
ar
X

iv
:2

10
7.

03
78

8v
1 

 [
m

at
h.

C
O

] 
 8

 J
ul

 2
02

1

Some sum-product estimates in matrix rings over finite

fields

Chengfei Xiea and Gennian Gea,∗

a School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China

July 9, 2021

Abstract

We study some sum-product problems over matrix rings. Firstly, for A,B,C ⊆
Mn(Fq), we have

|A+BC| & qn
2

,

whenever |A||B||C| & q3n
2−n+1

2 . Secondly, if a set A in Mn(Fq) satisfies |A| ≥ C(n)qn
2−1

for some sufficiently large C(n), then we have

max{|A+A|, |AA|} & min

{

|A|2

qn
2−n+1

4

, qn
2/3|A|2/3

}

.

These improve the results due to The and Vinh (2020), and generalize the results due to
Mohammadi, Pham, and Wang (2021). We also give a new proof for a recent result due to
The and Vinh (2020). Our method is based on spectral graph theory and linear algebra.
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1 Introduction

Let Fq be a field with q elements. Let Mn(Fq) be the ring of all n× n matrices over Fq, Zn(Fq)
be the set of n × n matrices over Fq with zero determinant, and GLn(Fq) be the set of n × n
invertible matrices over Fq. Throughout the paper, we write X . Y if there exists a constant
C(n) (maybe dependent on n, but independent with q) such thatX ≤ C(n)Y , and write X ∼ Y
if X . Y and Y . X . For A,B ⊆ Mn(Fq), we define A + B = {a + b : a ∈ A, b ∈ B}, AB =
{ab : a ∈ A, b ∈ B}, −A = {−a : a ∈ A}. If A ⊆ GLn(Fq), then we write A−1 = {a−1 : a ∈ A}.
Moreover, let In be the n× n identity matrix.

In an arbitrary ring R, the sum-product problem asks the lower bound of max{|A+A|, |AA|}
for A ⊆ R under some conditions. In [3], Erdős and Szemerédi proved that there exists a
constant ǫ such that

max{|A+ A|, |AA|} & |A|1+ǫ,

for any finite set A ⊆ Z. They also conjectured that this bound holds for any ǫ < 1 and any
sufficiently large A.

In [2], Elekes introduced a geometric approach (namely, the Szemerédi-Trotter theorem) for
the sum-product problem, and obtained that

max{|A+ A|, |AA|} & |A|5/4,

for any finite set A ⊆ R. It shows the relationship between the sum-product problem and
incidence geometry. The best known bound in this direction is due to Shakan [12], which states
that

max{|A+ A|, |AA|} & |A|
4

3
+ 5

5277 .

In the setting of finite fields, surprising results are obtained when A ⊆ Fq is large with
respect to q. In particular, when A = Fq, then |A + A| = |AA| = |A| = q. So one generally
works either on the bound of max{|A+A|, |AA|} when A is small in terms of the characteristic
p of Fq or on the lower the size of |A| to guarantee that max{|A + A|, |AA|} is large in terms
of q. Bourgain, Katz, and Tao [1] showed that, given A ⊆ Fp with p prime and pδ < |A| <1−δ

for some δ > 0, one has
max{|A+ A|, |AA|} ≥ Cδ|A|

1+ǫ,

for some ǫ = ǫ(δ). Notably, Roche-Newton, Rudnev, and Shkredov [10] showed that

max{|A+ A|, |AA|} & |A|6/5,

for A ⊆ Fq with characteristic p and |A| < p5/8. Rudnev, Shakan, and Shkredov [11] improved
the exponent to 11/9 for A ⊆ F

∗
p and |A| < p36/67. Most recently, Mohammadi and Stevens [7]

improved the exponent from 11/9 to 5/4 for A ⊆ Fp and |A| . p1/2.
In matrix rings, Karabulut, Koh, Pham, Shen, and Vinh [4] proved the following result.
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Theorem 1.1 ([4]). If A ⊆ M2(Fq) with |A| ≥ Cq3 for some constant C, then we have

max{|A+ A|, |AA|} & min

{

|A|2

q7/2
, q2|A|1/2

}

.

Some other results were obtained as well. Their work was generalized by The and Vinh [13].

Theorem 1.2 ([13]). For every positive integer n, there exists C(n) such that the following
holds. If A ⊆ Mn(Fq) with |A| ≥ C(n)qn

2−1, then we have

max{|A+ A|, |AA|} & min

{

|A|2

qn2−1/2
, qn

2/2|A|1/2
}

.

Theorem 1.3 ([13]). For A,B,C ⊆ Mn(Fq), we have

|A+BC| & min

{

qn
2

,
|A||B||C|

q2n2−1

}

.

