
Fast Period Searches Using the Lomb-Scargle Algorithm on Graphics Processing
Units for Large Datasets and Real-Time Applications

Michael Gowanlocka,∗, Daniel Kramera,b, David E. Trillingb, Nathaniel R. Butlerc, Brian Donnellya

aSchool of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
bDepartment of Astronomy & Planetary Science, Northern Arizona University, Flagstaff, AZ, 86011, USA

cSchool of Earth & Space Exploration, Arizona State University, Tempe, AZ, 85287, USA

Abstract

Computing the periods of variable objects is well-known to be computationally expensive. Modern astronomical catalogs
contain a significant number of observed objects. Therefore, even if the period ranges for particular classes of objects
are well-constrained due to expected physical properties, periods must be derived for a tremendous number of objects.
In this paper, we propose a GPU-accelerated Lomb-Scargle period finding algorithm that computes periods for single
objects or for batches of objects as is necessary in many data processing pipelines. We demonstrate the performance of
several optimizations, including comparing the use of shared and global memory GPU kernels and using multiple CUDA
streams to copy periodogram data from the GPU to the host. Also, we quantify the difference between 32-bit and 64-bit
floating point precision on two classes of GPUs, and show that the performance degradation of using 64-bit over 32-bit
is greater on the CPU than a GPU designed for scientific computing. We find that the GPU algorithm achieves superior
performance over the baseline parallel CPU implementation, achieving a speedup of up to 174.53×. The Vera C. Rubin
Observatory will carry out the Legacy Survey of Space and Time (LSST). We perform an analysis that shows we can
derive the rotation periods of batches of Solar System objects at LSST scale in near real-time, which will be employed
in a future LSST event broker. All source code has been made publicly available.

Keywords: asteroids: general, massively parallel algorithms, methods: data analysis, methods: numerical, single
instruction, multiple data

1. Introduction

The Lomb-Scargle Periodogram (LSP) algorithm is a
search approach used to find the periods of objects ob-
served at uneven time intervals (Lomb, 1976; Scargle, 1982).
The algorithm searches a frequency grid and returns a
Lomb-Scargle (L-S) power for each frequency, where high
L-S powers indicate a potential periodic signal in the time
series.

The näıve LSP algorithm has a time complexity of
O(N2

t), where Nt is the number of observations in the
time series (Townsend, 2010), which makes the algorithm
computationally expensive. In data processing pipelines
that require derived properties of objects, such as peri-
odicity, the LSP algorithm can be a major bottleneck in
the pipeline. Consequently, several studies have proposed
new algorithms that have reduced the time complexity to
O(NtlogNt) (Press and Rybicki, 1989; Leroy, 2012), which
may come at the expensive of accuracy. For clarity, in this
paper, we consider the O(N2

t) LSP algorithm.
Graphics Processing Units (GPUs) and associated soft-

ware support have evolved rapidly over the past two decades.

∗Corresponding author
Email address: michael.gowanlock@nau.edu (Michael

Gowanlock)

Initially, GPUs did not provide application programming
interface (API) support for general purpose computing
(i.e., non-graphics applications), but APIs such as CUDA
(Cook, 2012), OpenCL (Munshi, 2009), ROCm (Sun et al.,
2018), and OpenACC (Farber, 2016) now allow program-
mers straightforward access to the functionality of modern
GPU hardware. Additionally, there are now two major
GPU markets, a consumer market, and a scientific com-
puting/artificial intelligence/data center market. Scien-
tific applications may be sensitive to the level of float-
ing point precision offered by the hardware (e.g., 64-bit
floating point precision may be required for numerical sta-
bility in dynamical simulations). Consumer-grade GPUs
typically have most of their resources dedicated to 32-bit
floating point arithmetic, whereas the GPUs designed for
the scientific computing market offer hardware dedicated
to a wide range of precision levels, from 16-bit to 64-bit
floating point values (Haidar et al., 2018).

Townsend (2010) proposed an O(N2
t) LSP algorithm

programmed in CUDA, and this paper builds on that work.
In particular, we add additional functionality to the algo-
rithm to allow for a wider range of use cases. Further-
more, we propose several optimizations that reflect recent
hardware advances. Beyond optimizations that improve
performance in GPU kernels, we summarize the features

Preprint submitted to Journal of LATEX Templates May 11, 2021

ar
X

iv
:2

10
5.

04
00

6v
1

 [
as

tr
o-

ph
.I

M
]

 9
 M

ay
 2

02
1

of the proposed algorithm, lsp-gpu, as follows.

• Computing a single periodogram for one object or a
batch of periodograms for multiple objects.

• Storage of the input data and computation on both
32-bit and 64-bit floating point data.

• Option to return the periodogram to the host for
both the single object mode and batch mode.

• To improve the performance of transferring periodogram
data from the GPU to the host, there is an option
to transfer the periodogram data in several CUDA
streams using small pinned memory staging buffers.
Additionally, the data is transferred from the stag-
ing buffers into pageable memory in parallel using
the CPU.

• We implement both the standard and generalized
LSP algorithms, where the latter includes photmet-
ric error and floats the mean.

The paper is organized as follows. Section 2 gives a
brief outline of the LSP algorithm. Section 3 presents our
GPU-accelerated LSP algorithm, lsp-gpu, describing the
proposed optimizations and functionality of our software.
Section 4 presents the evaluation of our algorithm com-
pared to a parallel CPU reference implementation. Finally,
Section 5 concludes the work and outlines future research
avenues.

2. Lomb-Scargle Periodogram Algorithm

In this section, we briefly define the Lomb-Scargle Peri-
odogram and notation that we use throughout the paper.
For additional information on LSP, we refer the reader
to the original papers (Lomb, 1976; Scargle, 1982) and a
comprehensive review of the LSP algorithm by VanderPlas
(2018).

Consider a time series with Nt measurements, which
are (unevenly) sampled at times tj , where j = 1, . . . , Nt.
Each measurement (i.e., magnitude) at time tj is denoted
as Xj . We assume here that the mean is normalized to
zero.

In this paper, we assume that all summations are from
j = 1, . . . , Nt, and ω = 2πf is the angular frequency. The
time delay τ is defined as follows:

tan 2ωτ =
Σj sin 2ωtj
Σj cos 2ωtj

. (1)

The LSP as a function of frequency, f , is

PLS(f) =
1

2

(
[ΣjXj cos ω(tj − τ)]2

Σj cos2 ω(tj − τ)
+

[ΣjXj sin ω(tj − τ)]2

Σj sin2 ω(tj − τ)

)
. (2)

As discussed in Townsend (2010), directly utilizing Equa-
tion 2 in a computer program is inefficient, as it requires
two scans over the time series. Alternatively, the equation
can be rewritten to use several constants that yield a single
scan over the time series (see Press et al., 1992; Townsend,
2010, for details). This improved algorithm is standard in
many implementations. Our GPU and CPU implementa-
tions are directly ported from the SciPy implementation
that employs the refactored equation1.

Throughout this paper, we assume an evenly spaced
frequency grid. We denoteNf as the number of frequencies
searched within the frequency range [fmin, fmax). There-
fore, the frequency spacing is given by ∆f = (fmax −
fmin)N−1

f .
The values of Nf , fmin, and fmax will impact the qual-

ity of the result. First, domain knowledge is required to
select expected frequency limits. It may be reasonable to
select fmin ≈ 0 for most applications (VanderPlas, 2018),
but fmax will need to be determined based on the expected
physical characteristics of an object. Additionally, if ∆f
is too large then the algorithm may miss the peaks in the
periodogram. We do not provide a method of selecting
these parameters, as they depend on several assumptions
about the object and oversampling rate, but we refer the
reader to Townsend (2010) and VanderPlas (2018) for a
broader discussion of input parameter selection.

3. GPU-Accelerated Lomb-Scargle

In this section, we present an overview of GPUs and
the code, the two supported modes for computing pe-
riodograms, a data transfer optimization to reduce the
overhead of copying the periodogram data from the GPU
to main memory, and kernel designs that use global and
shared memory. Note that we use CUDA terminology
throughout this paper.

3.1. Graphics Processing Units and the Lomb-Scargle Pe-
riodogram

GPU architectures contain different amounts of hard-
ware dedicated to certain types of arithmetic. Some re-
cent generations of the Nvidia Tesla and Quadro GPUs
contain many resources dedicated to 64-bit floating point
operations, whereas others contain few resources dedicated
to supporting these operations. For example, the Nvidia
RTX Turing TU102 GPU contains only 1/32nd of the
hardware dedicated to 64-bit floats (FP64) as 32-bit floats
(FP32)2. In contrast, this ratio is 1/2 on the Nvidia
Ampere A100 architecture3. Consequently, if an applica-
tion requires the precision provided by FP64 arithmetic,

1https://docs.scipy.org/doc/scipy/reference/generated/

scipy.signal.lombscargle.html
2https://www.nvidia.com/content/dam/en-zz/Solutions/

design-visualization/technologies/turing-architecture/

NVIDIA-Turing-Architecture-Whitepaper.pdf
3https://www.nvidia.com/content/dam/en-zz/Solutions/

Data-Center/nvidia-ampere-architecture-whitepaper.pdf

2

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lombscargle.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lombscargle.html
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

then GPUs for scientific computing and data centers, such
as Pascal (P100), Volta (V100), and Ampere (A100) are
preferable to other GPUs that may not provide high FP64
throughput.

