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Abstract   

This paper focuses on the nonlinear system modeling based on using a modified 

Hammerstein system model.  The proposed Hammerstein structure is composed of a 

bilinear neural network (BNN) and a recursive digital system in the cascaded form.  

The former is taken to be the nonlinear function part of the Hammerstein model, and 

the latter is used as the linear dynamic subsystem.  The BNN is then constructed by 

the bilinear digital system and the recurrent neural network, which already possesses a 

satisfactory modeling capacity.  To update all the adjustable parameters within the 

proposed Hammerstein model, a popular and powerful evolutionary computation 

called the differential evolution (DE) is utilized so that the model output can be very 

close to the actual nonlinear system output.  Finally, a simulated nonlinear chemical 

process system, continuously stirred tank reactor (CSTR), is illustrated with the 

modeling phase and testing phase.  Some numerical results as compared with a 

different method from subject literature are provided to show the feasibility of the 

proposed method and its good modeling.   

 

Keywords: Bilinear neural network; Recursive digital system; Hammerstein model; 

Differential evolution algorithm; System modeling.     
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1.  Introduction  

For most of practical systems, their properties both static and dynamic are 

nonlinear and complicated in nature.  It is rather hard to set up the mathematical 

model correspondingly to the actual system by means of the linear model such as a 

differential equation and/or a difference equation.  In fact, a collection of system 

input-output pairs is the only information that is available in most real situations.  

Thus, question of how to establish a suitable model structure for modeling such 

systems remains to be solved.  Another problem that occurs is then how to design 

these adjustable parameters inside the proposed model when the model has been 

developed.  To tackle the modeling problem, a lot of nonlinear structure models have 

recently been reported such as the neural network model, fuzzy system model, 

Volterra series model, bilinear series model, Hammerstein model etc.  For adjusting 

model parameters, the general gradient-based method is often adopted.  But, one main 

drawback is that the system solution derived by such gradient descent method is likely 

to fall into the local optima around the initial condition.   

The focus of this paper is the modified Hammerstein model combined with the 

differential evolution (DE) algorithm.  This kind of Hammerstein model has widely 

been used to solve the nonlinear system modeling problem [1]-[7].  It is composed of 

two main blocks: a nonlinear static block and a linear dynamic block.  These two 

system blocks are cascaded.  In the traditional fashion, the first block refers to the 

static nonlinear function that can be constructed by, for instance, polynomial functions, 

sinusoidal functions, and dead-zone nonlinearities.  The latter is a recursive digital 

system alternatively referred to as an infinite impulse response (IIR) digital filter.  In 

[2], a Hammerstein model consisting of a functional link artificial neural network 

(FLANN) in cascade with an adaptive infinite impulse response filter has been 
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developed.  A cuckoo search algorithm was employed to train the proposed model 

parameters.  In [3], a novel method to identify parallel Wiener-Hammerstein systems 

using input-output data only was presented, and this method was validated on real-

world measurements by a custom built parallel Wiener-Hammerstein test systems.  In 

[5], a hierarchical gradient parameter estimation algorithm was proposed for 

Hammerstein nonlinear systems by means of the key term separation principle.  

Simulation results show the effectiveness of the proposed algorithm.  This paper 

develops a new modified Hammerstein model in which the bilinear neural network 

(BNN) followed by the recursive digital system is considered.  Moreover, the BNN is 

then constructed by the bilinear digital system and the recurrent neural network.   

To design the adjustable model parameters, one of the optimal algorithms called 

DE is employed, instead of the commonly used gradient descent scheme.  The DE 

was initially proposed by Storn and Price in 1997 and has been proven to be a 

powerful but simple means for solving optimization problem [8].  This kind of 

algorithm has a good chance of converging to the global solution of the optimized 

problem because it is a population-based algorithm with multiple direction searches.  

