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Abstract

An auxiliary elliptic equation method is presented for constructing exact solitary
and periodic travelling-wave solutions of the K(2,2) equation (defocusing branch).
Some known results in the literature are recovered more efficiently, and some new
exact travelling-wave solutions are obtained. Also, new stationary-wave solutions
are obtained.
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1 Introduction

In the 1990s Rosenau (see [1,2], for example) introduced the KdV-like K (m,n)
equation, namely

ur £ (u™)y + (W)zze =0, m, n>1, (1.1)

where m and n are integers. The (+) case is known as the focusing branch and
the (—) case as the defocusing branch. Rosenau’s motivation was to provide a pro-
totypical model in order to try to understand the effect of full nonlinearity and
nonlinear dispersion in the context of pattern formation. Of particular interest was
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the exploration of patterns of finite extent and weakly singular patterns where a sin-
gularity in the first derivative occurs in a finite (or countable, in the case of periodic
waves) number of points, the dependent variable being continuous. The hallmark
of the focusing branch is the possibility of compactons, namely solitary waves with
compact support (see [1], for example), whereas for the defocusing branch there
is the possibility of a variety of wave types including peaks and cusps (see [2], for
example).

There appears to be some confusion in the literature regarding what is meant by a
peak and a cusp. In this paper we use the terminology given by Lenells [3], namely

that a continuous function v has a peak at { = ¢, if u is smooth locally on either
side of &, and

0 # limue = —limu 400, 1.2
7 e =~ e 7 (1.2)
whereas u has a cusp at £ = &, if u is smooth locally on either side of . and
limus = — lim ue = 4-00. 1.3
g ¢ e (13)

Wave profiles with peaks are called peaked waves or peakons, whereas wave profiles
with cusps are cusped waves or cuspons. Boyd [4] used the alternative terminology
corner waves for peaked waves.

In this paper attention is confined to the K(2,2) equation (defocusing branch),
namely

wy — (u?) g + (U?)gae = 0. (1.4)

In [2], Rosenau used the analogy of a particle moving in a potential field (which
is equivalent to phase-plane analysis) to identify some possible bounded travelling-
wave solution types to (1.4). However, he gave only one explicit exact solution,
namely the expression for a solitary peakon. Wazwaz [5] found explicit expressions
for some unbounded solutions. Xu and Tian [6] investigated bounded travelling-
wave solutions of the equation

wy + (u?)y — (U?)gae = 0. (1.5)

They called this equation the ‘K(2,2) equation with osmosis dispersion’. Actu-
ally, it is just Eq. (1.4) with u — —u. By using the qualitative analysis meth-
ods of dynamical systems and drawing the phase-portrait bifurcation diagram for
the travelling-wave system, they classified possible solution types. In two particu-
lar cases they obtained expressions for exact solutions of (1.5), namely a solitary
peakon and periodic peakons, respectively. (In [6], the latter were referred to as pe-
riodic cusp waves.) Using a similar method, Zhou and Tian [7] found exact smooth
solitary-wave solutions.

In this paper, we employ an auxiliary elliptic equation method to search for further
travelling-wave solutions of the K (2,2) equation (defocusing branch). The solution



procedure is the one that was used to find implicit periodic and solitary travelling-
wave solutions of the Degasperis—Procesi (DP) equation in [8, Section 2]. An impor-
tant feature of the method is that it delivers solutions in which the dependent and
independent variable are given in terms of a parameter. Some solutions obtained in
this way turn out to be multi-valued. Recently, in the context of some other nonlin-
ear wave equations, Stepanyants [9] and Li [10] have described how such solutions
may be interpreted and used to construct composite single-valued solutions.

Zhang and Qiao [11] have investigated the one-parameter families of cuspon and
smooth-hump solitary-wave solutions of the DP equation. We have been able to
show that that these solutions are equivalent to ones obtained by our method in [8].
In this paper we will demonstrate that the corresponding solutions for the K(2,2)
equation (defocusing branch) as obtained by our method can be expressed in an
alternative form that could be obtained by the method in [11].