Modern GPUs hide high memory access latency through
rapid context switching in hardware. The GPU has a large
number of registers that accommodate many threads on a
single streaming multiprocessor (SM). The large number
of registers (or context) are used to allow one set of threads
to stall for memory while another set of threads execute
on the SM. This design enables the SMs to be utilized de-
spite threads stalling for memory. One drawback of FP64
is that they require more registers than FP32. This in-
creases register pressure, which may limit the number of
threads that can be active at any given time. One pri-
mary design goal of lsp-gpu is to support both FP32 and
FP64 such that users can use a variety of GPU hardware
to compute the LSP at varying degrees of accuracy. Since
LSP computes many mathematical operations, and uses a
significant number of registers, using FP64 is significantly
more expensive than FP32.

3.2. Overview of Program Elements Common to Both Modes

Our code contains a mode to compute the Lomb-Scargle
periodogram for a single object. In addition, we also in-
clude a mode to simultaneously compute the LSP for sev-
eral objects in parallel. In this section, we give a brief
overview of the elements of the code that are common to
both modes. Note that throughout this section, we refer
to the standard LSP algorithm and not the generalized
algorithm that floats the mean and incorporates photo-
metric error. We will discuss the generalized algorithm in
Section 4.11.

The lsp-gpu code has been modified from the SciPy
LSP algorithm, which has a time complexity of O(NfNt).
We made few modifications to the code. We leverage the
sincos function in the CUDA math API which simultane-
ously computes both the sine and cosine of a value. This
eliminates performing independent sine and cosine calcula-
tions. LSP requires computing sincos twice in the kernel,
which we found to outperform two separate calls to sin

and cos.

3.3. Single Periodogram Mode

The single periodogram mode is used in the case where
the user wants to compute a large input time series and/or
a large number of frequencies.

The user provides a minimum and maximum frequency
to examine in the range [fmin, fmax), and the number
of frequencies to compute, Nf . These input parameters
yield the frequency spacing ∆f . To compute the peri-
odogram, we parallelize the computation across frequen-
cies. Using Nf total computed frequencies, we launch Nf

threads, where each thread is assigned a single frequency
to compute. Each thread stores the computed L-S power
for its assigned frequency in global memory. Then, we

execute another kernel that performs argmaxx(pgram) to
find the index, x, in the periodogram that contains the
maximum L-S power. The index x is returned to the
host, and then converted into the period as follows: p =
2π(fmin + x∆f)−1. The argmax operation is computed
using the thrust::max element function in the Thrust li-
brary (Bell and Hoberock, 2012) which performs a parallel
reduction to find x.

We have included the capability to allow the user to de-
termine whether they would like to return the periodogram
to the host. If the user prefers, they can simply leave the
periodogram in global memory on the GPU. As we will
discuss, returning the periodogram to the host takes non-
negligible time, so the user may wish to discard the pe-
riodogram if they only want the period corresponding to
the frequency with the greatest L-S power.

The algorithm requires global memory space, including
2Nt to store the time series measurements for the sampled
times and magnitudes, in addition to the resulting peri-
odogram of size Nf . Therefore, the space complexity is
O(Nt +Nf).

3.4. Batch Periodogram Mode

The batch periodogram mode is used to concurrently
compute periods for multiple objects and is the primary
motivation for this work. The Solar System Notification
and Alert Processing System (SNAPS) is a planned Vera
C. Rubin Observatory Legacy Survey of Space and Time
(LSST) (Ivezić et al., 2019) event broker that will send
alerts to the astronomy community regarding Solar System
objects. LSST has a visit exposure time of 30 seconds
(LSST Science Collaboration, 2009); therefore, the event
broker will receive alerts for ∼1,000 Solar System objects
every 30 s. Consequently, it is imperative that the period
finding algorithm be executed as fast as possible to leave
sufficient time to carry out outlier detection activities that
rely on the rotation period feature.

In the batched periodogram mode, we use the same
frequency grid for all objects, as we assume that the ob-
jects have similar physical properties that would limit the
frequency ranges and appropriate value of ∆f . We de-
note the number of objects in the batch as No. During
the first few years of LSST, an appropriate period range
will span ∼1 to &2,000 hours because we will not know an
object’s a priori rotation period (see Warner et al., 2009,
which shows that asteroids can have rotation periods in
a very large range). Thus, to ensure that we do not ex-
clude those objects with long rotation periods, we will use
a large frequency range.

One option to compute the LSP for multiple objects is
to execute the single periodogram kernel described in Sec-
tion 3.3 for each object. However, there are several draw-
backs to this approach. First, if we assume that the LSP
would need to be computed for a batch of ∼1,000 objects,
then this would require ∼1,000 kernel invocations, which
would incur non-negligible invocation overhead. Second,

3

executing several small kernels requires the GPU’s hard-
ware scheduler to perform extra work to allow the kernels
to concurrently use the GPU’s resources. These drawbacks
can be avoided by launching a single kernel that computes
the results for all objects, and we elect to use this ap-
proach.

The algorithm largely differs from the single periodogram
kernel in the way that it is parallelized. Given the time se-
ries of multiple objects, we parallelize the L-S algorithm by
assigning a single CUDA thread block to compute the peri-
odogram for each object, where each thread may compute
multiple frequencies in the periodogram for a given object.
This design also allows threads computing the same object
within a thread block to share information in shared mem-
ory. Shared memory is a form of scratchpad memory in
computer architecture that is used for temporary calcula-
tions that is faster to access than other memory locations.
On the GPU, each SM has a small amount of shared mem-
ory that resides on-chip and is therefore faster to access
than global memory which is shared by all SMs and exists
off-chip.

As discussed for the single periodogram mode, we have
included the option of returning the periodogram to the
host at the end of the computation. If we do not want
to store the periodogram for each object, instead of stor-
ing the periodogram in global memory, as was the case for
the single periodogram mode, we have each thread in each
CUDA block keep track of the highest power it has com-
puted and the frequency index at which it was found. Each
thread stores these pairs in shared memory, and after the
powers have been computed for all frequencies, we perform
a parallel reduction in shared memory to find the maxi-
mum power and frequency index which yields the period.
After the period has been computed in shared memory,
one thread writes this information to global memory. Af-
ter the kernel finishes executing, we transfer the periods
of all objects back to the host.

An alternative to selecting the period with the greatest
L-S power would be to return k periods corresponding to
the top-k powers. We have not included this functionality,
as users wanting to employ our algorithm for offline (man-
ual) data analysis tasks are likely to perform the analysis
by examining the periodograms of all objects in the input
dataset. In the online processing case, such as using the
algorithm in an event broker, there will not be sufficient
time to manually inspect the periodograms, so we do not
capture the top-k periods.

If we return the periodogram to the host, then we sim-
ply transfer one array containing the periodograms for all
objects and then find the periods on the CPU instead of
the GPU. This eliminates the need to have each thread
keep track of the maximum power it has found and the
parallel reduction step in shared memory described above
is unnecessary.

The use of shared memory in this mode of operation
also allows us to reduce register pressure. We can store
information common to all threads in the block in shared

memory instead of using registers. Such information in-
cludes the minimum and maximum values in the data ar-
rays that correspond to the object, ∆f , and the offset for
writing the periodogram to global memory.

When returning the periodogram to the host, the space
required on the GPU is 2Nt+NoNf , yielding a space com-
plexity of O(Nt+NoNf). When the periodogram does not
need to be returned to the host, the space complexity is
O(Nt +No).

3.5. Transferring the Periodogram to the Host

It is well documented that PCIe data transfers are a
bottlebeck in GPU computing (Fujii et al., 2013; Van Werkhoven
et al., 2014; Gowanlock and Karsin, 2019). In the case of
the L-S algorithm, transferring periodogram(s) from the
GPU back to the host requires a non-negligible amount of
time. To reduce this bottleneck, we employ the methods
in Gowanlock and Karsin (2019) that reduce the overhead
of performing host/device data transfers. We give a brief
overview of the data transfer method here, but refer the
interested reader to Gowanlock and Karsin (2019) for more
detail. In short, when performing a call to cudaMemcpy to
transfer data from the GPU back to the host, the driver
must create a temporary pinned memory buffer which is
required so that the GPU’s direct memory access (DMA)
engine can copy data directly to a memory location that
is unable to swap to disk (i.e., it is pinned and not page-
able). There is overhead in this process, and in the case
of the LSP algorithm, it is preferable to allocate a pinned
memory staging buffer to incrementally perform the data
transfer from the GPU to the host, which increases the
data transfer rate over PCIe. We use three CUDA streams
to transfer periodogram data on the GPU into pinned
memory staging areas, where each stream is assigned an
8 MiB pinned memory buffer. Each data transfer that
uses pinned memory calls the cudaMemcpyAsync function.
Then the data is copied from pinned memory on the host
into its final location in pageable memory. The memory
copy from pinned memory to pageable memory is per-
formed in parallel by multiple CPU threads to saturate
main memory bandwidth. We compare data transfer ap-
proaches in the experimental evaluation.

