
Promondia:
A Java-Based Framework for

Real-Time Group Communication in
the Web

Ulrich Gall, Franz J. Hauck

December 1996 TR-I4-96-08
(revised April 1997)

Computer Science
Department

Operating Systems — IMMD IV
Friedrich-Alexander-University
Erlangen-Nürnberg, Germany

Technical Report

This paper has been published as Technical Paper in the Proceedings of
the 6th Int. World Wide Web Conference (April 7-11, 1997, Santa Clara,
Cal.). The Proceedings will appear as special issue of the Computer
Networks and ISDN journal published by Elsevier, Amsterdam, The
Netherlands.

1

 Promondia:
A Java-Based Framework for

Real-Time Group Communication in the Web

Ulrich Gall, Franz J. Hauck
University of Erlangen-Nürnberg, Dept. of Computer Science IV

Martensstr. 1, D-91058 Erlangen, Germany
{gall, hauck}@informatik.uni-erlangen.de

3SOFT GmbH, Erlangen, Germany

Abstract:The World Wide Web has evolved from a distribu-
ted hypertext system to a platform-independent graphical
user interface that integrates many network services. So far,
its technology has restricted it mainly to applications for
information retrieval.

As networks become ubiquitious and more and more
users have a permanent connection, there is an increasing
demand for other network services, such as real-time data
feeds, group communication, and teleconferencing. So far,
these services have been provided by various proprietary
software systems, which were hard to set up and use, and
thus not very successful.

Integrating real-time group communication services into
the World Wide Web is a natural way to make them more
accessible and will take the Web a step further on its way to
becoming the universal network application.

In this paper, we describe functionalities required for
these services and present an implementation based on Sun
Microsystem’s Java programming language. We focus on
the high-level functionalities and abstractions, but also
describe an object-oriented programming model for group
communication systems.

Topics: Integration of real-time channels, innovative
applications, programmatic and specialized user interfaces

1 Overview

Most people agree that communicating is the most impor-
tant activity in today’s information society. We spend a very
significant portion of our time - work and leisure - commu-
nicating in groups with other people, either directly (face to
face), or remotely (via telephone, email, or videoconfer-
ences). Therefore, finding more efficient means for commu-
nication between people is a very important area of
research. We believe that the most significant problem that
keeps people from communicating with one another via
teleconferencing software systems is their limited accessi-
bility.

The World Wide Web has become the most convenient
way to access information in the Internet. The main reason
for this is that WWW browsers integrate different network
services into a common, easily accessible, platform-inde-
pendent user interface.

Developing group communication services that support
conferencing from within the WWW is an excellent way to
improve accessibility of such services. This should be done
in a way that does not require specific proprietary features
of WWW browsers; it should be built on general mecha-
nisms provided by all browsers.

So far, the WWW does not support most of the features
required for these kinds of applications. For example, there
is no mechanism for server-initiated activity. HTTP is not
intended for real-time data feeds - it is state- and connec-
tionless. Using CGI scripts and forms, the user interacts
with the Web server rather than the browser.

Active contents, such as Java Applets, solve these prob-
lems. They are a very general mechanism supported by
most browsers, yet they are powerful enough to develop
serious network-aware applications.

In this paper, we will describe some general design
issues for group communication systems for the WWW and
present an implementation of such a system. The paper is
organized as follows. Section 2 provides a short introduc-
tion to group communication. In Section 3, we discuss some
design issues for the system. We present our proof-of-con-
cept implementation, called Promondia, in Section 4 and
discuss related work in Section 5. Finally, Section 6 summa-
rizes our results.

2 Group Communication

Group communication is the exchange of information
between a group of participants in a session1. Participants
may have different roles in a session. Information is

1. In the Internet-Relay-Chat (IRC) [OiRe93] this is referred to as a
channel, in most Web-based Chat systems as a room

2

exchanged using certain media, chosen according to avail-
ability and suitability for the information to be transferred.