Basically, there are three important operations in the DE algorithm to achieve 

optimized solution, including mutation, crossover, and selection, which seems to be 

similar to those in present genetic algorithms (GAs).  Application of DE has been 

demonstrated on a variety of engineering optimization problems, such as: the 

transmission expansion planning (TEP) problem [9], mobile ad hoc networks 

(MANETs) [10], real power loss minimization [11], underwater glider path planning 

[12], wireless sensor networks [13], and others [14]-[17].  In addition, some new 

variants of the DE algorithm to improve the search efficiency or to overcome special 

problems were also presented in [18]-[22].    
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This paper proposes a modified version of Hammerstein model where the BNN is 

used as the nonlinear static block of the model and the recursive digital system as the 

linear dynamic block.  Such a BNN modeling structure consisting of the bilinear 

digital system and the recurrent neural network was initially developed in [23].  In the 

BNN model, the terms corresponding to cross-products of input and output signals 

within the bilinear system are taken as inputs to the recurrent neural network.  This 

kind of model can be regarded as an independent mathematical model, as it provides a 

good modeling performance on its own.  Nevertheless, in order to obtain a more 

flexible model for identification, a new modified Hammerstein model is presented 

that combines such a BNN model with a recursive digital system.  Moreover, the DE 

is utilized to find values of all adjustable parameters contained in the proposed 

Hammerstein model, so that the model output is capable of closely approximating the 

actual nonlinear system output.  The remainder of this paper is organized as follows.  

A modified version of Hammerstein model consisting of the BNN and the recursive 

digital system is introduced in Section 2.  In Section 3, a clear and complete 

description of the DE algorithm is addressed and the design steps for DE-based 

Hammerstein modeling are also proposed.  Section 4 will illustrate the proposed 

method by a highly nonlinear chemical process of continuously stirred tank reactor 

(CSTR).  Simulation results in comparison with other method taken from subject 

literature demonstrate the superiority of the proposed scheme.  Finally, some 

conclusions and future research directions are given in Section 5.       

 

2. A modified Hammerstein model 

 A general Hammerstein model  

The general Hammerstein model is composed of two system blocks including the 
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nonlinear static block and the linear dynamic block in the cascaded form.  Fig. 1 

shows the block diagram where ][nu  is the external input signal, ][nx  is the output of 

nonlinear static block, also referred to as an intermediate signal of the model, ][nym
 is 

the model final output, )(f  represents the nonlinear static function, and )( 1−
zH  

represents the transfer function of linear dynamic system in which 1−
z  means a unit 

delay operator.  We can further describe the Hammerstein model by  

)];[(][ Snufnx = ,  (1) 

][)(][ 1
nxzHnym

−= ,  (2) 

where S is a collection of all adjustable parameters contained in the nonlinear function.  

In the proposed model, the BNN is used as the nonlinear static block and the recursive 

digital filter as the linear dynamic block, respectively.  Fig. 2 displays the proposed 

Hammerstein model structure.  Adjustable parameters within the proposed model 

totally include all weights and thresholds of BNN and coefficients of recursive digital 

system.  These model parameters are necessary to be adjusted according to the 

measured input-output data obtained from the actual nonlinear system which will be 

modeled.  Both BNN and recursive filter are further explained in detail in subsequent 

sections.    

 

 Bilinear Neural network (BNN) 

BNN is constructed by the bilinear digital system and the recurrent neural network 

[23].  All cross-product terms of input and output signals contained in such a bilinear 

system are taken to be the input vector to the recurrent neural network.  Generally, the 

input-output bilinear digital system can be expressed by  
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    ][]2[]1[ 21 xN Nnxanxanxa
x

−++−+−=   

  ][]1[][ 10 uN Nnubnubnub
u

−++−++   

   +−++−+−+ ][][]2[][]1[][ ,02,01,0 xN Nnxnucnxnucnxnuc
x

 