The rest of this paper is organized as follows. In Section 2, we present solutions of
the appropriate auxiliary elliptic equation. In Section 3, some known results for the
K(2,2) equation (defocusing branch) are recovered and new exact travelling-wave
solutions are obtained. In Section 4 we discuss the interpretation of multi-valued
solutions. This leads to the construction of some composite single-valued solutions.
In Section 5 we show that the inverted-cuspon and smooth-hump solitary-wave
solutions may be expressed in an alternative form similar to the ones for the DP
equation given in [11]. We also show that one member of the family of smooth-
hump solutions may be expressed in explicit form. In Section 6 we obtain stationary
composite solutions. Some conclusions are provided in Section 7.

2 The auxiliary elliptic equation

In this section we present solutions of the relevant auxiliary elliptic equation.

Consider the following elliptic equation

(60¢)* = £f(9), (2.1)

where
f(@) = (¢ — 1) (¢ — b2) (93 — &) (s — 9); (2.2)

for the bounded solutions that we are seeking, ¢1, @2, ¢3 and ¢4 are all real constants
with @1 < ¢ < ¢ < @3 < ¢4.

Following [12] we introduce 7 defined by

e ¢
o= (2.3)



so that (2.1) becomes
o7 = f(9). (2.4)
As shown in [8,13], Eq. (2.4) has two possible forms of solution.

The first solution of Eq. (2.4) is

o= s (wlm) _ $3— P
0= 1 — nsn2(w|m) withn = b3 — 1 (25)
where
w=pn. p= 56— o)(a =) with m— LI g

In (2.5), the notation sn(w|m) represents a Jacobian elliptic function [14]. From
(2.3) and (2.5), we have

¢ = }p[wqx T (62 — 6)(n; wlm), (2.7)

where II(n;w|m) is the elliptic integral of the third kind [14]. The solution to
Eq. (2.1) is given in parametric form by (2.5) and (2.7) with w as the parame-
ter. With respect to w, ¢ in (2.5) is periodic with period 2K (m), where K(m) is
the complete elliptic integral of the first kind [14].

When ¢3 = ¢4, m =1 and so (2.5) and (2.7) become

P2 —1n tanh? w
1 —ntanh®w

1 | wes
€

¢ — 2tanh™' (y/ntanhw)| . (2.8)

The second form of solution of Eq. (2.4) is

¢z — gansn®(wlm) G309
¢ = = nsn2(w]m) with n = rys— (2.9)
where w, p and m are as in (2.6). From (2.9) and (2.3), we have
£= 6—1]3[w¢4 T (3 — ¢a)TL(n; w]m)]. (2.10)

The solution to Eq. (2.1) is given in parametric form by (2.9) and (2.10) with w as
the parameter.

When ¢; = ¢2, m =1 and so (2.9) and (2.10) become

3 — Pun tanh® w

1 — ntanh?w

1 W
€

—= 4 2tanh~!(y/ntanhw)| . (2.11)
p

¢ , &=



3 Exact travelling-wave solutions of the K(2,2) equation (defocusing
branch)

In this section, we seek travelling-wave solutions of Eq. (1.4). It is convenient to
introduce a new dependent variable z defined by
z2= (3.1)
and to assume that z is an implicit or explicit function of &, where
E=x—ut (3.2)

and v(# 0) is the arbitrary constant wave velocity. (Stationary solutions, for which
v = 0, are discussed in Section 6.) Substitution of (3.1) into Eq. (1.4) yields

(22¢)ee = (Z + %) ze, where c¢:= |U—| = 41. (3.3)
v
After two integrations Eq. (3.3) gives
2 1 4 4 3 2
(22¢)" = i(z + 3¢ + Az* + B), (3.4)

where A and B are real constants.

Rosenau [2] identifed some possible types of solution to (3.4) for z by first writing
(3.4) in the form

zg +P(z)=F, (3.5)
where ) ) A
z cz Bz~
Pz)=—(—+— E=—.
(=) (4 3T ) 1

Equation (3.5) is equivalent to (18b) in [2]. Rosenau analysed (3.5) by using the
analogy to a particle of total energy F moving in a potential field P(z), where z is
the displacement of the particle.