3.6. Using Shared Memory in the Kernel

The GPU-accelerated LSP algorithm of Townsend (2010)
proposed tiling the computation using shared memory.
Since on-chip shared memory is faster than off-chip global
memory, and because each selected frequency must be
compared to all elements in the input dataset (observa-
tion times and magnitudes), each thread in a block can
read one data element from global memory and store it
in shared memory. Then, each thread computes on all
data elemenets in shared memory. The steps of having all
threads storing one element in shared memory and then
computing on the data and repeating the process until all

4

input data elements have been computed is a program-
ming pattern used in many GPU algorithms (Kirk and
Wen-Mei, 2016).

For both the single object and batched modes, we cre-
ate global memory and shared memory kernels so that we
can assess potential performance gains of the shared mem-
ory optimization. The global memory kernel does not per-
form the intermediate step of reading the input data into
shared memory; instead, a thread directly reads all data
elements from global memory.

3.7. Overview of the Code

We outline the code for the single object mode that
uses global memory, FP64 values, and returns the peri-
odogram to the host. Since there are multiple modes and
combinations of optimizations, for brevity, we elect to only
illustrate a single configuration. The interested reader can
inspect the publicly available code for further details of
the other modes and optimizations.

Listing 1 presents the CUDA kernel. As discussed
above, the code is directly ported from SciPy and a few
modifications were made. For the reader unfamiliar with
GPU programming, the code largely varies from the se-
quential LSP algorithm through the creation of Nf GPU
threads, where each thread computes a single frequency.
This means that the outer loop that exists in the sequen-
tial CPU LSP algorithm that iterates over frequencies is
removed, as each thread is responsible for a single loop
iteration. The kernel takes as input the array of times, x,
the array of magnitudes, y, the values of fmin, fmax, Nt,
and Nf , and returns the periodogram, pgram.

The thread id, tid, is a value enumerated from 0, . . . , Nf−
1 (line 6). This allows each thread to be assigned a single
frequency to compute. Lines 9–13 compute ∆f and store
it in shared memory to be used by all of the threads in the
block. While ∆f could be stored in registers, since it is
constant and shared by all threads, we store it in shared
memory. Note the call to syncthreads() which syn-
chronizes the threads in the block to ensure that the value
has been set by thread 0 in the block before any other
threads are able to compute beyond line 13. Lines 17–
30 loop over all of the data elements, where only threads
with tid < Nf participate in the computation. If the to-
tal number of threads launched is not equal to Nf , then
a number of leftover threads will be created that cannot
perform any computation, where the maximum number of
leftover threads is blockDim.x-1. Lines 32–45 compute the
τ terms and the power for the frequency which is stored in
pgram on line 45. After the kernel finishes executing, the
periodogram is returned to the host.

Listing 1: Listing of the global memory CUDA kernel.

1 global void LSPOneObj(double ∗ x, double ∗ y,
2 const double f min, const double f max,
3 const unsigned int N t, const unsigned int N f,
4 double ∗ pgram)
5 {
6 unsigned int tid=(blockIdx.x∗blockDim.x)+threadIdx.x;

7

8 //All threads use deltaf in SM
9 shared double deltaf;

10 if (threadIdx.x==0){
11 deltaf=(f max−f min)/(N f∗1.0);
12 }
13 syncthreads();
14

15 double c, s, tau, c tau, s tau, c tau2, s tau2, cs tau;
16

17 if (tid<N f){
18 double freqToTest=f min+(deltaf∗tid);
19 double xc = 0.0, xs = 0.0, cc = 0.0;
20 double ss = 0.0, cs = 0.0;
21

22 #pragma unroll
23 for (int j=0; j<N t; j++){
24 sincos(freqToTest ∗ x[j], &s, &c);
25 xc += y[j] ∗ c;
26 xs += y[j] ∗ s;
27 cc += c ∗ c;
28 ss += s ∗ s;
29 cs += c ∗ s;
30 }
31

32 tau = atan2(2.0 ∗ cs, cc − ss) / (2.0 ∗ freqToTest);
33 sincos(freqToTest ∗ tau, &s tau, &c tau);
34 c tau2 = c tau ∗ c tau;
35 s tau2 = s tau ∗ s tau;
36 cs tau = 2.0 ∗ c tau ∗ s tau;
37

38 double f1 = (c tau ∗ xc + s tau ∗ xs);
39 double f2 = (c tau ∗ xs − s tau ∗ xc);
40 double d1 = (f1∗f1);
41 double d2 = (c tau2 ∗ cc + cs tau ∗ cs + s tau2 ∗ ss);
42 double d4 = (f2∗f2);
43 double d5 = (c tau2 ∗ ss − cs tau ∗ cs + s tau2 ∗ cc);
44

45 pgram[tid]=0.5 ∗ ((d1/d2)+(d4/d5));
46 } //end the if statement tid<N f
47 } //end of GPU kernel

4. Experimental Evaluation

4.1. Experimental Methodology

The lsp-gpu host code is written in C and all GPU
code is written in CUDA. C programs are compiled with
the O3 optimization flag. All time measurements are av-
eraged over three trials, but we exclude the time to nor-
malize the mean amplitude to zero and read the dataset
from disk. We use 512 threads per block to execute the
lsp-gpu kernels.

Experiments are conducted on the platforms outlined
in Table 1. The GP100 in Platform1 is a GPU de-
signed for data centers and scientific computing and as
such has significant resources dedicated to FP64 arith-
metic to accommodate applications sensitive to floating
point error. In contrast, the TitanX GPU in Platform2
is a consumer-grade GPU which has fewer resources ded-
icated to FP64 operations. Both are Pascal generation
GPUs, and are representative of hardware designed for
the two major GPU markets.

In the evaluation, we refer to two performance metrics
that we clarify here. The speedup is defined as the ratio

5

0 20 40 60 80 100 120
Julian Date (JD)

−3

−2

−1

0

1

2

3

A
b

so
lu

te
M

ag
n

it
u

d
e

(∆
H

)

Period: 13.554

0 10 20 30 40 50
Period (Hours)

0

200

400

600

800

L
om

b
-S

ca
rg

le
P

ow
er

Figure 1: Properties of the dataset used when computing a single
periodogram. Upper panel: Mean-subtracted absolute magnitudes
of a synthetic object with Nt = 3, 554 measurements. Lower panel:
Non-normalized Lomb-Scargle periodogram using Nf = 105, which
correctly detects the rotation period of 13.55 h.

T1/T2, where T1 and T2 are two response times. T2 is typ-
ically the measurement taken by the optimized algorithm
and T1 is a baseline (here, T2 is often the GPU time and
T1 is the CPU time). The parallel efficiency is (Ts/Tt)t

−1,
where Ts and Tt are the sequential and parallel response
times, and t is the number of threads/CPU cores used to
execute Tt. This metric gives an indication of how well the
parallel implementation is able to utilize the t CPU cores.
Parallel efficiency in this context is not applicable to the
GPU.

4.2. Datasets

We evaluate the L-S algorithm on both the single ob-
ject and batch processing modes. A suitable dataset for
the single object scheme only requires one time series,
whereas the batch processing scheme requires input data
for multiple objects. For our single object dataset, we gen-
erate a time series for a synthetic object with Nt = 3, 554
measurements sampled at uneven time periods. Figure 1
(top panel) plots the mean-subtracted absolute magni-
tude (∆H) time series, and the lower panel shows the
L-S periodogram, which correctly finds the rotation pe-
riod of 13.55 h. We use a time series that has a substan-
tial number of measurements, as it represents the use case
where a large time series must be examined. For the sin-
gle object mode, we do not consider the case where we
need to process a small time series, as it is likely that
this task can be completed within a reasonable amount of
time without GPU acceleration. When we compute the
LSP for this object, we use the following frequency ranges
[fmin, fmax) = [3.142, 150.796) which correspond to light
curve periods of 1–48 h (or rotation periods of 2–96 h),
which are typical periods of main belt asteroids in the So-
lar System.

We create a dataset of ≈ 1, 000 synthetic asteroids

0 250 500 750 1000 1250 1500 1750 2000
Number of Observations

0

50

100

150

200

250

C
ou

nt
s

(a)

0 50 100 150 200 250 300 350
Rotation Period (h)

0

50

100

150

200

C
ou

nt
s

(b)

Figure 2: (a) Histogram of the log-normal distribution of the num-
ber of observations for the synthetic asteroid population. (b) The
rotation period solutions for all objects in the dataset.

to evaluate the batch processing scheme. Using Zwicky
Transient Facility (ZTF) as a pathfinder for LSST, a syn-
thetic observational record is produced — with ZTF-like
cadences and ZTF-like photometric errors. It is impor-
tant to capture objects with varying numbers of observa-
tions, as this may impact the performance of the GPU
algorithm where each object is computed by single CUDA
block. Figure 2(a) shows the log-normal distribution of
observations for the objects in the dataset. The distribu-
tion of the number of observations per object is similar to
the number we expect for the LSST towards the end of its
lifetime. This allows us to assess our algorithm at LSST
scale when deriving periods within the 30 s visit expo-
sure time. When we evaluate the algorithms using batch
processing mode, we use the following frequency ranges
[fmin, fmax) = [1.005, 150.796) which correspond to ro-
tation periods of 2 − 300 h. Figure 2(b) shows the real
rotation periods for the synthetic asteroid population.

