
 1

Attribute Value Weighting in K-Modes Clustering 
 

Zengyou He, Xaiofei Xu, Shengchun Deng 

Department of Computer Science and Engineering, Harbin Institute of Technology,  
92 West Dazhi Street, P.O Box 315, Harbin 150001, P. R. China 

zengyouhe@yahoo.com, {xiaofei, dsc}@hit.edu.cn 
 
Abstract In this paper, the traditional k-modes clustering algorithm is extended by weighting 
attribute value matches in dissimilarity computation. The use of attribute value weighting 
technique makes it possible to generate clusters with stronger intra-similarities, and therefore 
achieve better clustering performance. Experimental results on real life datasets show that these 
value weighting based k-modes algorithms are superior to the standard k-modes algorithm with 
respect to clustering accuracy. 
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1. Introduction  

Categorical data clustering is an important research problem in pattern recognition and data 
mining. The k-modes algorithm [1] extends the k-means paradigm to cluster categorical data by 
using (1) a simple matching dissimilarity measure for categorical objects, (2) modes instead of 
means for clusters, and (3) a frequency-based method to update modes in the k-means fashion to 
minimize the cost function of clustering. The k-modes algorithm is widely used in real world 
applications due to its efficiency in dealing with large categorical database. 

In standard k-modes algorithm, a simple matching similarity measure is used, in which the 
distance is either 0 or 1. Such simple matching dissimilarity measure doesn’t consider the implicit 
similarity relationship embedded in categorical values, which will result in a weaker intra-cluster 
similarity by allocating less similar objects to the cluster. To illustrate this fact, let’s consider the 
following example shown in Fig.1. 

Example 1: In this artificial example, the dataset is described with 3 categorical attributes A1, 
A2,and A3, and there are two clusters with their modes. Assuming that we have to allocate a data 
object Y = [a, p, w] to either cluster 1 or cluster 2. According to the k-modes algorithm, we can 
assign Y to either cluster 1 or cluster 2 since these two clusters have the same mode. However, 
from the viewpoint of intra-cluster similarity, it is more desirable to allocate Y to cluster 1. 

Cluster 1: mode1=[a, p, r]  Cluster 2: mode2=[a, p, r]

A1 A2 A3

a  p r 

a p s 

a p t 

A1 A2 A3

a q r 

b p t 

a p k 
 

Fig. 1 Two clusters with their modes in example 1 

 
The above example shows that the dissimilarity measure used in k-modes algorithm treat all 
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attribute values equally, which can not always represent the real semantic distance between a data 
object and a cluster. To address this problem, this paper extends k-modes clustering algorithm by 
weighting attribute value matches in dissimilarity computation. More precisely, the similarity 
between two identical categorical values is not always one but a value-dependent weight ω  
ranging from 0 to 1. Consequently, the distance between two distinct categorical values is still 1, 
while the distance between two identical categorical values becomes ω−1 . Such modification 
on distance measure allows the algorithm to recognize clusters with strong intra-similarities, and 
therefore achieve better clustering performance. 

A number of non-binary similarity measures (e.g., [2-6]) have been proposed for categorical 
values, which can be exploited for providing different weights on attribute value matches in 
k-modes. However, existing methods are not very feasible in our problem since most of them are 
specially designed for the task of supervised learning [3-4] or manual efforts are needed to specify 
distance hierarchies [5]. Therefore, this paper presents several frequency-based weighting methods, 
which result in several variants of attribute value weighting based k-modes algorithm.  

New k-modes algorithms with frequency-based weighting schemas are easy to be 
implemented with only minor modifications on the original k-modes algorithm. More importantly, 
these new algorithms can achieve better clustering accuracies without sacrificing the scalability of 
original k-modes algorithm. Experimental results on real life datasets verify the superiority of our 
methods. 

The rest of this paper is organized as follows: Section 2 reviews the literature from several 
viewpoints and Section 3 reviews the standard k-modes algorithm. Then attribute value weighting 
based k-modes algorithms are presented in Section 4. Finally, Section 5 gives empirical results and 
Section 6 concludes the paper. 