Theorem 1.4 ([13]). For A,B ⊆ Mn(Fq) and C ⊆ GLn(Fq), we have

|(A+B)C| & min

{

qn
2

,
|A||B||C|

q2n2−1

}

.

We refer the readers to [6], [8] and [14] for related results.
In this paper, we give some new results of sum-product estimates, which are also general-

izations of the results in [6].

Theorem 1.5. For A,B,C ⊆ Mn(Fq), we have

|A+BC| & min

{

qn
2

,
|A||B||C|

q2n
2−n+1

2

}

.

In particular, if |A||B||C| & q3n
2−n+1

2 , then |A+BC| & qn
2

.

Theorem 1.6. For every positive integer n, there exists C(n) such that the following holds. If
A ⊆ Mn(Fq) with |A| ≥ C(n)qn

2−1, we have

max{|A+ A|, |AA|} & min

{

|A|2

qn
2−n+1

4

, qn
2/3|A|2/3

}

.

Observe that Theorem 1.5 is better than Theorem 1.3. And Theorem 1.6 is better than
Theorem 1.2 in some cases. For example, put n = 4 and |A| ∼ q15.01. Then Theorem 1.2 gives
that

max{|A+ A|, |AA|} & q14.52,

while Theorem 1.6 gives that

max{|A+ A|, |AA|} & q15.27.

Finally, we will give a new proof of Theorem 1.4.
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2 Preliminaries

Let G = (U ∪ V,E) be a biregular graph. We write deg(U) for the common degree of vertices
in U . Let AG be the adjacency matrix of G, and suppose that |λ1| ≥ |λ2| ≥ |λ3| · · · ≥ |λn| are
eigenvalues of AG. Note that in a bipartite graph, we have λ1 = −λ2. We call λ3 the third
eigenvalue of G and we need the following lemma, which is a variant of the expander mixing
lemma.

Lemma 2.1 ([9]). Let G be a biregular graph with parts U and V . Then, for every pair X ⊆ U
and Y ⊆ V , the number of edges between X and Y , denoted by e(X, Y ), satisfies

∣

∣

∣

∣

e(X, Y )−
deg(U)

|V |
|X||Y |

∣

∣

∣

∣

≤ |λ3|
√

|X||Y |,

where λ3 is the third eigenvalue of G.

Lemma 2.2 ([9]). Let G be a biregular graph with parts U and V , and |U | = m, |V | = n. We
label vertices of G from 1 to |U |+ |V |. Let AG be the adjacency matrix of G having the form

AG =





0 N

NT 0



 ,

where N is the |U | × |V | matrix, and Nij = 1 if and only if there is an edge between i and j.
Let v3 = (u1, . . . , um, v1, . . . , vn)

T be an eigenvector of AG corresponding to the eigenvalue λ3.
Then we have

(i) (u1, . . . , um)
T is an eigenvector of NNT , and

(ii) J(u1, . . . , um)
T = 0, where J is the m×m all-ones matrix.

3 A key lemma

Given sets A,B,C,D,E, F ⊆ Mn(Fq), let N(A,B,C,D,E, F ) be the number of solutions to
the equation

ab+ ef = c+ d, (a, b, c, d, e, f) ∈ A×B × C ×D ×E × F. (1)

We have the following proposition.

Proposition 3.1. For every positive integer n, there exists C(n) such that the following holds.
For A,B,C,D,E, F ⊆ Mn(Fq), we have

N(A,B,C,D,E, F ) ≤ C(n)

(

|A||B||C||D||E||F |

qn2
+ q2n

2−n+1

2

√

|A||B||C||D||E||F |

)

.
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Proof. We construct a graph G = (U ∪ V,E), where U = V = (Mn(Fq))
3. There is an edge

between (a, e, c) ∈ U and (b, f, d) ∈ V if and only if ab+ ef = c+ d. It is easy to check that

|U | = |V | = (|Mn(Fq)|)
3 = q3n

2

.

Given (a, e, c) ∈ U and (b, f) ∈ (Mn(Fq))
2, d = ab + ef − c is uniquely determined. So the

number of neighbors of (a, e, c) ∈ U in the graph G is deg(U) = q2n
2

. And

deg(U)

|V |
=

1

qn2
.

