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Abstract
Despite the importance of the Amu Darya and Kabul River Basins as a region in which more than
15 million people live, and its vulnerability to global warming, only several studies addressed the issue of
the linkage of meteorological parameters on vegetation for the eastern basins of Afghanistan. In this
study, data from the MODIS, Global Precipitation Measurement Mission (GPM), and Global Land Data
Assimilation System (GLDAS) was used for the period from 2000 to 2021. The study utilized several
indices, such as Precipitation Condition Index (PCI), Temperature Condition Index (TCI), Soil Moisture
Condition Index (SMCI), and Microwave Integrated Drought Index (MIDI). The relationships between
meteorological quantities, drought conditions, and vegetation variations were examined by analyzing the
anomalies and using regression methods. The results showed that the years 2000, 2001, and 2008 had
the lowest vegetation coverage (VC) (56, 56, and 55% of the study area, respectively). On the other hand,
the years 2010, 2013, 2016, and 2020 had the highest VC (71, 71, 72, and 72% of the study area,
respectively). The trend of the VC for the eastern basins of Afghanistan for the period from 2000 to 2021
was upward. High correlations between VC and soil moisture (R = 0.70, p = 0.0004), and precipitation (R = 
0.5, p = 0.008) were found, whereas no significant correlation was found between VC and drought index
MIDI. It was revealed that soil moisture, precipitation, land surface temperature, and area under
meteorological drought conditions explained 45% of annual VC variability.

1. Introduction
Abnormal climatic conditions related to climate change have been associated with the effects of human
activities over the past few decades. They lead to numerous environmental and ecological problems,
such as air pollution, dust storm, biodiversity loss, soil erosion, and vegetation degradation (Li et al.
2022a; Zhao et al. 2022b; Zhou et al. 2021). Therefore, the knowledge of how climate change affects
different ecosystems has an important role in the protection and management of vegetation cover (Tian
et al. 2021b).

Vegetation occupies almost half of the planet and plays an important role in providing food, fiber, and
fuel, supporting animal biodiversity, maintaining climate quality, and supporting ecological processes
that preserve ecosystems and landscapes (Hu et al. 2022; Li et al. 2021; Li et al. 2022b; Yang et al. 2022).
Vegetation is one of the important components of the terrestrial ecosystem, which plays an effective role
in preventing desertification and also plays a key role in providing various ecosystem services to adapt
and mitigate climate change; Additionally, every change in vegetation affects the climate of the region,
especially temperature and air quality, through its influence on net radiation, energy partitioning,
conversion of precipitation to runoff (Chen et al. 2022; Liu et al. 2020; Mansourmoghaddam et al. 2022b;
Zhu et al. 2022), soil moisture (Zhang et al. 2019b), evaporation, and transpiration (Najmuddin et al.
2017). Since global climate change has become a major topic of discussion today, the relationship
between vegetation and meteorological factors is of great importance in ecological studies (Gao et al.
2012).
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Remote sensing can continuously and systematically deliver information on the water cycle and
vegetation variations and therefore, remote sensing drought indicators can be used for spatial and
temporal drought monitoring (Mansourmoghaddam et al. 2022a; Wang et al. 2021; Xie et al. 2021a; Xie et
al. 2021b; Yin et al. 2022b). Remote sensing is of particular importance in applications requiring actual
and constantly updated information. Due to various spectral ranges and data availability, the use of
remote sensing data is one of the best ways to prepare vegetation (Tian et al. 2021a; Yin et al. 2022a)
and soil moisture (Zhao et al. 2021; Zhao et al. 2020) maps.

The NDVI index has become one of the most popular and commonly used indicators to monitor
vegetation due to its universality and simple mathematical formula (Rousta et al. 2020a). According to
Huang et al. (Huang et al. 2021b), the number of articles using the NDVI index to monitor changes in
vegetation increased from 795 in 1990, through 3361 in 2000, to 12,618 in 2010 (Huang et al. 2021a).
The NDVI index is widely used in studies related to vegetation classification, and soil erosion risk
assessment, because soil erosion decreases with increasing vegetation cover (Zhongming et al. 2010).
By correlating NDVI data with the meteorological parameters using the long-term time series for the
specific study area it can be checked how climate change affects the growth of vegetation (Li and
Kafatos 2000). Also, such studies can be performed to check whether persistent drought conditions occur
in a given area and how they affect vegetation.

The period of instability from dry weather conditions, which leads to water scarcity, is simply known as
drought (Xu et al. 2022b). Drought is a very complex and not well-understood phenomenon. It causes
social and environmental problems, and it leads to immeasurable economic losses (Zhao et al. 2022a).
Drought is a serious natural hazard, especially in regions with arid and semi-arid climates (Ali et al. 2019).
Compared to other natural phenomena, drought affects wider areas over a longer period, thus causing
much more damage than other natural disasters such as floods and earthquakes (Zhang et al. 2022).
The study of climate change and the identification of years of drought are valuable for the management
of water resources and vegetation, especially in areas with dry spell occurrence (Jawadi et al.)

Afghanistan is a mountainous country with spatially and temporally varying ecological conditions.
Mountainous areas are prone to the effects of climate change, which intensifies the pressure on natural
and human systems (Omerkhil et al. 2020). Climate changes have caused short-term and long-term
droughts that have severely affected Afghanistan's economy. According to the International Disaster
Management Agency (IDD), droughts accounted for only 5 percent of natural disasters but affected about
30 percent of the population (Ji and Peters 2005). There are two main types of drought in Afghanistan:
meteorological drought (usually accompanied by a lack of rainfall) and hydrological drought (usually
associated with a lack of surface and groundwater flow, potentially originating in the wider river basin
region) (Gao et al. 2021; Liu et al. 2022; Munyasya et al. 2022; Quan et al. 2021; Zhang et al. 2019c).
These issues may also be combined with land and crop management practices, leading to agricultural
drought. Currently, Afghanistan is facing significant drought issues that have a direct impact on the
livelihoods and the economy of the country.
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The vegetation in Afghanistan has been severely affected by human activities, climate change, and
drought, which resulted in the naturally occurring vegetation preserved intact only in a few high mountain
areas and abnormally dry deserts (Rousta et al. 2020a). Such a situation additionally contributes to
Afghanistan's vulnerability to the effects of climate change (Akhundzadah et al. 2020). In Afghanistan,
the combined effects of climate change and four decades of civil war have destroyed vegetation and
infrastructure, leading to the underdevelopment of the country. The high dependence of the majority of
the country's people on small and large-scale agriculture means that due to the country's dry climate and
the low adaptation capacity of farmers climate change creates major problems to deal with(Xu et al.
2022a). The arid and semi-arid climate of the eastern basins of Afghanistan implies that this area can be
strongly affected by short and long-term fluctuations of meteorological parameters, which as a result will
endanger human living conditions (Aich et al. 2017). In Afghanistan, where a large part of the population
is engaged in the agriculture sector, assessing the impacts of climate change and drought on vegetation
is crucial for the implementation of sustainable agricultural practices. This is especially important for
different crops that are grown annually and seasonally, for example, wheat produced in the north,
northeast, and eastern regions of the country (Shroder 2014).

In Afghanistan, due to security problems and the lack of stations monitoring weather, not many studies
have been performed on the correlation between meteorological parameters and vegetation, and only a
few research were done using remote sensing data (Rousta et al. 2020a). Therefore, the investigation of
the impact of weather and climate change on vegetation for proper management and ensuring the
stability of vegetation, being of particular importance for the eastern basins of Afghanistan, is still
required and expected.

The presented study has been conducted to monitor the fluctuations of vegetation conditions and to
assess their relationship with meteorological parameters and drought conditions in the period of 2000–
2021 in the eastern basins of Afghanistan. The main objectives of this study were a) to determine the
trend of vegetation changes between the years (2000–2021) in the eastern basin of Afghanistan, b) to
analyze the past trends in drought from the perspective of meteorology, and c) to determine the
relationship between vegetation, drought and meteorological parameters for the eastern basins of
Afghanistan. The results of this study can be used by governmental agencies, such as the Ministry of
Agriculture, to identify dry and wet years, as well as to determine the trend of changes in meteorological
parameters and vegetation for the period 2000–2021.

