
A modi�ed Hammerstein modeling by the
differential evolution algorithm
Wei-Der Chang

Shu-Te University

Research Article

Keywords: Bilinear neural network, Recursive digital system, Hammerstein model, Differential evolution
algorithm, System modeling

Posted Date: February 7th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2548758/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Signal, Image and Video Processing on
May 29th, 2024. See the published version at https://doi.org/10.1007/s11760-024-03218-w.

https://doi.org/10.21203/rs.3.rs-2548758/v1
https://doi.org/10.21203/rs.3.rs-2548758/v1
https://doi.org/10.21203/rs.3.rs-2548758/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11760-024-03218-w

 1

A modified Hammerstein modeling by the differential

evolution algorithm

Wei-Der Chang

Department of Computer and Communication, Shu-Te University

Kaohsiung 824, Taiwan

E-mail: wdchang@stu.edu.tw

Abstract

This paper focuses on the nonlinear system modeling based on using a modified

Hammerstein system model. The proposed Hammerstein structure is composed of a

bilinear neural network (BNN) and a recursive digital system in the cascaded form.

The former is taken to be the nonlinear function part of the Hammerstein model, and

the latter is used as the linear dynamic subsystem. The BNN is then constructed by

the bilinear digital system and the recurrent neural network, which already possesses a

satisfactory modeling capacity. To update all the adjustable parameters within the

proposed Hammerstein model, a popular and powerful evolutionary computation

called the differential evolution (DE) is utilized so that the model output can be very

close to the actual nonlinear system output. Finally, a simulated nonlinear chemical

process system, continuously stirred tank reactor (CSTR), is illustrated with the

modeling phase and testing phase. Some numerical results as compared with a

different method from subject literature are provided to show the feasibility of the

proposed method and its good modeling.

Keywords: Bilinear neural network; Recursive digital system; Hammerstein model;

Differential evolution algorithm; System modeling.

 2

1. Introduction

For most of practical systems, their properties both static and dynamic are

nonlinear and complicated in nature. It is rather hard to set up the mathematical

model correspondingly to the actual system by means of the linear model such as a

differential equation and/or a difference equation. In fact, a collection of system

input-output pairs is the only information that is available in most real situations.

Thus, question of how to establish a suitable model structure for modeling such

systems remains to be solved. Another problem that occurs is then how to design

these adjustable parameters inside the proposed model when the model has been

developed. To tackle the modeling problem, a lot of nonlinear structure models have

recently been reported such as the neural network model, fuzzy system model,

Volterra series model, bilinear series model, Hammerstein model etc. For adjusting

model parameters, the general gradient-based method is often adopted. But, one main

drawback is that the system solution derived by such gradient descent method is likely

to fall into the local optima around the initial condition.

The focus of this paper is the modified Hammerstein model combined with the

differential evolution (DE) algorithm. This kind of Hammerstein model has widely

been used to solve the nonlinear system modeling problem [1]-[7]. It is composed of

two main blocks: a nonlinear static block and a linear dynamic block. These two

system blocks are cascaded. In the traditional fashion, the first block refers to the

static nonlinear function that can be constructed by, for instance, polynomial functions,

sinusoidal functions, and dead-zone nonlinearities. The latter is a recursive digital

system alternatively referred to as an infinite impulse response (IIR) digital filter. In

[2], a Hammerstein model consisting of a functional link artificial neural network

(FLANN) in cascade with an adaptive infinite impulse response filter has been

 3

developed. A cuckoo search algorithm was employed to train the proposed model

parameters. In [3], a novel method to identify parallel Wiener-Hammerstein systems

using input-output data only was presented, and this method was validated on real-

world measurements by a custom built parallel Wiener-Hammerstein test systems. In

[5], a hierarchical gradient parameter estimation algorithm was proposed for

Hammerstein nonlinear systems by means of the key term separation principle.

Simulation results show the effectiveness of the proposed algorithm. This paper

develops a new modified Hammerstein model in which the bilinear neural network

(BNN) followed by the recursive digital system is considered. Moreover, the BNN is

then constructed by the bilinear digital system and the recurrent neural network.