2. Literature Review 

The k-modes algorithm [1] has become a popular technique in solving categorical data 
clustering problems in different application domains. In this paper, our focus is to study k-modes 
type clustering for categorical data. Hence, we will review only those k-modes related papers. 

Following the k-modes algorithm, many research efforts [7-14] have been conducted to 
further improve its performance.  

Huang and Ng introduced the fuzzy k-modes algorithm [7], which assigns membership 
degrees to data objects in different clusters. The tabu search technique is applied in [8] and genetic 
algorithm is utilized in [9] to improve k-modes algorithm. Alternatively, fuzzy k-modes algorithm 
is extended by representing the clusters of categorical data with fuzzy centroids instead of the 
hard-type centroids used in the original algorithm [10-11]. However, most of these methods are 
much slower than the original k-modes algorithm in running time. 

Since the k-modes algorithm is sensitive to the initial conditions, another feasible way for 
improving its performance is to design effective initialization methods. To that end, an iterative 
initial-points refinement algorithm for categorical data is presented in [12]. 

A new k-modes algorithm is developed in our previous work [13], which applies a new 
dissimilarity measure to the k-modes clustering. The main idea is to use the relative attribute 
frequencies of the cluster modes in the similarity measure in the k-modes objective function. The 
method in [13] could be considered as one special case of frequency-based weighting schemas 
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studied in this paper. Ng et al. [14] provide a theoretical understanding of the proposed k-modes 
algorithm in [13]. 

Measuring similarities between categorical data objects is a difficult task since relations 
between categorical values cannot be mathematical specified or easily established. Recently, how 
to define a good distance (dissimilarity) measure between categorical data objects has started 
drawing more attentions (e.g., [2-6]). However, most existing methods are not very feasible in our 
problem due to the following reasons. (1) Some techniques [3-4] are specially designed for the 
task of supervised learning, which are not applicable to cluster analysis. (2) Manual efforts are 
needed in defining distance hierarchies in [5], which is error-prone and not feasible for attribute 
that takes on many values. (3) Some recent work [2] has proposed algorithms that can 
automatically produce distance hierarchies without human interactions, however, these algorithms 
are very complicated and time-consuming. One exception is the method in [6], which adopts a 
similarity measure that gives greater weight to uncommon attribute value matches in similarity 
computations. However, its feasibility in k-modes clustering is still unknown.  

Attribute weighting is also an important research topic in cluster analysis. In particular, 
attribute weighting in k-means-type clustering has started drawing more attentions (e.g., [15-18]). 
We remark that our focus in this paper is to weight attribute values instead of attributes. It seems 
that it is not an easy task to apply those techniques in [15-18] to attribute value weighting in 
categorical data clustering. 

3. The k-modes Algorithm 

Let D = {X1, X2, …, Xn} be a set of n categorical objects, where each Xi = [xi,1, xi,2, …, xi,m] is 
described by m categorical attributes A1, …, Am. Each attribute Aj describes a domain of values, 

denoted by },...,,{)( )()2()1( jp
jjjj aaaADom = , where pj is the number of category values of 

attribute Aj.  
The k-modes algorithm uses the k-means paradigm to search a partition of D into k clusters 

that minimize the objective function P with unknown variables U and Z as follows: 
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where 

z U is an kn×  partition matrix, liu , is a binary variable, and 1, =liu  indicates that 

object Xi is allocated to cluster Cl; 
z Z = {Z1, Z2, …, Zk} is a set of vectors representing the centers of the k clusters, where Zl 

= [zl,1, zl,2, …, zl,m] ( kl ≤≤1 ); 
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z ),( ,, jlji zxd is a distance or dissimilarity measure between object Xi and the center of 

cluster Cl on attribute Aj. In k-modes algorithm, a simple matching distance measure is 
used. That is, the distance between two distinct categorical values is 1, while the 
distance between two identical categorical values is 0. More precisely,  
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The optimization problem in k-modes clustering can be solved by iteratively solving the 
following two minimization problems: 

1. Problem P1: Fix ZZ
)

= , solve the reduced problem ),( ZUP
)

, 

2. Problem P2: Fix UU
)

= , solve the reduced problem ),( ZUP
)

. 