2. Materials And Methods

2.1. Study area
The study has been performed for the eastern basins of Afghanistan (Fig. 1), namely the Amu Darya
Basin (ADB) and the Kabul River Basin (KRB), with a total area of 163,840 km2. The Amu Darya Basin,
with an area of 90,692 km2, is bordered by Tajikistan from the north, and Pakistan from the southeast.
The total annual water flowing through this basin is 82 billion m3, of which 61% comes from Tajikistan,
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30% from Afghanistan, and the remaining 9% from Uzbekistan and Turkmenistan. Important Amu Darya
tributaries include the Wakhan, Kokcha, Kunduz, Andarab, Khenjan, and Punjab rivers in Afghanistan. The
population living in this basin was reported to be about 4.5 million people in 2015. According to the
division of the Ministry of Energy and Water, it is divided into 7 sub-basins: Upper Five, Lower Five,
Kokcheh, Taloqan, Upper Kunduz, Lower Kunduz, and Lower Amu (Maharjan et al. 2021).

The Kabul River Basin, with an area of 72,843 km2 is located in the eastern part of Afghanistan and is
part of the Indus River Basin, which is common between Afghanistan and Pakistan. A part of this basin
includes the Kabul and Kunar river basins, with an area of 53,832 km2. Kabul River Basin is the second
largest basin in Afghanistan after the Amu Darya and is divided into 13 sub-basins: Upper Panjshir, Lower
Panjshir, Ghorband, Central Kabul, Maidan, Logar, Laghman, Lower Kabul, Kunar, Parun, North, Khorram,
and Gomel. The population living in this catchment area is estimated to be about 12.1 million in 2015
(Maharjan et al. 2021).

Most of the Amu Darya basin is mountainous with snow/glacier fed rivers flowing in steep terrain. The
rangeland on the mountain side is grazed by farm animals and nomads during the warm summer
months (Cesaro et al. 2019). The northern part of KRB contains mountains with high elevations
(Najmuddin et al. 2018). The lowlands of KRB are the most suitable land for agriculture. The farms are
mainly located in the central and eastern parts of the KRB, Agriculture and livestock are the main source
of livelihoods in the KRB. Agriculture is largely irrigated and shares around one-fifth of the total irrigated
land in the country. The river basin also holds around two-thirds of the total forest resources in the count
(Najmuddin et al. 2017).
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Table 1
Land Cover type of Kabul River Basin and Amu

Darya Basin of Afghanistan.
Land Cover type Area (km2)

Urban and Built-Up Land 168.9

Dryland Cropland and Pasture 9497.6

Irrigated Cropland and Pasture 12009.2

Cropland/Grassland Mosaic 1619.5

Cropland/Woodland Mosaic 7828.2

Grassland 44105.9

Shrubland 58974.3

Mixed Shrubland/Grassland 3794.8

Savanna 450.3

Deciduous Broadleaf Forest 71.3

Deciduous Needleleaf Forest 1.4

Evergreen Broadleaf Forest 0.7

Evergreen Needleleaf Forest 52.0

Mixed Forest 71.3

Water Bodies 485.2

Wooded Wetland 64.1

Barren or Sparsely Vegetated 11655.8

Wooded Tundra 12091.8

Snow or Ice 3749.2

Climate change has already affected agriculture and vegetation in the ADB and KRB. Due to earlier snow
melting spring floods increase in size and the risk of the shortage of water occurs more often in summer
and early autumn in years of drought (Klemm and Shobair 2010). In 2013, annual precipitation in the KRB
was 327 mm at downstream, with a usual fringe effect of the Indian monsoon coming from the South
Asian Himalayas, and around 418 mm at upstream. The mean annual temperature at the central
upstream and downstream locations were 13℃ and 23 ℃, respectively (Akhtar et al. 2018). Table 1 and
Fig. 2 presents the land cover types of ADB and KRB watersheds, together with their area (km2) retrieved
from Moderate resolution imaging spectroradiometer (MODIS)_ MCD12Q1 images according to the
International Geosphere-Biosphere Programme (IGBP) classification (Loveland et al. 1999). The figure
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shows that most of the study area is covered by croplands and grasslands (18 and 26% of study area,
respectively).

2.2. Data
In the present study, the vegetation coverage variability for the eastern basins of Afghanistan was
investigated for the period 2000–2021, and the impact of such factors as land surface temperature
(LST), precipitation, soil moisture, and drought on vegetation coverage was assessed using regression
methods. The summary of the sources of the remote sensing data used in this study is provided in Table
2, while the flowchart of data processing is presented in Fig. 3. All satellite-born statistics of the surfaces
belong to the bright days (hours) only.

 
Table 2

Remote sensing data used in this study.
Data Source Spatial

resolution
Temporal

resolution

File
Format

Normalized Difference Vegetation Index
(MOD13Q1)

MODIS
packages in
GEE

250 m 16 days Geo tif

MODIS Land Surface Temperature
(MOD11A2)

MODIS
packages in
GEE

1 km 8 days Geo tif

Global Precipitation Measurement (GPM) GPM packages
in GEE

0.1° arc
degree

30
minutes

Geo tif

Global Land Data Assimilation System
(GLDAS) soil moisture

(in soil layer of 0–10 cm )

GLDAS
packages in
GEE

1° 3 hours NC file

2.2.1. Normalized Difference Vegetation Index (NDVI) data
The Normalized Difference Vegetation Index (NDVI) is one of the most important and widely used
vegetation indicators and its application in satellite assessment for global vegetation monitoring has
been well proven in the two last decades (Leprieur et al. 2000). It is commonly used as a detector of
surrounding greenness areas and in epidemiological studies to investigate the health effects of green
space in urban environments (Gascon et al. 2016). The NDVI is the index that is less affected by factors
such as topography and brightness than other vegetation indices and it indicates the level of
photosynthetic activity of the vegetation (Mansourmoghaddam et al. 2022e):
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1
,

where Rred and Rnir represent surface reflectance averaged over visible (RED) (λ ~ 0.65 µm) and near-
infrared (NIR) (λ ~ 0.85 µm) regions of the spectrum (Mansourmoghaddam et al. 2022d). The range of
NDVI values is between − 1 and 1, with the vegetation having NDVI between 0.2-1.0, while the values
lesser than 0.2 indicate areas without vegetation cover, usually barren, or with rock, snow, water, or ice
(Mahmood et al. 2022; Rousta et al. 2022b; Rousta et al. 2020a; Rousta et al. 2020b).

In this study, the time-series of the NDVI 16-Day L3 Global 250 m from MOD13Q1 MODIS product (Testa
et al. 2014) for a period from January 2000 to December 2021 (22 years, 528 images in total) have been
downloaded using the Google Earth Engine (GEE) platform. The data was converted to the spatial
resolution of 1 km using the bicubic method.

To obtain the yearly values of the NDVI the data were averaged as:

2
,

where i is consecutively numbering the timely ordered images from a specific year. Based on the NDVI,
vegetation coverage was calculated as the area with any type of vegetation by summation of the number
of the pixels with NDVI > 0.2 and multiplying their number by the area of one pixel.

The uncertainty estimation of the area of vegetation cover in this research was related to the conditions
in the study area. As the study area is mountainous with unpredictable weather, the major contribution to
NDVI uncertainty comes from topographic and atmospheric factors (Borgogno-Mondino et al. 2016).
Additionally, the thresholding of NDVI > 0.2 and considering that values above are representative for
vegetation, and the assumption that all the area of a pixel with NDVI > 0.2 is treated as the area covered
with vegetation is a very crude approach.

