baseline design. This differs from the typical method of looking for the ideal layer architecture. Thus,
choosing the ideal width (w), depth (d), and resolution (r) coe�cients within the constraints of the
resources available to maximize the accuracy of the network (memory and number of feasible
operations (FLOPS)) is the de�nition of the optimization issue.

In order to further reduce the search space < L,C,W,H>, the authors also suggested to restrict that all
layers must be scaled uniformly using a constant ratio. Thus, the dimensions of the network are de�ned
as:
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The compound coe�cient Φ, controlled by the user, determines the number of available resources. α, β,
and γ are constants found through grid search, which allocate these resources to the network's depth,
width, and resolution respectively.

It is also important to mention that the authors noticed that the FLOPS of a regular convolution operation
are proportional to d, w², r². Since convolution operations dominate the computation cost in ConvNets,
using compound scaling on a Convnet increases the number of FLOPS by (α.β².γ²)Φ, thus the constraint
α.β².γ²≈2, to increase the total FLOPS by 2Φ.

3. E�cientNet architecture

Compound scaling, as previously said, enhances the network's width, depth, and resolution rather than
altering the operations carried out within a layer of the network. Following is the architecture of the
model-

MBConv

Skip connections are used by residual blocks to link a convolutional block's start and �nish. The
channels are wide at the start of the convolutional block, get smaller as the block depth rises, and then
get wider again at the end due to the additional information. Wide->narrow->wide is the pattern for a
typical residual block in terms of the number of channels.[18]

The pattern of an inverted residual block, however, is the opposite of that of a regular residual block; it
means narrow->wide->narrow. MBConv enhances e�ciency and adaptability of CNNs for mobile
platforms using Depth-wise Separable Convolution. The remaining channels are compressed at the
beginning and end of the block using a 1x1 convolution, followed by a 3x3 depth-wise convolution to
restrict the parameters.

Squeeze and Excitation (SE) Block

SE is a CNN component that improves interdependencies between channels by dynamic feature channel-
wise recalibration, giving relevant channels more weight than unimportant ones. View the illustration
below.

The following structure is the result of E�cientNet applying the SE block along with the MBConv block.
The initial component of each network is its stem, after which all architecture experimentation, which is
common to all eight models and the top layers, starts.

Following that, each of them has seven blocks. As we progress from E�cientNetB0 to E�cientNetB7, the
number of these blocks' sub-blocks increases, with a different amount being present in each block. The
architecture will be built using 5 modules. These modules are then joined to create sub-blocks, which will
be utilized in the blocks in a particular manner.[11, 21]
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IV. Experimental Settings
The approach was used on a dataset from Plant Village that included 3000, 8000, and 10000 images of
ten tomato leaf diseases. The model was created using Python's Keras neural network. Training used
2000, 7000, and 9000 images, while testing used 1000. On Google Colab, the tests were carried out
using a GPU and an Intel Core i7-4010U processor.

In this study, we will use the E�cientNet on the Plant Village dataset to do multi-class image
classi�cation. To implement it as a transfer learning model, we have used the E�cientNet-B3.The Plant
Village dataset is a publically available image data set. The dataset has 10,000 color images, 32x32 in
size, divided into 10 classes with 900 images training & 100 images validation in each category. The 10
different classes represent Bacterial_spot, Early_blight, Late_blight, Leaf_Mold, Septoria_leaf_spot,
Spider_mites, Two-spotted_spider_mite, Target_Spot, Tomato_Yellow_Leaf_Curl_Virus,
Tomato_mosaic_virus, healthy. There are 9000 training images and 1000 test images in this dataset.

V. Results
Modules are imported, images are taken from the Plant Village dataset directory, and the trim function is
used to balance the dataset. There are internal generators for training, testing, and validation. There are
de�ned operations for showing samples, training models, monitoring, charting predictions, Confusion
Matrix, and Classi�cation Report. A dataframe is trimmed using the max_samples and min_samples for
each class in the trim function. Classes with fewer than min_samples images are excluded. The dataset
is divided into three groups (2000, 7000, and 9000 photos), and each category is trained independently.

Function that shows training images

The foundation model should initially not be trainable, according to experts. The model is then �ne-tuned
by making the underlying model trainable and running extra epochs after training for a certain number of
them. It will converge faster and have a lower validation loss.

Function that plot the training data

The Evaluation Index& Predictions on the test set

In order to evaluate the performance, average accuracy evaluation index recognized in the �eld of image
classi�cation is used to evaluate the classi�cation results, including Precision (PPV), Recall (TPR), F1
Score (F1).

PPV = Tp /Tp + Fp (2)

TPR = Tp /Tp + Fn (3)

F1 = 2 x (PPV x TPR / PPV + TPR) (4)
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Where, the number of positive samples that actually turn out to be positive samples is known as the true
positive rate (Tp), whereas the false positive rate (Fp) and false negative rate (Fn), respectively, re�ect the
number of negative samples that actually turn out to be negative samples.[8, 12].

A function is de�ned that takes a test generator and an integer test_steps and generates predictions on
the test set including a confusion matrix and a classi�cation report.[13, 18, 24]

Analysis of Model Performance

In order to reduce training time the number of samples per class was limited to 200 images then with
700 images and then �nally with 900 images. We could have used the trim function with max_samples = 
200 then 700 and then 900 to get different training accuracy. The image size of the original images was
600 X 600 but the model was trained with 200 X 200 images again to reduce training time. Overall the
model did well with an average F1 score of 99.5%. We ran for 12 epochs and the validation loss was still
decreasing with about a 8% reduction in epoch 12. So we could run more epochs and probably achieve a
better F1 score.

Table 2
Comparison of Results with different size dataset

Model Dataset Samples Accuracy Precision Recall F1-score

ANN 10000 69% 0.89 0.79 0.84

CNN 10000 94% 0.92 0.94 0.92

Proposed Model 3000 97.30% 0.9748 0.9730 0.9731

8000 99.20% 0.9922 0.9920 0.9922

10000 99.50% 0.9950 0.9950 0.9950

VI. Conclusion
The Indian agricultural industry heavily relies on tomato crops, making it crucial to identify and describe
their diseases. This research aims to achieve this using a convolutional neural network model,
E�cientNet, and the Plant Village dataset. The proposed research utilized an E�cientNet convolutional
neural network model and the Plant Village dataset to identify and describe tomato leaf diseases. The
model achieved impressive accuracies of 97.3%, 99.2%, and 99.5% with varying dataset sizes, showing
its potential as a low-resource method for disease classi�cation. The implementation's simplicity and
smaller training images required minimal hardware and fewer parameters, yet delivered comparable
results to conventional techniques. Further experiments may explore different learning rates and
optimizers to enhance performance.
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Figure 1

Flowchart of Proposed Model
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Figure 2

Model Scaling

Figure 3

Architecture of E�cientNet

Figure 4

Structure of (a) normal residual block (b) Inverted residual block

Figure 5

Architecture of an SE & MBConv Block
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Figure 6

Model Design

Figure 7

Module& Sub Module Design
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Figure 8

Sample Image of Training Data
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Figure 9

Plot of Training 2000 disease Data with Loss & Accuracy

Figure 10

Plot of Training 7000 disease Data with Loss & Accuracy
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Figure 11

Plot of Training 9000 disease Data with Loss & Accuracy

Figure 12

Confusion Matrix& Classi�cation Report for 2000 images
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Figure 13

Confusion Matrix& Classi�cation Report for 7000 images

Figure 14

Confusion Matrix& Classi�cation Report for 9000 images
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Figure 15

CNN Performance