Problem P1 and P2 are solved according to the two following theorems, respectively.  
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Theorem 2: Let UU
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The above idea is formalized in k-modes algorithm as follows. 
Algorithm (The k-modes algorithm) 

1. Randomly choose an initial )1(Z . Determine )1(U  such that ),( )1(ZUP is minimized. 

Set t = 1. 

2. Determine )1( +tZ  such that ),( )1()( +tt ZUP is minimized. If ),( )1()( +tt ZUP = 

),( )()( tt ZUP , then stop; otherwise, go to step 3. 

3. Determine )1( +tU  such that ),( )1()1( ++ tt ZUP is minimized. If 

),( )1()1( ++ tt ZUP = ),( )1()( +tt ZUP , then stop; otherwise, set t = t+1 and go to step 2. 
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4. Attribute Value Weighting Based k-modes Algorithms 

4.1 Problem Formulation 
The use of simple matching dissimilarity measure in standard k-modes algorithm may cause 

problems in both object allocation and center selection, which are summarized as follows.   
1. Object Allocation: In solving Problem P1 for k-modes clustering, data objects are allocated 

to clusters according to Theorem 1, i.e., each data object is assigned to its nearest cluster. However, 
the simple matching distance measure is either 0 or 1, which cannot always represent the real 
semantic distance between a data object and a cluster. As shown in the Example of Section 1, data 
objects can be misclassified and allocated to intuitively less desired cluster when simple matching 
dissimilarity measure is adopted.  

2. Center Selection: In solving Problem P2 for k-modes clustering, cluster centers are selected 
according to Theorem 2, i.e., cluster center is the frequency mode of attribute values in each 

cluster. However, the minimum solution Z
)

 is not unique, so liz ,  may arbitrarily set to be the 

first mode of attribute values. This problem occurs frequently when clusters have weak 
intra-similarities, i.e., the attribute modes do not have high frequencies. In this case, it is more 
desirable to select those globally less frequent attribute modes as cluster centers from the 
viewpoint of statistical significance. That is, attribute modes with smaller frequency counts in the 
whole dataset should be considered with higher priority. For instance, in the Example of Section 1, 
attribute values r, s and t of A3 in cluster 1 are candidates for mode since they have equal 
frequency counts in this cluster. Clearly, priority should be given to s since it is less frequent than 
r and t (as shown in Fig.1, the frequency counts of both r and t in the whole dataset are 2, which is 
larger than 1, i.e., the frequency count of s). However, standard k-modes algorithm cannot deal 
this problem due to the use of simple matching dissimilarity measure.  

To address the above problems in k-modes algorithm, this section extends k-modes clustering 
algorithm by weighting attribute value matches in dissimilarity computation. More precisely, the 
similarity between two identical categorical values is not always one but a value-dependent weight 
value ranging from 0 to 1. Such modification on distance measure will help the algorithm to avoid 
the above-mentioned problems in object allocation and center selection. That is, the new 
optimization problem we are trying to minimize becomes (5), which subjects to the same 
conditions as (2) and (3).  
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⎪⎩

⎪
⎨
⎧

≠

=−
=

)(1

)(),(1
),(

,,

,,,
,,

jlji

jljiji
jljiw zx

zxlx
zxd

ω
                                  (6) 

where ),( , lx jiω  is a weight value for jix , in cluster lC .  
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According to the definition of )(⋅wd , the distance between two distinct categorical values is 

still 1, while the distance between two identical categorical values becomes )(1 ⋅−ω . When 

),( , lx jiω =1 for any ni ≤≤1 , mj ≤≤1 and kl ≤≤1 , the corresponding distance function is 

the same as in (4) in the original k-modes algorithm. That is, simple matching dissimilarity 

measure is a special case of )(⋅wd  when ),( , lx jiω is always fixed to be 1.   

The optimization problem (5) in the attribute value weighting based k-modes clustering can 
be solved iteratively in a similar manner as in original k-modes clustering. That is, Problem P1 can 

be solved according to Theorem 1 ( )(⋅d  is replaced by )(⋅wd ). To solve Problem P2, we have 

the following theorem, whose proof is similar to that of Theorem 3 in Ref. [14]. 
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Since the size of cluster || lC  is fixed, ∑
=

n

i
jljiwli zxdu

1
,,, ),( is minimized iff 

),()|( )()( laCaf t
jl

t
j ω  is maximal. The result follows.                                  