To design the adjustable model parameters, one of the optimal algorithms called

DE is employed, instead of the commonly used gradient descent scheme. The DE

was initially proposed by Storn and Price in 1997 and has been proven to be a

powerful but simple means for solving optimization problem [8]. This kind of

algorithm has a good chance of converging to the global solution of the optimized

problem because it is a population-based algorithm with multiple direction searches.

Basically, there are three important operations in the DE algorithm to achieve

optimized solution, including mutation, crossover, and selection, which seems to be

similar to those in present genetic algorithms (GAs). Application of DE has been

demonstrated on a variety of engineering optimization problems, such as: the

transmission expansion planning (TEP) problem [9], mobile ad hoc networks

(MANETs) [10], real power loss minimization [11], underwater glider path planning

[12], wireless sensor networks [13], and others [14]-[17]. In addition, some new

variants of the DE algorithm to improve the search efficiency or to overcome special

problems were also presented in [18]-[22].

 4

This paper proposes a modified version of Hammerstein model where the BNN is

used as the nonlinear static block of the model and the recursive digital system as the

linear dynamic block. Such a BNN modeling structure consisting of the bilinear

digital system and the recurrent neural network was initially developed in [23]. In the

BNN model, the terms corresponding to cross-products of input and output signals

within the bilinear system are taken as inputs to the recurrent neural network. This

kind of model can be regarded as an independent mathematical model, as it provides a

good modeling performance on its own. Nevertheless, in order to obtain a more

flexible model for identification, a new modified Hammerstein model is presented

that combines such a BNN model with a recursive digital system. Moreover, the DE

is utilized to find values of all adjustable parameters contained in the proposed

Hammerstein model, so that the model output is capable of closely approximating the

actual nonlinear system output. The remainder of this paper is organized as follows.

A modified version of Hammerstein model consisting of the BNN and the recursive

digital system is introduced in Section 2. In Section 3, a clear and complete

description of the DE algorithm is addressed and the design steps for DE-based

Hammerstein modeling are also proposed. Section 4 will illustrate the proposed

method by a highly nonlinear chemical process of continuously stirred tank reactor

(CSTR). Simulation results in comparison with other method taken from subject

literature demonstrate the superiority of the proposed scheme. Finally, some

conclusions and future research directions are given in Section 5.

2. A modified Hammerstein model

 A general Hammerstein model

The general Hammerstein model is composed of two system blocks including the

 5

nonlinear static block and the linear dynamic block in the cascaded form. Fig. 1

shows the block diagram where][nu is the external input signal,][nx is the output of

nonlinear static block, also referred to as an intermediate signal of the model,][nym
 is

the model final output,)(f represents the nonlinear static function, and)(1−
zH

represents the transfer function of linear dynamic system in which 1−
z means a unit

delay operator. We can further describe the Hammerstein model by

)];[(][Snufnx = , (1)

][)(][1
nxzHnym

−= , (2)

where S is a collection of all adjustable parameters contained in the nonlinear function.

In the proposed model, the BNN is used as the nonlinear static block and the recursive

digital filter as the linear dynamic block, respectively. Fig. 2 displays the proposed

Hammerstein model structure. Adjustable parameters within the proposed model

totally include all weights and thresholds of BNN and coefficients of recursive digital

system. These model parameters are necessary to be adjusted according to the

measured input-output data obtained from the actual nonlinear system which will be

modeled. Both BNN and recursive filter are further explained in detail in subsequent

sections.

 Bilinear Neural network (BNN)

BNN is constructed by the bilinear digital system and the recurrent neural network