Here we adopt a different route. We introduce 7 defined by

dg
— =2 3.6
T2 (3.0
so that (3.4) becomes
7 = f(2), (3.7)
where A
f(z) =2+ gcz?’ + Az* + B. (3.8)



We apply the particle analogy to (3.7) with B regarded as the total energy. (This
has the advantage that the ‘potential” is a quartic and does not have the singularities
which occur in P(z).) In this way we may identify solution types for z regarded as a
function of 1. Then, by taking into consideration (3.6), we can identify the solution
types for z regarded as a function of &.

Later in this Section we find actual solutions for the cases in which z as a function
of n is bounded. In this case f(z) may be written

f(z) = (z = 21) (2 — 2)(23 = 2) (2 — 2), (3.9)

where z1, 2o, 23 and 2,4 are real constants with z; < 2o < 23 < z4. Bounded solutions
for z are such that 2o < z < 23 and may be found by using the results in Section 2
with e = 1/2.

Note that f(z) in (3.8) does not have a term linear in z. This is also the case for the
f(2) in (2.5) in [8] for the DP equation. Hence we can use a categorization procedure
similar to the one described in [8, Section 2]. Accordingly, for convenience, we define
the functions g(z) and h(z) by

4
g(z) =2+ st A h(z) = 222 4 2c2 4 A, (3.10)

and then we have
F(z) = 29(2)+ B, f/() = 2:h(2). (3.11)

Moreover, we define z;, z); and By, By by

—c—+Vc?—2A —c+ V2 -2A

2L = 5 s ZM = 9 (312)
) A2 A A e,
Bpi=—2i9(z) = = -+ o+ o= 242 — 24, (3.13)
2 2 4
Bap e =22 g(en) = 2 AT L S 2 _oa)E 24, (3.14)

4 2 6 6

zr, and z); are the roots of h(z) = 0. Provided that A is a nonzero constant that
satisfies the condition A < ¢?/2, f(z) has three different stationary points that
occur at z = zy, 2, 0, and comprise two minimums separated by a maximum.

Note that Eq. (3.3) is invariant under the transformation z — —z, ¢ — —¢; this
corresponds to the transformation

u— —u, vV-— —u. (3.15)

Here we will seek the family of solutions of Eq. (3.3) for which v > 0 so that ¢ = 1.
However, as a help to the reader, we will display ¢ in what follows.



Obviously, the types of solutions of Eq. (3.7) will depend on the values of the
constants A and B. (The corresponding quantities in [2] are E = A/4 and 8 = B/2,
respectively.) These solutions, and the corresponding ones for z as a function of &,
may be categorized conveniently by the following four cases.

Case 3.1 A<O0

In this case, we have z, < 0 < zpy with f(z1) < f(zar). For each value of A and B
satisfying A < 0 and 0 < B < By respectively, 21 < 25 < 0 < z3 < z4. This can be
seen in Fig. 1(a) where the f(z) curves for B = 0, B = B); and B = By, are plotted
for a specific value of A satisfying A < 0. Thus 2z as a function of 7 is a smooth
periodic wave. However, because d¢/dn changes sign at z = 0 in the interval |2y, 23],
z regarded as a function of £ comprises periodic (inverted) loops. From (2.5) and
(2.7) the solution is given in parametric form by

_z— znsn*(wlm) 23— 2
z(w) = T 1 sn2(w]m) with n = P (3.16)
£(w) = 2w + (22 = ) (s )], (3.17)
where
_ _ 1 (= 2)(za—2)
w=pn p= 5\/(24—22)(23—21) and m = i — ) (25— 1) (3.18)

An example is illustrated in Fig. 2(a).

When B = B, we have z3 = z4 = z3y and m = 1. Then z as a function of 7 is a
smooth solitary well and z as a function of £ is a solitary inverted loop. From (2.8)
this is given in parametric form by

29 — zyn tanh? w 2wz

, E(w) = p — 4tanh™*(y/ntanhw), (3.19)

#w) = 1 — ntanh?w

where 29 < z < 237 and

—c—3Vc2—-2A 1
c—3Vc %02_214’

z = 5 —3 c?+3c
—c—3Vc2—-2A 1
2y = ‘ 6C —|—§\/c2—|—30\/c2 —2A.

These solutions are a one-parameter family (with parameter A) of inverted loop-like
solitary waves; see Fig. 3(a) for an example.

For By; < B < By, z as a function of n is unbounded with 2o < 2z, but z as a
function of £ comprises periodic upward cusps with 2z, < z < 0. For B = By,
z1 = z5 = 77, and z as a function of £ is a solitary upward cuspon with z;, < z < 0.