By comparing the results in Theorems 2 and 3, the cluster centers Z are updated in a different 
manner since we use different distance functions in (4) and (6) respectively. According to 
Theorem 3, the component of each cluster mode is determined by both frequency count and 
weight of corresponding attribute value. Therefore, center selection procedure could be enhanced 
by the use of attribute value weighting based dissimilarity measure. We remark that object 
allocation problem could also be alleviated since objects are assigned according to the new 
distance measure in Problem P1. More specific and detailed discussion and comments will be 
given in Section 4.2. 

4.2 Weighting Schemas 

This section presents several frequency-based weighting methods, which result in several 
variants of attribute value weighting based k-modes algorithm. New k-modes algorithms with 
frequency-based weighting schemas are easy to be implemented since only minor modifications 
are needed on the original k-modes algorithm. More importantly, these new algorithms can 
achieve better clustering accuracies without sacrificing the scalability of original k-modes 
algorithm.  
 
4.2.1 Relative Value Frequency Based Weighting Schema 
 

The main idea is to use relative frequencies of attribute values in each cluster as the weights, 
i.e., the weighting function is defined as: 

),( )( la r
jω = ||/)|( )(

ll
t

j CCaf                                            (WF1) 

The effect of this weighting function on cluster analysis could be investigated from two 
perspectives. 

In allocating data objects to clusters in Problem P1, the distance between two matched 

attribute values becomes ||/)|(1 )(
ll

t
j CCaf− , which is a more meaningful distance function 

since the weak intra-similarity is taken into account. Hence, incorrect object allocation problem 
could be alleviated under this weighting schema. Continuing the Example of Section 1, the 

distance between Y and mode1 and mode2 are computed as 11)3/31()3/31( =+−+−  and 

3/51)3/21()3/21( =+−+− , respectively. Therefore, cluster 1 is the nearest cluster to data 

object Y. That is, with the use of this new weighting function, the data object Y will be assigned to 
the proper cluster. 

Cluster centers are selected according to Theorem 3 in Problem P2, the selection criteria 

becomes ||/)|( )(2
ll

t
j CCaf . Since || lC  is fixed, ||/)|( )(2

ll
t

j CCaf  reaches its 
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maximal value iff )|( )(
l

t
j Caf  is maximal. It implies that the cluster center still is the frequency 

mode of attribute values in each cluster, which is the same as in the original k-modes algorithm. In 
other words, the problem in center selection still exists even the weighting function (WF1) is used. 

Overall, such relative value frequency based weighting schema can provide an improved 
procedure for object allocation, while it lacks of the capability for better center selection. In 
contrast, another weighting schema introduced in Section 4.2.2 is good at center selection but 
cannot provide much help on effective object allocation. 

Another remark on weighting function (WF1) is that it is dynamic, i.e., the weight of each 
attribute value is not fixed but changed dynamically in the clustering process. It is not difficult to 

verify such property since both )|( )(
l

t
j Caf  and || lC  change their values frequently in 

different iterations. Furthermore, it should be noted the same attribute value )(t
ja  might take 

different weight values in different clusters. 
Clearly, the use of proposed weighting schema introduced a new variant of k-modes 

algorithm, which is denoted by df-k-modes. The df-k-modes algorithm can use the same procedure 

as in original k-modes. The only difference is that we need to count and store )|( )(
l

t
j Caf  and 

|| lC  in each iteration for the distance function evaluation. Therefore, the scalability of original 

k-modes algorithm is preserved.  
 
4.2.2 Uncommon Attribute Value Matches Based Weighting Schema 
 

This section exploits another weighting schema that is introduced by Goodall [19] for 
weighting uncommon attribute value matches. The Goodall measure was first proposed for 
biological and genetic taxonomy problems, where unusual characteristics shared by biological 
entities is often attributed to closely related genetic information resulting in these entities being 
classified into the same species [19]. Li and Biswas [6] have extended it to clustering problems in 
more general domains. Therefore, we can adopt the method given by Li and Biswas [6]. 