Figure 3(a) plots the real period assigned to our pop-
ulation of synthetic asteroids as a function of the derived
periods using the LSP algorithm. We use the maximum
L-S power to determine the period of each object in the
dataset, and we use a frequency grid with Nf = 200, 000

6

Table 1: Details of the platforms used in the experimental evaluation.
CPU GPU

Platform Model Cores (Total) Clock Memory Model Cores Memory Software
Platform1 2×E5-2620 v4 2×8 (16) 2.1 GHz 128 GiB Quadro GP100 3584 16 GiB CUDA 9
Platform2 2×E5-2683 v4 2×16 (32) 2.1 GHz 256 GiB TitanX 3584 12 GiB CUDA 10.1

frequencies per object. In Figure 3(a), a diagonal line in-
dicates general agreement between the derived and real
periods. We find the correct periods for 94.9% of the ob-
jects to within 0.1 h of the real period. Note that a few
of the objects have light curve periods >150 h, so we were
unable to correctly derive those periods. The algorithm
does not recover all of the periods due to some objects
having too few observations. To demonstrate this, Fig-
ure 3(b) plots the fraction of matches as a function of
the observation cutoff, where an object must have at least
the number of observations on the horizontal axes to be
included in the sample. An observation cutoff of 0 indi-
cates that all objects in the dataset are included, yielding
a 94.9% agreement (as shown in Figure 3(a)). By exclud-
ing those objects with < 50 observations, our agreement
between the real and derived periods is 99%. If we use a
cutoff of 550 observations then we achieve a perfect agree-
ment, but only 45 objects are included in the sample. This
demonstrates that the source of error in Figure 3(a) is due
to not removing objects from the dataset that have too
few observations.

4.3. Selection of the Frequency Grid
The experimental evaluation necessitates examining al-

gorithmic performance across varying values of Nf to un-
derstand how the algorithm performs as a function of this
parameter. However, some of these values will be too small
and undersample the frequency space which may miss the
peaks in the periodogram. Here, we outline reasonable
values of Nf for each dataset based on the formulation
in Richards et al. (2011). For a given object, we select
[fmin, fmax) based on the science case (the expected range
of a periodic signal in the data). We compute the observ-
ing window for an object, which is the duration of time
between its first and last observation, and denote it as
Tmax = |t1 − tNt

|. Then we select ∆f = (0.2π)/Tmax. In
the case of computing a batch of objects, Tmax is the max-
imum observing window of all objects in the dataset. We
then compute Nf = (fmax − fmin)/∆f . Table 2 summa-
rizes the frequency ranges for the single object time series
and the synthetic population of asteroids used for assess-
ing the performance of batch mode. We ensure that in all
experiments that examine the performance as a function
of Nf , we select a range of values for Nf such that at the
very least, we bracket the practical value of Nf outlined
in Table 2.

4.4. Accurate Period Finding Demonstration
Before we begin evaluating our algorithms, we demon-

strate that our LSP algorithm can find a period on a real-
world dataset. We select the main belt asteroid 243 Ida

0 30 60 90 120 150
Derived Light Curve Period (h)

0

30

60

90

120

150

180

210

240

270

300

330

R
ea

l
L

ig
ht

C
u

rv
e

P
er

io
d

(h
)

(a)

0 100 200 300 400 500 600 700 800 900 1000
Observation Cutoff

0.94

0.95

0.96

0.97

0.98

0.99

1.00

F
ra

ct
io

n
of

M
at

ch
es

Fraction of Matches

Number of Matches

0

100

200

300

400

500

600

700

800

900

1000

N
u

m
b

er
of

M
at

ch
es

(b)

Figure 3: (a) Comparison of the derived vs. assigned periods of the
synthetic population of asteroids. The diagonal line indicates that
we are able to derive the correct periods to within 0.1 h for a large
majority of the population. (b) The fraction of matches (left verti-
cal axis) as a function of the observation cutoff, where each object
requires having at least the number of observations shown on the
vertical axis. An observation cutoff of 0 includes the entire dataset.
The right vertical axis shows the number of objects that match as
a function of the observation cutoff. This shows that many of the
incorrect derived periods are due to those objects with few observa-
tions. The sawtooth pattern at ≥200 observations and decrease in
the fraction of matches at 500 observations is an artifact of small
number statistics.

that has a known rotation period of 4.63 h (Vokrouhlickỳ
et al., 2003). We have ingested data from the ZTF public
survey (Bellm et al., 2019), and use the 28 data points pro-
vided by the ZTF r filter. We use the following frequency
ranges [fmin, fmax) = [3.142, 150.796) which correspond

7

Table 2: Practical values of Nf for the datasets in this paper. Fre-
quency ranges are selected based on scientific objective.

Dataset [fmin, fmax) day−1 ∆f Nf

Single Object [3.142, 150.796) 5.237× 10−3 28,194
Batch [1.005, 150.796) 5.236× 10−3 28,608

2458650 2458700 2458750 2458800 2458850
Julian Date (JD)

−0.6

−0.3

0.0

0.3

0.6

A
b

so
lu

te
M

ag
n

it
u

d
e

(∆
H

)

0 10 20 30 40 50
Period (Hours)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L
om

b
-S

ca
rg

le
P

ow
er

Figure 4: Upper panel: Mean-subtracted absolute magnitude mea-
surements (∆H) of 243Ida. Lower panel: Non-normalized Lomb-
Scargle periodogram using Nf = 105, which correctly detects the
half rotation period of 2.32 h.

to rotation periods of 2 − 96 h. Figure 4 plots ∆H as a
function of time, where the lower panel shows the L-S pe-
riodogram. Our algorithm, lsp-gpu, is able to correctly
detect the light curve period of 2.32 h, which is half of the
rotation period. Due to the geometry of an asteroid, a full
rotation will yield two periodic signals. However, L-S will
yield a single periodic signal when detecting the period in
a time series. Therefore, L-S is expected to produce a light
curve with a period that needs to be doubled to obtain the
full rotation period.

4.5. Reference Implementations

We use two implementations for comparison to lsp-
gpu. As a sanity check for output accuracy and as a
sequential baseline, we use the LSP algorithm in SciPy,
which we denote as lsp-py.

Since Python is not easily amenable to parallel execu-
tion, and to ensure that we compile with consistent op-
timizations, we port the algorithm to C and parallelize
it with OpenMP and denote this implementation as lsp-
c. The source code that we port to C is available here4.
Since the code from the SciPy implementation is written in
Cython, it is straightforward to port to C and only minor
modifications were required.

Regarding the batch mode configuration, we parallelize
lsp-c on a per-object basis, where each thread computes
an entire L-S periodogram for an object. We found that

4https://github.com/scipy/scipy/blob/v1.4.1/scipy/

signal/_spectral.pyx

this strategy was more efficient than paralleling within a
single object across frequencies. This is because for each
object, the threads must be forked and joined, and this
overhead is non-negligible. In contrast, when paralleliz-
ing on a per-object basis, we only need to create/fork the
threads and join them once. Because each object in the
batch will not have the same value of Nt, we use the dy-
namic scheduling option in OpenMP, which yields low load
imbalance across threads at the end of the computation.

Regarding the single object configuration, we paral-
lelize lsp-c across frequencies, where each thread is as-
signed Nf/t of the loop iterations, where t is the number
of threads5. Since the workload is identical across iter-
ations, we use static scheduling in this parallel OpenMP
loop.

The sequential LSP algorithm iterates over frequen-
cies, which means that the calculation of sin and cos can
be simply computed using the ∆f between frequency n
and n + 1, thus eliminating costly sin and cos calcula-
tions (i.e., the sincos at iteration n + 1 in the loop in
Listing 1 could be expressed as the difference between the
sincos at iteration n). Unfortunately, this optimization
eliminates the possibility of parallelization, as it introduces
inter-iteration dependencies. Therefore, we do not employ
this optimization in lsp-c, as we would not be able to
execute the algorithm in parallel.

4.6. Scalability of lsp-c

We first assess the scalability of lsp-c to understand
the performance of the CPU algorithm. Figure 5 plots the
response time and speedup of lsp-c as a function of the
number of executing threads for FP32 (upper panel) and
FP64 (lower panel) floating point values. We use single ob-
ject mode using the dataset shown in Figure 1. We select
Nf = 106 which is a large number of searched frequen-
cies to demonstrate performance when there is a substan-
tial amount of work to compute. For reference, a perfect
speedup is plotted. Since the algorithm has a high com-
pute to memory access ratio, the CPU cores have substan-
tial work to compute and the algorithm achieves very good
scalability. lsp-c obtains a speedup (parallel efficiency) on
t = 32 cores of 26.09× (0.815) and 26.56× (0.830) on FP32
and FP64 values, respectively.