Similarly, the number of neighbors of (b, f, d) ∈ V in the graph G is q2n
2

too.
For any two points (a1, e1, c1) and (a2, e2, c2) in U , we count the number of their common

neighbors, i.e., the number of solutions (b, f, d) to the equations

a1b+ e1f = c1 + d, a2b+ e2f = c2 + d. (2)

So we have
(a1 − a2)b+ (e1 − e2)f = c1 − c2, (3)

or equivalently,
(

a1 − a2 e1 − e2

)





b

f



 = c1 − c2. (4)

A solution





b

f



 to equation (4) corresponds to a solution (b, f, a1b+ e1f − c1) to equations

(2). So we only need to determine the number of solutions to equation (4).
We need the following theorems in linear algebra.

Theorem 3.2. Let A be a matrix of size m× n. All of the solutions to the equation AX = 0
form a vector space of dimension n− rank(A).

Theorem 3.3. Let A be a matrix of size m × n, and b be a matrix of size m × 1. Then the
equation AX = b has a solution if and only if

rank(A) = rank
(

A b
)

.

Once AX = b has a solution X0, then every solution can be written as X = X0+X1, where X1

is any solution to AX = 0.
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Using these theorems, we see that equation (4) has a solution if and only if

rank
(

a1 − a2 e1 − e2

)

= rank
(

a1 − a2 e1 − e2 c1 − c2

)

.

And once equation (4) has a solution, the number of solutions





b

f



 is equal to q(2n−k)n,

where k is the rank of
(

a1 − a2 e1 − e2

)

, since each column of





b

f



 has q2n−k choices.

If k = rank
(

a1 − a2 e1 − e2

)

= 0, then c1 − c2 must be 0 to guarantee that

rank
(

a1 − a2 e1 − e2

)

= rank
(

a1 − a2 e1 − e2 c1 − c2

)

.

Then a1 = a2, e1 = e2, c1 = c2, which contradicts that (a1, e1, c1) and (a2, e2, c2) are different.

So equation (4) has no solution if k = rank
(

a1 − a2 e1 − e2

)

= 0.

For 1 ≤ k ≤ n, let Ek be the adjacency matrix of the graph Gk, whose vertex set is
(Mn(Fq))

3, such that two vertices (a1, e1, c1) and (a2, e2, c2) form an edge if and only if

rank
(

a1 − a2 e1 − e2

)

= rank
(

a1 − a2 e1 − e2 c1 − c2

)

= k.

If (0, 0, 0) is adjacent with (a, e, c), then (a′, e′, c′) is adjacent with (a + a′, e + e′, c + c′), and
vice versa. So Gk is regular. We count the degree of (0, 0, 0), i.e., the number of (a, e, c) with
the property that

rank
(

a e
)

= rank
(

a e c
)

= k.

We first choose
(

a e
)

such that rank
(

a e
)

= k and we need the following theorem.

Theorem 3.4 ([5]). The number of matrices of size m × n and with rank k over Fq is
Qk(q

m)Qk(q
n)

Qk(qk)
, where Qk(q

m) = (qm − 1)(qm − q) · · · (qm − qk−1).

Since
(

a e
)

is an n× 2n matrix, Theorem 3.4 implies that there are Qk(q
2n)Qk(q

n)
Qk(qk)

choices

for
(

a e
)

. Next we choose c. Since rank
(

a e
)

= rank
(

a e c
)

= k, it follows that

every column of c is in the column space of
(

a e
)

, and hence every column of c has qk

choices. So the number of (a, e, c) with the property that

rank
(

a e
)

= rank
(

a e c
)

= k

6



is
Qk(q

2n)Qk(q
n)

Qk(qk)
qnk ∼ q4nk−k2.

For 0 ≤ k ≤ n − 1, let Fk be the adjacency matrix of the graph Hk, whose vertex set is
(Mn(Fq))

3, such that two vertices (a1, e1, c1) and (a2, e2, c2) form an edge in Hk if and only if

rank
(

a1 − a2 e1 − e2

)

= k < rank
(

a1 − a2 e1 − e2 c1 − c2

)

.

If (0, 0, 0) is adjacent with (a, e, c), then (a′, e′, c′) is adjacent with (a + a′, e + e′, c + c′), and
vice versa. So Hk is regular. We count the degree of (0, 0, 0), i.e., the number of (a, e, c) with
the property that

rank
(

a e
)

= k < rank
(

a e c
)

.

We first choose
(

a e
)

such that rank
(

a e
)

= k. There are Qk(q
2n)Qk(q

n)
Qk(qk)

choices for
(

a e
)

. Next we choose c. The number of choices for c such that

rank
(

a e
)

= rank
(

a e c
)

= k

is qnk, so the number of choices for c such that

rank
(

a e
)

= k < rank
(

a e c
)

is qn
2

− qnk. Hence the number of (a, e, c) with the property that

rank
(

a e
)

= k < rank
(

a e c
)

is
Qk(q

2n)Qk(q
n)

Qk(qk)
(qn

2

− qnk) ∼ qn
2+3nk−k2.

