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Abstract10

In the last years, Bayesian optimization (BO) has emerged as a practical
tool for high-quality parameter selection in prediction systems. BO methods
are useful for optimizing black-box objective functions that either lack an
analytical expression, or are very expensive to evaluate. In this paper we
show that BO can be used to obtain the optimal parameters of a prediction
system for problems related to ocean wave features prediction. Specifically,
we propose the Bayesian optimization of a hybrid Grouping Genetic Algo-
rithm for attribute selection combined with an Extreme Learning Machine
(GGA-ELM) approach for prediction. The system uses data from neighbor
stations (usually buoys) in order to predict the significant wave height and
the wave energy flux at a goal marine structure facility. The proposed BO
methodology has been tested in a real problem involving buoys data in the
Western coast of the USA, improving the performance of the GGA-ELM
without a BO approach.

Keywords: Ocean waves features; Prediction System; Bayesian11

optimization.12

1. Introduction13

The accurate prediction of waves features plays a key role in different14

ocean engineering–related activities, such as safe ship navigation [1, 2], the15

design of marine structures [3, 4], e.g., oil platforms and harbours, and in16

Preprint submitted to Neurocomputing September 6, 2017



marine energy management problems [5, 6], like the proper operation of wave17

energy converters [7], among others. Thus, the topic has a clear impact on18

human safety, economics and clean energy production. One of the most19

important features to define the severity of a given ocean wave field is the20

significant wave height, Hm0 . Hm0 is usually estimated using in-situ sensors,21

such as buoys, recording time series of wave elevation information. Buoys22

provide reliable sea state information that characterizes the wave field in a23

fixed position (i.e. the mooring point). In addition, as buoys are anchored in24

a hostile media (the ocean), the probability that measuring problems (and25

therefore missing data) occur in situations of severe weather is very high [8].26

Besides this, marine energy [9, 10] is currently one of the most promising27

sources of renewable energy, still minor at a global level, but playing a major28

role in several offshore islands [11, 12]. In this case, the accurate estimation of29

the wave energy flux P is relevant to characterize the wave energy production30

from Wave Energy Converters (WECs) facilities [13].31

The research work on wave features prediction systems has been intense32

in the last years, with special incidence in machine learning approaches.33

One of the first works on this topic was the direct prediction of Hm0 using34

artificial neural networks in [14]. Improvements on this prediction system35

were further presented in [15]. Neural networks have also been applied to36

other problems of Hm0 and P prediction, such as [16], where Hm0 and P37

are inferred from observed wave records using time series neural networks.38

In [17] neural networks were applied to estimate the final breaking wave-39

height for laboratory-scaled and full-scaled ocean waves, showing that neural40

models are able to improve previously proposed empirical models for breaking41

waves-height estimation in terms of accuracy. In [18] a neural network was42

applied to estimate the wave energy resource in the northern coast of Spain.43

In [19] a hybrid genetic algorithm-adaptive network-based fuzzy inference44

system model was developed to forecast Hm0 and the peak spectral period45

at Lake Michigan. In [20] and [21] different hybrid algorithms mixed with an46

Extreme Learning Machine neural network were proposed for the estimation47

of Hm0 and P , in the context of marine energy applications. Alternative48

methods based on different computational approaches have been recently49

proposed. For example, in [22] different soft-computing techniques are tested50

for Hm0 prediction. Support Vector regression (SVR) has also been applied51

to marine energy related problems such as in [23]. Similarly, [24] and [25]52

proposed to feed SVR approaches with information from radar sources in53

order to obtain an accurate prediction of Hm0 and P features. Classification54
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approaches have been applied in [26] to analyze and predictHm0 and P ranges55

in buoys for marine energy applications. In [27], use of genetic programming56

for Hm0 reconstruction problems was proposed. Finally, in [28] fuzzy logic-57

based approaches were introduced for Hm0 prediction problems.58

In this paper we test a BO methodology to improve the performance59

of a hybrid prediction system for wave features (Hm0 and P ) prediction.60

Specifically, the prediction system was previously presented in [21], and it61

is formed by a Grouping Genetic Algorithm for feature selection, and an62

Extreme Learning Machine for carrying out the final energy flux prediction.63

This hybrid prediction system has a number of parameters that may affect64

its final performance, and need to be previously specified by the practitioner.65

