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Abstract
The Cellular Potts Model (CPM) has been used in a wide variety of biological simulations. However,
most current CPM implementations use a sequential modified Metropolis algorithm which restricts
the size of simulations. In this paper we present a parallel CPM algorithm for simulations of
morphogenesis, which includes cell–cell adhesion, a cell volume constraint, and cell haptotaxis. The
algorithm uses appropriate data structures and checkerboard subgrids for parallelization.
Communication and updating algorithms synchronize properties of cells simulated on different
processor nodes. Tests show that the parallel algorithm has good scalability, permitting large-scale
simulations of cell morphogenesis (107 or more cells) and broadening the scope of CPM applications.
The new algorithm satisfies the balance condition, which is sufficient for convergence of the
underlying Markov chain.
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1. Introduction
Simulations of complex biological phenomena like organ development, wound healing and
tumor growth, collectively known as morphogenesis, must handle a wide variety of biological
agents, mechanisms and interactions at multiple length scales. The Cellular Potts Model
developed by Glazier and Graner (CPM) [1-3] has become a common technique for
morphogenesis simulations, because it easily extends to describe the differentiation, growth,
death, shape changes and migration of cells and the secretion and absorption of extracellular
materials. Some of the many studies using the CPM treat cell–cell adhesion, chicken limb-bud
formation and Dictyostelium discoideum development, and non-biological phenomena like
liquid flow during foam drainage and foam rheology [4-9].

The CPM approach makes several choices about how to describe cells and their behaviors and
interactions. First, it describes cells as spatially extended but internally structureless objects
with complex shapes. Second, it describes most cell behaviors and interactions in terms of
effective energies and elastic constraints. These first two choices are the core of the CPM
approach. Third, it assumes perfect damping and quasi-thermal fluctuations, which together
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cause the configuration and properties of the cells to evolve continuously to minimize the
effective energy, with realistic kinetics, where cells move with velocities proportional to the
applied force (the local gradient of the effective energy). Fourth, it discretizes the cells and
associated fields onto a lattice. Finally, the classic implementation of the CPM employs a
modified Metropolis Monte-Carlo algorithm which chooses update sites randomly and accepts
them with a Metropolis–Boltzmann probability.

The Cellular Potts Model (CPM) generalizes the Ising model from statistical mechanics and it
shares its core idea of modeling dynamics based on energy minimization under imposed
fluctuations. The CPM uses a lattice to describe cells. We associate an integer index to each
lattice site (pixel) to identify the space a cell occupies at any instant. The value of the index at
a pixel (i, j, k) is l if the site lies in cell l. Domains (i.e. collections of pixels with the same
index) represent cells. Thus, we treat a cell as a set of discrete subcomponents that can rearrange
to produce cell motion and shape changes. As long as we can describe a process in terms of a
real or effective potential energy, we can include it in the CPM framework by adding it to the
effective energy. Cells can move up or down gradients of both diffusible chemical signals (i.e.
chemotaxis) and insoluble extracellular matrix (ECM) molecules (i.e. haptotaxis). The CPM
models chemotaxis and haptotaxis by adding a chemical potential energy, cell growth by
changing target volumes of cells, and cell division by a specific reassignment of pixels. If a
proposed change in lattice configuration (i.e. a change in the index associated with a pixel)
changes the effective energy by ΔE, we accept the change with probability:

(1)

where T represents the effective cytoskeletal fluctuation amplitude of cells in the simulation
in units of energy. One Monte-Carlo Step (MCS) consists of as many index-change attempts
as the number of pixels in the lattice (or subgrid in the parallel algorithm). A typical CPM
effective energy might contain terms for adhesion, a cell volume constraint and chemotaxis:

(2)

We discuss each of these terms in Section 2.

Since the typical discretization scale is 2–5 microns per lattice site, CPM simulations of large
tissue volumes require large amounts of computer memory. Current practical single-processor
sequential simulations can handle about 105 cells. However, a full model of the morphogenesis
of a complete organ or an entire embryo would require the simulation of 106–108 cells, or
between 10–1000 processor nodes.

Clearly, we need a parallel algorithm which implements the CPM and runs on the High
Performance Computing Clusters available in most universities. Wright et al. [14] have
implemented a parallel version of the original Potts model of grain growth. However, in this
model the effective energy consists only of local grain boundary interactions, so a change of
a single pixel changes only the energies of its neighbors. Mombach et al. recently developed
a parallel algorithm for the CPM, based on a Random-Walker approach [10]. The standard
CPM algorithm always rejects spin flip attempts inside a cell, wasting much calculation time.
The Random-Walker approach attempts flips only at cell boundaries, reducing rejection rates.
The sequential Random-Walker algorithm runs 5.7 to 15.6 times faster than the standard
sequential CPM algorithm depending on the application. However, the parallel scheme in this
algorithm depends on a replicated lattice among all processors, which inherently limits its
scalability.

