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Exact solutions of the Kudryashov–Sinelshchikov equation
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Abstract

The Kudryashov-Sinelshchikov equation for describing the pressure waves in liquid with gas bubbles is studied.

New exact solution of this equation are found. Modification of truncated expansion method is used for obtaining

exact solution of this equation.

Keywords: Nonlinear evolution equation; Kudryashov-Sinelshchikov equation; Ordinary differential equation;
Exact solution.

PACS 02.30.Jr - Ordinary differential equations

1 Introduction

Recently, Kudryashov and Sinelshchikov [1] introduced the following equation

ut + γu ux + uxxx − ε (u uxx)x − κuxuxx − ν uxx − δ(u ux)x = 0, (1)

where γ, ε, κ, ν and δ are real parameters. Eq. (1) describes pressure waves in the liquid with gas bubbles taking
into account the heat transfer and viscosity [1]. We call this equation the Kudryashov-Sinelshchikov equation.

It is well known that pressure waves in gas-liquid mixture is characterized by the Burgers-Korteweg-de Vries
(BKdV) equation and the Korteweg-de Vries (KdV) equation [2–5]. The Kudryashov-Sinelshchikov equation is
generalization of the KdV and the BKdV equation. Indeed, assuming ε = κ = δ = 0 we have the Burgers-
Korteweg-de-Vries equation. In the case of ε = κ = λ = δ = 0 we get the famous Korteweg-de Vries equation.

The aim of this work is to find exact solutions of the Kudryashov-Sinelshchikov equation.
We know some methods for finding exact solution of ordinary partial differential(ODE) equations. Let us

note some of them: the truncated expansion method [6–9], the simplest equation method [10, 11], an automated
tanh-function method [12], the polygons method [13] and the Clarkson-Kruskal direct method [14].

For finding exact solution of the Kudryashov-Sinelshchikov equation we use the modification of truncated expan-
sion method that was introduced in [15]. Using truncated expansion method for finding exact solutions of ODEs
we obtain the overdetermined system of differential equations. As a rule this systems is difficult to solve. The
modification of this method allows us to transform this system of differential equations to the system of algebraic
equations. As a result we have essential simplification of solutions construction procedure.

This paper organized as follows. In the Section 2 we introduce the method applied. Solitary waves solutions of
Eq. (1) in the partial case of ν = δ = 0 are described in Section 3. Exact solution of Eq. (1) in general case are
discussed in Section 4.

2 Method applied

Let us present the modification of the truncated expansion method [15]. We consider the nonlinear partial differential
equation in the form

E[ut, ux, . . . , x, t] = 0. (2)

Using traveling wave
u(x, t) = y(z), z = kx− wt. (3)
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from Eq. (2) we obtain the ordinary nonlinear differential equation

L[y, yz, . . . , k, w] = 0. (4)

The modification of the truncated expansion method contains from the following steps [15].
The first step. Determination of the dominant term with highest order of singularity. To find dominant terms

we substitute
y = z−p, (5)

into all terms of Eq. (4). Then we should compare degrees of all terms of Eq. (4) and choose two or more with
the highest degree. The maximum value of p is called the pole of Eq. (4) and we denote it as N . It should be
noted that method can be applied when N is integer. If the value N is noninteger one can transform the equation
studied.

The second step. We look for exact solution of Eq. (4) in the form

y = a0 + a1Q(z) + a2(z)Q(z)2 + ...+ aNQ(z)N , (6)

where Q(z) is the following function

Q(z) =
1

1 + ez
. (7)

The third step. We can calculate necessary number of derivatives of function y. It is easy to do using Maple or
Mathematica package. Using case N = 2 we have some derivatives of function y(z) in the form

y = a0 + a1Q+ a2Q
2,

yz = −a1Q+ (a1 − 2a2)Q
2 + 2a2Q

3,

yzz = a1Q+ (4a2 − 3a1)Q
2 + (2a1 − 10a2)Q

3 + 6a2Q
4.