Traditionally, these parameters have been manually tuned by a human ex-66

pert, with experience in both the algorithm and the problem domain. How-67

ever, it is possible to obtain better results by an automatic fine tuning of the68

prediction system’s parameters. In this case, the parameters of GGA-ELM69

approach include the probability of mutation in the GGA or the number of70

neurons in the ELM hidden layer, among others. We propose then to use a71

Bayesian optimization (BO) approach to automatically optimize the parame-72

ters of the whole prediction system (GGA-ELM), with the aim of improving73

its performance in wave energy prediction problems. BO has been shown74

to obtain good results in the task of obtaining good parameter values for75

prediction systems [29]. In the paper we detail the basic prediction system76

considered and the BO methodology implemented, along with the improve-77

ments obtained in real problems of Hm0 and P prediction in the Western78

coast of the USA.79

The rest of the paper is organized as follows: the next section details80

the calculation of the features of interest in ocean wave characterization,81

Hm0 and P in this case. Section 3 describes the main characteristics of the82

hybrid system to be optimized, which is formed by a GGA and an ELM83

for prediction. Section 4 presents the Bayesian optimization methodology84

applied in this case to optimize the prediction system considered. Section 585

presents the experimental part of the paper, where the Bayesian hybrid GGA-86

ELM approach is tested in a real problem of P prediction in the Western coast87

of the USA. Finally, Section 6 closes the paper exposing the conclusions of88

this work.89
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2. Wave features of interest: calculation of Hm0 and P90

In the evaluation of marine systems it is essential to previously character-91

ize as accurately as possible the wave features of the zone under study. For92

example, in a wave energy facility, it is necessary to characterize the amount93

of wave energy available at a particular location, which is given by features94

such as Hm0 and P . In order to obtain these features, it is necessary to focus95

on the water surface, and within the framework of the linear wave theory,96

the vertical wave elevation, η(r, t), at a point r = (x, y) on the sea surface at97

time t can be assumed as a superposition of different monochromatic wave98

components [30, 31]. This model is appropriate when the free wave compo-99

nents do not vary appreciably in space and time (that is, statistical temporal100

stationarity and spatial homogeneity can be assumed [31]).101

In the model described, the concept of “sea state” refers to the sea area102

and the time interval in which the statistical and spectral characteristics of103

the wave do not change considerably (statistical temporal stationarity and104

spatial homogeneity). The features of a given sea state are then the com-105

bined contribution of all features from different sources. For example, the106

“wind sea” occurs when the waves are caused by the energy transferred be-107

tween the local wind and the free surface of the sea. The “swell” is the108

situation in which the waves have been generated by winds blowing on an-109

other far area (for instance, by storms), and propagate towards the region110

of observation. Usually, sea states are the composition of these two pure111

states, forming multi-modal or mixed seas. In a given sea state, the wave112

elevation η(r, t) with respect to the mean ocean level can be assumed as a113

zero-mean Gaussian stochastic process, with statistical symmetry between114

wave maxima and minima. A buoy deployed at point rB can take samples115

of this process, η(rB, tj) j = 1, 2, · · · , tMAX, generating thus a time series of116

empirical vertical wave elevations. The Discrete Fourier Transform (DFT) of117

this sequence, using the Fast Fourier Transform (FFT) algorithm, allows for118

estimating the spectral density S(f). Its spectral moments of order n can be119

computed as follows:120

mn =

∫ ∞
0

fnS(f)df. (1)

The Significant Wave Height (SWH) is defined as the average (in meters)121

of the highest one-third of all the wave heights during a 20-minute sampling122
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period [32], and it has been widely studied. It can be calculated from the123

moment of order 0 in Equation (1), as follows:124

Hm0 = 4 · (m0)
1/2 . (2)