Different types of group communication sessions have
evolved in the past in order to reach common goals as effi-
ciently as possible. These goals include entertainment, deci-
sion making, learning, and plain information exchange
about a common interest.

For example, a common pattern is a panel discussion
involving a host, several speakers, and an audience (see
Figure 1). Typically, all these participants are in the same
room. Host and speakers communicate to the audience and
among one another using audio and gestures. The audience
provides feedback using facial expressions and gestures.
The host may let individuals ask questions. The goal is to
communicate information the audience is interested in.

This type of group communication is based mostly on the
availability of media, not on their suitability. New technol-
ogy provides the opportunity to choose more appropriate
media to reach a given goal more efficiently. Using this new
technology in the example above could mean that the audi-
ence, distributed all over the world, can provide detailed
feedback without disrupting the speakers. This feedback
can be summarized automatically, the host and the speakers
can see immediate statistics and react accordingly. Anony-
mous questions can be submitted to the host, who could
choose to forward them or discard them.

Group communication can roughly be divided into two
categories: synchronous and asynchronous (see Table 1).
Asynchronous communication can be viewed as synchro-
nous communication with one virtual participant (like a
VCR recording a TV show) that stores information and pro-
vides them when requested by another participant. Thus,
synchronous communication is the more general concept of
the two.

Asynchronous communication can easily be integrated
into the WWW using HTML forms or Java front ends and
CGI scripts or database servers. Many products and services
have been developed for this.

Uni-directional real-time data feeds can also be seen as a
special case of group communication with one or more par-
ticipants, which are simply data sources, and a large number
of passive recipients.

In this paper, we focus on real-time, synchronous group
communication and on how it can be integrated into the
World Wide Web.

3 Design Aspects for Group Communication
in the WWW

Most systems for group communication in use today do not
clearly separate all of the four components that make up
their characteristics: network topology, network services,
programming models for and implementations of session
types.

There should be a clear distinction between these com-
ponents. We will discuss the first three in this section and
the last one in Section 4.

3.1 Client/Server Approach

Certainly, it is helpful to make a clear distinction between a
server subsystem and clients when designing an architec-
ture for group collaboration in the WWW. The server sub-
system provides functionality common to all session types,
such as logging, access control, and directory services. For
each session, it also contains a session-server object that
coordinates the communication between the clients and
determines the contents distributed in that session. This ses-
sion-server object may be generic or session-type specific.

A client runs on the participant’s system and provides the
front end that presents the session to the participant. Differ-
ent types of clients reflect the different roles for each session
type; when a participant joins, the appropriate client is
instantiated.

Figure 1: Session of a Panel Discussion

Audience
Host

Speakers

Session
Panel Discussion

Synchronous Asynchronous

Time frame “Real-time”
(seconds)

Delayed (minutes
to indefinitely)

Transfer of
information

When available When requested

Analogy in
traditional
media

Telephony
(bidirectional),
life TV
(unidirectional)

Voice mail,
Bill boards

New
technologies

Videoconference,
telephony, shared
whiteboard

E-mail,
threaded discussion
systems

Products ShowMe (SUN
Microsystems),
ProShare
(Intel Inc.)

Lotus Notes
(Lotus) ,
Databases in
general

Table 1: Synchronous and Asynchronous Group
Communication

3

For sessions with a large number of participants (>1000), a
scalable architecture is required. This can be achieved using
a distributed server subsystem. A network of servers share a
common name space and host server proxies on behalf of
their clients. These proxies are also session-server objects.
They may be generic and simply forward information to and
from a central main server, or they may contain semantics
for the type of session they serve (e.g., they summarize the
local results of a voting session).

Since the the session-server objects may be loaded via
the net and instantiated dynamically, a security model is
required that restricts their access to local resources. There-
fore, Java’s coarse-grained security model is not suitable.
The more fine-grained security model described in [Rie96]
may be appropriate.