Based on the previous calculation, we have

NNT =qn
2

J + (deg(U)− qn
2

)I +
n
∑

k=1

(q2n
2−nk − qn

2

)Ek −
n−1
∑

k=0

qn
2

Fk

=qn
2

J + (deg(U)− qn
2

)I +
n−1
∑

k=1

(q2n
2−nk − qn

2

)Ek −
n−1
∑

k=0

qn
2

Fk,

(5)

where I is the identity matrix.
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Let v3 = (u1, . . . , u|U |, v1, . . . , v|V |)
T be an eigenvector of AG corresponding to the eigenvalue

λ3. Lemma 2.2 implies that (u1, . . . , u|U |)
T is an eigenvector of NNT corresponding to the

eigenvalue λ2
3. It follows from equation (5) that

(λ2
3 − deg(U) + qn

2

)(u1, . . . , u|U |)
T =

(

n−1
∑

k=1

(q2n
2−nk − qn

2

)Ek −

n−1
∑

k=0

qn
2

Fk

)

(u1, . . . , u|U |)
T . (6)

Therefore, (u1, . . . , u|U |)
T is an eigenvector of

n−1
∑

k=1

(q2n
2−nk − qn

2

)Ek −

n−1
∑

k=0

qn
2

Fk

corresponding to the eigenvalue λ2
3 − deg(U) + qn

2

.
Since Gk is regular, for every eigenvalue λ of Ek, we have |λ| . q4nk−k2. Since Hk is regular,

for every eigenvalue λ of Fk, we have |λ| . qn
2+3nk−k2. So if λ is an eigenvalue of

n−1
∑

k=1

(q2n
2−nk − qn

2

)Ek −
n−1
∑

k=0

qn
2

Fk,

then

|λ| .

n−1
∑

k=1

(q2n
2−nk − qn

2

)q4nk−k2 +

n−1
∑

k=0

qn
2

qn
2+3nk−k2

≤

n−1
∑

k=1

q2n
2−nkq4nk−k2 +

n−1
∑

k=0

qn
2

qn
2+3nk−k2

.

n−1
∑

k=0

q2n
2+3nk−k2.

(7)

Observe that the function f(k) = 2n2+3nk−k2 is increasing for k ≤ 3n/2, so the maximum
occurs at k = n− 1 and 2n2 +3nk− k2 ≤ 2n2 +3n(n− 1)− (n− 1)2 = 4n2 − n− 1. Therefore,
the eigenvalue λ2

3 − deg(U) + qn
2

of

n−1
∑

k=1

(q2n
2−nk − qn

2

)Ek −

n−1
∑

k=0

qn
2

Fk

satisfies that
|λ2

3 − deg(U) + qn
2

| . q4n
2−n−1.

8



Note that deg(U) = q2n
2

. So we conclude that

|λ3| . q2n
2−n+1

2 .

Now if A,B,C,D,E, F ⊆ Mn(Fq), then we can view A × E × C as a subset of U and
B×F ×D as a subset of V , and N(A,B,C,D,E, F ) is equal to e(A×E ×C,B×F ×D). So
Lemma 2.1 shows that

N(A,B,C,D,E, F ) ≤ deg(U)
|V |

|A× E × C||B × F ×D|+ |λ3|
√

|A× E × C||B × F ×D|

≤ C(n)
(

|A||B||C||D||E||F |

qn2 + q2n
2−n+1

2

√

|A||B||C||D||E||F |
)

.

4 Proofs of Theorem 1.5 and Theorem 1.6

In this section, we prove Theorem 1.5 and Theorem 1.6. We first prove Theorem 1.5. For
convenience, we restate it here.

Theorem 4.1. For A,B,C ⊆ Mn(Fq), we have

|A+BC| & min

{

qn
2

,
|A||B||C|

q2n
2−n+1

2

}

.

Proof. For λ ∈ A+BC, let

t(λ) = |{(a, b, c) ∈ A× B × C : a+ bc = λ}|.

By the Cauchy-Schwarz inequality, we have

(|A||B||C|)2 =

(

∑

λ∈A+BC

t(λ)

)2

≤ |A+BC|
∑

λ∈A+BC

t(λ)2.

Note that
∑

λ∈A+BC

t(λ)2 = N(B,C,A,−A,−B,C).

Proposition 3.1 implies that

(|A||B||C|)2

|A+BC|
≤ N(B,C,A,−A,−B,C) .

|A|2|B|2|C|2

qn2
+ q2n

2−n+1

2 |A||B||C|.