Using t = 32 threads, we find that the ratio of the
time to compute the LSP in double precision to single
precision is 3.36, indicating that using double precision
yields substantial performance degradation. Depending
on the application, when computing the LSP on the CPU,
it may be preferable to use FP32 instead of FP64 due to
this performance disparity.

We plot the response time of the sequential SciPy LSP
algorithm in Python (lsp-py) in the lower panel of Fig-
ure 5. We find that lsp-c at t = 1 and lsp-py have

5For illustrative purposes, and without loss of generality, we as-
sume t evenly divides Nf .

8

https://github.com/scipy/scipy/blob/v1.4.1/scipy/signal/_spectral.pyx
https://github.com/scipy/scipy/blob/v1.4.1/scipy/signal/_spectral.pyx

Time

Speedup

Perfect

lsp-py

0 4 8 12 16 20 24 28 32
Number of Threads (t)

0

20

40

60

80

T
im

e
(s

)

0 4 8 12 16 20 24 28 32
Number of Threads (t)

0

50

100

150

200

250

300

T
im

e
(s

)

0

4

8

12

16

20

24

28

32

S
p

ee
d

u
p

0

4

8

12

16

20

24

28

32

S
p

ee
d

u
p

Figure 5: The scalability of lsp-c. The response time is plotted on
the left vertical axis as a function of the number of threads. On the
right vertical axis, the speedup is shown. A perfect speedup is plotted
for comparison. The experiment was executed on Platform2 which
has 32 total physical cores, using single object processing mode with
Nf = 106. The upper and lower panels correspond to FP32 and
FP64 values, respectively.

similar performance. This sanity check verifies that our
ported code, lsp-c, has consistent performance with the
original implementation.

We omit showing scalability results for the batched ex-
ecution mode, as results are similar.

4.7. Accuracy

In this section, we compare the accuracy of lsp-gpu to
lsp-py. Since lsp-gpu can be executed using FP32 and
FP64, we evaluate both options as compared to lsp-py
which executes using FP64. Figure 6 plots the L-S pe-
riodogram power of lsp-py vs. lsp-gpu for FP64 (left
panel) and FP32 (right panel), where a diagonal line indi-
cates agreement between both methods. We execute both
L-S algorithms using single batch mode using a frequency
grid with Nf = 106. We find good overall agreement be-
tween lsp-py and lsp-gpu, but we observe that for FP32,
some of the powers do not fall directly on the line at the
lower end of the power range.

Figure 7 plots the absolute difference between the pe-
riodograms using the same data shown in Figure 6. We

find that lsp-gpu executed with FP64 is consistent with
lsp-py, with the highest error occurring around the fre-
quency with the greatest power. The relative error is on
the order of 10−6, which is negligible. Comparing lsp-
py to lsp-gpu executed with FP32, we find that the er-
ror is much higher than FP64, reaching a relative error
on the order of 10−2. Despite this error, it is still low
and unlikely to cause ambiguity when interpreting a pe-
riodogram. Overall, these results indicate that: (i) the
FP32 functionality of lsp-gpu is likely sufficient for many
applications, and (ii) the results of our FP32 and FP64
lsp-gpu implementations are consistent with the Python
reference implementation.

4.8. Transferring the Periodogram to the Host

Data transfers over PCIe are a bottleneck because the
bandwidth is lower than that between the CPU and main
memory. Therefore, GPU applications that are bound by
PCIe data transfers may not perform well compared to a
parallel CPU implementation. In Section 3.5, we outlined
two methods for transferring the data from the GPU to the
host using either a standard cudaMemcpy or using several
pinned memory staging buffers and transferring the data
in three CUDA streams using cudaMemcpyAsync. Since
the standard approach requires the driver to generate tem-
porary pinned memory buffers for data transfers, it may
be preferable to have the programmer manage the mem-
ory manually by making their own pinned memory buffers
that are reused.

In this experiment, we present the speedup of the pinned
memory approach over the standard data transfer approach
showing the total end-to-end response time, where lsp-
gpu uses batch mode and the global memory kernel. We
elect to use batch mode as it requires a significant amount
of data to be transferred from the GPU to the host, where
the space complexity is O(NfNo). As we will show in
Section 4.9, the global and shared memory kernels achieve
similar performance, so it does not matter which kernel we
select here. Additionally, we examine both FP32 and FP64
data types since the latter requires double the amount of
data to be transferred.

Figure 8 plots the speedup of using the pinned memory
approach vs. the standard approach on the GP100 and Ti-
tanX GPUs. On the GP100 GPU, we obtain a speedup
by optimizing data transfers of up to 1.91×. Computing
on FP32 and FP64 yields a performance gain when using
pinned memory. Despite FP64 values requiring more data
to be transferred than FP32 values, the kernel execution
time scales with the data transfer time, and so we observe
performance gains on both FP32 and FP64. On the Ti-
tanX GPU, we obtain a speedup when processing FP32
data (up to 1.36×); however, we do not observe a speedup
on FP64 data. Since the TitanX GPU has fewer resources
dedicated to FP64 arithmetic than the GP100, the exe-
cution time using FP64 values is bounded by kernel com-
putation, and the fraction of time spent performing data

9

10−8 10−4 100 104

L-S Power SciPy

10−8

10−5

10−2

101

104

L
-S

P
ow

er
G

P
U

(F
P

64
)

10−8 10−4 100 104

L-S Power SciPy

10−8

10−5

10−2

101

104

L
-S

P
ow

er
G

P
U

(F
P

32
)

Figure 6: Comparison of periodograms generated by lsp-gpu and lsp-py. The L-S power of lsp-gpu as a function of L-S power of lsp-py is
plotted for Nf = 106 using single object mode. Execution of lsp-gpu with FP64 and FP32 is shown on the left and right panels, respectively.
The left panel shows near-perfect agreement between the periodograms generated by lsp-py and lsp-gpu when FP64 is used. In the right
panel, we observe that there is near-perfect agreement between lsp-py and lsp-gpu when the power is sufficiently high (& 10−4). Therefore,
executing L-S with only FP32 instead of FP64 is unlikely to lead to ambiguity when interpreting a periodogram. This also demonstrates that
our GPU implementation is consistent with the output of the Python reference implementation.

0 25 50 75 100 125 150

Frequency

0.00e+00

5.00e-07

1.00e-06

1.50e-06

2.00e-06

2.50e-06

|L
-S

P
ow

er
G

P
U

(F
P

64
)

-
L

-S
P

ow
er

S
ci

P
y
|

0 25 50 75 100 125 150

Frequency

0.00e+00

5.00e-03

1.00e-02

1.50e-02

2.00e-02

2.50e-02

|L
-S

P
ow

er
G

P
U

(F
P

32
)

-
L

-S
P

ow
er

S
ci

P
y
|

Figure 7: The absolute difference between the periodograms generated by lsp-gpu and lsp-py using the data in Figure 6. Execution of
lsp-gpu with FP64 and FP32 is shown in the left and right panels, respectively.

transfers is negligible. This demonstrates that on the Ti-
tanX using FP32, and FP32 and FP64 on the GP100, the
fraction of time performing device-to-host data transfers
is non-negligible. In other words, the GPU is so efficient
at computing the LSP that we observe data transfers re-
quiring non-negligible time.

4.9. The Impact of Using Shared Memory in the GPU
Kernel

As discussed in Section 3.6, we compare the perfor-
mance of two kernel designs. For each frequency, all in-
put data values (time and magnitude) need to be read
from global memory. We proposed two options to per-
form reading the input values from global memory, where
the first option is to read the values directly from global

memory, and the second option is to tile the computation,
where the threads first page the data values into shared
memory (each thread copies one element), and then all
threads iterate over the data. Table 3 compares the re-
sponse time of the batch and single object mode kernel
execution times for the shared and global memory ker-
nels, where the speedup of the shared memory over the
global memory kernel is shown. Since the optimization
only applies to the kernel, we present the kernel execution
time and not the total end-to-end computation time. We
find that the shared memory kernel improves performance
on all values of Nf examined, achieving a speedup of up
to 1.30× using batched mode with Nf = 104. While this
performance gain may seem significant, the speedup is cal-
culated using the kernel execution time not the end-to-end

10

Nf = 105 Nf = 106
G

P
10

0:
32

-b
it

G
P

10
0:

32
-b

it

G
P

10
0:

64
-b

it

G
P

10
0:

64
-b

it

T
it

an
X

:
32

-b
it

T
it

an
X

:
32

-b
it

T
it

an
X

:
64

-b
it

T
it

an
X

:
64

-b
it

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
p

ee
d

u
p

Figure 8: Speedup of using pinned memory data transfers in CUDA
streams over standard memory copies for Nf ∈ {105, 106} using
batch mode. Executions are performed on both Platform1 and
Platform2 for FP32 and FP64 floating point values using the global
memory kernel. Values over the horizontal line indicate a perfor-
mance gain from using the pinned memory data transfer scheme.

time. The speedup using the end-to-end time is negligible
in most cases. Therefore, since data transfers and other
overheads have a major performance impact, improving
the performance of the kernel does not contribute signifi-
cantly to improving the end-to-end response time.