A pair of objects (Xi, Xj) is considered more similar than a second pair of objects (Xp, Xq), if 
and only if the objects Xi and Xj exhibit a greater match in attribute values that are less common in 
the population. In other words, similarity among objects is decided by the un-commonality of their 
attribute value matches. Similarity computed using the heuristic of weighting uncommon attribute 
value matches helps to define more cohesive, tight clusters where objects grouped into the same 
cluster are likely to share special and characteristic attribute values. One should note that common 
attributes values also play an important role in the similarity computation and in the clustering 
process. The similarity computation is realized by weighting attribute value matches between a 
pair of objects by the frequency of occurrence of the attribute value in the dataset. 

For each attribute value )(r
ja in },...,,{)( )()2()1( jp

jjjj aaaADom = , the More Similar 

Attribute Value Set of )(r
ja is defined as:  



 9

)}(),|()|(|{)( )()()()()(
j

t
j

r
j

t
j

t
j

r
j ADomaDafDafaaMSAVS ∈≤=  

where )|( )( Daf r
j  is the frequency count of attribute value )(r

ja in dataset D, i.e., 

)|( )( Daf r
j = |}|{| )(

,,
r

jjiji axx =  

This is the set of attribute values with lower or equal frequencies of occurrence than that of 

)(r
ja . Note that a value pair is more similar if it has lower frequency of occurrence. The weighting 

function is defined as:  

),( )( la r
jω = ∑

∈ −

−
−

)(

)()(

)()( )1(
)1)|()(|(

1
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j
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                     (WF2) 

where n is the total number of objects in the dataset. If the above weighting function is used, the 
uncommon value matches in similarity computation will make more contribution to similarity 
values. 

Taking the Example in Section 1 to illustrate the computation. Considering attribute A3 in the 

given dataset, 2)|( =Drf , 2)|( =Dtf , 1)|( =Dsf  and 1)|( =Dkf , i.e., values s 

and k are less frequent than values r and t. The MSAVS for attribute value r and t is: 
MSAVS (r) = MSAVS (t)= {r, t, s, k}. 
Given the MSAVS, the weights of attribute value r and t are calculated as: 

),( lrω = ),( ltω  = 1 –(
)16(6
)12(2

−
− +

)16(6
)12(2

−
− +

)16(6
)11(1

−
− +

)16(6
)11(1

−
− )= 1-0.133 = 0.867. 

Similarly, the MSAVS for attribute value s and k is:  
MSAVS (s) = MSAVS (k) = {s, k}. 

Hence, ),( lsω = ),( lkω  = 1 –(
)16(6
)11(1

−
− +

)16(6
)11(1

−
− ) = 1. 

Therefore, attribute A3 contributes a value of 0.867 to the similarity between objects when 
attribute value r or t is matched. Similarly, attribute A3 contributes a value of 1 to the similarity 
between objects if attribute value s or k is matched.  

Compared to the weighting function defined in Section 4.2.1, the weighting function 
introduced in this Section is static, i.e., the weight of each attribute value is fixed throughout the 
clustering process. That is, the weight of each attribute value can be considered to be a constant. 
The effect of this weighting function on cluster analysis could also be studied from two 
viewpoints. 

In solving Problem P1, the distance between two matched attribute values becomes 

∑
∈ −

−

)(

)()(

)()( )1(
)1)|()(|(

r
j

t
j aMSAVSa

t
j

t
j

nn
DafDaf

, which is a fixed constant for each )(r
ja . Hence, the 

known problem in object allocation still exists under this weighting schema. 
In solving Problem P2, the criteria for center selection becomes 
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Caf . Hence, when there are multiple 

candidate attribute values for attribute mode, candidates with smaller global frequency counts will 
be selected with higher priority according to the new center selection criteria. For instance, in the 
Example of Section 1, attribute values r, s and t of A3 in cluster 1 are valid candidates for attribute 
mode in the original k-modes algorithm since they have equal frequency in this cluster. With the 
use of new weighting function (WF2), attribute value s will be selected as the representative for A3 
in cluster 1 since it makes the criteria function to reach maximal value, i.e., 3/11)3/1( =× . 
Hence, the new weighting function provides an improved center selection procedure, which avoids 
the problem in center selection in original k-modes algorithm.  