2.2.2. Land Surface Temperature (LST) data
In the study, the time-series of the LSTDay-8Day-1km from MOD11A2 MODIS product with a spatial
resolution of 1 km and temporal resolution of 8 days data was used. The data from 2000 to 2021 (22
years, 1056 images in total) were downloaded using the Google Earth Engine (GEE) platform and then
averaged to yearly values using:

NDV I =
Rnir − Rred

Rnir + Rred

YearlyNDVI =
∑23

i=1NDVIi

23
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Yearly LST= ,(3)

2.2.3. Precipitation data
The precipitation was derived from the Global Precipitation Measurement (GPM) product. It is an
international satellite mission to provide next-generation observations of precipitation and snow
worldwide every three hours (Huffman et al. 2015). The GPM data were obtained using the Google Earth
Engine (GEE) platform and then averaged to yearly values.

2.2.4. Soil moisture data
The purpose of the Global Land Data Assimilation System (GLDAS) was to employ a source of data for
the assessment of the environmental and food security in developing countries, such as Afghanistan,
that do not have access to terrestrial data (McNally et al. 2017). The overall goal of the GLDAS model
was to drive multiple offline LSMs and integrate large amounts of observation-based data, to be
implemented globally with high resolution. GLDAS offers a product with a spatial resolution of 0.25° and
1° and a temporal resolution of 3 hourly. The data is available from January 1948 up to the present (Bi et
al. 2016). In this study, the Global Land Data Assimilation System (GLDAS) data was used to obtain
information on the soil moisture from a depth of 0–10 cm. To match the same spatial resolution as for
the other data, the bicubic method has been used to re-sample the soil moisture data to a 1km grid. Such
resampling was needed to integrate soil moisture data with other data into the Microwave Integrated
Drought Index (MIDI) (they had to have the same spatial resolution). The GLDAS dataset was accessed
using the GEE.

2.3. Methods

2.3.1. Vegetation Condition Index (VCI)
Since 2014, Kenya’s National Drought Management Authority (NDMA) uses the vegetation condition
index (VCI) as the basis for providing disaster contingency funds to counties in drought conditions
(Mansourmoghaddam et al. 2022c). VCI is a normalized pixel-based NDVI to separate long-term
ecosystem changes from short-term climate-related NDVI fluctuations and to reflect relative changes in
vegetation conditions from very poor to optimal (Liu and Kogan 1996). VCI compares the current time
vegetation with the minimum long-term NDVI and shows how close the current time step is to the long-
term minimum NDVI, taking into account the difference between the maximum (indicating the best
conditions of vegetative growth) and minimum values (indicating the worst conditions of vegetative
growth), which reflect somehow the conditions of the local vegetation (Karnieli et al. 2006). The range of
VCI is between 0 and 1, with smaller VCI values indicating worse vegetation growth conditions and, at the
same time, higher degrees of drought. Based on the literature regarding aridity classification standards,
VCI lower than 0.5 indicates drought conditions (Sha et al. 2013). VCI is defined as:

∑46
i=1LSTi

46
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4

where 'min' and 'max' are multiyear maximum and minimum, respectively, and 'i' denotes the current time
step.

2.3.2. Temperature Condition Index (TCI)
The Temperature Condition Index (TCI) is one of the indicators of drought, which assumes that the
occurrence of drought phenomenon reduces soil moisture and creates thermal stress on the surface of
the earth, which results in the monthly LST in the year of drought greater than for the same month in
normal years (Du et al. 2013). It is calculated as:

5

where 'min' and 'max' are multiyear maximum and minimum, respectively, and 'i' denotes the current time
step.

2.3.3. Precipitation Condition Index (PCI)
Precipitation Condition Index (PCI) was used to evaluate the variation of precipitation and drought
conditions from GPM DATA (Wang et al. 2019). Many previous studies used PCI for monitoring drought
instead of Standard Precipitation Index (SPI) and Standardised Precipitation Evapotranspiration Index
(SPEI) (Baig et al. 2020; Han et al. 2020; Wang et al. 2019), and indicate that it is very reliable index. It is
defined as:

6

where 'min' and 'max' are multiyear maximum and minimum, respectively, and 'i' denotes the current time
step.

2.3.4. Soil Moisture Condition Index (SMCI)
Soil moisture data (GLDAS) was used to drive the soil moisture condition index (SMCI) as:

VCI =
NDVIi − NDVImin

NDVImax − NDVImin

TCI =
LSTi − LSTmin

LSTmax − LSTmin

PCI =
Pi − Pmin

Pmax − Pmin
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7

where 'min' and 'max' are multiyear maximum and minimum, respectively, and 'i' denotes the current time
step.

2.3.5. Microwave Integrated Drought Index (MIDI)
The MIDI is a reliable index for monitoring drought, which integrates the precipitation condition index
(PCI), soil moisture condition index (SMCI), and temperature condition index (TCI) (Zhang et al. 2019a).
These indices are linearly scaled between 0 and 1 using the absolute maximum and minimum values for
the same month based on microwave-derived precipitation, soil moisture, and land surface temperature
(LST), respectively. Microwave Integrated Drought Index (MIDI) integrates the PCI, TCI, and SMCI indices
with flexible weights α, β, and γ (Wei et al. 2021):

8

where α + β + γ = 1. In this study, based on the literature recommendations, in which the best correlation
with the short-term Standard Precipitation Index (SPI) was obtained (Zhang et al. 2019a), weights α = 0.5,
β = 0.3, and γ = 0.2 were used. The range of MIDI values is between 0 and 1, where the value between 0 to
0.1 indicates extreme drought conditions, the value in the range from 0.11 to 0.2 indicates severe drought
conditions, from 0.21 to 0.3 - moderate drought conditions, from 0.31 to 0.4 - low drought conditions and
from 0.41 to 1.0 indicates that area under consideration is not experiencing drought.

2.3.6. Z-score calculation
Z-score, also known as the standardized anomaly, informs how large the deviations of the quantity under
consideration are. The Z-score is calculated using the formula (Zhao et al. 2019):

9
,

where i represents the assessed period and j stands for the time scale, Xij is an analyzed parameter in a
given year, U represents the mean value for the analyzed statistical period, whereas σij indicates the
standard deviation. Positive values of the standardized anomaly indicate that the values under
consideration are larger than the mean, the negative values of the standardized anomaly indicate that the

SMCI =
SMi − SMmin

SMmax − SMmin

MIDI = αPCI + βSMCI + γTCI

Zij =
Xij − U

σij
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values are smaller than the mean, and the values >|2| indicate that the result is abnormal (Wu and
Onipchenko 2007).

2.3.6. Correlations calculation
The correlation coefficients were calculated using Pearson correlation. It measures the strength of the
linear relationship between two (dependent and independent) variables (Zhou et al. 2016). It has a value
between − 1 to 1, with − 1 meaning a total negative linear correlation, 0 meaning that two quantities are
not correlated, and + 1 meaning a total positive correlation. The Pearson correlation is the first formal
measure of correlation and it is still one of the most widely used measure of relationships between
variables (Lee Rodgers and Nicewander 1988):

10
,

where X̅ denotes the mean of x, ȳ denotes the mean of y.

Spatial correlation coefficients were calculated between the average annual VCI (dependent variable) and
the annual accumulative PCI, yearly average TCI, yearly average SMCI and yearly average MIDI
(independent variables) using Pearson correlation method (Zhou et al. 2016). The significance of the
correlation coefficients was judged at the confidence of 95% level.

3. Results

3.1. Analysis of VC variations
Figure 4 shows the average intra-year vegetation coverage of the eastern basins in Afghanistan
throughout the study period. The VC had a slightly decreasing trend from the first of January (~ 12% of
study area covered in vegetation, 19,662 km2) until the 2 February (~ 11% of study area covered in
vegetation, 18,063 km2). From 2 February to 25 March vegetation coverage increased from ~ 2–46% of
the study area (75,635 km2). Then, from 25 March, it decreased from 46–13% of the study area on 19
December (about 20679 km2). The vegetation cover increase was very high from 25 March to 26 June,
same as the decrease from 26 June to 17 November, whereas between 17 November and 19 December, it
was relatively slow. From the above results, we can conclude that the peak of VC in the eastern basins of
Afghanistan is observed in May and June.