We developed a spatial decomposition parallel algorithm based on the common Message
Passing Interface Standard (MPI), which allows large scale CPM simulations running on
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computer clusters. The main difficulty in CPM parallelization is that the effective energy is
non-local. Changing one lattice site changes the volume of two cells and hence the energy
associated with all pixels in both cells. If a cell's pixels are divided between subdomains located
on two nodes and the nodes attempt updates affecting the cell without communication, one
node will have stale information about the state of the cell. If we use a simple block
parallelization, where each processor calculates a predefined rectangular subdomain of the full
lattice, non-locality greatly increases the frequency of interprocessor communication for
synchronization and, because of communication latency, the time each processor spends
waiting rather than calculating. To solve this problem, we improve the data structure to describe
cells and decompose the subdomain assigned to each node into smaller subgrids so that
corresponding subgrids on different nodes do not interact, a method known as a checkerboard
algorithm. We base our algorithms on those Barkema and collaborators developed for the Ising
model, see, e.g., [11]. The checkboard algorithm allows successful parallel implementation of
the CPM using MPI [12,13]. Essentially the algorithm uses an asynchronous update algorithm
updating different subgrids at different times. When indices on a current subgrid are updated
indices on neighboring subgrids are fixed and the cell volume changes occur only on the current
subgrid.

In MPI parallelization, the larger the number of computations per pixel update, the smaller the
ratio of message passing to computation, and thus the larger the parallel efficiency. In the Ising
model, the computational burden per pixel update is small (at most a few floating point
operations), which increases the ratio of message passing to computation in a naive partition.
However, in the CPM, the ratio of failed update attempts to accepted updates can be very large
(typically 104 or more). Only accepted updates change the lattice configuration and potentially
stale information in neighboring nodes. The large effective number of computations per update
reduces the burden of message passing. However, because we can construct pathological
situations which have a high acceptance rate, we need to be careful to check that such situations
do not occur in practice.

2. The Cellular Potts Model
In this section we discuss each of energy terms, cell differentiation and reaction–diffusion
equations used in the CPM. We also describe the numerical scheme we used in solving
reaction–diffusion equations.

2.1. Cell–cell adhesion energy
In Eq. (2)EAdhesion phenomenologically describes the net adhesion or repulsion between two
cell membranes. It is the product of the binding energy per unit area, Jτ, τ′, and the area of
contact between the two cells. Jτ, τ′ depends on the specific properties of the interface between
the interacting cells:

(3)

where the Kronecker delta, δ(σ, σ′) = 0 if σ ≠ σ′ and δ(σ, σ′) = 1 if σ = σ′, ensures that only the
surface sites between different cells contribute to the adhesion energy. Adhesive interactions
act over a prescribed range around each pixel, usually up to fourth-nearest-neighbors.

2.2. Cell volume and surface area constraints
A cell of type τ has a prescribed target volume vtarget(σ, τ) and volume elasticity λσ, target
surface area starget (σ, τ) and membrane elasticity . Cell volume and surface area change due
to growth and division of cells. EVolume exacts an energy penalty for deviations of the actual
volume from the target volume and of the actual surface area from the target surface area:
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(4)

2.3. Chemotaxis and haptotaxis
Cells can move up or down gradients of both diffusible chemical signals (i.e. chemotaxis) and
insoluble extracellular matrix (ECM) molecules (i.e. haptotaxis). The energy terms for both
chemotaxis and haptotaxis are local, though chemotaxis requires a standard parallel diffusion-
equation solver for the diffusing field. The simplest form for chemotactic or haptotactic
effective energy is:

(5)

where  is the local concentration of a particular species of signaling molecule in
extracellular space and μ(σ) is the effective chemical potential.

2.4. Cell growth, division and cell death
Typically, we model cell growth by gradually increasing a cell's target volume and cell death
by setting the cell's target volume to zero. Cell division occurs when the cell reaches a threshold
volume at which point we split the cell into two cells with the same volume, assigning a new
index value to one of the new cells.

2.5. Reaction–diffusion (RD) equations
Turing [16] introduced the idea that interactions of two or more reacting and diffusing
chemicals could form self-organizing instabilities that provide the basis for spatial biological
patterning. We can describe such interactions of reaction and diffusion in terms of a set of
reaction–diffusion (RD) equations. The general form for a set of RD equations with M
components is:

(6)

where i = 1⋯M, μ = (μ1⋯μM), μi is the concentration of the ith chemical species, Fi(μ) is the
reaction term.

We use a finite difference numerical scheme to solve the reaction–diffusion equations with
calculations being very fast when performed using a sequential algorithm on a small lattice.
The chemical field values in the CPM calculations were interpolated from the numerical
solution of the reaction–diffusion equations. We plan to parallelize the numerical scheme for
the reaction–diffusion equations for larger lattices.