(8)

The fourth step. We substitute expressions (6)-(8) in Eq. (2). Then collect all terms with the same powers of
function Q(z) and equate this expressions to zero. As a result we obtain algebraic system of equations. Solving this
system we get the values of unknown parameters.

This algorithm can be easily generalized to polynomial differential equation of any order.

3 Exact solutions of the Kudryashov-Sinelshchikov equation in the

case of ν = δ = 0

Let us find the exact solutions of the Kudryashov-Sinelshchikov equation. Using scale transformation

x = x′, t = t′, u =
1

ε
u′, (9)

the Kudryashov-Sinelshchikov equation is written in the form [1]

ut + αuux + uxxx − (u uxx)x − β uxuxx = 0, (10)

where α = γ/ε, β = κ/ε (primes are omitted). Taking the traveling wave ansatz (3) into account and integrating
with respect to z from Eq. (10) we have

C1 − ω y +
k α

2
y2 + k3(yzz − y yzz −

β

2
y2z) = 0 (11)

Here C1 is integration constant.
The pole order of Eq. (11) is N = − 2

β+2
. One can see that at β = −3 or β = −4 Eq. (11) have the pole of

second or first order consequently. So we look for solution of Eq. (11) in the form

y = a0 + a1Q + a2 Q
2 (12)
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Substituting (12) into Eq. (11) and taking into account relations (8) we obtain the system of algebraic equations
in the form

−2 k3a22 (β + 3) = 0,

−2 k3a2 (−2 a2 β − 5 a2 + 4 a1 + β a1) = 0,

−
k

2

(

8 a2
2k2 + 4 k2a1

2 − 26 k2a2 a1 − 12 a2 k
2 + 12 k2a2 a0+

+4 k2β a22 + k2β a21 − 8 k2β a2 a1 − αa2
2
)

= 0,

−k
(

5 k2a2 a1 + 2 k2a1 a0 + 2 k2β a2 a1 − 10 k2a2 a0 − 2 k2a1−

−k2β a21 − 3 k2a21 + 10 a2 k
2 − αa1 a2

)

= 0,

kα a21
2

− ω a2 −
k3β a21

2
− 3 k3a1 − 4 k3a2 a0 + kα a0 a2+

+3 k3a1 a0 + 4 k3a2 − k3a21 = 0,

−a1
(

ω − a0 αk + a0 k
3 − k3

)

= 0,

C1 − ω a0 +
kα a20
2

= 0

(13)

From (13) we have following values of coefficients a0, a1, a2 and paraments α, β, ω, C1

β = −3, C1 =

(

k3 − ω
) (

2ω k2 − ω α− k3α
)

2 k (k2 − α)
2

,

a2 =
12k (k α− ω)

k4 − α2
, a1 =

12k (ω − k α)

k4 − α2
, a0 =

k3 − ω

k (k2 − α)
,

α 6= ±k2

(14)

β = −3, a2 = −a1 α = k2, a0 = −
a1
6

+ 1,

ω = k3, C1 = −
k3(a21 − 36)

72

(15)

β = −3, a2 = −a1 α = −k2, a0 = 1,

ω = −k3, C1 = −
k3

2

(16)

a2 = 0, β = −4, a1 = 2 (1− a0), a0 6= 1

α = k2, ω = k3, C1 =
a0 k

3(2− a0)

2

(17)

We have four families of solitary wave solutions of Eq. (11) in the form

y =
k3 − ω

k (k2 − α)
+

12k (ω − k α)

(k4 − α2)(1 + ez)
+

12k (k α− ω)

(k4 − α2)(1 + ez)2
(18)

y = 1−
a1
6

+
a1 e

z

(1 + ez)2
(19)

y = 1 +
a1 e

z

(1 + ez)2
(20)

y = a0 +
2(1− a0)

1 + ez
(21)

corresponding to values of paraments α, β, ω, C1 defined by relations (14), (15), (16) and (17).
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Figure 1: Exact solution of (18), solid – k = 1, ω = 0.75, α = 2, dash – k = 1.1, ω = 0.75, α = 0.5, dot –
k = 1, ω = 1, α = 0.5.
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Figure 2: Exact solution of (19), a1 = 1.5; 1; 0.5 (solid; dash; dot).