Case 3.2 0< A<4c?/9

In this case, we have zp < zyy < 0 and f(zy) < f(0). For each value of A and B
satisfying 0 < A < 4¢?/9 and By, < B < 0 respectively, 2y < 23 < 23 < 0 < 24 (see
Fig. 1(b)). Thus z as a function of 1 is a smooth periodic wave. Because d¢/dn does
not change sign in the interval [zy, 23], z regarded as a function of £ is also a smooth
periodic wave. These are given in the same form as (3.16)—(3.18). An example is
illustrated in Fig. 2(b).

When B = 0, we have 23 = 24, = 0 and m = 1. Then z as a function of 7 is a solitary
smooth well with 2o < 2z < 0. However, z as a function of £ is a compacton. From
(2.8) these are given by the one-parameter family of solutions (with parameter A)

29 — zyn tanh?® w

£(w) = —4tanh ™ (v/ntanh w), (3.20)

#w) = 1 — ntanh®w

where 21, zo are the roots of g(z) = 0, namely

2 4 2 4
2 =-3C- §02—A, 22:—§c+ §02—A.

We may eliminate the parameter w from Eqs. (3.20) to give
(€) := [22 — 2 tanh?(¢/4)] cosh*(¢/4)
2 4
=——c+ ( —c? — A) cosh(£/2), (3.21)

N>

z =

3 9

where —& < & < &, and &y(> 0) is given by

2 2 4
& = 2cosh™! Zlci 52{111 §c+\/2’—ln( §c2—A) (3.22)
2 A
9
We may construct a weak solution, namely the periodic upward corner-wave

With 2(&) given by (3.21), the corners are located at £ = (25 +1)&; see Fig. 3(b) for
an example. However, this solution may be phase-shifted by &, so that the corners
are located at & = 2j&. In this case 2(§) is given by

28 = —§C+ ( 302 - A) cosh[([¢] — £0)/2] (3.24)
= —%c + % Kgc + \/Z) ezl 4 (gc — \/Z) e%m] . (3.25)



Equations (3.22), (3.23) and (3.25) are equivalent to the periodic waves given in
Section 3.2 in [6]. (In [6], g and ¢ correspond to our —Av?/2 and v, respectively.)

In passing, we note that, when B = 0, (3.4) may be written
zg =22+ 2+ A, 2 <z<0. (3.26)

Integration of Eq. (3.26) leads to either (3.21) or (3.24) directly.

For 0 < B < By, z as a function of 7 is unbounded with 2z, < z, but z as a function
of & comprises periodic upward cusps with 2o < 2 < 0. For B = By, 21 = 20 = 2,
and z as a function of £ is a solitary upward cuspon with z;, < z < 0.

Case 3.3 A =4c%/9

In this case, we have z;, < z)y < 0 and f(z1) = f(0) = B. For each B such that
By = —c'/81 < B <0, 21 < 23 < 23 <0 < 2 (see Fig. 1(c)). Thus, as in Section
3.2, z regarded as a function of ¢ is a smooth periodic wave. From (2.9) and (2.10),
we may write the solution in parametric form as

_ 2 _
z(w) = 2 — zan s (wm) with n =222 , (3.27)
1 — nsn?(w|m) Z4 — 2o
and 5
E(w) = Z—)[wz4 + (23 — z4)(n; w|m)], (3.28)

where w, p and m are given by (3.18). An example is given in Fig. 2(c).

When B = 0, we obtain that z; = 20 = 2z, = —2¢/3 and 23 = z; = 0. In this case,
Eq. (3.4) becomes

dz 1 2

— == —c|. 2

i 2<z+30> (3.29)
Note that the bounded solution has —2¢/3 < z < 0, so that, on integrating
Eq. (3.29) and setting z = 0 at £ = 0, one gets the solitary-peakon solution

2(€) = 2, (1—e172), (3.30)

This is illustrated in Fig. 3(c). The expression in (3.30) is equivalent to (3.5) in [6]
for the osmosis K (2,2) equation. The inverted counterpart of the peakon given by
(3.30), i.e. the one travelling in the negative z-direction, was given by Eq. (21c) in
[2] and was called a dark peakon. There is a slight error in (21¢); in the notation in

2] it should read

2
u=g- (1= evelera/2) (3.31)

with A > 0.