2.6. Cell differentiation
Most multicellular organisms have many different types of cells performing different functions.
The cell types result from cell differentiation in which some genes turn on or activate and other
genes turn off or inactivate. As a result, different cell types have different behaviors. In the
CPM, all cells of a particular differentiation type share a set of parameters describing their
behaviors and properties.

Chen et al. Page 4

Comput Phys Commun. Author manuscript; available in PMC 2007 December 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3. Data structures and algorithms
3.1. System design principles

Our parallel CPM algorithm tries to observe the following design principles: to implement the
CPM model without systematic errors, to homogeneously and automatically distribute
calculations and memory usage among all processor nodes for good scalability, and to use
object oriented programming and MPI to improve flexibility.

3.2. Spatial decomposition algorithm
Our parallel algorithm homogeneously divides the lattice among all processor nodes, one
subdomain per node. The effective energy terms for cell–cell adhesion, haptotaxis and
chemotaxis are local, but the constraint energy terms, e.g., for cell volume and surface area,
have an interaction range of the diameter of a cell. During a CPM simulation, some cells cross
boundaries between nodes. If nodes attempted to update pixels in these cells simultaneously,
without passing update information between nodes, cell properties like volume and surface
area would stale and energy evaluations would be incorrect. We use a multi-subgrid
checkerboard method to solve this problem and Fig. 1 illustrates the topology of the spatial
decomposition algorithm. In each node we subdivide the subdomain into four subgrids indexed
from 1–4. At any given time during the simulation we restrict calculations in each node to one
subgrid with indices at adjacent subgrids being fixed. Notice that each subgrid is much larger
than a cell diameter. Therefore, calculation at any given node does not affect the calculations
occurring simultaneously at other nodes. Fig. 1 illustrates a cell located at the corner of 4 nodes.
If the calculation is taking place at a subgrid of a given node indicated in white, calculations
in all other nodes are occurring at white subgrids with no calculations occurring at adjacent
subgrids (indicated with different shades of grey). In principle, we should switch subgrids after
each pixel update to recover the classical algorithm. Since acceptance rates are low on average,
we should be able to make many update attempts before switching between subgrids. However,
because acceptance is stochastic, we would need to switch subgrids at different times in
different nodes, which is inconvenient. In practice we can update many times per subgrid
meaning that sometimes we use stale positional information from the adjacent subgrids. This
is possible because the subgrids are large, the acceptance rate is small and the effects of stale
positional information just outside the boundaries are fairly weak. We use a pseudo-random
switching sequence to switch between sub-grids frequently enough to make the effect of stale
positional information negligible compared to the stochastic fluctuations intrinsic to Monte-
Carlo methods. Each subdomain hosts a set of buffers which contains pixel information from
the border regions of neighboring subgrids. If a flip attempts takes place at a subgrid border,
we can retrieve the neighboring subgrid's pixel information from these buffers. Before subgrid
switching, the updated subgrid needs to pass this border pixel information to neighboring
subgrids.

Initialization()SpatialDecomposition()for eachSubRunStepdo 

CalcuSwitchSequence() for eachsubgrid_runningsdo  for 

eachupdate_attemptdo   accepted := JudgeUpdate (update)   if 

(accepted):    CellUpdate()    LatticeUpdate() Communicate() 

CellMapUpdate() RemapBuffers()if (output) GlobalProperties()

Program 1. Algorithm pseudo code.

Program 1 gives the pseudo code for this algorithm. In the pseudo code, Initialization() reads
the control file and field information, constructs the framework classes and initializes
parameters. SpatialDecomposition() includes topology controller initialization, lattice
decomposition, and subgrid initialization. CalcuSwitchSequence() generates a random
switching sequence for all nodes. Each SubRunStep lasts a fixed number of MCS. Different
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instances of SubRunStep can have different switching rates depending on user requirements
(we discuss the effect of the switching rate on efficiency in Section 4.2). JudgeUpdate() is a
function which determines whether to accept an index change attempt according to Eqs. (1)
and (2). CellUpdate() and LatticeUpdate() change the corresponding cell and lattice data for
a successful update. Communicate() passes updated lattice and cell information (such as cells'
volume and states) to neighboring subgrids and receives corresponding information.
CellMapUpdate() allocates memory for incoming cells and updates the CellMap data.
RemapBuffers() changes the buffer data from the format in which it is received communicating
state (a NodeID and an index ID for each cell) into that used by calculation (pointers to cells).

3.3. Balance condition
The classical Monte Carlo algorithm selects a site or spin at random ensuring that the detailed
balance condition is satisfied at all times. In our parallel algorithm detailed balance is violated
because the flip cannot be reversed immediately after a subgrid switch. However, detailed
balance is unnecessary for the convergence of the underlying Markov chain to be able to
converge to the desired equilibrium distribution. Instead, the weaker balance condition is
necessary and sufficient for convergence [15].