3.2 Underlying Network Services

The system should be based on a reliable network service to
set up the software components and to exchange session and
user management data. However, for the actual information
to be communicated, it should be possible to use other net-
work services based on the requirements of the particular
type of communication. In this case, the system network is
used to exchange the references required to use the other
network services.

Network services that could be used include TCP, UDP,
IP Multicast, and more specialized protocols such as RTP
[SCFV96] or TIBCO Inc.’s Rendezvous information bus
[TIBC96]. A very early version of our system [Bego96]
used IRC [OiRe93] as the messaging backbone. CORBA
Events services [OHE96] could be used for strongly typed,
language-independent event multicasting.

3.3 Programming Models for Implementing
Session Types

Many programming models for real-time collaboration
have been suggested. The simplest and most basic mecha-
nism is message passingbetween the objects associated

with the participants. A convenient API can offer asynchro-
nous multicast for remote method invocation on all or a sub-
set of participants [RoGr96]. This model is very suitable
and intuitive to use for volatile communication-oriented
tasks, such as chatting. It can be refined by distinguishing
certain characteristics for the messages (e.g., unreliable
delivery or unspecified delivery order).

To identify different types of messages, it has proven
practical to allow for more than one named communication
channel per session [ITU122]. Clients interested in a partic-
ular type of message can subscribe to its respective channel.
That way, the different clients reflecting the different roles
only receive the information they need.

To allow for areply to the messages sent, delayed return
values for asynchronous method invocation can be imple-
mented by creating a handle to represent the reply expected
in the future. This reference can then be used to wait for the
reply or to forward it somewhere. An extension of Java pro-
viding this isE, described in [E96].

Other, more sophisticated models can be built on top of
this simple infrastructure.

Model-View-Controller -based (MVC) approaches with
a replicated model, one view and one controller per user are
very suitable for collaboratively creating or modifying data.
However, they tend to be inefficient if all changes to the
model are immediately sent to all views. However, Graham
et al. report on significant performance advantages using
optimized network communication [GUN96]. If a more
sophisticated strategy is used to transmit changes only when
needed, application specific semantics have to be consid-
ered. This can be quite difficult to implement.

Gutfreund et al. suggest a Linda-like simplifiedtuple
space model for coordinating distributed applications
[WWWi96, Gele89]. This is a very lightweight approach to
the MVC pattern that provides a generic server and requires
all semantics in the client objects. This can also be used for
simple message passing, since clients may register for
changes on tuples. Lotus have a similar approach, using
“things” as state-keeping objects that also provide notifica-
tion services [DPK+96].

For synchronisation and floor control,token-based
mechanisms can be used to ensure data integrity [Burr96] .
This is an easy way to use collaboration-unaware programs
collaboratively, but severely restricts interaction between
participants.

Finally, real-time multimedia streaming requires sophis-
ticated network protocols with different quality of service
characteristics. It should be possible to integrate these ser-
vices and have them controlled by the application.

All these different approaches are very suitable for cer-
tain tasks, whereas they are inconvenient or inefficient for
others. We believe that these models should complement
each other rather than compete. A framework for group

Figure 2: Servers with Different Session-Server Objects

A B

A B

A Clients

Server

Session-Server Object

A

A

A

A

A
A

B
B

B

4

communication should not be bound to a particular model,
but provide different models for the developer to choose
from.

To allow for software reusability, it should be possible to
combine different session types to form a new type. This
can be done recursively to create a hierarchy of components
and to dynamically add new ways of communication to a
session when required. When a client joins a session con-
taining a subsession, it automatically joins the subsessions
available in that session, too.

3.4 Integration into the Web

For integrating group communication into the Web, a ses-
sion should run within a Web page using standard Web
browsers. That way, they can be combined with HTML data
containing general information about the session or its
topic. Also, sessions can be embedded into WWW pages
about a particular subject to let people, interested in this
subject, communicate with each other and create a virtual
community.