Figure 5 presents the relationship between annual vegetation coverage and the annual mean of the area
affected by drought conditions for the eastern basins of Afghanistan during the studied period (2000–

Rxy =
∑ (xi − X ̅)∑ (yi − ȳ)

√∑ (xi − X ̅)2√∑ (yi − ȳ)2
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2021). The annual mean of the area affected by drought conditions was calculated using the percentage
range value of the VCI index. If the value was between 0 and 50% it indicated that the area (pixel) under
consideration had bad vegetation growth conditions and was affected by drought conditions (DAV),
whereas values from 50.1 to 100% indicated good vegetation growth conditions, and that the area was
not affected by drought conditions (NDAV). It is worth mentioning here that DAV can take larger values
than VC because for the calculation of the area the values of NDVI < 0.2 (barren land, rocks, buildup
areas) are also taken into account. The maximum VC was observed for 2005, 2010, 2013, 2016 and 2020
(70%, 71%, 71%, 72% and 72% of the study area, with 113,894, 116,570, 116,718, 117,821 and 118,389
km2, respectively), while for 2000, 2001, and 2008 the minimum VC was recorded (56, 56, and 55% of the
study area, with 91,747, 91,847, and 90,576 km2, respectively). The maximum DAV was observed in 2000
and 2001 (87 and 89% of the study area, 142,638 and 146,195 km2, respectively), whereas the minimum
DAV was recorded in 2010, 2012, and 2020 (81, 82, and 82% of the study area, with 133,221, 134,110, and
134016 km2, respectively). The relationship between VC and DAV assessed with the use of the linear
regression model was significant at the 95% confidence level (R = 0.78, p-value < 0.05).

Figure 6 shows the maps of vegetation coverage in the eastern basins of Afghanistan Afghanistan for
the years with the lowest (2000 and 2008) and the highest (2016 and 2020) vegetation coverage. Better
vegetated areas were observed in the northern and northeastern areas of ADB and the eastern and
southeastern areas of the KRB, whereas in the eastern, southeastern, and southwestern areas of the ADB,
and the western and southwestern areas of the KRB vegetation occupied a much smaller area.

The areas with changes in vegetation are shown in red color (compared to the year with the highest
vegetation during the studied period, which was 2020). It results from Fig. 2 that they are mostly seen in
agricultural lands, what is probably connected with human activities.

3.2. Annual variations of MIDI
In Fig. 7 the maps of the spatial variations of MIDI in the eastern basins of Afghanistan are presented
separately for each year from the studied period (2000–2021), whereas in Fig. 8 the same information is
aggregated into a column plot for better comparison of temporal changes. In 2000, which can be
recognized as the year affected by extreme and severe drought to the highest degree among the years
analyzed, most of the studied area (32%, 51,968 km2) was affected by severe drought conditions. Severe
drought affected most of the southwestern and western areas of the KRB, and the northwestern and
western areas of the ADB in the Kunduz sub-basin, while the extreme drought conditions were affecting
some parts of the KRB in the Gomal sub-basin only (~ 1% of the study area, 1218 km2). For most of the
central and northeastern areas of these two basins (20% of the study area, 34,121 km2), no drought
conditions were observed. In 2001, most of the southwest and west areas of KBR, and northwest of ADB
were affected by moderate drought (33% of the study area, 54,596 km2). In 2002, areas without drought,
mild drought, and moderate drought almost have the same size (27, 29, and 29% of the studied area,
44,778, 48,098, and 47,449 km2, respectively), and severe drought had affected very few areas of the
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southwest KRB (6% of the study area, 9829 km2). In 2003, most of the central areas had no drought
conditions (39% of the study area, 63,928 km2), however, some areas in the southwest of KRB and the
northeast of the ADB had been affected by moderate drought (26% of the study area, 42,272 km2).

In 2004, most of the northern, northeastern, and central areas of the basins experienced no droughts
conditions (35% of the study area, 56,889 km2), in turn, the southwest areas of the KRB had been affected
by severe drought (15% of the study area, 24,850 km2). 2009 was one of the years least affected by the
effects of extreme, severe, and moderate drought conditions from the studied period, and also had the
highest area that hadn’t experienced drought (55% of the study area, 90,785 km2). Only some areas in the
northeast and northwest of the ADB and the southwest of the KRB had been affected by mild, moderate,
and severe drought (32, 7, and 2% of the study area, 52,499, 11,948, and 2474 km2, respectively). In 2011,
most of the central northeast, and southeast areas of the basin were under mild drought conditions (39%
of the study area, 63,939 km2), and the northwest areas of the ADB and the southwest areas of the KRB
were under moderate drought (39% of the study area, 64,043 km2). In 2016, most of the northwestern and
southwestern areas of the study area and some southern areas of the ADB were affected by moderate
drought (35% of the study area, 57,937 km2), and most of the central and southwestern areas of the
study area hadn’t experienced drought (25% of the study area, 42,253 km2). 2019 and 2020 were the
second and the third year of the studied period with the highest area that hadn’t experienced drought. In
2019, 51% of the study area (83,682 km2) was under no drought conditions, except for some areas in the
southwest of the KRB and the east of the ADB, which were affected by mild and moderate drought (12%
and 40% of the study area, 20,650 and 65,654 km2, respectively). In 2020 only some areas in the
southwest of the KRB and the south of the ADB were affected by mild and moderate drought (30% and
17% of the study area, 48,654 and 27,409 km2, respectively), while 48% of the study area (79,342 km2)
was without drought conditions. From the temporal changes of meteorological drought in the eastern
Basin of Afghanistan during the study period shown in Fig. 8, it results that the areas affected by extreme,
severe, and moderate droughts had a downward trend, whereas the trends for the areas affected by mild
drought, and with no drought conditions were upwards.

According to Fig. 7, severe meteorological drought has occurred in the northeastern, northwestern, and
south parts of the ADB, and in the southwestern and southern areas of the KRB, almost in all of the
studied years. Conversely, according to Fig. 6, these areas were either without vegetation cover or are
covered by the vegetation to a small extent in 2000, 2008, 2016, and 2020.

3.3. Correlation of VC with other variables
Figure 9 shows the annual anomalies of VC, precipitation, soil moisture, LST, and MIDI for the eastern
basins of Afghanistan during 2000–2021. 2000, 2001, 2016, 2017, 2018, and 2021 were the years with
the highest LST (22.3, 18.6, 18.8, 18, 18, and 18.4℃ on average, respectively) during the study period. In
turn, 2012, 2019, and 2020 had the lowest LSTs (15.2, 16.2, 16.6℃, respectively). 2009, 2012, 2013, 2014,
and 215 had the highest precipitation (525, 569, 574, 590, and 675 mm, respectively) during the study
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period, whereas 2000, 2001, 2017, and 2021 had the lowest precipitation (211, 217, 330 and 269 mm,
respectively). For 2005, 2009, 2012, 2015, and 2019 the highest soil moisture was recorded (23, 22, 24,
and 23.4 m3m-3, respectively) during the study period, and conversely, for 2001, 2002, 2008, and 2021 the
lowest soil moisture was observed (17, 18, 19.4 and 18.6 m3m-3, respectively). 2000, 2001, 2004 and
2008 had the lowest vegetation coverage (91,747, 91,847, 98,750, and 90,576 km2, respectively), while
2005, 2010, 2013, 2016 and 2020 were the greenest years with the highest vegetation coverage (113,894,
116,570, 116,718, and 118840 km2, respectively). Meteorological drought conditions calculated with the
use of MIDI indicated that in 2000, 2001, 2010, 2011, and 2021 the most area had been affected by
meteorological drought (133,049, 133,554, 145,906, 146,870, and 135,398 km2, respectively). In turn, in
2005, 2009, 2019 and 2020 the smallest area was affected by drought (91,950, 76,475, 83,511, and
87,939 km2, respectively). In 2005, precipitation was close to the normal value (precipitation Z-score was
close to 0), LST and MIDI were below normal value, but the soil moisture and vegetation cover were
above the normal value. Almost the same can be observed for 2020, in which the precipitation, MIDI, and
LST were below the normal value, but the soil moisture and vegetation coverage were above the normal
value. It strongly suggests that soil moisture was one of the key parameters controlling the LST and had
the highest impact on the variations in the vegetation coverage. The decrease in the annual mean LST for
the eastern basins of Afghanistan in the studied period was − 0.06℃, while an increase in the annual
mean precipitation was 6.9 mm yearly. Annual mean soil moisture also had an increasing trend, whereas
the area with meteorological drought had a decreasing trend during the study period.