The Metropolis algorithm evolves a Markov process and generates a sequence of states s1,
s2, s3,... with x = (x1, x2, x3,...) as its stationary or equilibrium distribution. We define the
transition matrix A(n) (n = 1, 2,....,k) as follows:

(7)

(8)

where qij is a proposed transitional probability from i to j and αij is an acceptance probability
from i to j defined as:

(9)

The corresponding transitional kernel (for k sites) of each sweep is the product of all updating
matrices

(10)

If the parallel algorithm satisfies the balance condition
(11)

the underlying Markov chain converges to the equilibrium distribution.

We now prove that our algorithm satisfies the balance condition. In accordance with the
classical Monte Carlo algorithm at every step a site is randomly selected from a lattice. In our
parallel algorithm we randomly select a site from the restricted area (inside of a subgrid).
However, each single flip of a site or spin is still accepted using Metropolis rules and detailed
balance is still satisfied for each A(n)

(12)

and thus

(13)
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which shows that the balance condition xT·A(n) = xT is satisfied for each individual flip of a
site or spin. Therefore, we have that

(14)

which proves that the balance condition is still satisfied for each sweep in the parallel algorithm.

3.4. Data structures
The two basic data structures of the parallel CPM algorithm are the cell and the lattice. During
simulations, cells move between subdomains which different nodes control. Cells can also
appear due to division and disappear due to cell death. In the classical single processor
algorithm, each cell has its own global cell index. This data structure works efficiently for
sequential algorithms. In a parallel algorithm, this data structure would require a Cell Index
Manager to handle cell division, disappearance and hand off between nodes. For example,
when a cell divides in a particular node, the node would send a request to the Manager to obtain
a new cell index and the Manager would notify all other nodes about the new cell. Instead, we
assign each cell two numbers, a node ID and an index ID. The Node ID is the index of the node
which generates the cell and the index ID, like the old index, is the index in the cell generation
sequence in that node. Since cell IDs are now unique, each node can generate new cells without
communicating with other nodes. Since cells may move between nodes, a node dynamically
allocates the memory for cell data structures on creation or appearance and releases it when a
cell moves out of the node or disappears. To optimize the usage of memory and speed data
access, the index in each pixel is a pointer to the cell data structure. Cell properties (such as
cell volume, cell area, cell type, center of mass, cell state, etc.) are stored in the data structure
“cell map” and when properties of a cell are changed, corresponding data in the cell map is
updated. During cell differentiation the corresponding “cell type” value in the cell map structure
is updated resulting in the change of cell energy constants. After each subgrid calculation the
communication algorithm transfers properties of cells located on subgrids boundaries to
adjacent subgrids and synchronizes the adjacent subgrids' cell maps. Fig. 2 illustrates the data
structures of the lattice and the cell map.

3.5. Energy calculation
Energy calculation plays an essential role in the CPM. Our parallel algorithm implements three
types of energies: adhesion energy, volume energy and chemical energy. Because the local
chemical concentration determines the effective chemical energy, this energy is local. Our
implementation stores the chemical concentration field in a separate array, which corresponds
pixel-by-pixel with the lattice array. The spatial decomposition algorithm we discussed above
divides the chemical concentration field into subgrids. Each subgrid contains the chemical field
information for energy calculations, so the calculation requires no extra communication. The
adhesion energy calculation requires information on the indices in neighboring pixels. Usually,
all neighboring pixels lie inside the local subgrid. However, if the pixel is near the subgrid
boundary, its neighbors could lie outside the subgrid. In these cases, we retrieve pixel
information from the cache buffer arrays which store data from neighboring subgrids (see Fig.
1 and Section 3.2). The width of the buffer depends on the neighbor range of cell–cell adhesion
energy calculation demonstrated in Fig. 3. The volume energy has a range of cell diameter and
each boundary pixel update changes two cell-volumes. Cell volume and cell area are stored in
the cell map structure. During volume energy calculation we retrieve cell volume values from
the cell map.
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3.6. Communication and synchronization
In the spatial decomposition algorithm, when the program switches between different subgrids,
the communication algorithm transfers two types of information: lattice configurations and
cell information (including cell volumes, cell types and cell states, etc.). In two dimensions,
each subgrid needs to communicate with 8 neighboring subgrids (in three dimensions, 26
neighboring subgrids) and the communication algorithm sequentially sends and receives
corresponding data according to the spatial organization of the subgrids. Sending and receiving
can take place within a node, in which case the algorithm is just a memory copy. Fig. 4 illustrates
the communication algorithm. After the communication, the program needs to dynamically
update cell maps and overlap buffers. The program also needs to check whether a cell crossed
between subgrids and implement the appropriate cell creation or destruction operations.