On the other hand, the wave energy flux is a first indicator of the amount125

of wave energy available in a given area of the ocean. Wave energy flux P ,126

or power density per meter of wave crest [33] can be computed as127

P =
ρg2

4π

∫ ∞
0

S(f)

f
df =

ρg2

4π
m−1 =

ρg2

64π
H2

m0
· Te, (3)

where ρ is the sea water density (1025 kg/m3), g is the acceleration due to128

gravity, Hm0 = 4
√
m0 is the spectral estimation of the significant wave height,129

and Te ≡ T−1,0 = m−1/m0 is an estimation of the mean wave period, normally130

known as the period of energy, which is used in the design of turbines for wave131

energy conversion. Expression (3) (with Hm0 in meters and Te in seconds)132

leads to133

P = 0.49 ·H2
m0
· Te, (4)

measured in kW/m, which helps engineers estimate the amount of wave134

energy available when planning the deployment of WECs at a given location.135

3. The hybrid prediction system considered136

In this paper we will optimize a hybrid prediction system for marine en-137

ergy applications described in [25]. In this section we describe the main char-138

acteristics of this approach, in order to better explain later on the Bayesian139

optimization carried out on it. The prediction system is a hybrid wrapper140

approach, formed by a Grouping Genetic Algorithm for feature selection, and141

an Extreme Learning Machine to carry out the final prediction of Hm0 or P142

from a set of input data.143

3.1. The Grouping Genetic Algorithm144

The grouping genetic algorithm (GGA) [34, 35] is a type of evolution-145

ary algorithm especially suited to tackle grouping problems, i.e., problems146

where a number of items must be assigned to a set of predefined groups.147

The GGA has shown very good performance on different real applications148

and problems [36, 37, 38, 39, 40, 41]. In the GGA, the encoding, crossover149
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and mutation operators of traditional GAs are modified to better deal with150

grouping problems. In this paper we use the GGA to obtain a reduced set151

of features (feature selection) in a context of Hm0 and P prediction. We152

structure the description of the GGA in Encoding, Operators and Fitness153

Function calculation (Extreme Learning Machine).154

3.1.1. Problem encoding155

The GGA is a variable-length genetic algorithm. The encoding is defined156

by separating each individual in the algorithm into two parts: an assign-157

ment part, which associates each item to a given group, and a group part,158

which defines the groups that must be taken into account for the individ-159

ual. In problems where the number of groups is not previously defined, it160

is straightforward that this is a variable-length algorithm: the group part161

varies from one individual to another. In our implementation of the GGA162

for feature selection, an individual c has the form c = [a|g]. An example of163

an individual in the proposed GGA for a feature selection problem, with 20164

features and 4 groups, is the following:165

1 1 2 3 1 4 1 4 3 4 4 1 2 4 4 2 3 1 3 2 | 1 2 3 4166

where the group 1 includes features {1, 2, 5, 7, 12, 18}, group 2 features167

{3, 13, 16, 20}, group 3 features {4,9,17,19} and finally group 4 includes fea-168

tures {6, 8, 10, 11, 14, 15}.169

3.1.2. Genetic operators170

In this paper we use a tournament-based selection mechanism, similar to171

the one described in [42]. This mechanism has been shown to be one of the172

most effective selection operators, avoiding super-individuals and performing173

a excellent exploration of the search space. Regarding the crossover operator,174