Figure 10 and Table 3 show the relationship between the annual mean of the vegetation cover and
assessed meteorological parameters, such as precipitation, soil moisture, drought-affected area
calculated on the base of MIDI (MIDI area), and LST for the studied period. A positive relationship was
observed for VC and precipitation, and VC and soil moisture, whereas a negative relationship was seen
for VC and LST, and VC and MIDI area. It was found that the relationships between VC and precipitation,
VC and soil moisture, and VC and LST were significant (R = 0.64, p = 0.008; R = 0.73, p = 0.0004; and R = 
0.57, p = 0.04, respectively), whereas the relationship between VC and MIDI area was not significant (R = 
0.36, p = 0.126) at the 95% confidence level.
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Table 3
The correlation (R) and determination (R2)

coefficients and p-value for relationships between
annual vegetation coverage and precipitation, soil
moisture, LST, and MIDI for the eastern basins of

Afghanistan during 2000–2021 calculated using the
linear regression method.

  R R2 p-value

Vegetation coverage –

Precipitation

0.64* 0.41 0.008

Vegetation coverage –

Soil moisture

0.73* 0.53 0.0004

Vegetation coverage –

LST

0.57* 0.33 0.04

Vegetation coverage –

MIDI area

0.36 0.13 0.126

* denotes that the correlation was significant (p-value = 0.05).

 
Table 4

The yearly multiple regression relationships between vegetation coverage, precipitation, soil moisture
(SM), and LST for the eastern basins of Afghanistan during 2000–2021.

Model of
vegetation
coverage

R

(Regression

coefficient)

R2

(Determination

coefficient)

Multiple regression equations

yearly 0.74 0.45 VCyearly = 5.17–0.00029∙Precipitationyearly +
0.352∙SMyearly – 0.137∙LSTyearly +
0.066∙MIDIyearly

For the variations of VC, the multiple regression equations taking into account the relationships between
VC, precipitation, soil moisture, LST, and MIDI area for the eastern basins of Afghanistan during 2000–
2021 were calculated for the yearly values (Table 4). These equations allow estimating the projected
value of VC. The obtained multiple regression and determination coefficients indicate that precipitation,
soil moisture, and LST explained about 45% of the yearly VC variations.

3.4. Spatial variability of the analyzed variables in the period
2000–2021
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In Fig. 11 the spatial variations in the mean precipitation, LST, soil moisture, vegetation cover, and
meteorological drought index for the period of 2000–2021 are presented. The highest precipitation
occurred in the flat areas of north, northeast, south, and southeast of the KRB area and the north, south,
and central areas of the ADB, The smallest amounts of precipitation were observed for the areas with
high altitudes. Generally, the yearly precipitation sums in these basins increased during the study period.
In the southern, southeastern, and southwestern areas of the KRB and the western, northwestern, and
southwestern areas of the ADB, LST was high. Generally, the LST decreased in the study area during the
study period. LST had an inverse relationship with the orography (Table 5), as, for example, it could be
observed for the part of Wakhan district of Badakhshan province, which has high elevation and low LST.
Soil moisture depended mostly on the amount of rainfall in the area.

 
Table 5

The correlation (R) and determination (R2)
coefficients and p-value for relationships between

elevation and PCI, SMCI, TCI, and MIDI for the
eastern basins of Afghanistan calculated using

the linear regression method.

  R R2 p-value

Elevation – PCI 0.036* 0.001 0.04

Elevation – TCI 0.9* 0.8 0

Elevation – SMCI 0.019* 0.03 0

Elevation – MIDI 0.38* 0.14 0

Elevation – VCI 0.6* 0.3 0

The correlation coefficients (R) between the mean VCI, and the mean PCI, TCI, SMCI, and MIDI were
calculated to determine the relationship between vegetation conditions and climatic variables. The
correlations between VCI and precipitation, temperature, soil moisture, and drought, presented in Fig. 12,
were dependent on the orography. In the majority of flat areas, the correlation between VCI and PCI index
was positive, whereas in mountainous areas negative correlations were observed. The correlation
between the TCI index and VCI was negative in mountainous areas and positive in some flat areas. The
correlation between VCI and SMCI index was positive in most flat and low-altitude areas and negative in
some mountainous areas. The correlation between the VCI index and MIDI in most of the areas with
vegetation was negative, whereas for the areas with a lack of vegetation it was positive.

4. Discussion
While Afghanistan’s natural ecosystems have already been destroyed during the country’s many years of
civil wars, unsustainable management, and over-exploitation, literature reports indicate that Afghanistan
will face a wide range of new and increased climate risks (Kimura 2020). The worst adverse effects of
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climate change on Afghanistan are related to drought, including these leading to desertification and land
degradation. Severe drought conditions occuring for prolonged periods can lead to aridification in
drought-affected regions (Ma and Fu 2007). Drought is estimated to be the norm by 2030, not a periodic
event (Kimura 2020). Currently, Afghanistan is facing significant drought issues that have a direct impact
on livelihoods and the economy. The drought that occurred in 2011 has pushed millions of people into
food insecurity and poverty (Ranghieri et al. 2017). Although few studies have determined the impact of
drought events, there is still a need to assess its impact on various aspects, like vegetation coverage
dynamic, especially for longer periods.

In this study, the relationship between vegetation coverage dynamic and meteorological parameters
(precipitation, soil moisture, and LST) and meteorological drought conditions was assessed for the
eastern basins of Afghanistan for the period 2000–2021. Despite the climate changes that are occurring
in Afghanistan (Rousta et al. 2020a), the average annual vegetation coverage increased in the eastern
basins of Afghanistan in the study period. A significant increase in VC from 2000 to 2003 was observed,
after that, from 2005 to 2008, a slight decrease happened. 2008 had the minimum VC (55% of the study
area), and since 2009, VC had increased (except for 2011) since 2016. Although a decreasing trend was
observed from 2016 until 2018, after that, from 2018 to the end of the assessed period, there was a slight
upward trend in the vegetation coverage. A strong and significant correlation between the annual mean of
VC and the area affected by drought conditions expressed with the use of VCI (the values of the VCI = < 
50%) was found (R = 0.78, p = 0.000014). Obtained results were in line with other research made for the
whole Afghanistan territory (Rousta et al. 2020a), in which it was found that the vegetation coverage was
increasing in the period 2001–2018. The authors found that the correlation between NDVI and VCI was
high, whereas the correlation between NDVI and LST was low. Additionally, it was stated that in 2000 and
2008 the lowest vegetation coverage was observed, while in 2010 and 2016 the highest vegetation
coverage was recorded.

In general, the area with meteorological drought conditions (MIDI = < 0.4) had a decreasing trend in the
study period. The area decreased from 2000 to 2005, and then it increased from 2005 to 2007. Similarly,
from 2010 to 2020 a downward trend was observed for the area with meteorological drought conditions.
The areas under extreme, severe, and moderate meteorological drought were decreasing, while the area
with mild drought conditions was increasing during the study period. Most areas were affected by
moderate and mild droughts. These results were in line with the other research made for the Kabul river
basin (Baig et al. 2020), in which it was stated that 2000 and 2004 were the years with the worst
meteorological drought conditions from the period from 2000 to 2018 and that the trend of
meteorological drought changes in KRB was downward. During the studied period most of the northwest,
southwest and some eastern areas of the eastern basins in Afghanistan had been influenced by drought.
The highest value of the area under meteorological drought was observed in 2000, 2001, 2007, 2010,
2011, and 2021 (81, 82, 85, 90, and 83% of the study area affected by drought, respectively).