9



So
(|A||B||C|)2

|A+BC|
.

|A|2|B|2|C|2

qn2

or
(|A||B||C|)2

|A+BC|
. q2n

2−n+1

2 |A||B||C|.

We conclude that

|A+BC| & min

{

qn
2

,
|A||B||C|

q2n
2−n+1

2

}

.

Before proving Theorem 1.6, we need an estimate of additive energy.
For A,B ⊆ Mn(Fq), define

E+(A,B) = |{(a1, a2, b1, b2) ∈ A2 × B2 : a1 + b1 = a2 + b2}|.

Lemma 4.2. Let A,B ⊆ Mn(Fq) and C ⊆ GLnFq. We have

E+(A,B) .
|BC|2|A|2

qn2
+ q2n

2−n+1

2

|BC||A|

|C|
.

Proof. By definition, we have

E+(A,B) = |{(a1, a2, b1, b2) ∈ A2 ×B2 : a1 + b1 = a2 + b2}|

= |C|−2|{(a1, a2, b1, b2, c1, c2) ∈ A2 ×B2 × C2 : a1 + b1c1c
−1
1 = a2 + b2c2c

−1
2 }|

≤ |C|−2|{(a1, a2, s1, s2, t1, t2) ∈ A2 × (BC)2 × (C−1)2 : a1 + s1t1 = a2 + s2t2}|

= |C|−2N(BC,C−1, A,−A,BC,C−1).

(8)

It follows from Proposition 3.1 that

E+(A,B) ≤ |C|−2N(BC,C−1, A,−A,BC,C−1)

. |C|−2

(

|BC|2|C|2|A|2

qn2
+ q2n

2−n+1

2 |BC||C||A|

)

=
|BC|2|A|2

qn2
+ q2n

2−n+1

2

|BC||A|

|C|
.

(9)

10



For λ ∈ A+B, define

tA+B(λ) = |{(a, b) ∈ A×B : a+ b = λ}|.

By the Cauchy-Schwarz inequality, we have

(|A||B|)2 = (
∑

λ∈A+B

tA+B(λ))
2 ≤ |A+B|

∑

λ∈A+B

tA+B(λ)
2 = |A+B|E+(A,B).

Now we are able to prove Theorem 1.6. We also restate Theorem 1.6 here.

Theorem 4.3. For every positive integer n, there exists C(n) such that the following holds. If
A ⊆ Mn(Fq) with |A| ≥ C(n)qn

2−1, we have

max{|A+ A|, |AA|} & min

{

|A|2

qn
2−n+1

4

, qn
2/3|A|2/3

}

.

Proof. Since |A| ≥ C(n)qn
2−1 and |Zn(Fq)| ∼ qn

2−1, we choose C(n) such that |A| > 2|Zn(Fq)|.
Then |A ∩GLn(Fq)| ≥ |A|/2. And hence we can assume that A ⊆ GLn(Fq). Applying Lemma
4.2 with A = B = C, we have

|A|4

|A+ A|
≤ E+(A,A)

.
|AA|2|A|2

qn2
+ q2n

2−n+1

2 |AA|.

(10)

Therefore

max{|A+ A|, |AA|} & min

{

|A|2

qn
2−n+1

4

, qn
2/3|A|2/3

}

.

Furthermore, we have another theorem, which also generalizes the result in [6].

Theorem 4.4. Let A,B,C,D ⊆ Mn(Fq), and let N denote the number of solutions to the
equation

a + b = cd, (a, b, c, d) ∈ A×B × C ×D.

Then we have

N .
|A||B|

1

2 |C||D|

q
n2

2

+ qn
2−n+1

4 (|A||C||D||B|)
1

2 .

11



Proof. For every b ∈ B, let

r(b) = |{(a, c, d) ∈ A× C ×D : −a + cd = b}|.

By definition, we have N =
∑

b∈B r(b). The Cauchy-Schwarz inequality implies that

N2 =

(

∑

b∈B

r(b)

)2

≤ |B|
∑

b∈B

r(b)2.

Note that
∑

b∈B

r(b)2 = |{(a1, c1, d1, a2, c2, d2) ∈ A× C ×D × A× C ×D : −a1 + c1d1 = −a2 + c2d2 ∈ B}|

≤ |{(a1, c1, d1, a2, c2, d2) ∈ A× C ×D ×A× C ×D : −a1 + c1d1 = −a2 + c2d2}|

= N(C,D,A,−A,−C,D)

.
|A|2|C|2|D|2

qn2
+ q2n

2−n+1

2 |A||C||D|.