[23]. All cross-product terms of input and output signals contained in such a bilinear

system are taken to be the input vector to the recurrent neural network. Generally, the

input-output bilinear digital system can be expressed by

= ===

−−+−+−=
u xux N

k

N

k

kk

N

k

k

N

k

k knxknucknubknxanx
0 1

21,

01 1 2

21
][][][][][

 6

][]2[]1[21 xN Nnxanxanxa
x

−++−+−=

][]1[][10 uN Nnubnubnub
u

−++−++

 +−++−+−+][][]2[][]1[][,02,01,0 xN Nnxnucnxnucnxnuc
x

 +−−+−−+]2[][]1[][2,1, nxNnucnxNnuc uNuN uu

][][, xuNN NnxNnuc
xu

−−+ , (3)

where][nu and][nx are the input and output signals,
ka and

kb represent the

coefficients of the linear part,
21,kkc are the coefficient of cross-product terms of input

and output signals,
xN is the system order representing the number of past outputs,

and
uN is the number of past input signals. Eq. (3) can further be rewritten in the

vector form for brevity as

TTT
CWBUAXnx ++=][, (4)

where A, B, and C represent coefficient vectors defined by

],,,[21 xNaaaA = ,

],,,[10 uNbbbB = , (5)

],,,[,2,01,0 xu NNcccC = ,

and vectors X, U, and W denote the past output signals, present and past input signals,

and all cross-product terms of input and output signals, respectively, and are given by

 xNnxnxnxX −−−= ,,2,1 ,

 uNnununuU −−= ,,1, , (6)

 xu NnxNnunxnunxnuW −−−−= ,,2,1 .

Furthermore, Eq. (4) can be more compactly expressed by

T
DZnx =][, (7)

 7

where][CBAD = is a collection of all system coefficients and][WUXZ =

is the vector collecting all system input-output signals. In the BNN structure, the

vector Z plays an important role and it is taken as the input to the neural network. The

vector length of both D and Z is easily calculated by Eq. (8)

xxuxuux NNNNNNNN +++=++++=)1)(1()1()1(. (8)

Moreover, the vector Z is redefined again for a clear representation as Eq. (9)

],,,[21 NzzzZ =

 ,,,1,,,,2,1 ux NnununuNnxnxnx −−−−−=

 xu NnxNnunxnunxnu −−−− ,,2,1 (9)

Fig. 3 shows the overall structure of the BNN where the vector Z of Eq. (9) is used to

be the input signal of the network, N and M are the number of neurons in the input and

hidden layers, respectively,
ijzhw _ denotes the weight between the ith input neuron

with the jth hidden neuron,
jhxw_ is the weight from the jth hidden neuron to the

output neuron, all for Ni ,,2,1 = and Mj ,,2,1 = , and][nx is the final output of

the BNN. Notice that the delay signals of][nx are requested to feed back to the input

layer forming a recurrent neural network as addressed in Eq. (9).

In the hidden layer, each neuron has the following mathematical operations:

=

−=
N

i

jiijj hzzhwhnet
1

___ , (10)

jj

jj

hnethnet

hnethnet

j
ee

ee
h

__

__

−

−

+
−

= , (11)

where
jhnet _ ,

jh_ , and
jh are the internal state, threshold, and output signal of

the jth hidden neuron, respectively, for Mj ,,2,1 = , and the activation function is

the hyperbolic tangent function given by Eq. (11). All output signals in the hidden

 8

layer are further delivered to the output neuron via the weights using the following

equations

=

−=
M

j

jj xhhxwxnet
1

___ , (12)

xnetnx _][= , (13)

where xnet _ , x_ , and][nx are the internal state, threshold, and final output of the

BNN, respectively, and the linear activation function here is utilized as given by Eq.

(13). Based on the BNN structure of Fig. 3, the total of all adjustable parameters

including weights and thresholds contained in the network can be evaluated by

 1)2(1 ++=+++= NMMMMNP . (14)

Again, for convenience let the vector S be a collection of all adjustable parameters in

the BNN as

],,,[21 PsssS =

 ,_,,_,_,,_,_[2111211 NMM zhwzhwxhwxhwzhw =

]_,_,_,_,_,,_,_ 2121 xhxwhxwhxwhhh MM . (15)

 Recursive digital system

In this subsection, the recursive digital system is introduced in detail. In the

developed Hammerstein model, the recursive digital system is cascaded with the BNN,

therefore the output][nx from the BNN is considered as the input signal to the

recursive digital system as shown in Fig. 2. Consider the following recursive digital

system described by the transfer function

=

−

=

−

−−−

−−−

−

−
−

+
=

++++

++++
==

d

g

d

d

g

g

N

k

k

k

N

k

k

k

N

N

N

Nm

zd

zg

zdzdzd

zgzgzgg

zX

zY
zH

1

0

2

2

1

1

2

2

1

10

1

1
1

1
1)(

)(
)(

, (16)