  +−−+−−+ ]2[][]1[][ 2,1, nxNnucnxNnuc uNuN uu
 

  ][][, xuNN NnxNnuc
xu

−−+ , (3) 

where ][nu  and ][nx  are the input and output signals, 
ka  and 

kb  represent the 

coefficients of the linear part, 
21,kkc  are the coefficient of cross-product terms of input 

and output signals, 
xN  is the system order representing the number of past outputs, 

and 
uN  is the number of past input signals.  Eq. (3) can further be rewritten in the 

vector form for brevity as   

TTT
CWBUAXnx ++=][ ,  (4) 

where A, B, and C represent coefficient vectors defined by  

],,,[ 21 xNaaaA = ,  

],,,[ 10 uNbbbB = ,  (5) 

],,,[ ,2,01,0 xu NNcccC = ,   

and vectors X, U, and W denote the past output signals, present and past input signals, 

and all cross-product terms of input and output signals, respectively, and are given by 

      xNnxnxnxX −−−= ,,2,1  , 

      uNnununuU −−= ,,1,  ,  (6) 

            xu NnxNnunxnunxnuW −−−−= ,,2,1  .     

Furthermore, Eq. (4) can be more compactly expressed by  

T
DZnx =][ ,  (7) 
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where ][ CBAD =  is a collection of all system coefficients and ][ WUXZ =  

is the vector collecting all system input-output signals.  In the BNN structure, the 

vector Z plays an important role and it is taken as the input to the neural network.  The 

vector length of both D and Z is easily calculated by Eq. (8)  

xxuxuux NNNNNNNN +++=++++= )1)(1()1()1( .   (8) 

Moreover, the vector Z is redefined again for a clear representation as Eq. (9)  

],,,[ 21 NzzzZ =   

            ,,,1,,,,2,1 ux NnununuNnxnxnx −−−−−=   

                                             xu NnxNnunxnunxnu −−−− ,,2,1   (9) 

Fig. 3 shows the overall structure of the BNN where the vector Z of Eq. (9) is used to 

be the input signal of the network, N and M are the number of neurons in the input and 

hidden layers, respectively, 
ijzhw _  denotes the weight between the ith input neuron 

with the jth hidden neuron, 
jhxw_  is the weight from the jth hidden neuron to the 

output neuron, all for Ni ,,2,1 =  and Mj ,,2,1 = , and ][nx  is the final output of 

the BNN.  Notice that the delay signals of ][nx  are requested to feed back to the input 

layer forming a recurrent neural network as addressed in Eq. (9).     

In the hidden layer, each neuron has the following mathematical operations:  

  
=

−=
N

i

jiijj hzzhwhnet
1

___  , (10) 
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jj
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hnethnet

j
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ee
h

__

__

−

−

+
−

= , (11) 

where 
jhnet _ , 

jh_ , and 
jh  are the internal state, threshold, and output signal of 

the jth hidden neuron, respectively, for Mj ,,2,1 = , and the activation function is 

the hyperbolic tangent function given by Eq. (11).  All output signals in the hidden 
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layer are further delivered to the output neuron via the weights using the following 

equations  

  
=

−=
M

j

jj xhhxwxnet
1

___  , (12) 

xnetnx _][ = , (13) 

where xnet _ , x_ , and ][nx  are the internal state, threshold, and final output of the 

BNN, respectively, and the linear activation function here is utilized as given by Eq. 

(13).  Based on the BNN structure of Fig. 3, the total of all adjustable parameters 

including weights and thresholds contained in the network can be evaluated by  

      1)2(1 ++=+++= NMMMMNP .   (14) 

Again, for convenience let the vector S be a collection of all adjustable parameters in 

the BNN as 

],,,[ 21 PsssS =  

        ,_,,_,_,,_,_[ 2111211 NMM zhwzhwxhwxhwzhw =          

]_,_,_,_,_,,_,_ 2121 xhxwhxwhxwhhh MM   .     (15) 

 