3.7. Algorithm for treating cells which cross subgrid boundaries
Fig. 5 illustrates the algorithm we employ when a cell crosses a subgrid boundary. When a cell
moves into a subgrid, the cell map of the subgrid must allocate memory and issue a temporary
cell ID for the cell. Our algorithm does not directly store the Node ID and index ID in the
lattice. Instead, each lattice pixel stores a pointer to the corresponding cell and this pointer
served as a temporary cell ID to save memory and speed cell property access. When a cell exits
a subgrid, the cell map of the subgrid must free the cell's memory and release the cell's
temporary ID.

3.8. Algorithm for global properties calculations
We often wish to track global properties of the configuration, such as the total effective energy,
cell topology distribution, etc., for statistical analysis. Global properties are of two types. The
first type is pixel related, e.g., chemical energy or adhesion energy. Each subgrid can calculate
such statistics by adding values pixel-by-pixel and finally aggregate all information from all
nodes (adhesion energy calculations need corrections on sub-grids boundaries). The second
type of global properties are cell related, such as volume energy, surface area energy, and
volume distributions, etc. Our algorithm stores cell properties (such as volume and surface
area) in the cell class and the statistical analysis must calculate these properties cell-by-cell. If
each subgrid works independently, cells lying on multiple subgrids will be over counted. In
our algorithm, each node sends cell information back to the node to which the cell originally
belonged at creation and the creating node then aggregates properties of all cells. Finally node
0 sums up information from each node to obtain correct global properties. Fig. 6 shows details
of this algorithm.

4. Validation, scalability and discussion
All tests used the Biocomplexity Cluster at the University of Notre Dame. The cluster consists
of 64 dual nodes with two AMD 64 bit Opteron 248 CPUs (CPU frequency 2.2 GHz) and 4
GB of RAM each.

We used several special simulations to validate various aspects of our parallel algorithm. Tests
checked that boundaries matched between subgrids, that cells responded correctly to different
energy terms, and that cells moved correctly between different nodes. Fig. 7 illustrates some
of these test results.

To check how severely stale information affects cells evolution, we used different subgrid
switching frequencies to vary the amount of stale information (i.e. a low subgrid switching
frequency increases the amount of stale information). We will discuss these results in Section
4.2.
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4.1. Scalability of the parallel algorithm
We tested our algorithm for both spatially homogeneous and inhomogeneous configuration of
cells. In the latter case, load balance is an important consideration. We use the relative
efficiency, normalized by the whole lattice size, to analyze the scalability of our algorithm,

defined as: , where f is the relative efficiency, Tn is the run time of a simulation
on a cluster of n nodes, and Sn is the lattice size of the simulation. Since the smallest cluster
on which our program runs has 9 nodes, we use the run time on 9 nodes as a reference value.

The first group of performance tests simulate cell coarsening from initially homogeneously
distributed cells. Table 1 lists test parameters. Test group (a) used a small size lattice of 300 ×
300 per node. Test group (b) used a moderate size lattice of 1000 × 1000 per node. Test group
(c) used a large size lattice of 2000 × 2000. Test group (d) checked the effect of subgrid
switching frequency on efficiency. Test group (e) distributed the same size lattice on different
numbers of nodes. Test (d) has the best scalability because the low switching rate reduces
communications. Tests (b) and (c) show almost the same scalability, suggesting that lattice
size has a weak effect on scalability. For small lattice sizes (a) the scalability is poor. When
the subgrid lattice size is small, preparation for communication (such as socket creation)
consumes a significant amount of time. As the lattice size increases, the communication time
itself becomes more significant. Test (e) shows good scalability, though worse than that of
group (d), because the subgrid lattice size decreases when the number of nodes increases.

We used a simulation of chondrogenic condensation (see Fig. 15) to test scalability for
inhomogeneous cell distributions. Table 2 lists all parameters. Each test ran for 10,000 MCS.
For 25 nodes the relative efficiency was 0.89 for this simulation compared to 0.95 for the
corresponding homogeneous simulation. The efficiency reduction results from the
inhomogeneous cell distribution, which unbalances the load. Fig. 8 shows the load balance for
16 nodes. When a low-load processor finishes a calculation cycle, it must wait until all
processors finish their corresponding calculation cycles. The waiting time wastes CPU cycles,
which reduces efficiency. The stronger the inhomogeneity the lower the efficiency.

4.2. Impact of subgrid switching frequency on algorithm performance
In our parallel algorithm, the calculation switches between subgrids after a fixed number of
index update attempts and executes the communication subroutine to synchronize lattice and
cell information. Frequent subgrid switching reduces efficiency, while infrequent subgrid
switching results in cell boundary discontinuities and pattern anisotropy due to stale
parameters. We ran tests with different subgrid switching frequencies to analyze the effects of
switching rates on efficiencies. and cell patterns. We used a cell coarsening simulation, on a
4000 × 4000 lattice size beginning with 640,000 cells. In the cell coarsening simulation cell
boundary motion is solely driven by cell–cell adhesion energy resulting in growths of certain
cells, shrinking and disappearance of others. Soap froth is a typical coarsening system [17].
Good agreement between soap froth experiments and the Potts model simulations has been
shown in [18]. This simulation used 16 processors and ran for 200 MCS. Subgrid switching
frequencies varied from 0.0625 to 8 per MCS. Fig. 9 shows our results. For subgrid switching
frequencies higher than once per 4 MCS, the communication time increases substantially and
the efficiency decreases. When the subgrid switching frequency is less than 0.25/MCS, the
subgrid switching frequency has little effect on the efficiency and real calculations consume
more than 80% of the run time.