 9

where
dN represents the system order,

gN is the number of past inputs,
kd and

kg

are system coefficients. Furthermore, converting Eq. (16) into time domain difference

equation yields

][]2[]1[][21 dmNmmm Nnydnydnydny
d

−−−−−−−=

][]1[][10 gN Nnxgnxgnxg
g

−++−++

==

−+−−=
gd

N

k

k

N

k

mk knxgknyd
01

][][, (17)

where][nx is the input signal generated by the BNN and][nym
 is the output signal

of the recursive digital system, i.e., the final output of the developed Hammerstein

model. The recursive difference equation diagram for Eq. (17) can simply be depicted

in Fig. 4. In the recursive digital system,
kd and

kg are the system coefficients that

will be designed together with the parameter vector S of Eq. (15). Thus, let

],,,[21 dNdddD = and],,,[10 gNgggG = be two coefficient vectors with
dN

and 1+gN parameters, respectively. This means that, in total, there are 1++ gd NN

adjustable parameters in the recursive digital system.

 A modified Hammerstein model

The combination of BNN and recursive digital system forms a modified

Hammerstein system with input signal][nu and output signal][nym
 as shown in Fig.

2. In the proposed model, there are in total 1+++= gd NNPR designed parameters

in which P is the number of adjustable parameters of the BNN and 1++ gd NN is the

corresponding number of coefficients of the recursive digital system. Moreover, for

the usage of the DE algorithm let the parameter vector],,,[21 R = be a

 10

collection of all deigned parameters contained in the modified Hammerstein model as

follows

],,,[21 R =

],,[GDS=

],,,,,,,,_,,_,_[10211211 gd NN gggdddxzhwzhw = , (18)

where the subscript R denotes the number of all design parameters. This defined

vector Θ will be updated by the DE algorithm.

3. Differential evolution and its applications to Hammerstein modeling

The algorithm chosen for updating all of adjustable parameters is the DE algorithm

and it has been shown to be effective for solving such optimization problems. Like

most evolutionary methods, this algorithm is also population-based. Hence, the DE

begins with generating an initial population containing a large number of parameter

vectors as described in Eq. (18). To achieve optimization purpose, it consists of three

principal operations: mutation, crossover, and selection to evolve these parameter

vectors inside the population. They are explained in detail below [8][23].

• Mutation

In the mutation operation, three different parameter vectors named as ,
 , and

 are randomly chosen from the population and they are mutually mutated as

follows

() −+= sfV , (19)

where the derived vector],[2,1 RvvvV = is called the mutant vector and
sf is the

mutation constant factor to adjust the amplification of the differential variation

 11

 − .

• Crossover

Consider another target vector],,,[21 R = that is crossed with the mutation

vector V. It needs a set of random numbers
Rrrr ,,, 21 where]1,0[ir for

Ri ,,2,1 = to derive another set of binary numbers Rmmm ,,, 21 by using Eq.

(20)

=
,,0

,,1

otherwise

CRrif
m

i

i
 for Ri ,,2,1 = (20)

where CR is called the crossover rate chosen from the interval]1,0[and it is always

set to 0.5 for the common situation. By means of this binary set Rmmm ,,, 21 , the

so-called trial vector RtttT ,, 21 = can be obtained according to Eq. (21)

=
=

=
0,

1,

ii

ii

i
mifv

mif
t

, for Ri ,,2,1 = . (21)

It can be seen that the trial vector T is an outcome of crossing with V.

• Selection

Briefly, the selection operation is to retain the better parameter of the two, i.e. the

target vector and the trail vector T. To evaluate the performance of each parameter

vector, the following cost function is adopted for Hammerstein modeling

= =

−==
NS

n

NS

n

m nynyneCF
0 0

22][, (22)

where NS is the number of samples, e is the error signal between the actual output y

and the developed Hammerstein model output
my . Based on using Eq. (22), the

 12

selection is performed. If)()(CFTCF , it means that the trial vector T is

superior in terms of modeling fit to the target vector , then the vector T survives

and takes the place of . Otherwise, this trial vector T is discarded and the target

vector remains in the population. Notice that one generation is defined when the

above three operations are executed. The algorithm stops when the assigned

allowable number of generations is attained.