we have chosen a modified version of the one initially proposed by Falkenauer175

[34, 35]. It follows the process outlined in Figure 1:176

1. Choose two parents from the current population, at random.177

2. Randomly select two points for the crossover, from the “Groups” part of178

parent 1, then, all the groups between the two cross-points are selected.179

In the example of Figure 1 the two crossover points are G1 and G2. Note180

that, in this case the items of parent1 belonging to group G1 and G2181

are 1, 2, 4, 5, and 6.182

6



3. Insert the selected section of the “Groups” part into the second parent.183

After the insertion in the example of Figure 1, the assignment of the184

nodes 1, 2, 4, 5 and 6 of the offspring individual will be those of parent185

1, while the rest of the nodes’ assignment are those of parent 2. The186

“Groups” part of the offspring individual is that of parent 2 plus the187

selected section of parent 1 (8 groups in total, in this case).188

4. Modify the “Groups” part of the offspring individual with their corre-189

sponding number. In the example, G = 1 2 3 4 5 6 1 2 is190

modified into G = 1 2 3 4 5 6 7 8. Modify also the assignment191

part accordingly.192

5. Remove any empty groups in the offspring individual. In the example193

considered, it is found that groups 1, 2, 3, and 6 are empty, so we can194

eliminate these groups identification number and rearrange the rest.195

The final offspring is then obtained.196

Regarding mutation operator, we apply a swapping mutation in which197

two items are interchanged (swapping this way the assignment of features to198

different groups). This procedure is carried out with a very low probability199

(Pm = 0.01), to avoid increasing of the random search in the process. In the200

next section we describe the fitness function used to guide the search in the201

GGA, the ELM neural network, which is a very fast algorithm with excellent202

performance in prediction problems.203

3.1.3. Fitness function: the Extreme Learning Machine204

An ELM [43] is a fast learning method based on the structure of MLPs205

with a novel way of training feed-forward neural networks. One of the most206

important characteristics of the ELM training is the randomness in the pro-207

cess where the network weights are set, obtaining, in this way, a pseudo-208

inverse of the hidden-layer output matrix. The simplicity of this technique209

makes the training algorithm extremely fast. Moreover, it is remarkable the210

outstanding performance shown when compared to other learning methods.211

For example, it usually outperforms other established approaches such as212

classical MLPs or SVRs [43]. ELMs have recently been used within hybrid213

wrapper systems for feature selection [44, 45], similarly as we use them in214

this paper.215

The ELM algorithm can be explained as follows: given a training set

T = (xi,W i)|xi ∈ Rn,W i ∈ R, i = 1, · · · , l ,
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an activation function g(x) and number of hidden nodes (Ñ),216

1. Randomly assign inputs weights wi and bias bi, i = 1, · · · , Ñ .217

2. Calculate the hidden layer output matrix H, defined as218

H =

 g(w1x1 + b1) · · · g(wÑx1 + bÑ)
... · · · ...

g(w1xl + b1) · · · g(wÑxN + bÑ)


l×Ñ

. (5)

3. Calculate the output weight vector β as219

β = H†T , (6)

where H† stands for the Moore-Penrose inverse of matrix H [43], and220

T is the training output vector, T = [W 1, · · · ,W l]
T .221

The number of hidden nodes (Ñ) is a free parameter of the ELM training,222

and it can be fixed initially, or in a best convenient way, it must be estimated223

for obtaining good results as a part of a validation set in the learning process.224

Hence, scanning a range of Ñ values is the solution for this problem.225

The Matlab ELM implementation by G. B. Huang, freely available on226

the Internet [46], has been used in this paper.227

4. Bayesian optimization of the prediction system228

Every machine learning algorithm or prediction system has its own set229

of parameters that must be adjusted to obtain an optimal performance. An230

example is a deep neural network in which one has to specify parameters231

such as the learning rate, the number of layers, the number of neurons in232

each layer, etc. [47]. Another example is stochastic gradient boosting in233

which one has to choose the number of terminal nodes in the ensemble trees,234

the number of trees, the regularization parameter, etc. [48]. In our particular235

setting, in an ELM the number of units in the hidden layer has to be specified236

before training; and in the genetic algorithm described in Section 3.1, the237

probability of mutation and the number of epochs must be known initially.238

Changing the parameter values of a prediction system may have a strong239

impact in its performance. Parameter tuning is hence defined as the problem240

of finding the optimal parameter values of a prediction system on the problem241

considered. This task has traditionally been addressed by human experts,242
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which often use prior knowledge to specify parameter values that are expected243

to perform well. However, such an approach can suffer from human bias.244

An alternative solution is to consider a grid or uniform search in the space245

of parameters to look for values that result in a good performance on a246

validation set. These methods, however, suffer when the dimensionality of247

the parameter space is very high [49]. In those settings they often require a248

large number of parameter evaluations.249

Bayesian optimization (BO) has emerged as practical tool for parameter250

selection in prediction systems. These methods provide an efficient alterna-251

tive to a grid or uniform search of the parameter space [29]. Assume that252

the surface defined by the error of a prediction system that depends on some253

parameters is smooth. In that case, we can search through the parameter254

space according to a criterion that exploits this smoothness property and255

avoids exhaustive exploration. More precisely, BO methods are very useful256

for optimizing black-box objective functions that lack an analytical expres-257

sion (which means no gradient information), are very expensive to evaluate,258

and in which the evaluations are potentially noisy [50, 51, 52]. The perfor-259

mance of a prediction system on a randomly chosen validation set, when seen260

as a function of the chosen parameters, has all these characteristics.261

Consider a black-box objective f(·) with noisy evaluations of the form262

yi = f(xi) + εi, with εi some noise term. BO methods are very successful at263

reducing the number of evaluations of the objective function needed to solve264

the optimization problem. At each iteration t = 1, 2, 3, . . . of the optimiza-265