The above analysis seems to favor low subgrid switching frequencies. However, we must
determine whether slow switching rates cause deviations from the cell patterns that the classical
algorithm produces. To answer this question, we ran cell sorting tests at low subgrid switching
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frequencies. The lattice size for this test was 300 × 300 and we ran it on 4 processors. Fig. 10
illustrates the test results. Even for a subgrid switching frequency of 0.0625/MCS (16 MCS
per subgrid switch), no significant cell boundary discontinuities occurred at subgrid
boundaries.

In the above examples cell volumes stayed near their target values and cell configurations were
quite close to equilibrium. However, if configurations were far from equilibrium, energies and
configurations would change rapidly and the dynamics of cells at subgrid boundaries could
differ from those obtained by using the classical algorithm. We ran several tests of cell growth
and haptotaxis with fast dynamics to demonstrate effects of changing subgrid switching
frequency on cell patterns.

Fig. 11 illustrates cell growth simulation results. We used 4 processors for each simulation and
each simulation contains one cell and medium (ECM). The cell was initially located on the
corner of the sub-lattice of one processor (shown in Fig. 11). During simulation the cell crossed
node boundaries to other nodes. The initial volume of the cell was 285 and the target volume
of the cell was 2000. We ran three simulations with different subgrid switching frequencies
(1/MCS, 0.25/MCS and 0.125/MCS). All other test parameters were kept the same: J1-ECM =
10, volume elasticity λσ = 0.11. We ran simulations for a period of 200 MCS on a 300 × 300
lattice. Due to the large difference between the initial and the target cell volume, the volume
energy term played the dominant role during the initial stage of the simulation (MCS < 30).
Driven by the volume energy, the cell growth was a very fast dynamic process at this stage and
the adhesion energy term was too weak to maintain the smooth cell boundary. For subgrid
switching frequency of 1/MCS and 0.25/MCS no significant cell boundary discontinuities
occurred at subgrid boundaries. For subgrid switching frequency of 0.125/MCS and MCS = 8
the cell did not cross the node boundary because subgrid switching was performed only once
during this time. No significant cell boundary discontinuities occurred at subgrid boundaries
with MCS = 24 and MCS = 200. Fig. 12 demonstrates good agreement between simulations
of cell growth dynamics (cell volume vs. MCS number) obtained for different subgrid
switching frequencies, using parallel CPM and sequential CPM. Averaged results of 5 test runs
are shown. Parallel algorithm yields correct dynamics even at the initial stage of the process
(MCS < 30) with switching frequency of 0.125/MCS, which corresponds to fast dynamics.

Fig. 13 illustrates simulation results of the haptotaxis process. In this test we used 4 processors
for each simulation containing one cell and medium (ECM) with initial simulation
configuration shown in Fig. 13 and chemical concentration C(x, y) = x + y. We ran three
simulations with different subgrid switching frequencies (1/MCS, 0.25/MCS and 0.125/MCS)
and with a large effective chemical potential value 300.0. All other test parameters were kept
the same: J1-ECM = 5, volume elasticity λσ = 0.1. Simulations ran for 200 MCS on a 300 × 300
lattice. Driven by the chemical energy, the cell moved from the lower right node to the upper
left node. Due to the large chemical energy potential value (μ = 300.0) the shape of the moving
cell was irregular. For subgrid switching frequency of 1/MCS and 0.25/MCS, no significant
cell boundary discontinuities occurred at subgrid boundaries. For subgrid switching frequency
of 0.125/MCS, the cell did not move into upper nodes with MCS = 16 since subgrid switching
was performed only twice during this time. No significant cell boundary discontinuities
occurred at subgrid boundaries for MCS = 40.

In both fast dynamic processes simulations using the parallel algorithm give good results,
especially with sub-grid switching frequencies of 1/MCS and 4/MCS. In practice systems
usually have slower dynamics and in such a case stale-information effects are weaker.