• DE-based design steps for Hammerstein modeling

In this paper, the proposed Hammerstein modeling architecture for the actual

nonlinear system is displayed in Fig. 5 where the DE algorithm is employed to adjust

the model parameters, so that the error signal between the actual output and the model

output can be minimized. The following lists the complete design steps.

Data: A set of input-output pairs of a real nonlinear system

},,2,1,0])[],[{(SNnnynuQ == , the BNN structure with N-input neurons,

M-hidden neurons, and a single output neuron, the order
dN and

gN of digital

recursive system of Eq. (17), population size PS, mutation constant factor
sf in

Eq. (19), and allowable number of generations numG _ .

Goal: Construct a modified Hammerstein model consisting of the BNN and recursive

digital system to identify the actual nonlinear system by the DE algorithm.

Create an initial population with PS parameter vectors randomly chosen from the

interval 1,1− .

for 1=j to numG _

for 1=i to PS

 13

Calculate the corresponding cost function)(iCF of the target vector
i

using Eq. (22).

Obtain the mutation vector V from Eq. (19).

Derive a set of binary sequences Rmmm ,,, 21 by using Eq. (20).

Perform the crossover operation on the target vector
i and the mutation

vector V to obtain the trial vector T using Eq. (21).

Calculate the cost function)(TCF corresponding to T using Eq. (22).

Perform the selection operation on
i and T. If () ()iCFTCF , then

T
new

i = , otherwise
i

new

i = .

End

for 1=i to PS

 new

ii = .

End

End

4. Modeling simulation: a chemical case of CSTR

A case study for modeling a chemical process system demonstrates applicability of

the proposed method. The chemical process used is the continuously stirred tank

reactor (CSTR) that is a highly nonlinear and complex system expressed by the

following dynamical equations [24]

)
1

exp()1(
2

2
111 x

x
xDxx a +

−+−= ,

u
x

x
xBDxx a

 +

+
−++−=)

1
exp()1()1(

2

2
222

 , (23)

 14

2xy = ,

where
1x and

2x are the system states and represent the dimensionless reactant

concentration and the reactor temperature, respectively, u and y denote the system

input and output (reactor temperature), other system parameters including
aD , , B,

and are explained in Tab. 1. Converting Eq. (23) into a discrete-time form by a

simple Euler’s discretizton yields

))
][1

][
exp(])[1(][(][]1[

2

2
1111 nx

nx
nxDnxTnxnx as +

−+−+=+ ,

])[)
][1

][
exp(])[1(][)1((][]1[

2

2
2222 nu

nx

nx
nxBDnxTnxnx as

 +

+
−++−+=+ , (24)

][][2 nxny = ,

where
sT is the sampling interval of 0.2s for simulations.

For a fair comparison the parameter setting used in the BNN and DE algorithm are

the same with Ref. [23] listed in Tab. 2. Simulation results consisting of two phases:

modeling and testing phases are provided to verify the identification performance.

Firstly, in the modeling phase the input signal][nu is generated from the interval

]1,1[− randomly and uniformly for 100,,1,0 =n . Two different input signals are

utilized in the testing phase; one is the uniformly generated random number chosen

from]1,1[− , the other is Gaussian random number with mean 0.0= and variance

5.02 = , all for 200,,1,0 =n . In addition, three different architectures for the

digital recursive system are examined in the modified Hammerstein model, as follows.

• Case 1: 3=dN and 1=gN ,

]1[][]3[]2[]1[][10321 −++−−−−−−= nxgnxgnydnydnydny mmmm
,

• Case 2: 4=dN and 1=gN ,

 15

]4[]3[]2[]1[][4321 −−−−−−−−= nydnydnydnydny mmmmm

]1[][10 −++ nxgnxg ,

• Case 3: 4=dN and 2=gN ,

]4[]3[]2[]1[][4321 −−−−−−−−= nydnydnydnydny mmmmm

]2[]1[][210 −+−++ nxgnxgnxg .