tion process, these methods fit a probabilistic model, typically a Gaussian266

process (GP) to the observations of objective function {yi}t−1i=1 collected so267

far. The uncertainty about the objective function provided by the GP is then268

used to generate an acquisition function α(·), whose value at each input lo-269

cation indicates the expected utility of evaluating f(·) there. The next point270

xt at which to evaluate the objective f(·) is the one that maximizes α(·).271

Importantly, α(·) only depends on the probabilistic model and can hence be272

evaluated with very little cost. Thus, this function can be maximized very273

quickly using standard optimization techniques. This process is repeated274

until enough data about the objective has been collected. When this is the275

case, the GP predictive mean for f(·) can be optimized to find the solution of276

the optimization problem. Algorithm 1 shows the details of such a process.277

The key for BO success is that evaluating the acquisition function α(·) is
very cheap compared to the evaluation of the actual objective f(·), which in
our case requires re-training the prediction system. This is so because the
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for t = 1, 2, 3, . . . ,max steps do
1: Find the next point to evaluate by optimizing the acquisition
function: xt = arg max

x
α(x|D1:t−1).

2: Evaluate the black-box objective f(·) at xt: yt = f(xt) + εt.
3: Augment the observed data D1:t = D1:t−1

⋃
{xt, yt}.

4: Update the Gaussian process model using D1:t.
end
Result: Optimize the mean of the Gaussian process to find the

solution.

Algorithm 1: Bayesian optimization of a black-box objective function.

acquisition function only depends on the GP predictive distribution for f(·)
at a candidate point x. Let the observed data until step t−1 of the algorithm
be Di = {(xi, yi)}t−1i=1. The GP predictive distribution for f(·) is given by a
Gaussian distribution characterized by a mean µ(x) and a variance σ2(x).
These values are:

µ(x) = kT
∗ (K + σ2

nI)−1y , (7)

σ2(x) = k(x,x)− kT
∗ (K + σ2

nI)−1k∗ . (8)

where y = (y1, . . . , yt−1) is a vector with the objective values observed so far;278

k∗ is a vector with the prior covariances between f(x) and each yi; K is a279

matrix with the prior covariances among each yi, for i = 1, . . . , t − 1; and280

k(x,x) is the prior variance at the candidate location x. All these quantities281

are obtained from a covariance function k(·, ·) which is pre-specified and282

receives as an input two points, xi and xj, at which the covariance between283

f(xi) and f(xj) has to be evaluated. A typical covariance function employed284

for BO is the Matérn function [29]. For further details about GPs we refer285

the reader to [53].286

Thus, BO methods typically spend a little bit of time thinking very care-287

fully where to evaluate next the objective function with the aim of finding288

its optimum with the smallest number of evaluations. This is a very useful289

strategy when the objective function is very expensive to evaluate and it can290

save a lot of computational time. Three steps of the BO optimization process291

are illustrated graphically in Fig. 2 for a toy minimization problem.292
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Unlike BO methods, grid or uniform search strategies are based in a293