While exploiting shared memory has been of critical
importance on older generations of GPUs, newer genera-
tions have high global memory throughput and new cache
technology; therefore, while shared memory improves the
performance of lsp-gpu, the performance gain is marginal
in some cases. Additionally, the performance of the shared
memory kernel is also a function of the selected CUDA
block size and the length of the time series of each object
(Nt). Consequently, it is possible that another configura-
tion may degrade the performance of the shared memory
kernel over the global memory kernel. Thus, in all that
follows, we use the global memory kernel, despite the mi-
nor performance advantages offered by the shared memory
kernel shown here. Overall, the importance of using shared
memory has decreased over time and this is documented in
the Nvidia marketing materials describing each successive
generation of GPUs.

4.10. Performance Evaluation of lsp-gpu and lsp-c

In the previous sections, we compared the merits and
performance characteristics of two optimizations for lsp-
gpu. In this section, we configure lsp-gpu to return the
periodogram to the host using pinned memory data trans-
fers and use the global memory kernel.

The LSP algorithm scales as O(NtNf); therefore, to
understand the performance of the algorithm across vary-
ing workloads, we can vary either the Nf or Nt parameter.
Since our GPU algorithms are parallelized across frequen-

cies, we elect to examine the performance across values of
Nf , as performance may be more sensitive to Nf than Nt.

Figure 9 plots the response time as a function of Nf for
the batch mode comparing lsp-gpu and lsp-c. We plot
results for both platforms illustrating performance on the
GP100, TitanX, and the CPUs equipped with t = 16 and
t = 32 threads on Platform1 and Platform2, respec-
tively (the number of physical cores on these platforms). In
the top panel of Figure 9 that reports the results for FP32
floating point values, we find that the response time of lsp-
gpu flattens at . 2× 104 on the GP100 and . 5× 103 on
the TitanX. This is because these workloads are small and
there may not be enough work to saturate GPU resources
or fully amortize GPU overheads. Since the workload is
higher on FP64 values, this effect is less pronounced in
the lower panel. In the upper panel, we find that the Ti-
tanX outperforms the GP100 across all values of Nf . Since
the TitanX represents the consumer-grade segment of the
GPU market, and the GP100 represents the scientific com-
puting/data center market, this result may seem surpris-
ing. However, since the TitanX is designed for FP32 oper-
ations, its FP32 capabilities are very similar to the GP100.
The lower panel of the figure (FP64 values) demonstrates
the benefit of the GP100 over the TitanX, where we ob-
serve that the GP100 achieves a speedup up to 6.66× over
the TitanX. In the lower panel, we note the missing data
point at Nf = 2 × 106 on the TitanX curve where there
was insufficient global memory to store the periodogram
data.

Unlike the performance of the GPU algorithms, lsp-c
performance in Figure 9 does not flatten with small val-
ues of Nf . This is because the CPU has two orders of
magnitude fewer cores, so they are saturated work work
at all values of Nf . In contrast, the GPU typically needs
to execute a factor of a few more threads than cores to
hide global memory access latency and to take advantage
of the high memory bandwidth on the device6.

Comparing lsp-gpu to lsp-c in Figure 9, we find that
the TitanX achieves a maximum speedup over lsp-c with
t = 32 of 59.69× and 19.15× on FP32 and FP64 floating
point values, respectively. Likewise the GP100 achieves
a maximum speedup over lsp-c with t = 32 of 50.95×
(FP32) and 113.87× (FP64). The speedups are even greater
on Platform1 with t = 16 cores. The performance gain
of using the GPU over the CPU is staggering. However,
since the LSP algorithm performs a significant amount of
computation, has few branch conditions, and has regular
memory access patterns, it is an ideal algorithm to execute
on GPU hardware.

Figure 10 plots the same information as Figure 9, but
we use single object mode. In this mode we only need
storage space for one periodogram (instead of No peri-
odograms in batch mode), so we extend the range of Nf

values. As discussed by VanderPlas (2018), the LSST may

6https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

index.html

11

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

Table 3: lsp-gpu kernel execution time (s) comparing global memory and shared memory kernels for Nf ∈ {104, 105, 106}. The speedup
of the shared memory kernel over the global memory kernel and the speedup using the end-to-end response times are shown. lsp-gpu is
executed on Platform1 (GP100) using FP64 on batch and single object processing modes. The response times are shown to five decimal
places and the speedup is shown to two decimal places.

Nf
Batch Mode Single Object Mode

Global Shared Speedup (Kernel) Speedup (Total) Global Shared Speedup (Kernel) Speedup (Total)
104 0.03949 0.03033 1.30 1.04 0.00179 0.00171 1.05 1.01
105 0.34451 0.32100 1.07 1.09 0.00686 0.00649 1.06 1.05
106 3.19483 3.03215 1.05 1.02 0.05751 0.05607 1.03 1.00

103 104 105 106

Number of Frequencies (Nf)

10−3

10−2

10−1

100

101

102

103

104

T
im

e
(s

)

TitanX

GP100

lsp-c: t=16

lsp-c: t=32

103 104 105 106

Number of Frequencies (Nf)

10−3

10−2

10−1

100

101

102

103

104

T
im

e
(s

)

Figure 9: Total response time (s) as a function of Nf comparing lsp-
gpu to lsp-c using the batch mode. lsp-gpu is configured to return
the periodogram, uses pinned memory to transfer the data, and uses
the global memory kernel. lsp-c is configured with t = 16 and t = 32
threads when executed on Platform1 and Platform2, respectively.
The upper and lower panels show FP32 and FP64 floating point
values, respectively.

require up to 25 million frequency evaluations per object;
therefore, we show Nf . 108. From Figure 10, we ob-
serve similar performance behavior as in Figure 9. Par-
ticularly, the GPU remains undersaturated with work at
lower values of Nf , which explains the flat response time
at Nf . 105.

Table 4 presents the maximum ratio of the FP64 to
the FP32 response times across all values of Nf in Fig-
ures 9 and 10 for each algorithm on both platforms. We
select the maximum ratio as it represents the worst case

103 104 105 106 107 108

Number of Frequencies (Nf)

10−3

10−2

10−1

100

101

102

103

104

T
im

e
(s

)

TitanX

GP100

lsp-c: t=16

lsp-c: t=32

103 104 105 106 107 108

Number of Frequencies (Nf)

10−3

10−2

10−1

100

101

102

103

104

T
im

e
(s

)

Figure 10: The same as Figure 9, but using single object mode.

performance degradation due to using FP64 over FP32.
Comparing the GP100 and the TitanX on single object
mode, we observe that the performance degradation of us-
ing FP64 floats requires a factor 1.69 more time for the
GP100, whereas this factor is 16.62 on the TitanX. As dis-
cussed previously, the TitanX has few resources dedicated
to FP64 arithmetic which causes this large performance
disparity between processing FP32 and FP64 values. In-
terestingly, the performance penalty for using FP64 values
on lsp-c is higher than it is for the GP100. Compar-
ing lsp-c on both platforms, we observe that the ratio is
higher when executing with t = 32 than t = 16, which we
would not expect, as the number of cycles to perform FP32
and FP64 should be the same on both platforms. This dif-
ference is likely due to other factors that occur when exe-

12

Table 4: Maximum response time ratio of the FP64 to FP32 values
in Figures 9 and 10, corresponding to batch mode and single object
mode, respectively.

GP100 TitanX lsp-c t = 16 lsp-c t = 32
Batch 1.66 11.61 2.62 3.39
Single Object 1.69 16.62 2.82 4.00

cuting the algorithm in parallel with more threads, such as
an increased number of cache misses due to threads com-
peting for space in higher levels of the memory hierarchy.
As expected, we observe similar performance ratios when
using batch mode so we omit interpreting these results.

Table 5 summarizes the speedup of the GPU over the
CPU algorithms as executed on both platforms using the
data in Figures 9 and 10. We report the maximum speedup
obtained by the GPU implementation, but note that the
CPU is competitive with the GPU at low values of Nf .
However, as discussed above, these small values of Nf are
likely unsuitable in practice, as they may miss the peaks
in the periodogram.

4.11. Generalized Perioogram with Error

We have examined the performance of the standard
LSP algorithm. However, as discussed by Richards et al.
(2011), the floating mean method in the generalized algo-
rithm can allow for more robust period searches when the
phase is sampled unevenly. We directly implement the As-
tropy geneneralized LSP algorithm that takes as input the
photometric error and floats the mean7. We implement
both the batched and single object modes using the same
configurations outlined in Section 4.10. On the GP100,
using FP64 with nf = 106 searched frequencies, the gen-
eralized periodogram requires a factor 2.06 and 2.14 of the
response time of the standard algorithm on the batched
and single object modes, respectively.

4.12. Comparison to Townsend (2010)

As discussed in Section 1, this paper builds on the work
of Townsend (2010), as we have added functionality to the
GPU-accelerated L-S algorithm. Here, we make a per-
formance comparison to the GPU algorithm in Townsend
(2010) denoted as culsp.