Case 3.4 4c¢*/9< A < ?/2

In this case, we have z, < z)y < 0 and f(zr) > f(0). For each value of A and B
satisfying 4¢?/9 < A < ¢2/2 and By, < B < By respectively, 21 < 20 < 23 < 0 < 2
(see Fig. 1(d)). Thus, as in Section 3.2, z regarded as a function of ¢ is a smooth
periodic wave. The solution in parametric form is as in (3.27)—(3.28); see Fig. 2(d)
for an example.

When B = By, we have z; = 25 = z, and m = 1. Then z as a function of £ is a
solitary smooth hump with z;, < z < z3. The solution is a one-parameter family
(with parameter A) given by

_ h? 2
z3 — zyntanh” w £(w) _ Wz, +4tanh_1(\/ﬁtanhw)7 (3.32)
P

#w) = 1 — ntanh®w

where w and p are given by (3.18) and

zZ3 =

—c+3V/c2—-2A 1
crove —3 2 —3cve? —2A,

6
—c+3vc2—-2A 1
2y = cr GC +§\/02—3C\/62—2A.

An example is given in Fig. 3(d).

Our solution (3.32) is considerably less complicated in form than the correspond-
ing one in [7]. (In [7], g and ¢ correspond to our —Av?/2 and v, respectively.)
Furthermore, in [7] the authors seem unaware of the significance of (3.15); how-
ever, their Examples 2.1 and 2.2 and the associated figures clearly demonstrate the
consequences of (3.15).

4 An interpretation of multi-valued solutions

The wave profiles for z in Figs. 2(a) and 3(a) are multi-valued. Recently, Li [10]
discussed the interpretation of similar solutions for other nonlinear wave equations.
Here we will apply Li’s ideas to the solitary wave illustrated in Fig. 3(a).

In the solution given by (3.19), z and £ may be regarded as the limit as m — 1
of Egs. (3.16) and (3.17), respectively. Alternatively, they may be derived directly
from

2 dg

zp=(z—2)(z—=)(zu —2)* and an =2z (4.1)

with w = pn. Note that £ is not a monotonic function of the parameter w. Fur-
thermore, the phase portrait of the solution in the (z, z,)-plane is a single closed
trajectory in the region 2z, < z < z) with a saddle point at (zy,0). However,

10



the phase portrait in the (z, z¢)-plane consists of the stable and unstable manifolds
through the saddle in the region 0 < z < 2/, and an open curve through (z9,0)
for which 25 < z < 0. Li’s point of view is that each of these three trajectories
corresponds to a different single-valued travelling-wave solution. The multi-valued
solitary-wave solution illustrated in Fig. 3(a) may be regarded as a composite so-
lution made up of these three single-valued solutions. (The notion of composite
solutions for the DP equation is discussed in detail by Lenells in [15].) The three
single-valued solutions may be combined in different ways so as to give a variety of
composite single-valued solutions. For example, consider the case with z as given
in (3.19) and & given by

2
0o 4tanh ™ (y/ntanhw) — 2&, w € (—o0, —wy),
E(w) =4 — e, 4tanh™! (y/ntanhw), w € [—wo, wo), (4.2)
p
2
0o 4tanh™ (y/ntanhw) + 2&, w € (wy, o0),
where
2
wo = tanh ™ 22 , o= — el 4 tanh™'(y/n tanh wy). (4.3)
nzy

This gives a one-parameter family (with parameter A) of inverted-bell solitary
waves. An example is illustrated in Fig. 4(a). (Rosenau [2] used the terminology
tipon instead of bell.) Note that, in this solution, £ is a monotonic increasing func-
tion of the parameter w. Similarly, with z as given in (3.19) and £ given by

2wz

€] = — dtanh ™' (v/ntanhw) + &, w > wy (4.4)

we have a one-parameter family (with parameter A) of inverted-cuspon solitary
waves. An example is illustrated in Fig. 4(b) (cf. Fig. 1(h) in [15]).