pure exploration of the search space. If we make the assumption that the294

objective function is smooth, doing a few evaluations in regions of the in-295

put space that look more promising (exploitation) is expected to give bet-296

ter results. In BO methods the acquisition function α(·) balances between297

exploration and exploitation in an automatic way. An example of an ac-298

quisition function is expected improvement (EI) [54]. EI is obtained as the299

expected value under the GP predictive distribution for yi, of the utility300

function u(yi) = max(0, ν − yi), where ν = min({yi}t−1i=1) is the best value301

observed so far. That is, EI measures on average how much we will improve302

on the current best solution by evaluating the objective at each candidate303

point. An advantage of EI is that the corresponding acquisition function α(·)304

can be computed analytically: α(x) = σ(x)(γ(x)Φ(γ(x) + φ(γ(x)), where305

γ(x) = (ν − µ(x))/σ(x) and Φ(·) and φ(·) are respectively the c.d.f. and306

p.d.f. of a standard Gaussian. EI is the acquisition function displayed in307

Fig. 2.308

BO has been recently applied with success in different prediction systems309

for finding good parameter values. For example, it has been used to find310

the parameters of topic models based on latent Dirichlet allocation, support311

vector machines, or deep convolutional neural networks [29]. Furthermore,312

BO methods have also been used to optimize a logistic regression model for313

labelling Amazon product reviews [55], or to optimize the weights of a neural314

network to balance vertical poles and lengths on a moving cart [56]. Another315

applications of BO are found in the field of environmental monitoring, in316

the task of adjusting the parameters of a control system for robotics, in the317

optimization of recommender systems, and in combinatorial optimization318

[51, 52]. Finally, BO methods has been implemented in different software319

packages. An implementation in python is called Spearmint and is available320

at [57], which is the BO implementation used in this work.321

5. Experiments and results322

This section describes some experiments with the aim of showing the323

improvements obtained in the performance of the prediction system when its324

parameters are optimized with the Bayesian techniques introduced before.325

We consider a real problem of wave energy flux prediction (P = 0.49 ·H2
s ·Te326

kW/m, [31]) from marine buoys. Figure 5 shows the three buoys considered327

in this study at the Western coast of the USA, whose data bases are obtained328
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from [58]. The objective of the problem is to carry out the reconstruction of329

buoy 46069 from a number of predictive variables from the other two buoys.330

Thus, 10 predictive variables measured at each neighbor buoy are considered331

(a total of 20 predictive variables to carry out the reconstruction). Table332

1 shows details of the predictive variables for this problem. Data for two333

complete years (1st January 2009 to 31st December 2010) are used, since334

complete data (without missing values in predictive and objective P ) are335

available for that period in the three buoys. These data are divided into336

training set (year 2009) and test set (year 2010) to evaluate the performance337

of the proposed algorithm.338

We have divided this experimental section into two different subsections.339

First, we show the performance of the BO techniques proposed in the op-340

timization of the specific GGA-ELM prediction algorithm. Second, we will341

show how the prediction performance is improved when the system is run342

with the parameters obtained by the BO techniques, i.e. by comparing the343

performance of the system before and after tuning the parameters with BO.344

5.1. Bayesian optimization of the wave energy prediction system parameters345

We evaluate the utility of the BO techniques described in Section 4 for346

finding good parameters for the prediction system described in Section 3.347

More precisely, we try to find the parameters that minimize the RMSE of348

the best individual found by the GGA on a validation set that contains 33%349

of the total data available. The parameters of the GGA that are adjusted350

are the probability of mutation p ∈ [0, 0.3], the percentage of confrontation351

in the tournament q ∈ [0.5, 1.0], and the number of epochs e ∈ [50, 200].352

On the other hand, the parameters of the ELM that is used to evaluate the353

fitness in the GGA are also adjusted. These parameters are the number of354

hidden units n ∈ [50, 150] and the logarithm of the regularization constant355

of a ridge regression estimator, that is used to find the weights of the output356

layer γ ∈ [−15,−3]. Note that a ridge regression estimator for the output357

layer weights allows for a more flexible model than the standard ELM, as the358

standard ELM is retrieved when γ is negative and large [59].359

We compare the BO method with two techniques. The first technique360

is a random exploration of the space of parameters. The second technique361

is a configuration specified by a human expert. Namely, p = 0.02, q = 0.8,362

e = 200, n = 150 and γ = −10. These are reasonable values that are363

expected to perform well in the specific application tackled. We set our364

computational budget to 50 different parameter evaluations for both the BO365
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and the random exploration strategy. After each evaluation, we report the366