The culsp algorithm as outlined in Townsend (2010)
and the code located on the author’s website uses FP328.
To make a comparison to our work, we modified culsp to
use FP32 or FP64. Furthermore, culsp uses an intrinsic
function sincosf() which implements fast sin and cos
functions in hardware at the expense of accuracy. The
sincosf() intrinsic is only available for FP32 and not

FP64. Therefore, for comparison purposes, when execut-
ing culsp, we either enable or disable sincosf(); when

7https://github.com/astropy/astropy/blob/master/astropy/

timeseries/periodograms/lombscargle/implementations/cython_

impl.pyx
8http://www.astro.wisc.edu/~townsend/resource/download/

code/culsp.tar.gz

disabled, we use the corresponding library function. In our
implementation, lsp-gpu, we do not use sincosf() as
it is unavailable for FP64. For code maintainability pur-
poses, we elect to only use the library function (we may
update the code if the intrinsic is available for FP32 and
FP64 in the future).

To make a fair comparison between approaches, we
compare culsp to lsp-gpu with the shared memory kernel
as both kernels use shared memory for paging the time se-
ries from global memory. Furthermore, as we have shown
throughout this paper, data transfers require a significant
amount of time (Figure 8). Since culsp does not have
batch modes or data transfer optimizations, we only com-
pare kernel execution times using the single object mode.

Table 6 shows the culsp and lsp-gpu kernel execu-
tion times for Nf ∈ {104, 105, 106} using single object
mode. As described above, lsp-gpu does not employ the
sincosf() function, which is denoted by N/A in that

column. Comparing culsp executed with FP32 with and
without sincosf(), we observe significant performance
gains when using the intrinsic, which was also reported by
Townsend (2010). Comparing lsp-gpu to culsp without
the intrinsic functions, we find that lsp-gpu achieves an
appreciable speedup over culsp on both FP32 and FP64.

We add several caveats to this analysis. Townsend
(2010) proposed culsp in 2010 before the development
of several architectural advancements made in GPU hard-
ware. This paper updates that pioneering work by includ-
ing several additional optimizations and features. While
we attempted to make a fair comparison between approaches,
culsp could potentially be updated to achieve better per-
formance gains. Because both lsp-gpu and culsp use
similar formulations of the L-S algorithm, there are few
algorithmic differences. Both algorithms have several com-
monalities, such as using the sincos function and using
shared memory (however, we showed that shared memory
is no longer advantageous over a standard global memory
kernel). Given the similarities between algorithms, we do
not expect large performance gains over culsp. To reiter-
ate, the main difference between this paper and Townsend
(2010) is that we have included additional functionality
and optimizations that were unavailable in CUDA when
culsp was developed.

4.13. Discussion

Townsend (2010) reported a that their GPU algorithm
achieved a speedup of 27.88× over their parallel CPU algo-
rithm on FP32 floating point values. We report a speedup
of up to 181× on FP32 and 306× on FP64 data when
evaluating a single object, which indicates that the perfor-
mance disparity between the CPU and GPU has increased
significantly over the past decade. Graham et al. (2013)
compared period finding algorithm accuracy and perfor-
mance and ported the CUDA code of Townsend (2010) to
OpenCL. To our knowledge, these are the only publica-
tions proposing GPU-accelerated LSP algorithms.

13

https://github.com/astropy/astropy/blob/master/astropy/timeseries/periodograms/lombscargle/implementations/cython_impl.pyx
https://github.com/astropy/astropy/blob/master/astropy/timeseries/periodograms/lombscargle/implementations/cython_impl.pyx
https://github.com/astropy/astropy/blob/master/astropy/timeseries/periodograms/lombscargle/implementations/cython_impl.pyx
http://www.astro.wisc.edu/~townsend/resource/download/code/culsp.tar.gz
http://www.astro.wisc.edu/~townsend/resource/download/code/culsp.tar.gz

Table 5: Summary of the maximum speedup of lsp-gpu over lsp-c for the batched and single object modes from Figures 9 and 10.
Batch Mode Single Object Mode

GP100 FP32 GP100 FP64 TitanX FP32 TitanX FP64 GP100 FP32 GP100 FP64 TitanX FP32 TitanX FP64
t = 16 107.31 186.43 125.64 31.18 181.00 306.07 207.09 37.57
t = 32 50.95 113.87 59.69 19.15 79.25 174.53 92.24 23.50

Table 6: Kernel execution time (ms) comparing the shared mem-
ory lsp-gpu kernel to culsp, which also uses shared memory. We
examine Nf ∈ {104, 105, 106} on the single object dataset. Exper-
iments are performed on Platform1. Intrinsic refers to using the
sincosf() intrinsic function.
Nf FP32- Intrinsic FP32- No Intrinsic FP64

lsp-gpu culsp lsp-gpu culsp lsp-gpu culsp
104 N/A 0.151 0.983 1.486 1.602 1.676
105 N/A 1.088 3.945 5.531 6.396 9.860
106 N/A 9.821 35.469 58.135 55.953 84.441

In addition to deriving periods for Solar System objects
from LSST data, there are many other applications that
can use the LSP algorithm. One application is searching
for stellar rotation periods in light curves from the Tran-
siting Exoplanet Survey Satellite (Martins et al., 2020),
and another is searching for the orbital periods of exoplan-
ets (Zechmeister and Kürster, 2009). Period searches are
computationally expensive, which can reduce the through-
put of data processing pipelines that classify variable stars
(Richards et al., 2011). lsp-gpu can be utilized in these
applications and others to reduce the computational bur-
den of examining large scale time series datasets. Since
multiple objects need to be examined, such as in those ap-
plications described above, the batch mode feature of our
software can be utilized for this task.

Several algorithmic advancements have been made to
the LSP algorithm that reduce the O(N2

t) time complex-
ity. Other works have proposed O(NtlogNt) variants of
the LSP algorithm (Press and Rybicki, 1989; Leroy, 2012).
In particular, Leroy (2012) compared the performance of
their O(NtlogNt) algorithm on the CPU to the O(N2

t)
GPU algorithm proposed by Townsend (2010), and found
that the execution time of their algorithm is roughly 5
times shorter than the GPU algorithm and obtains high
accuracy relative to the näıve algorithm. O(NtlogNt) algo-
rithms are another approach to reduce the execution time
of the LSP algorithm; however, given current hardware
trends, it may be preferable to perform the näıve LSP al-
gorithm on the GPU to achieve good performance while
avoiding potential accuracy loss.

5. Conclusion

The primary motivation for this work is the use of
LSP to compute in near real-time the rotation periods for
batches of asteroids that our team will receive from the
LSST. Using our batched mode on ≈ 1, 000 synthetic as-
teroids, and a reasonable value of Nf = 2×105, we are able
to compute the periods on the GPU and return the peri-
odogram in ≈ 1 s using FP64 precision. This implies that

we will have a leftover time budget of ∼ 29 s to perform
outlier detection activities and send alerts to the Solar Sys-
tem community before the next batch of asteroids arrives
in the LSST data stream.

We have demonstrated that lsp-gpu yields superior
performance over the parallel CPU implementation. De-
pending on the application, it may be preferable to use
FP32 instead of FP64 floating point values to avoid the
cost associated with higher precision or to use a GPU that
has minimal resources dedicated to 64-bit arithmetic. On
a pragmatic note, it is likely that FP32 arithmetic is suf-
ficient for the LSP algorithm, but our software allows the
user to select the level of precision that they believe to be
appropriate for their scientific investigation. An overview
of the code versions is given in Appendix A.

Future work includes investigating other period finding
algorithms on the GPU, such as algorithms that assume
more structure in the data compared to the L-S algorithm,
such as Super Smoother (Friedman, 1984).

Acknowledgment

This work has been supported in part by the Arizona
Board of Regents, Regents’ Innovation Fund. We thank
the anonymous reviewer for their insightful comments and
helpful feedback on our manuscript.

Appendix A. Open Source Code

The source code is publicly available at https://github.
com/mgowanlock/gpu_lomb_scargle. To summarize, our
code assumes the following: (i) An evenly spaced fre-
quency grid is used, defined by minimum and maximum
frequency ranges and the number of searched frequencies.
(ii) The algorithm uses angular frequencies. The frequency
is given by f = 2π(p−1), where p is the period. (iii) The
units output by the code are given by the units in the in-
put dataset file. For clarity, in the paper, we converted
Julian Date (days) to hours.

The code has two versions. One version contains the
code used to produce the results in this paper, includ-
ing the two GPU and CPU implementations for the single
object and batched processing modes. To reduce confu-
sion with all of the parameters used in the paper, we also
include another version that has a default set of param-
eters selected for the user. In particular, this version of
the code uses the global memory kernel, uses the pinned
memory optimization for data transfers, and returns the

14

https://github.com/mgowanlock/gpu_lomb_scargle
https://github.com/mgowanlock/gpu_lomb_scargle

periodogram(s) to the host. The user must input the fre-
quency ranges, number of frequencies to search, the enu-
merated data type (FP32 or FP64), whether the period(s)
for the object(s) should be printed to standard out, and se-
lect the standard or generalized periodogram mode. This
version also automatically detects whether the user wants
to compute the LSP of a batch of objects or a single object.