We also tested the scalability and efficiency for larger scale fast dynamic processes using cell
growth and haptotactic processes as test examples. The cell growth test involved only one cell
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type and the cell target volume value (νtarget = 2000) was much bigger than the initial cell
volume value (νtarget = 285). Each node contained 400 cells on a 1000 × 1000 lattice to ensure
enough space being available for cell growth. Cells were randomly distributed on the lattice.
Parameters were chosen as follows: J1-ECM = 10, volume elasticity λσ = 0.11, sub-grid
switching frequency = 0.25/MCS. Each simulation ran for 200 MCS. The haptotaxis simulation
involved one cell type with and the cell target volume value (νtarget = 285) was the same as the
initial cell volume value (νtarget = 285). J1-ECM = 5, volume elasticity λσ = 0.1, chemical
potential μ = 300.0, chemical field C(x, y) = x + y, sub-grid switching frequency = 0.25/MCS,
each simulation ran for 200 MCS. Testing results listed in Tables 3 and 4 demonstrate good
efficiency of the parallel algorithm for fast dynamic processes. For example, on 25 processors
cluster with sub-grid switching frequency = 0.25/MCS the relative efficiencies of cell growth
simulation and haptotactic simulation are 0.906 and 0.910, respectively.

The communication speed of the cluster plays an important role in algorithm efficiency. Users
of our algorithm should calibrate their cluster by running subgrid switching frequency tests on
short simulations and choose subgrid switching frequencies to balance efficiency and stale-
information effects.

4.3. Morphogenesis simulations
Steinberg's Differential Adhesion Hypothesis (DAH), states that cells adhere to each other with
different strengths depending on their types [19,20]. Cell sorting results from random motions
of the cells that allow them to minimize their adhesion energy, analogous to surface-tension-
driven phase separation of immiscible liquids [19]. If cells of the same type adhere more
strongly, they gradually cluster together, with less adhesive cells surrounding the more
adhesive ones. Based on the physics of the DAH, we model cell-sorting phenomena as
variations in cell-specific adhesivity at the cell level. Fig. 14 shows two simulation results for
different adhesivities. All other parameters and the initial configurations of the two simulations
are the same. In simulation (a), cell type 1 has higher adhesion energy with itself (is less
cohesive) than cell type 2 is with itself. The heterotypic (type 1–type 2) adhesivity is
intermediate. During the simulation, cells of type 2 cluster together and are surrounded by cells
of type 1. In simulation (b), the adhesivity of cell type 1 with itself is the same as the adhesivity
of cell type 2 with itself and greater than the heterotypic adhesivity. This energy hierarchy
results in partial sorting.

During development of the embryonic chick limb, the formation of the skeletal pattern depends
on complex dynamics involving several growth factors and cell differentiation. Hentschel et
al. have developed a model of the precartilage condensation phase of skeletogenesis based on
reaction diffusion and interactions between eight components: FGF concentration, four cell
types, TGF-β concentration (activator), inhibitor concentration, and fibronectin density [21].
The mechanism leads to patterning roughly consistent with experiments.

Fig. 15 shows a simulation of Hentschel-type chondrogenic condensation run on 16 nodes with
a total lattice size of 1200 × 1200. This simulation used an externally-supplied chemical pre-
pattern to control cell differentiation and cell condensation.

4.4. Discussion
The main tradeoff in using the new asynchronous update algorithm is accuracy—potentially
affected by use of stale information—vs. parallel efficiency. The right parameters to use depend
on the type of kinetic process modeled, as well as the speed of the computing and network
facilities. Provided the accuracy of the model is acceptable, the algorithm converges to the
desired equilibrium distribution, since it satisfies the balance condition. Future work will
address optimization of the communication and load balance schemes.
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Our parallel algorithm uses the classic Monte-Carlo site updating algorithm which wastes
computer time by selecting and then rejecting non-boundary sites which cannot be updated.
Combining our parallel algorithm with an algorithm which selects only boundary sites like the
Random Walker algorithm [10] will greatly improve efficiency. Long communication times,
especially with high subgrid switching frequencies, also reduce efficiency. The current
algorithm transfers the entire contents of the overlap buffers during the communication phase,
which is wasteful. Optimizing the communication step by sending and receiving only updated
sites will save communication time and increase efficiency.

One problem with our fixed-boundary spatial decomposition is load imbalance for spatially
heterogeneous simulations. One possible solution is to use smaller subgrids and assign multiple
low-load subgrids to single processors. However, this method requires additional
communication time to transfer lattice and cell information between processors. Alternatively
we could dynamically move node boundaries to decrease load imbalance. This method would
require a complex topology manager to monitor load balance and dynamically manipulate node
boundary positions.