 Recursive digital system  

In this subsection, the recursive digital system is introduced in detail.  In the 

developed Hammerstein model, the recursive digital system is cascaded with the BNN, 

therefore the output ][nx  from the BNN is considered as the input signal to the 

recursive digital system as shown in Fig. 2.  Consider the following recursive digital 

system described by the transfer function   


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where 
dN  represents the system order, 

gN  is the number of past inputs, 
kd  and 

kg  

are system coefficients.  Furthermore, converting Eq. (16) into time domain difference 

equation yields 

][]2[]1[][ 21 dmNmmm Nnydnydnydny
d

−−−−−−−=   

][]1[][ 10 gN Nnxgnxgnxg
g

−++−++   


==

−+−−=
gd

N

k

k

N

k

mk knxgknyd
01

][][ , (17) 

where ][nx  is the input signal generated by the BNN and ][nym
 is the output signal 

of the recursive digital system, i.e., the final output of the developed Hammerstein 

model.  The recursive difference equation diagram for Eq. (17) can simply be depicted 

in Fig. 4.  In the recursive digital system, 
kd  and 

kg  are the system coefficients that 

will be designed together with the parameter vector S of Eq. (15).  Thus, let 

],,,[ 21 dNdddD =  and ],,,[ 10 gNgggG =  be two coefficient vectors with 
dN  

and 1+gN  parameters, respectively.  This means that, in total, there are 1++ gd NN  

adjustable parameters in the recursive digital system.   

 

 A modified Hammerstein model   

The combination of BNN and recursive digital system forms a modified 

Hammerstein system with input signal ][nu  and output signal ][nym
 as shown in Fig. 

2.   In the proposed model, there are in total 1+++= gd NNPR  designed parameters 

in which P is the number of adjustable parameters of the BNN and 1++ gd NN  is the 

corresponding number of coefficients of the recursive digital system.  Moreover, for 

the usage of the DE algorithm let the parameter vector ],,,[ 21 R =  be a 
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collection of all deigned parameters contained in the modified Hammerstein model as 

follows 

],,,[ 21 R =  

         ],,[ GDS=   

],,,,,,,,_,,_,_[ 10211211 gd NN gggdddxzhwzhw  = , (18) 

where the subscript R denotes the number of all design parameters.  This defined 

vector Θ  will be updated by the DE algorithm.   

 

3.  Differential evolution and its applications to Hammerstein modeling 

The algorithm chosen for updating all of adjustable parameters is the DE algorithm 

and it has been shown to be effective for solving such optimization problems.  Like 

most evolutionary methods, this algorithm is also population-based.  Hence, the DE 

begins with generating an initial population containing a large number of parameter 

vectors as described in Eq. (18).  To achieve optimization purpose, it consists of three 

principal operations: mutation, crossover, and selection to evolve these parameter 

vectors inside the population.  They are explained in detail below [8][23].   

 

• Mutation 

In the mutation operation, three different parameter vectors named as  , 
 , and 

  are randomly chosen from the population and they are mutually mutated as 

follows  

( )  −+= sfV , (19) 

where the derived vector ],[ 2,1 RvvvV =  is called the mutant vector and 
sf  is the 

mutation constant factor to adjust the amplification of the differential variation 
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  − .   

   

• Crossover   

Consider another target vector ],,,[ 21 R =  that is crossed with the mutation 

vector V.  It needs a set of random numbers  
Rrrr ,,, 21   where ]1,0[ir  for 

Ri ,,2,1 =  to derive another set of binary numbers  Rmmm ,,, 21   by using Eq. 

(20)  



 

=
,,0

,,1

otherwise

CRrif
m

i

i
    for Ri ,,2,1 =  (20) 

where CR  is called the crossover rate chosen from the interval ]1,0[  and it is always 

set to 0.5 for the common situation.  By means of this binary set  Rmmm ,,, 21  , the 

so-called trial vector  RtttT ,, 21 =  can be obtained according to Eq. (21)  





=
=

=
0,

1,

ii

ii

i
mifv

mif
t


,  for Ri ,,2,1 = . (21) 

It can be seen that the trial vector T is an outcome of crossing   with V.   