References

References

Bell, N., Hoberock, J., 2012. Thrust: A productivity-oriented library
for CUDA, in: GPU computing gems Jade edition. Elsevier, pp.
359–371.

Bellm, E.C., et al., 2019. The Zwicky Transient Facility: System
Overview, Performance, and First Results. Publications of the
Astronomical Society of the Pacific 131, 018002. doi:10.1088/
1538-3873/aaecbe, arXiv:1902.01932.

Cook, S., 2012. CUDA programming: a developer’s guide to parallel
computing with GPUs. Newnes.

Farber, R., 2016. Parallel programming with OpenACC. Newnes.
Friedman, J.H., 1984. A variable span scatterplot smoother. Labora-

tory for Computational Statistics, Stanford University Technical
Report No. 5. .

Fujii, Y., Azumi, T., Nishio, N., Kato, S., Edahiro, M., 2013. Data
Transfer Matters for GPU Computing, in: 2013 International
Conference on Parallel and Distributed Systems, pp. 275–282.

Gowanlock, M., Karsin, B., 2019. A hybrid cpu/gpu approach for
optimizing sorting throughput. Parallel Computing 85, 45 – 55.
doi:https://doi.org/10.1016/j.parco.2019.01.004.

Graham, M.J., Drake, A.J., Djorgovski, S.G., Mahabal, A.A.,
Donalek, C., Duan, V., Maker, A., 2013. A comparison of pe-
riod finding algorithms. Monthly Notices of the Royal Astro-
nomical Society 434, 3423–3444. doi:10.1093/mnras/stt1264,
arXiv:1307.2209.

Haidar, A., Tomov, S., Dongarra, J., Higham, N.J., 2018. Har-
nessing gpu tensor cores for fast fp16 arithmetic to speed up
mixed-precision iterative refinement solvers, in: SC18: Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis, IEEE. pp. 603–613.

Ivezić, Ž., et al., 2019. LSST: From Science Drivers to Reference De-
sign and Anticipated Data Products. The Astrophysical Journal
873, 111. doi:10.3847/1538-4357/ab042c, arXiv:0805.2366.

Kirk, D.B., Wen-Mei, W.H., 2016. Programming massively parallel
processors: a hands-on approach. Morgan kaufmann.

Leroy, B., 2012. Fast calculation of the Lomb-Scargle periodogram
using nonequispaced fast Fourier transforms. Astronomy & As-
trophysics 545, A50. doi:10.1051/0004-6361/201219076.

Lomb, N.R., 1976. Least-Squares Frequency Analysis of Unequally
Spaced Data. Astrophysics and Space Science 39, 447–462. doi:10.
1007/BF00648343.

LSST Science Collaboration, 2009. LSST Science Book, Version 2.0.
arXiv e-prints , arXiv:0912.0201arXiv:0912.0201.

Martins, B.L.C., Gomes, R.L., Messias, Y.S., de Lira, S.R., Leão,
I.C., Almeida, L.A., Teixeira, M.A., das Chagas, M.L., Bravo,
J.P., Belete, A.B., Medeiros, J.R.D., 2020. A search for rotation
periods in 1000 TESS objects of interest. arXiv:2007.03079.

Munshi, A., 2009. The opencl specification, in: 2009 IEEE Hot Chips
21 Symposium (HCS), IEEE. pp. 1–314.

Press, W.H., Rybicki, G.B., 1989. Fast Algorithm for Spectral Anal-
ysis of Unevenly Sampled Data. The Astrophysical Journal 338,
277. doi:10.1086/167197.

Press, W.H., Teukolsky, S.A., Flannery, B.P., Vetterling, W.T., 1992.
Numerical recipes in Fortran 77: volume 1 of Fortran numerical
recipes: the art of scientific computing. Cambridge university
press.

Richards, J.W., Starr, D.L., Butler, N.R., Bloom, J.S., Brewer, J.M.,
Crellin-Quick, A., Higgins, J., Kennedy, R., Rischard, M., 2011.

On Machine-learned Classification of Variable Stars with Sparse
and Noisy Time-series Data. The Astrophysical Journal 733, 10.
doi:10.1088/0004-637X/733/1/10, arXiv:1101.1959.

Scargle, J.D., 1982. Studies in astronomical time series analysis. II.
Statistical aspects of spectral analysis of unevenly spaced data.
The Astrophysical Journal 263, 835–853. doi:10.1086/160554.

Sun, Y., Mukherjee, S., Baruah, T., Dong, S., Gutierrez, J., Mo-
han, P., Kaeli, D., 2018. Evaluating performance tradeoffs on
the radeon open compute platform, in: 2018 IEEE International
Symposium on Performance Analysis of Systems and Software (IS-
PASS), IEEE. pp. 209–218.

Townsend, R.H.D., 2010. Fast Calculation of the Lomb-Scargle Pe-
riodogram Using Graphics Processing Units. The Astrophysical
Journal Supplement Series 191, 247–253. doi:10.1088/0067-0049/
191/2/247, arXiv:1007.1658.

Van Werkhoven, B., Maassen, J., Seinstra, F.J., Bal, H.E., 2014.
Performance models for CPU-GPU data transfers, in: 2014 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, IEEE. pp. 11–20.

VanderPlas, J.T., 2018. Understanding the Lomb-Scargle Peri-
odogram. The Astrophysical Journals 236, 16. doi:10.3847/
1538-4365/aab766, arXiv:1703.09824.

Vokrouhlickỳ, D., Nesvornỳ, D., Bottke, W.F., 2003. The vector
alignments of asteroid spins by thermal torques. Nature 425, 147–
151.

Warner, B.D., Harris, A.W., Pravec, P., 2009. The asteroid
lightcurve database. Icarus 202, 134–146.

Zechmeister, M., Kürster, M., 2009. The generalised Lomb-Scargle
periodogram. A new formalism for the floating-mean and Kep-
lerian periodograms. Astronomy & Astrophysics 496, 577–584.
doi:10.1051/0004-6361:200811296, arXiv:0901.2573.

15

http://dx.doi.org/10.1088/1538-3873/aaecbe
http://dx.doi.org/10.1088/1538-3873/aaecbe
http://arxiv.org/abs/1902.01932
http://arxiv.org/abs/1902.01932
http://dx.doi.org/https://doi.org/10.1016/j.parco.2019.01.004
http://dx.doi.org/10.1093/mnras/stt1264
http://arxiv.org/abs/1307.2209
http://arxiv.org/abs/1307.2209
http://dx.doi.org/10.3847/1538-4357/ab042c
http://arxiv.org/abs/0805.2366
http://arxiv.org/abs/0805.2366
http://dx.doi.org/10.1051/0004-6361/201219076
http://dx.doi.org/10.1007/BF00648343
http://dx.doi.org/10.1007/BF00648343
http://arxiv.org/abs/0912.0201
http://arxiv.org/abs/0912.0201
http://arxiv.org/abs/2007.03079
http://arxiv.org/abs/2007.03079
http://dx.doi.org/10.1086/167197
http://dx.doi.org/10.1088/0004-637X/733/1/10
http://arxiv.org/abs/1101.1959
http://arxiv.org/abs/1101.1959
http://dx.doi.org/10.1086/160554
http://dx.doi.org/10.1088/0067-0049/191/2/247
http://dx.doi.org/10.1088/0067-0049/191/2/247
http://arxiv.org/abs/1007.1658
http://arxiv.org/abs/1007.1658
http://dx.doi.org/10.3847/1538-4365/aab766
http://dx.doi.org/10.3847/1538-4365/aab766
http://arxiv.org/abs/1703.09824
http://arxiv.org/abs/1703.09824
http://dx.doi.org/10.1051/0004-6361:200811296
http://arxiv.org/abs/0901.2573
http://arxiv.org/abs/0901.2573

	1 Introduction
	2 Lomb-Scargle Periodogram Algorithm
	3 GPU-Accelerated Lomb-Scargle
	3.1 Graphics Processing Units and the Lomb-Scargle Periodogram
	3.2 Overview of Program Elements Common to Both Modes
	3.3 Single Periodogram Mode
	3.4 Batch Periodogram Mode
	3.5 Transferring the Periodogram to the Host
	3.6 Using Shared Memory in the Kernel
	3.7 Overview of the Code

	4 Experimental Evaluation
	4.1 Experimental Methodology
	4.2 Datasets
	4.3 Selection of the Frequency Grid
	4.4 Accurate Period Finding Demonstration
	4.5 Reference Implementations
	4.6 Scalability of lsp-c
	4.7 Accuracy
	4.8 Transferring the Periodogram to the Host
	4.9 The Impact of Using Shared Memory in the GPU Kernel
	4.10 Performance Evaluation of lsp-gpu and lsp-c
	4.11 Generalized Perioogram with Error
	4.12 Comparison to Townsend (2010)
	4.13 Discussion

	5 Conclusion
	Appendix A Open Source Code