A composite one-parameter solution (with parameter A) comprising periodic up-
ward cusps may be constructed by using the single-valued solution for which zy <
z < 0 as follows:

z = z(w — 2jwyg), &= E&(w — 2jwg) + 2jwy, (4.5)

with 7 =0,£1,£2,..., and w € [(2j — 1)wy, (25 + 1)wp], where z(w) and &(w) are
as in (3.19). An example is illustrated in Fig. 4(c) (cf. Fig. 1(e) in [15]).

The composite two-parameter families (with parameters A and B) of periodic single-
valued solutions corresponding to Figs. 4(a) and 4(b) may be constructed from
the single-valued solutions making up the multi-valued periodic wave in Fig. 2(a).
Similarly, a two-parameter family of periodic upward cusps may be constructed.
(The solution given by (4.5) is the particular case for which B = B),.)

11



5 Solitary waves: an alternative form of solution

In Section 3 we noted that Eq. (3.4) has the same structure as Eq. (2.4) in [8] for
the DP equation. Zhang and Qiao [11] investigated cuspon and smooth solitary-
wave solutions of the DP equation. In this section we demonstrate that, as may be
expected, for the K (2,2) equation (defocusing branch) there are results similar to
the results in [11] for the DP equation.

First we consider the inverted-cuspon solution given in Section 4. With

X :=+/ntanhw (w>w), a:=+n, 7r:=2y/2p, (5.1)
z in (3.19) may be written
. 29 — 21X2
S xr G2)
and (4.4) becomes
€| — & = 4rtanh™ (X /a) — 4tanh™!(X). (5.3)
By using the identity 2tanh™ 6 = In[(1 4+ 6)/(1 — 6)] (0 < 6 < 1), we may write
(5.3) as
eIz “—X>r(1+X> _ el 4
Cpe <a—|—X T—x ) Co=ce ) (5.4)
where

0<Xo<X<a<l, 0<r<1/2, Xy:=+ntanhw

and X = X corresponds to £ = 0. Equation (5.4) is equivalent to equation Eq. (5.4)
in [11] for the DP equation. Equations (5.2) and (5.4) give an implicit solution for
the cuspon in which z and ¢ are given in terms of the parameter X.

In order to obtain (5.4) by the method in [11], we would have to change the depen-
dent variable z in

(225)2 = i (z — 21)(2 — 22) (201 — 2)* (5.5)

to X by using the relation (5.2). Direct integration of the resulting differential
equation would yield (5.4).

Now let us consider the smooth hump-like solitary wave given in Section 3.4. With

Y :=+/ntanhw (w>0), b:=+n, r:=-—z/2p, (5.6)
(3.32) gives )
- % (5.7)
and .
6—5/2:([[;;5) GJ_F}};), 0<Y<b<l 1<r<oc (5.8)

12



(With the notation X := Y ! and a := b~!, Eq. (5.8) is equivalent to Eq. (5.7) in
[11] for the DP equation.)

Following the observation regarding the DP equation in [11], we note that if r = 2
(which corresponds to A = 112/225) then

Z:%(ﬁ_l_ 2\/5> (5.9)

15

and Eq. (5.8) yields a cubic equation, namely

Y34 (1= 20)kY2 4+ b(b—2)Y + b’k = 0, (5.10)
where
3—5 1 — e~ lél/2
b= FeirEn

For each value of k& (0 < k < 1), the cubic equation (5.10) has three distinct real
roots, Y7, Y5 and Y3 such that Y7 < Y < Y3 with 0 <Y, < b. Thus Y =Y, is the
required root. Hence, for the smooth solitary wave for which A = 112/225, there is
an explicit solution for z as a function of £, namely Eq. (5.9) with Y = Y5.

6 Stationary solutions

In this section we seek stationary solutions to Eq. (1.5) in which u is assumed to
be a function of = only.