From the above analysis, we can see that the uncommon value matches based weighting 
schema is only effective on meaningful center selection, while the incorrect data allocation 
problem remains unsolved.  

The new variant of k-modes algorithm under uncommon value matches based weighting 
schema is denoted by sf-k-modes. The sf-k-modes algorithm can use the same procedure as in 
original k-modes algorithm after pre-computing the weights of attribute values. We note that this 
preprocessing step can be finished in O (n) since one single pass over the data is sufficient to get 
all frequency counts of attribute values. Therefore, the sf-k-modes algorithm deserves good 
scalability.  
 
4.2.3 Two Hybrid Weighting Schemas 
 

As shown in previous sections, both the relative value frequency based weighting schema and 
uncommon value matches based weighting schema deserve certain drawbacks. Fortunately, they 
are complementary to each other in object allocation and center selection. It is a very natural idea 
to develop a new weighting function by combining these two methods. The new hybrid weighting 
function is defined as: 

),( )( la r
jω = ∑
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         (WF3) 

The effect of above weighting function on object allocation and center selection can be 
analyzed in a similar manner as in previous sections. It is easy to see that this new weighting 
function is able to provide better solution for both object allocation and center selection, which are 
not well addressed in the original k-modes algorithm.  

Motivated by the success of (WF3), other kinds of hybrid weighting functions are also 
possible. For instance, another more efficient yet simple hybrid weighting function (WF4) is 
defined as follows. 

),( )( la r
jω =

)|(||
)|(

)(
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DafC
Caf
r

jl

l
r

j
                                            (WF4) 

(WF4) can be considered as a simplified version of (WF3) by replacing 
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.  

The use of  (WF3) and (WF4) give two new variants of k-modes algorithm, which are 
denoted by hcf-k-modes and hsf-k-modes, respectively.  
 

4.3 Computational Complexity 

 
In sf-k-modes, hcf-k-modes and hsf-k-modes, one preprocessing step is required before 

entering the standard iteration process, which can be finished in O (n) since one single pass over 
the data is sufficient to get all frequency counts of attribute values.  

Hence, the time complexities of all these attribute value weighting based k-modes algorithms 
are O (tmnk), where t is the total number of iterations required, k is the number of clusters, m is the 
number of attributes, and n is the number of objects. 

The above analysis shows that these new algorithms are suitable for clustering large 
categorical data.  

5. Experimental Results 

A comprehensive performance study has been conducted to evaluate our methods. In this 
section, we describe those experiments and the results. We ran attribute value weighting based 
k-modes algorithms on real-life datasets obtained from the UCI Machine Learning Repository [20] 
to test their clustering performance against original k-modes algorithm. 
 

5.1 Real Life Datasets and Evaluation Method 
Six data sets from the UCI Repository are used, all of which contains only categorical 

attributes and class attributes. The information about the data sets is tabulated in Table 1. Note that 
the class attributes of the data have not been used in the clustering process. 
 

Table 1. Datasets used in experiments 
Data set Size Attribute Class Class Distribution 
Voting 435 16 2 168/267 
Breast cancer 699 9 2 241/458 
Mushroom 8124 22 2 3916/4208 
Soybean 47 35 4 10/10/10/17 
Lymphography 148 18 4 2/4/61/81 
Zoo 101 17 7 4/5/8/10/13/20/41 

 
Validating clustering results is a non-trivial task. In the presence of true labels, as in the case 

of the data sets we used, the clustering accuracy for measuring the clustering results was computed 
as follows [1]. Given the final number of clusters, k, clustering accuracy r was defined as: r 
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=
n

sk

l l∑ =1 , where n is the number of objects in the dataset, sl is the number of instances occurring 

in both cluster Cl and its corresponding class, which had the maximal value. In other words, sl is 
the number of objects with the class label that dominates cluster Cl.  

The intuition behind clustering accuracy defined above is that clusterings with “pure” clusters, 
i.e., clusters in which all objects have the same class label, are preferable. That is, if a partition has 
clustering accuracy equal to 100%, it means that it contains only pure clusters. These kinds of 
clusters are also interesting from a practical perspective. Hence, we can conclude that larger 
clustering accuracy implies better clustering results in real world applications. 
 