Observed variations in annual VC were related to the changes in meteorological parameters. For example,
in 2000 and 2021 annual VC was below normal value, simultaneously with annual precipitation, and soil
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moisture, whereas LST was above the normal value. In 2015 and 2019, annual VC was above normal
value, simultaneously with annual precipitation, and soil moisture, whereas annual LST was below the
normal value. Obtained results indicated that the correlation between VC and precipitation was positive
and significant (R = 0.64, p = 0.008), and the total annual precipitation had an upward trend during the
study period (Yu et al. 2020). The correlation between VC and soil moisture was positive and significant
(R = 0.73, p = 0.0004), and the annual mean soil moisture had an upward trend during the study period
(Pei et al. 2018). The correlation between VC and LST was also positive and significant (R = 0.57, p = 
0.04), and the annual mean LST was decreasing during the study period. The correlation between VC and
metrological drought was not significant (R = 0.36, p = 0.126) at a 95% confidence level. Obtained results
are somewhat in line with the other research made for Kabul River Basin in Afghanistan (Rousta et al.
2022b), in which the vegetation coverage dynamics and its relation to atmospheric patterns were
investigated (Quan et al. 2022). It was found that the vegetation dynamics in KRB was impacted by both
precipitation and LST, however, the magnitude of this impact depended on the season. During the winter
LST had a greater impact on VC variation than precipitation, and conversely, in summer, precipitation
impacted vegetation to a higher degree than LST. In another study, the vegetation dynamics and its
relationship with climatological factors for Caspian Sea watersheds in Iran was analyzed (Rousta et al.
2022a). It was found that the correlations of vegetation coverage with ET and LST in winter were positive
and significant (R = 0.46 and 0.55, p-value = 0.05, respectively), while the correlation with the precipitation
was not significant. In the spring, the correlation between VC and precipitation was positive and
significant (R = 0.55, p-value = 0.05), but the impact of LST on the vegetation coverage was negligible
when the precipitation was abnormally high. In the summer, the correlation between VC and LST was
negative and significant (R = − 0.45, p-value = 0.05).

5. Conclusions
In the present study, the impact of meteorological parameters and meteorological drought on the
vegetation coverage in the eastern basins of Afghanistan has been investigated using remote sensing
data. It was found that soil moisture had a high impact on VC, and the LST impacted VC to the slightest
extent from the studied meteorological parameters. The relationship between VC and the area under
meteorological drought was insignificant. The correlations between VC and precipitation, soil moisture,
and LST were positive and significant (R = 0.64, p = 0.008, R = 0.73, p = 0.0004, R = 0.57, p = 0.04,
respectively). It was revealed that precipitation, soil moisture, LST, and area under meteorological drought
conditions explained about 45% of the yearly VC variation in the eastern basins of Afghanistan.

The results of this research indicated that the changes in the vegetation coverage in the eastern basins of
Afghanistan during 2000–2021 had an upward trend. VC increased slightly from 2000 to 2005 and
decreased slightly from 2005 to 2008, with 2008 being the year with the least vegetation during the
studied period. From 2008 to 2021, VC generally increased, however, a slight downward trend was
observed between 2016 and 2018. Annual mean LST had a downward trend, whereas total annual
precipitation had an upward trend during the study period. In most parts of Afghanistan, the vegetation
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depends on the winter rain, however, in the south winter rains are often irregular. Rainfall increases to the
north and east resulting in better vegetation conditions in these parts. The eastern parts additionally
receive some monsoon rains in summer (Breckle 2007). Annual mean soil moisture had an upward trend,
and the areas under extreme, severe, and moderate meteorological drought conditions were declining
during the studied period. In turn, the areas with mild meteorological drought conditions had an upward
trend in the study period.

Declarations
Author Contributions: A.F.N. and I.R. proposed the topic. A.F.N., I.R., G.M., M.D., and H.O. commanded the
data processing and analysis. A.F.N., I.R., G.M., M.D., H.O., A.S., and J.K. wrote the manuscript. J.K., A.S.,
P.T., and P.B. enhanced the research design, helped to analyze and interpret the results, and revised the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Vedurfelagid, Rannis and Rannsoknastofa i vedurfraedi.

Acknowledgments: Iman Rousta is deeply grateful to his supervisor (Haraldur Olafsson, Professor of
Atmospheric Sciences, Institute for Atmospheric Sciences-Weather and Climate, and Department of
Physics, University of Iceland, and Icelandic Meteorological Office (IMO)), for his great support, kind
guidance, and encouragement.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of
the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the
decision to publish the results.

References
1. Aich V et al. (2017) Climate change in Afghanistan deduced from reanalysis and coordinated

regional climate downscaling experiment (CORDEX)—South Asia simulations Climate 5:38

2. Akhtar F, Awan UK, Tischbein B, Liaqat UW (2018) Assessment of irrigation performance in large river
basins under data scarce environment—A case of Kabul river basin, Afghanistan Remote Sensing
10:972

3. Akhundzadah NA, Soltani S, Aich V (2020) Impacts of climate change on the water resources of the
Kunduz River Basin, Afghanistan Climate 8:102

4. Ali S, Tong D, Xu ZT, Henchiri M, Wilson K, Siqi S, Zhang J (2019) Characterization of drought
monitoring events through MODIS-and TRMM-based DSI and TVDI over South Asia during 2001–



Page 22/37

2017 Environmental Science and Pollution Research 26:33568-33581

5. Baig MHA, Abid M, Khan MR, Jiao W, Amin M, Adnan S (2020) Assessing meteorological and
agricultural drought in Chitral Kabul river basin using multiple drought indices Remote Sensing
12:1417

6. Bi H, Ma J, Zheng W, Zeng J (2016) Comparison of soil moisture in GLDAS model simulations and in
situ observations over the Tibetan Plateau Journal of Geophysical Research: Atmospheres 121:2658-
2678

7. Borgogno-Mondino E, Lessio A, Gomarasca MA (2016) A fast operative method for NDVI uncertainty
estimation and its role in vegetation analysis European Journal of Remote Sensing 49:137-156

8. Breckle S-W (2007) Flora and vegetation of Afghanistan Basic and Applied Dryland Research 1:155-
194

9. Cesaro J-D, Jolivot A, Taugourdeau S (2019) Mapping Amu Darya's ecosystem riverbanks: land cover,
ecology and LABR management 

10. Chen Z, Liu Z, Yin L, Zheng W (2022) Statistical analysis of regional air temperature characteristics
before and after dam construction Urban Climate 41:101085

11. Du L, Tian Q, Yu T, Meng Q, Jancso T, Udvardy P, Huang Y (2013) A comprehensive drought
monitoring method integrating MODIS and TRMM data International Journal of Applied Earth
Observation and Geoinformation 23:245-253

12. Gao C, Hao M, Chen J, Gu C (2021) Simulation and design of joint distribution of rainfall and tide
level in Wuchengxiyu Region, China Urban Climate 40:101005

13. Gao Y, Huang J, Li S, Li S (2012) Spatial pattern of non-stationarity and scale-dependent
relationships between NDVI and climatic factors—A case study in Qinghai-Tibet Plateau, China
Ecological Indicators 20:170-176

14. Gascon M, Cirach M, Martínez D, Dadvand P, Valentín A, Plasència A, Nieuwenhuijsen MJ (2016)
Normalized difference vegetation index (NDVI) as a marker of surrounding greenness in
epidemiological studies: The case of Barcelona city Urban Forestry & Urban Greening 19:88-94

15. Han Y et al. (2020) Monitoring droughts in the Greater Changbai Mountains using multiple remote
sensing-based drought indices Remote Sensing 12:530

16. Hu S, Wu H, Liang X, Xiao C, Zhao Q, Cao Y, Han X (2022) A preliminary study on the eco-
environmental geological issue of in-situ oil shale mining by a physical model Chemosphere
287:131987

17. Huang S, Tang L, Hupy JP, Wang Y, Shao G (2021a) A commentary review on the use of normalized
difference vegetation index (NDVI) in the era of popular remote sensing Journal of Forestry Research
32:1-6

18. Huang W, Duan W, Chen Y (2021b) Rapidly declining surface and terrestrial water resources in
Central Asia driven by socio-economic and climatic changes Science of The Total Environment
784:147193