So

N .
|A||B|

1

2 |C||D|

q
n2

2

+ qn
2−n+1

4 (|A||C||D||B|)
1

2 .

5 Proof of Theorem 1.4

In this section, we give another proof of Theorem 1.4.
We construct a graph G′ = (U ′ ∪ V ′, E ′), where U ′ = V ′ = (Mn(Fq))

3. There is an edge
between (a, e, c) ∈ U and (b, f, d) ∈ V if and only if ba + ef = c + d. The only difference here
compared to the graph in Section 3 is that we switch between ba and ab. We still have

|U ′| = |V ′| = (|Mn(Fq)|)
3 = q3n

2

, deg(U ′) = q2n
2

, and
deg(U ′)

|V ′|
=

1

qn2
.

For any two points (a1, e1, c1) and (a2, e2, c2) in U ′, we count the number of their common
neighbors, i.e., the number of solutions (b, f, d) to the equations

ba1 + e1f = c1 + d, ba2 + e2f = c2 + d. (11)

So we have
b(a1 − a2) + (e1 − e2)f = c1 − c2. (12)

12



A solution (b, f) to equation (12) corresponds to a solution (b, f, ba1 + e1f − c1) to equations
(11). So we only need to determine the number of solutions to equation (12).

Let k1 = rank(e1 − e2) and k2 = rank(a1 − a2). Then there exist P1, Q1, P2, Q2 ∈ GLn(Fq),

such that P1(e1 − e2)Q1 =





Ik1 0

0 0



, and P2(a1 − a2)Q2 =





Ik2 0

0 0



. Equation (12)

becomes
P1bP

−1
2 P2(a1 − a2)Q2 + P1(e1 − e2)Q1Q

−1
1 fQ2 = P1(c1 − c2)Q2, (13)

i.e.,

P1bP
−1
2





Ik2 0

0 0



+





Ik1 0

0 0



Q−1
1 fQ2 = P1(c1 − c2)Q2. (14)

If we write b′ = P1bP
−1
2 and f ′ = Q−1

1 fQ2, then a solution (b, f) to equation (12) corresponds
to a solution (b′, f ′) to equation

b′





Ik2 0

0 0



 +





Ik1 0

0 0



 f ′ = P1(c1 − c2)Q2. (15)

So the number of solutions (b, f) to equation (12) is equal to the number of solutions (b′, f ′) to
equation (15). If we write b′ = (bij)1≤i,j≤n, f

′ = (fij)1≤i,j≤n, and P1(c1 − c2)Q2 = (cij)1≤i,j≤n,
then equation (15) becomes































bij + fij = cij , for 1 ≤ i ≤ k1, and 1 ≤ j ≤ k2;

fij = cij , for 1 ≤ i ≤ k1, and k2 + 1 ≤ j ≤ n;

bij = cij, for k1 + 1 ≤ i ≤ n, and 1 ≤ j ≤ k2;

cij = 0, for k1 + 1 ≤ i ≤ n, and k2 + 1 ≤ j ≤ n.

(16)

Therefore, equation (12) has a solution if and only if cij = 0 for k1+1 ≤ i ≤ n and k2+1 ≤ j ≤ n.
And if equation (12) has a solution, then it is not difficult to calculate that the number of
solutions is q2n

2−k1n−k2n+k1k2 .
If k1 = k2 = 0, then cij = 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ n, i.e., P1(c1 − c2)Q2 = 0. It follows

that a1 = a2, e1 = e2, c1 = c2, which contradicts that (a1, e1, c1) and (a2, e2, c2) are different.
So equation (12) has no solution if k1 = k2 = 0. If either k1 or k2 is equal to n, without
loss of generality, assuming that k1 = n, then equation (12) always has a solution (b, f) where
f = (e1 − e2)

−1(c1 − c2 − b(a1 − a2)).
For 0 ≤ k1, k2 ≤ n (except the case that k1 = k2 = 0), let Ek1,k2 be the adjacency matrix of

the graph Gk1,k2, whose vertex set is (Mn(Fq))
3 such that two vertices (a1, e1, c1) and (a2, e2, c2)

13



form an edge in Gk1,k2 if and only if rank(e1−e2) = k1, rank(a1−a2) = k2, and equation (12) has
a solution. If (0, 0, 0) is adjacent with (a, e, c), then (a′, e′, c′) is adjacent with (a+a′, e+e′, c+c′),
and vice versa. So Gk1,k2 is regular. We count the degree of (0, 0, 0), i.e., the number of (a, e, c)
with the property that rank(e) = k1, rank(a) = k2, and ba+ ef = c has a solution.