5.2 Results 

For each dataset, the number of clusters is set to be the known number of its class labels. For 
instance, the number of clusters is set to be 2 on voting data. We carried out 100 random runs of 
the original k-modes and new k-modes algorithms on each data set. In each run, the same initial 
cluster centers were used in all algorithms. The average clustering accuracies of different 
algorithms were compared.  

Table 2 lists the average accuracy of clustering achieved by each algorithm over 100 runs for 
the six data sets. From Table 2, some important observations are summarized as follows. 

(1) Firstly, it is evident from Table 2 that all attribute value weighting based k-modes 
algorithms give better clustering accuracy in comparison to standard k-modes algorithm. Hence, 
we can conclude that clustering accuracy could be greatly improved with the use of attribute value 
weighting technique in k-modes clustering. 

(2) Secondly, the clustering accuracies achieved by two algorithms with basic weighting 
schemas (df-k-modes and sf-k-modes) are always better than that of standard k-modes on every 
dataset. It implies that original k-modes algorithm can be enhanced even only object allocation or 
center selection is given special attention.  

(3) Finally, just as we have expected, two algorithms with hybrid weighting schemas 
(hcf-k-modes and hsf-k-modes) are more accurate than the basic weighting schema based 
algorithms.  
 

Table 2. Average clustering accuracy (%) achieved by five algorithms on six datasets 
Data set Standard k-modes df-k-modes sf-k-modes hcf-k-modes hsf-k-modes 
Voting 85.92 86.58 87.34 87.01 87.02 
Breast cancer 85.00 86.43 86.87 91.19 94.91 
Mushroom 73.81 74.61 76.44 72.70 72.76 
Soybean 81.94 89.34 86.00 93.09 94.11 
Lymphography 66.08 69.99 68.50 71.92 71.91 
Zoo 82.92 87.30 84.21 86.23 84.63 
Avg. 79.28 82.38 81.56 83.69 84.22 
 

Moreover, to test the scalability of the proposed algorithms on large data sets, we applied the 
five algorithms to the Nursery data set [20]. This dataset consists of 12,960 data objects, where 
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each data object is composed of 9 categorical attributes.  
We tested two types of scalability. The first one is the scalability against the number of 

objects for a given number of clusters and the second is the scalability against the number of 
clusters for a given number of objects. All algorithms were implemented in Java. All experiments 
were conducted on a Pentium4-3.0G machine with 1G of RAM and running Windows XP. Fig. 2 
shows the results of using different algorithms to find 10 clusters with different number of objects. 
Fig. 3 shows the results of all algorithms on finding different number of clusters from Nursery 
dataset. 
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Fig.2 Scalability to the number of objects when clustering Nursery dataset into 10 clusters  
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Fig.3 Scalability to the number of clusters when clustering 12,960 objects of Nursery dataset 
 

One important observation from these figures was that all algorithms show a linear increase 
in the running time as the number of data objects and the number of clusters is increased, which is 
highly desired in real world applications. 

Furthermore, although all variants of attribute value weighting based k-modes algorithms are 
slower than the original k-modes algorithm, it should be noted that their performance are 
comparable. In particular, the running time of sf-k-modes algorithm is almost the same with that of 
the k-modes algorithm. 
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We also see that hcf-k-modes, hsf-k-modes and df-k-modes are relatively slower than 
sf-k-modes. The reason behind is that hcf-k-modes, hsf-k-modes and df-k-modes take much more 
iterations to find better solutions.  

In summary, the above experiments show that our new algorithms achieve better clustering 
accuracies without sacrificing the scalability of original k-modes algorithm too much. 
 

6. Conclusions  

The conventional k-modes algorithm is efficient and effective in clustering large categorical 
data. However, its use of a simple matching dissimilarity measure compromises its effectiveness 
and its ability to correctly classify categorical data. Therefore, this paper extends k-modes 
clustering algorithm by weighting attribute value matches in dissimilarity computation. New 
variants of k-modes algorithm are easy to be implemented with only minor modifications on the 
original k-modes algorithm. More importantly, these new algorithms can achieve better clustering 
accuracies without sacrificing the scalability of k-modes algorithm. The superiority of these 
algorithms against standard k-modes algorithm was demonstrated through several experiments. 
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