5. Conclusion
Most implementations of the widely-used CPM are sequential, which limits the size of
morphogenesis simulations. Our parallel algorithm uses checkboard domain decomposition to
permit large-scale morphogenesis simulations (107 cells or more). It greatly broadens the range
of potential CPM applications. Our initial tests on cell coarsening, cell sorting and chicken
limb bud formation show good scalability and ability to reproduce the results of single
processor algorithms.
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Fig. 1.
Spatial decomposition. Each computer node consists of four subgrids. At any given time,
calculations are performed on only one subgrid of each node indicated in different shading in
the figure. Each node includes a set of buffers which duplicate the border areas of neighboring
subgrids. During simulations pixel information in neighboring nodes is retrieved from these
buffers.
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Fig. 2.
Data structures of the lattice and the cell map. Each cell has a unique cell ID which include a
node ID and an index ID. The lattice structure stores pointers to cells.
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Fig. 3.
Overlap buffer structure for adhesion energy calculations. Each subgrid can access neighboring
subgrid lattices through the overlap cache buffer. We update the overlap cache buffer content
after the corresponding subgrid calculation cycle finishes.
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Fig. 4.
Communication algorithm: After each subgrid calculation cycle, the subgrid needs to transfer
data about cells and pixels near its boundary to neighboring subgrids. Lattice sites and
associated variables (volume, surface area, etc.) located within the buffer area are transferred
so that neighboring subgrids contain correct cell configurations and characteristics.
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Fig. 5.
The algorithm for treating cells which cross subgrid boundaries. When a cell crosses a subgrid
boundary, the algorithm needs to update cell map values. (a) When a cell moves into a subgrid,
the subgrid must allocate the cell map memory and issue a temporary cell ID to the cell,
updating the lattice sites and cell map values. (b) When a cell exits a subgrid, the subgrid must
free the cell map memory and release the cell's temporary ID.
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Fig. 6.
Our algorithm for calculating cell-related global properties (volume energy, volume
distribution, etc.). Each node sends cell information (volume, surface area, etc.) back to the
node indexed by Node ID which is the node that created the cell. The original creating node
then calculates global properties. This algorithm ensures that cell related properties are counted
only once when a cell lies in multiple sub-domains.
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Fig. 7.
Validation using simple simulations: (a) Cell structures of a node boundary. When cells cross
node boundaries, cell boundaries match perfectly between subgrids. (b) A snapshot of a cell
coarsening simulation. Cells crossing node boundaries have normal shapes, no cell-boundary
discontinuities. The lines indicate the boundaries of the subdomains assigned to each node in
a 4 node simulation.
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Fig. 8.
Load balance chart used for the simulation of chondrogenic condensation from Fig. 15. This
test uses 16 processors. Each block corresponds to a processor. Grey scale indicates the ratio
of waiting time to run time. Dark shows short waiting time and light shows long waiting time.
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Fig. 9.
The effect of subgrid switching efficiency on algorithm performance. The lattice size is 4000
× 4000 and the initial number of cells is 640,000.
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Fig. 10.
The effect of subgrid switching frequency on a cell sorting simulation with a lattice size of 300
× 300. The grey scale indicates the different cells. Lines indicate the boundaries of the
subdomains assigned to each node in a 4-node simulation. The subgrid switching frequency
varies from 1/MCS to 0.0625/MCS. No significant cell boundary discontinuity occurs, even
for low subgrid switching frequencies (0.125/MCS or 0.0625/MCS).

Chen et al. Page 23

Comput Phys Commun. Author manuscript; available in PMC 2007 December 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 11.
The effect of subgrid switching frequency on cell growth simulations with a lattice size of
300×300. Lines indicate the boundaries of the subdomains assigned to each node in a 4-node
simulation. The subgrid switching frequency varies from 1/MCS to 0.125/MCS and for each
switching frequency cell configurations of MCS = 8, MCS = 24 and MCS = 200 are illustrated.
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Fig. 12.
The effect of subgrid switching frequency on cell growth dynamics. The subgrid switching
frequency varies from 1/MCS to 0.125/MCS for the parallel algorithm. For the comparison
purpose we also illustrate the sequential CPM result. We performed 5 separate tests for each
curve and show the average of the values. Energy parameters and initial configurations used
in tests are the same as those of Fig. 11.
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Fig. 13.
The effect of subgrid switching frequency on haptotaxis simulations with a lattice size of 300
× 300. Lines indicate the boundaries of the subdomains assigned to each node in a 4-node
simulation. The subgrid switching frequency varies from 1/MCS to 0.125/MCS and for each
switching frequency cell configurations of MCS = 16, MCS = 40 and MCS = 120 are illustrated.
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Fig. 14.
Cell sorting simulation. Cell type 1 (dark). Cell type 2 (light). Extra cellular matrix (ECM)
(grey). The two simulations use the same initial cell configuration and target volumes (νtarget
= 150), the only differences between (a) and (b) are the different adhesion constants. (a)
Adhesion constants: J1−1 = 14, J2−2 = 2, J1−2 = 11, J1,2-ECM = 16. (b) Adhesion constants:
J1−1 = 14, J2−2 = 14, J1−2 = 16, J1,2-ECM = 16. The lines indicate the boundaries of the
subdomains assigned to each node in a 16-node simulation.
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Fig. 15.
Simulation of chondrogenic condensation during chicken limb-bud formation. The lines
indicate the boundaries of the subdomains assigned to each node for a 16-node simulation.
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