We first choose a and e such that rank(e) = k1, rank(a) = k2. Theorem 3.4 implies that

there are
Qk2

(qn)Qk2
(qn)

Qk2
(qk2 )

Qk1
(qn)Qk1

(qn)

Qk1
(qk1 )

choices for (a, e). Next we choose c. Given a and e such

that rank(e) = k1 and rank(a) = k2, there exist P1, Q1, P2, Q2 ∈ GLn(Fq), such that P1eQ1 =




Ik1 0

0 0



, and P2aQ2 =





Ik2 0

0 0



. Equation (16) implies that the only restrictions to c are

(P1cQ2)ij = 0 for k1 + 1 ≤ i ≤ n and k2 + 1 ≤ j ≤ n. There are qn
2−(n−k1)(n−k2) = qnk1+nk2−k1k2

choices for P1cQ2. And hence there are qnk1+nk2−k1k2 choices for c. Thus the number of (a, e, c)
with the property that rank(e) = k1, rank(a) = k2, and ba+ ef = c has a solution is

Qk2(q
n)Qk2(q

n)

Qk2(q
k2)

Qk1(q
n)Qk1(q

n)

Qk1(q
k1)

qnk1+nk2−k1k2 ∼ q3nk1+3nk2−k21−k22−k1k2 .

For 0 ≤ k1, k2 ≤ n− 1, let Fk1,k2 be the adjacency matrix of the graph Hk1,k2, whose vertex
set is (Mn(Fq))

3, such that two vertices (a1, e1, c1) and (a2, e2, c2) form an edge in Hk1,k2 if and
only if rank(e1 − e2) = k1, rank(a1 − a2) = k2, and equation (12) has no solution. If (0, 0, 0) is
adjacent with (a, e, c), then (a′, e′, c′) is adjacent with (a+ a′, e+ e′, c+ c′), and vice versa. So
Hk1,k2 is regular. We count the degree of (0, 0, 0), i.e., the number of (a, e, c) with the property
that rank(e) = k1, rank(a) = k2, and ba + ef = c has no solution.

We first choose a and e such that rank(e) = k1, rank(a) = k2. Theorem 3.4 implies that

there are
Qk2

(qn)Qk2
(qn)

Qk2
(qk2 )

Qk1
(qn)Qk1

(qn)

Qk1
(qk1 )

choices for (a, e). Next we choose c. According to the above

argument, there are qn
2

− qnk1+nk2−k1k2 choices for c. Thus the number of (a, e, c) with the
property that rank(e) = k1, rank(a) = k2, and ba + ef = c has no solution is

Qk2(q
n)Qk2(q

n)

Qk2(q
k2)

Qk1(q
n)Qk1(q

n)

Qk1(q
k1)

(qn
2

− qnk1+nk2−k1k2) ∼ qn
2+2nk1+2nk2−k21−k22 .

14



Based on the previous calculation, we have

NNT =qn
2

J + (deg(U)− qn
2

)I +

n
∑

k2=1

(q2n
2−k2n − qn

2

)E0,k2

+

n
∑

k2=0

n
∑

k1=1

(q2n
2−k1n−k2n+k1k2 − qn

2

)Ek1,k2 −

n−1
∑

k1,k2=0

qn
2

Fk1,k2

=qn
2

J + (deg(U)− qn
2

)I +

n−1
∑

k2=1

(q2n
2−k2n − qn

2

)E0,k2

+

n−1
∑

k2=0

n−1
∑

k1=1

(q2n
2−k1n−k2n+k1k2 − qn

2

)Ek1,k2 −

n−1
∑

k1,k2=0

qn
2

Fk1,k2 .

(17)

Let v3 = (u1, . . . , u|U ′|, v1, . . . , v|V ′|)
T be an eigenvector of AG′ corresponding to the eigen-

value λ3. Lemma 2.2 implies that (u1, . . . , u|U ′|)
T is an eigenvector of NNT corresponding to

the eigenvalue λ2
3. It follows from equation (5) that

(λ2
3 − deg(U) + qn

2

)(u1, . . . , u|U ′|)
T

=

(

n−1
∑

k2=1

(q2n
2−k2n − qn

2

)E0,k2 +

n−1
∑

k2=0

n−1
∑

k1=1

(q2n
2−k1n−k2n+k1k2 − qn

2

)Ek1,k2 −

n−1
∑

k1,k2=0

qn
2

Fk1,k2

)

(u1, . . . , u|U ′|)
T .