performance of the best solution found. The experiments are repeated for 50367

different random seeds and we report average results. All BO experiments368

are carried out using the acquisition function EI and the software for BO369

Spearmint.370

Fig. 3 and 4 show the average results obtained and the corresponding371

error bars for the task of predicting the wave energy flux and the task of pre-372

dicting the wave height, respectively. Each figure shows the average RMSE373

of each method (BO and random exploration) on the validation set as a374

function of the number of configurations evaluated. The performance of the375

configuration specified by a human expert is also shown. We observe that the376

BO strategy performs best in each setting. In particular, after a few evalua-377

tions the BO method is able to outperform the results of the human expert378

and it provides results that are similar or better than the ones obtained by379

the random exploration strategy with a smaller number of evaluations.380

5.2. Estimation of the generalization performance381

In a second round of experiments, we show the performance of the pro-382

posed prediction system after its optimization with the BO methodology.383

Note that after the feature selection process with the GGA-ELM approach,384

we use an ELM and a SVR [60, 61] to obtain the final prediction of the wave385

energy flux P and significant wave height Hs.386

Table 2 shows the results obtained for the experiments carried out. We387

can observe the comparison between ELM and SVR approaches in differ-388

ent scenarios: the prediction obtained with all the features, the prediction389

obtained with the hybrid algorithm GGA-ELM (without BO methodology),390

and finally the prediction acquired after the application of the BO process391

in the GGA-ELM approach. As Table 2 summarizes, we can see how the392

hybrid GGA-ELM algorithm improves the results obtained by the ELM and393

SVR approaches (without feature selection). In fact, the SVR algorithm im-394

proves the values of the Pearson’s Correlation Coefficient (r2) around 75%395

in the case of the feature selection method, against the poor 31% when all396

features are used. Moreover, these results are improved by means of the397

BO methodology, using ELM and SVR approaches after the GGA-ELM. In398

the case of the ELM, we get values of the r2 around 77% against the 71%399

achieved with the GGA-ELM algorithm without the BO improvement. The400

same behavior is obtained for the SVR algorithm: we have values around 78%401
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with the application of the BO methodology against the 75% obtained for402

the GGA-ELM approach when the parameters are fixed by a human expert.403

The results of the previous tables can be better visualized in the following404

graphics. In Fig. 6 the temporary predictions carried out by the ELM and405

SVR approaches are shown. We can see how the cases (c) and (d) improve406

the approximation to the real values against the cases (a) and (b) where407

the BO methodology is not applied. The same situation can be seen in Fig.408

8, where the scatter plots are presented for the results obtained with and409

without the BO methodology.410

The same procedure is carried out in the case of the Hs. Table 3 compares411

the results obtained in the different experiments. As it can be seen, the412

results are improved with the use of the BO methodology with values of413

the r2 around 74% for the ELM and SVR predictions, against the 66% and414

39% achieved for the ELM and SVR, respectively, with all features. The415

GGA-ELM algorithm improves these last results, but they are not so good416

like when we use the BO methodology. In Fig. 7 the temporary predictions417

for the GGA-ELM-ELM, GGA-ELM-SVR, BO-GGA-ELM-ELM and BO-418

GGA-ELM-SVR are shown. The same is done for the scatter plots, whose419

Fig. 9, present the results mentioned above.420

In both predictions (P and Hs) the BO methodology improves the results,421

for this reason we can highlight the generality of the method.422

6. Conclusions423

In this paper we have shown how a hybrid prediction system for wave424

energy prediction can be improved by means of Bayesian optimization (BO)425

methodology. The prediction system is formed by a grouping genetic algo-426

rithm for feature selection, and an Extreme Learning Machine for effective427

prediction of the target variable, the wave energy flux in this case. After428

this feature selection process, the final prediction of the wave energy flux is429

obtained by means of an ELM or a SVR approach. The paper describes in430

detail the BO methodology, and its specific application in the optimization of431

the GGA-ELM for a real problem of wave energy flux prediction from buoys432

data in Western California USA. The results show that the BO methodology433

is able to improve the performance of the systems, i.e., the prediction of the434

optimized systems is significantly better than that of the system without the435

BO methodology applied.436
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Table 1: Predictive variables used in the experiments.