 

• Selection  

Briefly, the selection operation is to retain the better parameter of the two, i.e. the 

target vector   and the trail vector T.  To evaluate the performance of each parameter 

vector, the following cost function is adopted for Hammerstein modeling 

     
= =

−==
NS

n

NS

n

m nynyneCF
0 0

22 ][ ,  (22) 

where NS is the number of samples, e is the error signal between the actual output y 

and the developed Hammerstein model output 
my .  Based on using Eq. (22), the 
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selection is performed.  If )()( CFTCF  , it means that  the trial vector T is 

superior in terms of modeling fit to the target vector  , then the vector T survives 

and takes the place of  .  Otherwise, this trial vector T is discarded and the target 

vector   remains in the population.  Notice that one generation is defined when the 

above three operations are executed.  The algorithm stops when the assigned 

allowable number of generations is attained.   

 

• DE-based design steps for Hammerstein modeling 

In this paper, the proposed Hammerstein modeling architecture for the actual 

nonlinear system is displayed in Fig. 5 where the DE algorithm is employed to adjust 

the model parameters, so that the error signal between the actual output and the model 

output can be minimized.  The following lists the complete design steps.   

Data: A set of input-output pairs of a real nonlinear system 

},,2,1,0])[],[{( SNnnynuQ == , the BNN structure with N-input neurons, 

M-hidden neurons, and a single output neuron, the order 
dN  and 

gN  of digital 

recursive system of Eq. (17), population size PS, mutation constant factor 
sf  in 

Eq. (19), and allowable number of generations numG _ .   

Goal: Construct a modified Hammerstein model consisting of the BNN and recursive 

digital system to identify the actual nonlinear system by the DE algorithm.   

 

Create an initial population with PS parameter vectors randomly chosen from the 

interval  1,1− .   

for 1=j  to numG _   

for 1=i  to PS 
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Calculate the corresponding cost function )( iCF   of the target vector 
i  

using Eq. (22). 

Obtain the mutation vector V from Eq. (19).   

Derive a set of binary sequences  Rmmm ,,, 21   by using Eq. (20).   

Perform the crossover operation on the target vector 
i  and the mutation 

vector V to obtain the trial vector T using Eq. (21).   

Calculate the cost function )(TCF  corresponding to T using Eq. (22).   

Perform the selection operation on 
i  and T.  If ( ) ( )iCFTCF  , then 

T
new

i = , otherwise 
i

new

i  = .   

End 

for 1=i  to PS 

 new

ii  = . 

End 

End 

 

4.  Modeling simulation: a chemical case of CSTR  

A case study for modeling a chemical process system demonstrates applicability of 

the proposed method.  The chemical process used is the continuously stirred tank 

reactor (CSTR) that is a highly nonlinear and complex system expressed by the 

following dynamical equations [24] 

)
1

exp()1(
2

2
111 x

x
xDxx a +

−+−= ,   

u
x

x
xBDxx a 


 +

+
−++−= )

1
exp()1()1(

2

2
222

 ,  (23) 
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2xy = ,   

where 
1x  and 

2x  are the system states and represent the dimensionless reactant 

concentration and the reactor temperature, respectively, u and y denote the system 

input and output (reactor temperature), other system parameters including 
aD ,  , B, 

and   are explained in Tab. 1.  Converting Eq. (23) into a discrete-time form by a 

simple Euler’s discretizton yields  

))
][1

][
exp(])[1(][(][]1[

2

2
1111 nx

nx
nxDnxTnxnx as +

−+−+=+ ,   

])[)
][1

][
exp(])[1(][)1((][]1[

2

2
2222 nu

nx

nx
nxBDnxTnxnx as 


 +

+
−++−+=+ , (24) 

][][ 2 nxny = ,   

where 
sT  is the sampling interval of 0.2s for simulations.   