In the identification phase, ten different sets of initial conditions (Run 1 ~ Run 10) are

executed to validate the robustness of the proposed algorithm for each case. The best

among these runs is taken to show the simulation results for the modeling and testing

phases. Tab. 3 lists the cost functions derived by all of ten independent runs for Cases

1-3, respectively, where the optimal value appears in Run 8 for Case 1, Run 9 for

Case 2, and Run 2 for Case 3. Based on these optimal independent runs of Cases 1-3,

the comparisons of the actual and model outputs are shown in Figs. 6-14. Fig. 6

displays the model output of Run 8 with respect to the sampling number 1000 n

in the modeling phase for Case 1. It is clearly seen that both output curves are very

close. Figs. 7 and 8 show the model outputs with respect to 2000 n in the testing

phase by the random and Gaussian testing inputs, respectively. Better approximations

seen from these two figures are also derived. As to other simulation results, they are

displayed in Figs. 9-14 for Cases 2 and 3, respectively. Again, the model output of

each case is close to the actual output when both modeling and testing inputs are

applied. Finally, numerical results derived by the proposed method are further

compared with those obtained from a different method, and they are listed in Tab. 4.

It can be concluded from Tab. 4 that the proposed method obtains better results over

the other existing method.

 16

5. Conclusions

In this paper, a modified Hammerstein model has been successfully applied to the

nonlinear system modeling problem based on using differential evolution algorithm.

The developed model is constructed using bilinear neural network followed by

recursive digital system in order to provide better modeling capability. To adjust

model parameters, the DE algorithm is utilized, so that the error signal between the

actual and model outputs is minimized. Design steps of DE-based nonlinear system

modeling are also described in detail. Finally, the developed method is applied to a

model of a simulated chemical process, i.e. CSTR. Simulation results of modeling

and testing phases are satisfactory and superior when compared to another existing

method found in the subject literature.

 17

References

[1] M. Cui, H. Liu, Z. Li, Y. Tang, X. Guan, Identification of Hammerstein model

using functional link artificial neural network, Neurocomputing 142 (2014) 419-

428.

[2] A. Gotmare, R. Patidar, N.V. George, Nonlinear system identification using a

cuckoo search optimized adaptive Hammerstein model, Expert System with

Applications 42 (2015) 2538-2546.

[3] M. Schoukens, A. Marconato, R. Pintelon, G. Vandersteen, Y. Rolain,

Parametric identification of parallel Wiener-Hammerstein systems, Automatica

51 (2015) 111-122.

[4] J. Wang, Q. Zhang, Detection of asymmetric control valve stiction from

oscillatory data using an extended Hammerstein system identification method,

Journal of Process Control 24 (2014) 1-12.

[5] H. Chen, Y. Xiao, F. Ding, Hierarchical gradient parameter estimation algorithm

for Hammerstein nonlinear systems using the key term separation, Applied

Mathematics and Computation 247 (2014) 1202-1210.

[6] M. Rasouli, D. Westwick, W. Rosehart, Quasiconvexity analysis of the

Hammerstein model, Automatica 50 (2014) 277-281.

[7] F. Yu, Z. Mao, M. Jia, P. Yuan, Recursive parameter identification of

Hammerstein-Wiener systems with measurement noise, Signal Processing 105

(2014) 137-147.

[8] R. Storn, K. Price, Differential evolution ─ a simple and efficient heuristic for

global optimization over continuous, Journal of Global Optimization 11 (1997)

341-359.

[9] S.P. Torres, C.A. Castro, Specialized differential evolution technique to solve

 18

the alternating current model based transmission expansion planning problem,

Electrical Power and Energy Systems 68 (2015) 243-251.

[10] S. Gundry, J. Zou, M.U. Uyar, C.S. Sahin, J. Kusyk, Differential evolution-

based autonomous and disruption tolerant vehicular self-organization in

MANETs, Ad Hoc Networks 25 (2015) 454-471.