4 Exact solutions of the Kudryashov-Sinelshchikov equation in the

case of ν 6= 0, δ 6= 0

Using transformation (9) we can write the Kudryashov-Sinelshchikov equation in the form

ut + αuux + uxxx − (u uxx)x − β uxuxx − ν uxx − µ(u ux)x = 0, (22)

where α = γ/ε, β = κ/ε, µ = δ/ε (primes are omitted). Taking traveling wave transformation (3) into account and
integrating with respect to z from Eq. (22) we have

C1 − ω y +
k α

2
y2 + k3(yzz − y yzz −

β

2
y2z)− k2(ν yz + µ y yz) = 0 (23)

Let us look for solution of Eq. (23) in the form

y = a0 + a1Q + a2 Q
2 (24)

Substituting (24) into Eq. (23) and with help of relations (8) we obtain system of algebraic equations from
which we find values of a2, a1, a0, ω, C1, β

β = −3, µ = k, a2 = −
2(k + ν) k

α
, a1 =

4(k + ν) k

α
,

a0 = −
12 k2ν + 12 k3 − 5αk + ν α

6αk
, ω =

α

6
(5 k − ν)− k2(k + ν),

C1 =
(ν − 5 k)

(

12 k2ν + 12 k3 − 5αk + ν α
)

72k

(25)
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β = −3, α = µ2 − k2, a2 =
k2(ν + µ)

µ(k2 − µ2)
, a1 = −

(ν + µ) k

(k − µ)µ
,

a0 =
2k − µ+ ν

2(k − µ)
, ω = −

k

2

(

2 k2 + ν µ− µ2
)

,

C1 =
k

8

(

(µ− ν)2 − 4 k2
)

(26)

β = −4, a2 = 0, a1 =
2(µ+ ν) k

µ2 − k2 + α
,

a0 =
k2 + µ k − α+ kν + ν µ

k2 − α− µ2
, ω =

kα
(

k2 − α+ ν µ
)

k2 − α− µ2
,

C1 =
kα

(

ν2µ2 − 2αν µ− k2(µ2 + ν2) + (k2 − α)2
)

2 (k2 − α− µ2)
2

(27)

Using values of parameters (25) we have following kink-type solution of Eq. (24)

y = −
12 k2ν − 5 kα+ 12 k3 + ν α

6 kα
+

4 (k + ν) k

α (1 + ez)
−

2 (k + ν) k

α (1 + ez)
2

(28)

With help of relations (26) we obtain following solution of Eq. (24)

y =
2 k − µ+ ν

2(k − µ)
−

(µ+ ν) k

(k − µ)µ (1 + ez)
+

k2 (µ+ ν)

µ (k2 − µ2) (1 + ez)
2

(29)

Taking into account values of parameters (27) we have following kink-type solution of Eq. (24)

y =
k2 + µ k − α+ kν + ν µ

k2 − α− µ2
+

2(µ+ ν) k

(µ2 − k2 + α)(1 + ez)
(30)

Dependence solution (29) from z at different values of parameter µ at k = 2, ν = 1 are illustrated on Fig. 3.

2
1

2

3

Figure 3: The solution (29) of Eq. (24) at µ = 1; 0.7; 0.4 (curves 1,2,3).

We believe that solutions (28), (29) and (30) are new.

5 Conclusion

The Kudryashov-Sinelshchikov equation was studied using the modification of the truncated method. The algorithm
of the method applied was presented. The efficiency of this method was demonstrated. New exact solution of the
Kudryashov-Sinelshchikov equation were obtained.

This work was supported by the federal target programm ”Research and scientific-pedagogical personnel of
innovation in Russia” on 2009-2011, Contracts P 28, P 741.
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