For a fair comparison the parameter setting used in the BNN and DE algorithm are 

the same with Ref. [23] listed in Tab. 2.  Simulation results consisting of two phases: 

modeling and testing phases are provided to verify the identification performance.  

Firstly, in the modeling phase the input signal ][nu  is generated from the interval 

]1,1[−  randomly and uniformly for 100,,1,0 =n .  Two different input signals are 

utilized in the testing phase; one is the uniformly generated random number chosen 

from ]1,1[− , the other is Gaussian random number with mean 0.0=  and variance 

5.02 = , all for 200,,1,0 =n .  In addition, three different architectures for the 

digital recursive system are examined in the modified Hammerstein model, as follows.  

• Case 1: 3=dN  and 1=gN ,  

]1[][]3[]2[]1[][ 10321 −++−−−−−−= nxgnxgnydnydnydny mmmm
,  

• Case 2: 4=dN  and 1=gN ,  
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]4[]3[]2[]1[][ 4321 −−−−−−−−= nydnydnydnydny mmmmm
 

                           ]1[][ 10 −++ nxgnxg ,  

• Case 3: 4=dN  and 2=gN , 

]4[]3[]2[]1[][ 4321 −−−−−−−−= nydnydnydnydny mmmmm
 

                            ]2[]1[][ 210 −+−++ nxgnxgnxg .  

In the identification phase, ten different sets of initial conditions (Run 1 ~ Run 10) are 

executed to validate the robustness of the proposed algorithm for each case.  The best 

among these runs is taken to show the simulation results for the modeling and testing 

phases.  Tab. 3 lists the cost functions derived by all of ten independent runs for Cases 

1-3, respectively, where the optimal value appears in Run 8 for Case 1, Run 9 for 

Case 2, and Run 2 for Case 3.  Based on these optimal independent runs of Cases 1-3, 

the comparisons of the actual and model outputs are shown in Figs. 6-14.  Fig. 6 

displays the model output of Run 8 with respect to the sampling number 1000  n  

in the modeling phase for Case 1.  It is clearly seen that both output curves are very 

close.  Figs. 7 and 8 show the model outputs with respect to 2000  n  in the testing 

phase by the random and Gaussian testing inputs, respectively.  Better approximations 

seen from these two figures are also derived.  As to other simulation results, they are 

displayed in Figs. 9-14 for Cases 2 and 3, respectively.  Again, the model output of 

each case is close to the actual output when both modeling and testing inputs are 

applied.  Finally, numerical results derived by the proposed method are further 

compared with those obtained from a different method, and they are listed in Tab. 4.  

It can be concluded from Tab. 4 that the proposed method obtains better results over 

the other existing method.   
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5.  Conclusions 

In this paper, a modified Hammerstein model has been successfully applied to the 

nonlinear system modeling problem based on using differential evolution algorithm.  

The developed model is constructed using bilinear neural network followed by 

recursive digital system in order to provide better modeling capability.  To adjust 

model parameters, the DE algorithm is utilized, so that the error signal between the 

actual and model outputs is minimized.  Design steps of DE-based nonlinear system 

modeling are also described in detail.  Finally, the developed method is applied to a 

model of a simulated chemical process, i.e. CSTR.  Simulation results of modeling 

and testing phases are satisfactory and superior when compared to another existing 

method found in the subject literature.   
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Figure captions 

Fig. 1.  A general Hammerstein model. 

Fig. 2.  A new modified Hammerstein model.  

Fig. 3.  BNN structure with N input neurons, M hidden neurons, and a single output 

neuron.     

Fig. 4.  Difference equation diagram for recursive digital system. 

Fig. 5.  The system block diagram of the proposed Hammerstein modeling. 

Fig. 6.  Model output of Run 8 for Case 1 in the modeling phase.   

Fig. 7.  Model output of Run 8 for Case 1 in the testing phase using the random input. 

Fig. 8.  Model output of Run 8 for Case 1 in the testing phase using the Gaussian 

input.  