Page 23/37

19. Huffman GJ, Bolvin DT, Braithwaite D, Hsu K, Joyce R, Xie P, Yoo S-H (2015) NASA global
precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG) Algorithm
Theoretical Basis Document (ATBD) Version 4

20. Jawadi HA, Malistani HA, Mohamdi H Climate Change and Variability Effects on Water supplies,
Hazards, Land degradation and Migration in Afghanistan (with examples from Central Highlands) 

21. Ji L, Peters AJ (2005) Lag and seasonality considerations in evaluating AVHRR NDVI response to
precipitation Photogrammetric Engineering & Remote Sensing 71:1053-1061

22. Karnieli A, Bayasgalan M, Bayarjargal Y, Agam N, Khudulmur S, Tucker C (2006) Comments on the
use of the vegetation health index over Mongolia International Journal of Remote Sensing 27:2017-
2024

23. Kimura R (2020) Global detection of aridification or increasing wetness in arid regions from 2001 to
2013 Natural Hazards 103:2261-2276

24. Klemm W, Shobair S (2010) The Afghan part of Amu Darya basin. Impact of irrigation in Northern
Afghanistan on water use in the Amu Darya basin Food and Agriculture Organization

25. Lee Rodgers J, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient The
American Statistician 42:59-66

26. Leprieur C, Kerr Y, Mastorchio S, Meunier J (2000) Monitoring vegetation cover across semi-arid
regions: comparison of remote observations from various scales International Journal of Remote
Sensing 21:281-300

27. Li J, Charles LS, Yang Z, Du G, Fu S (2022a) Differential Mechanisms Drive Species Loss Under
Artificial Shade and Fertilization in the Alpine Meadow of the Tibetan Plateau Frontiers in plant
science 13:832473-832473

28. Li W et al. (2021) Fine root biomass and morphology in a temperate forest are influenced more by
the nitrogen treatment approach than the rate Ecological Indicators 130:108031

29. Li X, Wang Y, Hu Y, Zhou C, Zhang H (2022b) Numerical investigation on stratum and surface
deformation in underground phosphorite mining under different mining methods Frontiers in Earth
Science 10

30. Li Z, Kafatos M (2000) Interannual variability of vegetation in the United States and its relation to El
Nino/Southern Oscillation Remote sensing of environment 71:239-247

31. Liu S, Liu Y, Wang C, Dang X (2022) The Distribution Characteristics and Human Health Risks of
High-Fluorine Groundwater in Coastal Plain: A Case Study in Southern Laizhou Bay, China Frontiers
in Environmental Science:568

32. Liu W, Kogan F (1996) Monitoring regional drought using the vegetation condition index International
Journal of Remote Sensing 17:2761-2782

33. Liu Y, Zhang K, Li Z, Liu Z, Wang J, Huang P (2020) A hybrid runoff generation modelling framework
based on spatial combination of three runoff generation schemes for semi-humid and semi-arid
watersheds Journal of Hydrology 590:125440



Page 24/37

34. Loveland TR, Zhu Z, Ohlen DO, Brown JF, Reed BC, Yang L (1999) An analysis of the IGBP global
land-cover characterization process Photogrammetric engineering and remote sensing 65:1021-1032

35. Ma Z, Fu C (2007) Global aridification in the second half of the 20th century and its relationship to
large-scale climate background Science in China Series D: Earth Sciences 50:776-788

36. Maharjan SB, Shrestha F, Azizi F, Joya E, Bajracharya B, Bromand MT, Rahimi MM (2021) Monitoring
of Glaciers and Glacial Lakes in Afghanistan. In:  Earth Observation Science and Applications for
Risk Reduction and Enhanced Resilience in Hindu Kush Himalaya Region. Springer, Cham, pp 211-
230

37. Mahmood SAR, Rousta I, Mazidi A (2022) Investigating the Sustainability of Vegetation Change
Trends Using Remote Sensing (Case Study: Northern River Basin of Afghanistan) Geography and
Environmental Sustainability 12:17-35

38. Mansourmoghaddam M, Ghafarian Malamiri HR, Arabi Aliabad F, Fallah Tafti M, Haghani M, Shojaei
S (2022a) The Separation of the Unpaved Roads and Prioritization of Paving These Roads Using
UAV Images Air, Soil and Water Research 15:11786221221086285

39. Mansourmoghaddam M, Ghafarian Malamiri HR, Rousta I, Olafsson H, Zhang H (2022b)
Assessment of Palm Jumeirah Island’s Construction Effects on the Surrounding Water Quality and
Surface Temperatures during 2001–2020 Water 14:634

40. Mansourmoghaddam M, Naghipur N, Rousta I, Ghaffarian HR (2022c) Temporal and Spatial
Monitoring and Forecasting of Suspended Dust Using Google Earth Engine and Remote Sensing
Data (Case Study: Qazvin Province) Desert Management 10:77-98

41. Mansourmoghaddam M, Rousta I, Zamani M, Mokhtari MH, Karimi Firozjaei M, Alavipanah SK
(2022d) Study and prediction of land surface temperature changes of Yazd city: assessing the
proximity and changes of land cover Journal of RS and GIS for Natural Resources 12:1-5

42. Mansourmoghaddam M, Rousta I, Zamani MS, Mokhtari MH, Karimi Firozjaei M, Alavipanah SK
(2022e) Investigating And Modeling the Effect of The Composition and Arrangement of The
Landscapes of Yazd City on The Land Surface Temperature Using Machine Learning and Landsat-8
and Sentinel-2 Data Iranian Journal of Remote Sensing & GIS

43. McNally A et al. (2017) A land data assimilation system for sub-Saharan Africa food and water
security applications Scientific data 4:1-19

44. Munyasya AN et al. (2022) Integrated on-site & off-site rainwater-harvesting system boosts rainfed
maize production for better adaptation to climate change Agricultural Water Management
269:107672

45. Najmuddin O, Deng X, Bhattacharya R (2018) The dynamics of land use/cover and the statistical
assessment of cropland change drivers in the Kabul River Basin, Afghanistan Sustainability 10:423

46. Najmuddin O, Deng X, Siqi J (2017) Scenario analysis of land use change in Kabul River Basin–a
river basin with rapid socio-economic changes in Afghanistan Physics and Chemistry of the Earth,
Parts a/B/C 101:121-136



Page 25/37

47. Omerkhil N, Chand T, Valente D, Alatalo JM, Pandey R (2020) Climate change vulnerability and
adaptation strategies for smallholder farmers in Yangi Qala District, Takhar, Afghanistan Ecological
Indicators 110:105863

48. Pei F et al. (2018) Monitoring the vegetation activity in China using vegetation health indices
Agricultural and forest meteorology 248:215-227

49. Quan Q, Gao S, Shang Y, Wang B (2021) Assessment of the sustainability of Gymnocypris eckloni
habitat under river damming in the source region of the Yellow River Science of the Total
Environment 778:146312

50. Quan Q, Liang W, Yan D, Lei J (2022) Influences of joint action of natural and social factors on
atmospheric process of hydrological cycle in Inner Mongolia, China Urban Climate 41:101043

51. Ranghieri F, Fallesen DMG, Jongman B, Balog-Way SAB, Mashahid SS, Siercke GA, Simpson AL
(2017) Disaster risk profile: Afghanistan. The World Bank, 

52. Rousta I, Mansourmoghaddam M, Olafsson H, Krzyszczak J, Baranowski P, Zhang H, Tkaczyk P
(2022a) Analysis of the recent trends in vegetation dynamics and its relationship with climatological
factors using remote sensing data for Caspian Sea watersheds in Iran International Agrophysics
36:139-153

53. Rousta I et al. (2022b) Investigation of the Vegetation Coverage Dynamics and its Relation to
Atmospheric Patterns in Kabul River Basin in Afghanistan Pure and Applied Geophysics:1-20

54. Rousta I, Olafsson H, Moniruzzaman M, Zhang H, Liou Y-A, Mushore TD, Gupta A (2020a) Impacts of
drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan
Remote Sensing 12:2433

55. Rousta I, Saberi M-a, Mahmood SA-r, Moghaddam MM, Olafsson H, Krzyszczak J, Baranowski P
(2020b) Climate Change impacts on vegetation and agricultural drought in the basin of Panjshir
River in Afghanistan Climate Change Research 1:77-88