Acronym Predictive units
variable

WDIR Wind direction [degrees]
WSPD Wind speed [m/s]
GST Gust speed [m/s]

WVHT Significant wave height [m]
DPD Dominant wave period [sec]
APD Average period [sec]
MWD Direction DPD [degrees]
PRES Atmospheric pressure [hPa]
ATMP Air temperature [Celsius]
WTMP water temperature [Celsius]
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Table 2: Comparative results of the P estimation by the ELM and SVR approaches after
the feature selection by the GGA-ELM in 2010.

Experiments RMSE MAE r2

All features-ELM 3.4183 kW/m 2.4265 kW/m 0.6243
All features-SVR 4.4419 kW/m 2.8993 kW/m 0.3129
GGA-ELM-ELM 2.8739 kW/m 1.8715 kW/m 0.7101
GGA-ELM-SVR 2.6626 kW/m 1.6941 kW/m 0.7548

BO-GGA-ELM-ELM 2.5672 kW/m 1.7596 kW/m 0.7722
BO-GGA-ELM-SVR 2.4892 kW/m 1.6589 kW/m 0.7823

Table 3: Comparative results of the Hs estimation by the ELM and SVR approaches after
the feature selection by the GGA-ELM in 2010.

Experiments RMSE MAE r2

All features-ELM 0.4653 m 0.3582 m 0.6624
All features-SVR 0.6519 m 0.4986 m 0.3949
GGA-ELM-ELM 0.3650 m 0.2858 m 0.7049
GGA-ELM-SVR 0.3599 m 0.2727 m 0.7056

BO-GGA-ELM-ELM 0.3324 m 0.2519 m 0.7429
BO-GGA-ELM-SVR 0.3331 m 0.2461 m 0.7396
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x= 3 4 5 | 1 2 3 4 51 2 1 1 2

y= 1 2 4 3 5 6 4 5 | 1 2 3 4 5 6

crossover points

x= 1 2 3 1 1 2 4 5 | 1 2 3 4 5

y= 1 2 4 3 5 6 4 5 | 1 2 3 4 5 6 } Initial couple

z= 1 2 1 1 24 4 5 | 1 2 3 4 5 6 1 2 } offspring

z= 7 4 4 5 | 1 2 3 4 5 68 7 7 8 7 8 } groups renamed

z= 3 4 1 3 3 4 1 2 | 1 2 3 4 } final offspring

Figure 1: Outline of the grouping crossover implemented in the proposed GGA.
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Figure 2: An example of BO on a toy 1D noiseless problem. The figures show a GP
estimation of the objective f(·) over three iterations. The acquisition function is shown in
the lower part of the plot. The acquisition is high where the GP predicts a low objective
and where the uncertainty is high. Those regions in which it is unlikely to find the global
minimum of f(·) have low acquisition values and will not be explored.
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Figure 3: Average results obtained for the Wave Energy Flux optimization after evaluating
the performance of 50 different parameters for the BO technique and a random exploration
of the parameter space. The performance a configuration specified by a human expert is
also shown for comparison.
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Figure 4: Wave Height optimization average results of the performance of the 50 different
parameter values selected by the BO technique and a random exploration of the parameter
space. The plot also shows the performance of the parameter values selected by a human
expert.
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Figure 5: Western USA Buoys considered in this study. In red buoy where the P prediction
is carried out from data at blue ones.
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Figure 6: P prediction after the feature selection process with the GGA-ELM approach; (a)
ELM; (b) SVR; (c) ELM with Bayesian optimization; (d) SVR with Bayesian optimization.
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Figure 7: Hs prediction after the feature selection process with the GGA-ELM approach;
(a) ELM; (b) SVR; (c) ELM with Bayesian optimization; (d) SVR with Bayesian opti-
mization.
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Figure 8: Scatter plots in the problem of P prediction in tackled by the ELM and SVR
with feature selection by the GGA-ELM; (a) ELM; (b) SVR; (c) ELM with Bayesian
optimization; (d) SVR with Bayesian optimization.
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Figure 9: Scatter plots in the problem of Hs prediction in tackled by the ELM and SVR
with feature selection by the GGA-ELM; (a) ELM; (b) SVR; (c) ELM with Bayesian
optimization; (d) SVR with Bayesian optimization.
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