After two integrations Eq. (1.5) gives
2 _ Loy 2
(uug)® = Z(u + Au® + B), (6.1)

where A and B are real constants. With y defined by

dz
— =2 6.2
=2 (62
Eq.(6.1) becomes
ul =u' + Au® + B. (6.3)

For bounded solutions we require A < 0 and 0 < B < A?/4. In this case (6.3) can
be written

uy = (o —u?)(5* —u?), (6.4)

y
where o and (3 are real positive constants given by

o =(—A—VA2—-4B)/2, [ =(-A+VA2—-4B)/2 (6.5)
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so that 0 < o < . The solution to Eq. (6.1) in parametric form is

dn(w|m) — /m cn(w|m)
1—+ym ’

u(w) = asn(w|m), z(w)=2In (6.6)

where

m= (a/ﬁ)2> w = fy.
The expressions in (6.6) were obtained by using the results 219.00 and 310.01 in [14]
in order to integrate Eqgs. (6.4) and (6.2), respectively. We have chosen constants of
integration so that w(0) = 0 and x(0) = 0.

Note that z(w) is periodic with period 4K (m). It follows that the solution to
Eq. (6.1) is a closed curve in the (z,u)-plane around the point (z¢,0), where

2o =z (K(m)) = In l%] . (6.7)

This curve passes through the points (0,0), (2x¢,0), (xo, £«). Composite solutions
may be constructed from this curve such as periodic upward cusps, periodic inverted
cusps and a periodic bell solution (cf. Fig. 3(c) in [8]).

When B = A%/4, o = 3 and m = 1. In this case (6.6) becomes
u(w) = atanhw, z(w) = 2In(coshw) (6.8)
so that
u? = a?(1—e™™). (6.9)

From this we may construct the explicit stationary cuspon solutions

u=+ay/1— el (6.10)

for example. The analogous result for the DP equation was derived in a different
way in [11, Section 4].

7 Conclusions

We have used an auxiliary elliptic equation method to investigate the travelling-
wave solutions of the K (2, 2) equation (defocusing branch) that travel in the positive
x-direction with speed v. By applying this method, we have obtained new exact
solitary and periodic-wave solutions, and recovered some previous results. Because
of the invariance of the governing equation under the transformation (3.15), for all
such solutions that we have obtained, expressed with u as the dependent variable,
there is a solution for w that is the mirror image in the z-axis and travels with
the same speed but in the negative z-direction. We have also obtained stationary

14



solitary and periodic-wave solutions. We have shown how single-valued composite
solutions may be obtained from our multi-valued solutions.

The auxilliary elliptic equation method described in this paper is simple and effi-
cient. It has been used previously in the context of the DP equation [8]; we believe
that it may be useful in seeking travelling-wave solutions for some other nonlinear
evolution equations.
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List of Figures

Fig. 1.

The f(z) curves with B = 0 (solid), B = By, (dot-dash), B = Bjs (dashed): (a)
A=—63/2; (b) A=5/12; (c) A=4/9; (d) A =15/32.

Fig. 2.

Periodic solutions with ¢ = 1 and 0 < m < 1: (a) A = —63/2, B = 0.98B); so
m = 0.9697; (b) A =5/12, B = 0.4B), so m = 0.7928; (¢) A = 4/9, B = 0.6B, =
~1/135 s0 m = 0.6911; (d) A = 15/32, B = 0.5(By, + Bas) s0 m = 0.7286.

Fig. 3.

Solutions with ¢ = 1 and m = 1: (a) A = —63/2, B = By; (b) A =5/12, B = 0;
(c) A=4/9, B=0; (d) A=15/32, B= By.

Fig. 4.

Composite waves derived from the wave in Fig. 3(a): (a) an inverted-bell solitary
wave; (b) an inverted-cuspon solitary wave; (c¢) periodic upward cusps.
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Fig. 1. The f(z) curves with B = 0 (solid), B = By, (dot-dash), B = Bj; (dashed): (a)
A=—63/2; (b) A=5/12 (c) A =4/9; (d) A= 15/32.
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Fig. 2. Periodic solutions with ¢ = 1 and 0 < m < 1: (a) A = —63/2, B = 0.98B); so
m = 0.9607; (b) A = 5/12, B = 0.4By; som = 0.7928; (¢) A = 4/9, B = 0.6By; = —1/135
som = 0.6911; (d) A =15/32, B = 0.5(Br + Bys) so m = 0.7286.
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Fig. 3. Solutions with ¢ =1 and m = 1: (a) A = —63/2, B = By; (b) A=5/12, B = 0;
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Fig. 4. Composite waves derived from the wave in Fig. 3(a): (a) an inverted-bell solitary
wave; (b) an inverted-cuspon solitary wave; (c¢) periodic upward cusps.
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