56. Sha S, Guo N, Li Y, Ren Y, Li Y (2013) Comparison of the vegetation condition index with
meteorological drought indices: A case study in henan province Journal of Glaciology and
Geocryology 35:990-998

57. Shroder JF (2014) Natural resources in Afghanistan: geographic and geologic perspectives on
centuries of conflict. Elsevier, 

58. Testa S, Mondino ECB, Pedroli C (2014) Correcting MODIS 16-day composite NDVI time-series with
actual acquisition dates European Journal of Remote Sensing 47:285-305

59. Tian H, Qin Y, Niu Z, Wang L, Ge S (2021a) Summer Maize Mapping by Compositing Time Series
Sentinel-1A Imagery Based on Crop Growth Cycles Journal of the Indian Society of Remote Sensing
49:2863-2874

60. Tian H, Wang Y, Chen T, Zhang L, Qin Y (2021b) Early-Season Mapping of Winter Crops Using
Sentinel-2 Optical Imagery Remote Sensing 13:3822

61. Wang K, Li T, Wei J (2019) Exploring drought conditions in the three river headwaters region from
2002 to 2011 using multiple drought indices Water 11:190



Page 26/37

62. Wang S et al. (2021) Exploring the utility of radar and satellite-sensed precipitation and their dynamic
bias correction for integrated prediction of flood and landslide hazards Journal of Hydrology
603:126964

63. Wei W, Zhang J, Zhou L, Xie B, Zhou J, Li C (2021) Comparative evaluation of drought indices for
monitoring drought based on remote sensing data Environmental Science and Pollution Research
28:20408-20425

64. Wu Y, Onipchenko V (2007) The impact of snow-cover on alpine vegetation type of different aspects
in the west of Sichuan Province Shengtai Xuebao 27:5120-5129

65. Xie W, Li X, Jian W, Yang Y, Liu H, Robledo LF, Nie W (2021a) A novel hybrid method for landslide
susceptibility mapping-based geodetector and machine learning cluster: A case of Xiaojin county,
China ISPRS International Journal of Geo-Information 10:93

66. Xie W, Nie W, Saffari P, Robledo LF, Descote P-Y, Jian W (2021b) Landslide hazard assessment based
on Bayesian optimization–support vector machine in Nanping City, China Natural Hazards 109:931-
948

67. Xu J, Wu Z, Chen H, Shao L, Zhou X, Wang S (2022a) Influence of dry-wet cycles on the strength
behavior of basalt-fiber reinforced loess Engineering Geology 302:106645

68. Xu J, Zhou L, Hu K, Li Y, Zhou X, Wang S (2022b) Influence of wet-dry cycles on uniaxial compression
behavior of fissured loess disturbed by vibratory loads KSCE Journal of Civil Engineering 26:2139-
2152

69. Yang Y et al. (2022) Increasing contribution of microbial residues to soil organic carbon in grassland
restoration chronosequence Soil Biology and Biochemistry 170:108688

70. Yin L, Wang L, Keim BD, Konsoer K, Zheng W (2022a) Wavelet analysis of dam injection and
discharge in three gorges dam and reservoir with precipitation and river discharge Water 14:567

71. Yin L et al. (2022b) Evaluation of empirical atmospheric models using Swarm-C satellite data
Atmosphere 13:294

72. Yu H, Bian Z, Mu S, Yuan J, Chen F (2020) Effects of climate change on land cover change and
vegetation dynamics in Xinjiang, China International Journal of Environmental Research and Public
Health 17:4865

73. Zhang A, Jia G, Wang H (2019a) Improving meteorological drought monitoring capability over
tropical and subtropical water-limited ecosystems: Evaluation and ensemble of the Microwave
Integrated Drought Index Environmental Research Letters 14:044025

74. Zhang K et al. (2019b) The sensitivity of North American terrestrial carbon fluxes to spatial and
temporal variation in soil moisture: An analysis using radar‐derived estimates of root‐zone soil
moisture Journal of Geophysical Research: Biogeosciences 124:3208-3231

75. Zhang K, Shalehy MH, Ezaz GT, Chakraborty A, Mohib KM, Liu L (2022) An integrated flood risk
assessment approach based on coupled hydrological-hydraulic modeling and bottom-up hazard
vulnerability analysis Environmental Modelling & Software 148:105279



Page 27/37

76. Zhang K, Wang S, Bao H, Zhao X (2019c) Characteristics and influencing factors of rainfall-induced
landslide and debris flow hazards in Shaanxi Province, China Natural hazards and earth system
sciences 19:93-105

77. Zhao T et al. (2021) Retrievals of soil moisture and vegetation optical depth using a multi-channel
collaborative algorithm Remote Sensing of Environment 257:112321

78. Zhao T et al. (2020) Soil moisture experiment in the Luan River supporting new satellite mission
opportunities Remote Sensing of Environment 240:111680

79. Zhao W, He J, Wu Y, Xiong D, Wen F, Li A (2019) An analysis of land surface temperature trends in the
central Himalayan region based on MODIS products Remote Sensing 11:900

80. Zhao X, Xia H, Liu B, Jiao W (2022a) Spatiotemporal Comparison of Drought in Shaanxi–Gansu–
Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine Remote Sensing
14:1570

81. Zhao Z-Y et al. (2022b) Environmental risk of multi-year polythene film mulching and its green
solution in arid irrigation region Journal of Hazardous Materials 435:128981

82. Zhongming W, Lees BG, Feng J, Wanning L, Haijing S (2010) Stratified vegetation cover index: A new
way to assess vegetation impact on soil erosion Catena 83:87-93

83. Zhou G, Long S, Xu J, Zhou X, Song B, Deng R, Wang C (2021) Comparison analysis of five
waveform decomposition algorithms for the airborne LiDAR echo signal IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing 14:7869-7880

84. Zhou H, Deng Z, Xia Y, Fu M (2016) A new sampling method in particle filter based on Pearson
correlation coefficient Neurocomputing 216:208-215

85. Zhu B, Zhong Q, Chen Y, Liao S, Li Z, Shi K, Sotelo MA (2022) A Novel Reconstruction Method for
Temperature Distribution Measurement Based on Ultrasonic Tomography IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control

Figures



Page 28/37

Figure 1

The map presenting elevation profile of Kabul River Basin and Amu Darya Basin in Afghanistan.
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Figure 2

Land cover types for Kabul River Basin and Amu Darya Basin of Afghanistan retrieved from MODIS
(MCD12Q1) image from 2016.
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Figure 3

Flowchart of the data processing.
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Figure 4

The average intra-year vegetation coverage of the eastern basins in Afghanistan during 2000-2021.

Figure 5

The average annual vegetation coverage (black bars) and average annual area affected by drought
conditions (red line) of the eastern basins in Afghanistan during 2000-2021.
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Figure 6

The maps of annual means of NDVI for the eastern basins of Afghanistan for the years with the lowest
(2000 and 2008) and the highest (2016 and 2020) vegetation coverage from the studied period (2000-
2021).
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Figure 7

The maps of the spatial variations of meteorological drought expressed by the annual Microwave
Integrated Drought Index in the eastern basins of Afghanistan for each year from the study period (2000-
2021).
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Figure 8

The temporal variations of meteorological drought expressed by the annual Microwave Integrated
Drought Index in the eastern basins of Afghanistan during 2000-2021.

Figure 9
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The annual anomalies of vegetation coverage, precipitation, soil moisture, LST, and MIDI for the eastern
basins of Afghanistan during 2000-2021.

Figure 10

The scatter plots of the time series presenting the relationships between vegetation coverage and
precipitation, soil moisture, LST, and MIDI for the eastern basins of Afghanistan during 2000-2021.
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Figure 11

Spatial distributions of the mean precipitation, temperature, soil moisture, and drought index for the
period from 2000 to 2021.
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Figure 12

Spatial distribution of the correlation coefficients between the yearly mean of VCI and yearly means of
the TCI, PCI, SMCI and MIDI.