Fig. 9.  Model output of Run 9 for Case 2 in the modeling phase. 

Fig. 10.  Model output of Run 9 for Case 2 in the testing phase using the random input. 

Fig. 11.  Model output of Run 9 for Case 2 in the testing phase using the Gaussian 

input.     

Fig. 12.  Model output of Run 2 for Case 3 in the modeling phase.  

Fig. 13.  Model output of Run 2 for Case 3 in the testing phase using the random input.  

Fig. 14.  Model output of Run 2 for Case 3 in the testing phase using the Gaussian 

input. 

 

Table captions 

Tab. 1.  Definition of CSTR system parameters.  

Tab. 2. Parameter setting used in the BNN and DE algorithm.  

Tab. 3. Cost functions derived by ten independent runs for Cases 1-3.  

Tab. 4. Numerical comparisons by the proposed and the other methods.  
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Fig. 1.  A general Hammerstein model.   
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Fig. 2.  A new modified Hammerstein model. 
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Fig. 3.  BNN structure with N input neurons, M hidden neurons, and a single output 

neuron. 
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Fig. 4.  Difference equation diagram for recursive digital system.   
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Fig. 5.  The system block diagram of the proposed Hammerstein modeling.    
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Fig. 6.  Model output of Run 8 for Case 1 in the modeling phase.   
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Fig. 7.  Model output of Run 8 for Case 1 in the testing phase using the random input.   
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Fig. 8.  Model output of Run 8 for Case 1 in the testing phase using the Gaussian 

input.   
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Fig. 9.  Model output of Run 9 for Case 2 in the modeling phase.   
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Fig. 10.  Model output of Run 9 for Case 2 in the testing phase using the random input.  
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Fig. 11.  Model output of Run 9 for Case 2 in the testing phase using the Gaussian 

input.   
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Fig. 12.  Model output of Run 2 for Case 3 in the modeling phase.   
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Fig. 13.  Model output of Run 2 for Case 3 in the testing phase using the random input.  
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Fig. 14.  Model output of Run 2 for Case 3 in the testing phase using the Gaussian 

input.   
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Tab. 1.  Definition of CSTR system parameters.   

Symbol aD    B   

Definition 
Damökhler 

number 

activated 

energy 

heat of 

reaction 

heat transfer 

coefficient 

Value 0.072 20 8 0.3 

 

 

 

 

Tab. 2.  Parameter setting used in the BNN and DE algorithm.   

Orders of 

bilinear digital 

system 

Number 

of 

hidden 

neurons 

Population 

size 

Mutation 

constant 

factor 

Number 

of samples 

Number of 

generations 

4,5 == ux NN  5=M  30=PS  2.0=sf  100=NS  1000_ =numG  
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Tab. 3.  Cost functions derived by ten independent runs for Cases 1-3.   

 Case 1 Case 2 Case 3 

Run 1  0.08283456 0.07306794 0.07526387 

Run 2 0.14915122 0.07076396 0.05209232 

Run 3 0.07813995 0.17962337 0.20358056 

Run 4 0.08203442 0.11653909 0.05946590 

Run 5 0.15542551 0.08635755 0.08316419 

Run 6  0.06885503 0.11054810 0.06735277 

Run 7 0.06991435 0.08199433 0.05924162 

Run 8 0.04398349 0.09164785 0.14748451 

Run 9 0.05463128 0.06602896 0.15223737 

Run 10 0.05514363 0.21021702 0.09611215 

Mean  0.084011344 0.108678818 0.099599526 

Variance 0.001311015 0.002143345 0.002328653 

 

 

 

 

Tab. 4.  Numerical comparisons by the proposed and the other methods.   

Used method Mean  Variance 

Proposed method 

Case 1 0.084011344 0.001311015 

Case 2 0.108678818 0.002143345 

Case 3 0.099599526 0.002328653 

Recurrent NN modeling [23] 0.344057590 0.014582315 

 