(18)

Therefore, (u1, . . . , u|U ′|)
T is an eigenvector of

n−1
∑

k2=1

(q2n
2−k2n − qn

2

)E0,k2 +

n−1
∑

k2=0

n−1
∑

k1=1

(q2n
2−k1n−k2n+k1k2 − qn

2

)Ek1,k2 −

n−1
∑

k1,k2=0

qn
2

Fk1,k2

corresponding to the eigenvalue λ2
3 − deg(U ′) + qn

2

.
Since Gk1,k2 is regular, for every eigenvalue λ of Ek1,k2, we have |λ| . q3nk1+3nk2−k2

1
−k2

2
−k1k2 .

Since Hk1,k2 is regular, for every eigenvalue λ of Fk1,k2 , we have |λ| . qn
2+2nk1+2nk2−k2

1
−k2

2 . So if
λ is an eigenvalue of

n−1
∑

k2=1

(q2n
2−k2n − qn

2

)E0,k2 +
n−1
∑

k2=0

n−1
∑

k1=1

(q2n
2−k1n−k2n+k1k2 − qn

2

)Ek1,k2 −
n−1
∑

k1,k2=0

qn
2

Fk1,k2,

15



then

|λ| .
n−1
∑

k2=1

(q2n
2−k2n − qn

2

)q3nk2−k2
2 +

n−1
∑

k2=0

n−1
∑

k1=1

(q2n
2−k1n−k2n+k1k2 − qn

2

)q3nk1+3nk2−k2
1
−k2

2
−k1k2

+

n−1
∑

k1,k2=0

qn
2

qn
2+2nk1+2nk2−k21−k22

≤

n−1
∑

k2=1

q2n
2+2nk2−k2

2 +

n−1
∑

k2=0

n−1
∑

k1=1

q2n
2+2nk1+2nk2−k2

1
−k2

2 +

n−1
∑

k1,k2=0

q2n
2+2nk1+2nk2−k2

1
−k2

2

.

n−1
∑

k1,k2=0

q2n
2+2nk1+2nk2−k2

1
−k2

2 .

(19)

Given k1 and n, observe that the function g(k2) = 2n2 +2nk1 +2nk2 − k2
1 − k2

2 is increasing
for k2 ≤ n, so the maximum occurs at k2 = n − 1 and 2n2 + 2nk1 + 2nk2 − k2

1 − k2
2 ≤

2n2 + 2nk1 + 2n(n− 1)− k2
1 − (n− 1)2 = 3n2 + 2nk1 − k2

1 − 1. Similarly, 3n2 + 2nk1 − k2
1 − 1

attains maximum at k1 = n−1. Thus 3n2+2nk1−k2
1−1 ≤ 3n2+2n(n−1)−(n−1)2−1 = 4n2−2.

Therefore, the eigenvalue λ2
3 − deg(U ′) + qn

2

of

n−1
∑

k2=1

(q2n
2−k2n − qn

2

)E0,k2 +
n−1
∑

k2=0

n−1
∑

k1=1

(q2n
2−k1n−k2n+k1k2 − qn

2

)Ek1,k2 −
n−1
∑

k1,k2=0

qn
2

Fk1,k2

satisfies that
|λ2

3 − deg(U ′) + qn
2

| . q4n
2−2.

Note that deg(U ′) = q2n
2

. So we conclude that

|λ3| . q2n
2−1.

Now if A,B ⊆ Mn(Fq) and C ⊆ GLn(Fq), then we put X = {(c1,−b2,−a1c1) : a1 ∈ A, b2 ∈
B, c1 ∈ C} ⊆ U ′ and Y = {(b1, c2, a2c2) : a2 ∈ A, b1 ∈ B, c2 ∈ C} ⊆ V ′. Since C ⊆ GLn(Fq),
we have |X| = |Y | = |A||B||C|. Note that the number of edges between X and Y is equal to

|{(a1, b1, c1, a2, b2, c2) ∈ A× B × C × A×B × C : (a1 + b1)c1 = (a2 + b2)c2}|.
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Similar to the proof of Theorem 4.1, we have

|A|2|B|2|C|2

|(A+B)C|
≤ |{(a1, b1, c1, a2, b2, c2) ∈ A× B × C ×A×B × C : (a1 + b1)c1 = (a2 + b2)c2}|

= e(X, Y )

.
deg(U ′)

|V ′|
|X||Y |+ |λ3|

√

|X||Y |

.
|A|2|B|2|C|2

qn2
+ q2n

2−1|A||B||C|.

Therefore,

|(A+B)C| & min

{

qn
2

,
|A||B||C|

q2n2−1

}

.
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[4] Y. D. Karabulut, D. Koh, T. Pham, C.-Y. Shen, and A. V. Le. Expanding phenomena
over matrix rings. Forum Math., 31(4):951–970, 2019.
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