[11] Y. Amrane, M. Boudour, A.A. Ladjici, A. Elmaouhab, Optimal VAR control for

real power loss minimization using differential evolution algorithm, Electrical

Power and Energy Systems 66 (2015) 262-271.

[12] A. Zamuda, J. Daniel, H. Sosa, Differential evolution and underwater glider path

planning applied to the short-term opportunistic sampling of dynamic mesoscale

ocean structure, Applied Soft Computing 24 (2014) 95-108.

[13] P. Kuila, P.K. Jana, A novel differential evolution based clustering algorithm for

wireless sensor networks, Applied Soft Computing 25 (2015) 414-425.

[14] M. Basu, Improved differential evolution for economic dispatch, Electrical

Power and Energy Systems 63 (2014) 855-861.

[15] R.D. Al-Dabbagh, A. Kinsheel, S. Mekhilef, M.S. Baba, S. Shamshirband,

System identification and control of robot manipulation based on fuzzy adaptive

differential evolution algorithm, Advances in Engineering Software 78 (2014)

60-66.

[16] Y. He, Q. Xu, S. Yang, A. Han, L. Yang, A novel chaotic differential evolution

algorithm for short-term cascaded hydroelectric system scheduling, Electrical

Power and Energy Systems 61 (2014) 455-462.

[17] A. Zamuda, J. Brest, Vectorized procedural models for animated trees

reconstruction using differential evolution, Information Sciences 278 (2014) 1-

21.

 19

[18] I. Poikolainen, F. Neri, F. Caraffini, Cluster-based population initialization for

differential evolution frameworks, Information Sciences 297 (2015) 216-235.

[19] A. Draa, S. Bouzoubia, I. Boukhalfa, A sinusoidal differential evolution

algorithm for numerical optimisation, Applied Soft Computing 27 (2015) 99-126.

[20] Q. Fan, X. Yan, Self-adaptive differential evolution algorithm with discrete

mutation control parameters, Expert System with Applications 42 (2015) 1551-

1572.

[21] Y. Chen, W. Xie, X. Zou, A binary differential evolution algorithm learning

from explored solutions, Neurocomputing 149 (2015) 1038-1047.

[22] X. Lu, K. Tang, B. Sendhoff, X. Yao, A new self-adaptation scheme for

differential evolution, Neurocomputing 146 (2014) 2-16.

[23] W.D Chang, Recurrent neural network modeling combined with bilinear model

structure, Neural Computing and Applications, DOI 10.1007/s00521-012-1295-5.

[24] C.T. Chen, S.T. Peng, Learning control of process systems with hard input

constraints, Journal of Process Control 9 (1999) 151-160.

 20

Figure captions

Fig. 1. A general Hammerstein model.

Fig. 2. A new modified Hammerstein model.

Fig. 3. BNN structure with N input neurons, M hidden neurons, and a single output

neuron.

Fig. 4. Difference equation diagram for recursive digital system.

Fig. 5. The system block diagram of the proposed Hammerstein modeling.

Fig. 6. Model output of Run 8 for Case 1 in the modeling phase.

Fig. 7. Model output of Run 8 for Case 1 in the testing phase using the random input.

Fig. 8. Model output of Run 8 for Case 1 in the testing phase using the Gaussian

input.

Fig. 9. Model output of Run 9 for Case 2 in the modeling phase.

Fig. 10. Model output of Run 9 for Case 2 in the testing phase using the random input.

Fig. 11. Model output of Run 9 for Case 2 in the testing phase using the Gaussian

input.

Fig. 12. Model output of Run 2 for Case 3 in the modeling phase.

Fig. 13. Model output of Run 2 for Case 3 in the testing phase using the random input.

Fig. 14. Model output of Run 2 for Case 3 in the testing phase using the Gaussian

input.

Table captions

Tab. 1. Definition of CSTR system parameters.

Tab. 2. Parameter setting used in the BNN and DE algorithm.

Tab. 3. Cost functions derived by ten independent runs for Cases 1-3.

Tab. 4. Numerical comparisons by the proposed and the other methods.

 21

][nu
()f

][nx

()1−
zH

][nym

linear dynamic

block
nonlinear

static block

Fig. 1. A general Hammerstein model.

][nu
][nx

][nym

Recursive

digital system

Bilinear

neural network

(BNN)

Fig. 2. A new modified Hammerstein model.

 22

11_ zhw

1z

2z

Nz

21_ zhw

12_ zhw

Mzhw 1_

NMzhw _

22_ zhw

1_ hxw

2_ hxw

Mhxw _

][nx

Mzhw 2_

delay
]1[−nx

delay

delay

][xNnx −

]2[−nx

Fig. 3. BNN structure with N input neurons, M hidden neurons, and a single output

neuron.

 23

][nx 0g

1g

2g

gNg

][nym

1d−

2d−

dNd−

delay

delay

delay

delay

delay

delay

Fig. 4. Difference equation diagram for recursive digital system.

][nu

][ny

recursive

digital system

bilinear neural

network

(BNN)

 real nonlinear system

][nym

+

_

differential

evolution

algorithm

A modified Hammerstein model][ne

Fig. 5. The system block diagram of the proposed Hammerstein modeling.

 24

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

s
ys

te
m

 o
u

tp
u

t

actual output

model output

Fig. 6. Model output of Run 8 for Case 1 in the modeling phase.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

s
ys

te
m

 o
u

tp
u

t

actual output

model output

Fig. 7. Model output of Run 8 for Case 1 in the testing phase using the random input.

 25

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

s
ys

te
m

 o
u

tp
u

t

actual output

model output

Fig. 8. Model output of Run 8 for Case 1 in the testing phase using the Gaussian

input.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

s
ys

te
m

 o
u

tp
u

t

actual output

model output

Fig. 9. Model output of Run 9 for Case 2 in the modeling phase.

 26

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

s
ys

te
m

 o
u

tp
u

t

actual output

model output

Fig. 10. Model output of Run 9 for Case 2 in the testing phase using the random input.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

s
ys

te
m

 o
u

tp
u

t

actual output

model output

Fig. 11. Model output of Run 9 for Case 2 in the testing phase using the Gaussian

input.

 27

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

s
ys

te
m

 o
u

tp
u

t

actual output

model output

Fig. 12. Model output of Run 2 for Case 3 in the modeling phase.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

s
ys

te
m

 o
u

tp
u

t

actual output

model output

Fig. 13. Model output of Run 2 for Case 3 in the testing phase using the random input.

 28

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

s
ys

te
m

 o
u

tp
u

t

actual output

model output

Fig. 14. Model output of Run 2 for Case 3 in the testing phase using the Gaussian

input.

 29

Tab. 1. Definition of CSTR system parameters.

Symbol aD B

Definition
Damökhler

number

activated

energy

heat of

reaction

heat transfer

coefficient

Value 0.072 20 8 0.3

Tab. 2. Parameter setting used in the BNN and DE algorithm.

Orders of

bilinear digital

system

Number

of

hidden

neurons

Population

size

Mutation

constant

factor

Number

of samples

Number of

generations

4,5 == ux NN 5=M 30=PS 2.0=sf 100=NS 1000_ =numG

 30

Tab. 3. Cost functions derived by ten independent runs for Cases 1-3.

 Case 1 Case 2 Case 3

Run 1 0.08283456 0.07306794 0.07526387

Run 2 0.14915122 0.07076396 0.05209232

Run 3 0.07813995 0.17962337 0.20358056

Run 4 0.08203442 0.11653909 0.05946590

Run 5 0.15542551 0.08635755 0.08316419

Run 6 0.06885503 0.11054810 0.06735277

Run 7 0.06991435 0.08199433 0.05924162

Run 8 0.04398349 0.09164785 0.14748451

Run 9 0.05463128 0.06602896 0.15223737

Run 10 0.05514363 0.21021702 0.09611215

Mean 0.084011344 0.108678818 0.099599526

Variance 0.001311015 0.002143345 0.002328653

Tab. 4. Numerical comparisons by the proposed and the other methods.

Used method Mean Variance

Proposed method

Case 1 0.084011344 0.001311015

Case 2 0.108678818 0.002143345

Case 3 0.099599526 0.002328653

Recurrent NN modeling [23] 0.344057590 0.014582315