Standard WWW mechanisms can be used for directory
services and bookmarking. Sessions can be embedded into
MIME email messages so that they are automatically started
when the recipient reads the email message. This is a con-
venient way to send invitations for sessions. Within a ses-
sion, Web pages can be shown to all participants to point to
information relevant for the current topic.

4 Promondia: A Proof-Of-Concept
Implementation

We have implemented a system, calledPromondia, provid-
ing group communication functionality for the WWW. An
early version of our system is known under the name
COMO.

Promondia consists of a server program and session
starters implemented as Java applets, which are embedded
in HTML documents. These applets are called session-man-
agement applets.

When the user views an HTML document that contains
a reference to a session-management applet, the browser
loads this applet via HTTP and starts it. The applet does not
necessarily have to be located on the same WWW server as
the HTML page containing it. However, access via certain
WWW servers can be restricted.

When the applet is started, it connects to thePromondia
server and requests to join the specified session. If that ses-
sion does not exist, a new session is created on the server by
instantiating the specified session-server object. When a
session is joined, the session-starter applet instantiates the
session client reflecting the participant’s role in the session.

4.1 Session Server

The Promondia server is a stand-alone Java application. It is
entirely written in Java and does not require any native code.
Thus, it runs on any platform for which a Java interpreter is
available.

The server includes an HTTP server. This is very conve-
nient for the following reason: Current Web browsers allow
applets to connect only to the host they were loaded from.
Otherwise, it would be possible to bypass a firewall with a
malicious applet. Thus, the Java applets must be loaded
from the system the Promondia server is running on. This
can be achieved by using the built-in HTTP server. As an
alternative, a separate standard HTTP server can be set up
on the same machine.

A group-management module organizes and coordinates
the group-communication channels. It also provides infor-
mation about active sessions. It supports access control on a
general, a per-session-type, and a per-session basis. Confi-
guration can be done remotely using special Java applets.

The multithreaded architecture makes up for perfor-
mance weaknesses that are due to the fact that the Java byte
code has to be interpreted. Without just-in-time compila-
tion, a 133 Mhz Pentium PC can handle about 100 simulta-
neous connections. A Sun UltraSparc workstation can han-
dle several hundred connections at the same time. Using
Kaffe [Kaffe96], a freely available runtime system for Java,
350 simultaneous connections have been handled easily on
a Pentium 120 running Linux.

4.2 Session Management Applets

Two session management applets have been implemented to
embed sessions into an HTML document:

• A PageStartersimply joins a specified session and
displays its GUI within a Web page. Visual characte-
ristics can be specified in the HTML document.

• A FloatStarter can include advertisements or a help
menu and lets a user detach the applet from the Web
page by opening a separate window. Thus, the ses-
sion can be run independently from the Web page.

Other session management modules have been imple-
mented as sessions. That way, they can use the communica-
tion mechanisms provided by the system to distribute infor-
mation about available users and session.

4.3 Implemented Session Types

A few session managers and communication methods have
been implemented to demonstrate the system.

5

Figure 3: TheManager-Session client for administrators

Figure 4: AChat client

6

4.3.1 Manager Session Type

A Manager Session provides information about which ses-
sions are running and which users are available. This is an
example of how a session can be used for multicast distribu-
tion of information.

It provides two roles:user andadministrator. A user can
select sessions and join them, which will download the cli-
ent code for the session and spawn a new window. Invita-
tions can be sent via email; the recipient can join the session
simply by reading the email with a Java-enabled browser.
The administrator can change the properties and configura-
tion of the sessions and expel users from a session. Figure 3
shows a screenshot of aManager-Session client.

4.3.2 Text-Based Chat

TheChat system offers a variety of chat modules: a simple
one and several more sophisticated ones, which allow for
private and anonymous messages, notification at certain
events, and audio messages. Users can direct other partici-
pants to Web pages vy typing a URL. Figure 4 shows aChat
client with an ongoing session. AModerator client lets the
administrator control what is being said in the session by
assigning different rights (free speech, moderated, muted)
on how to take part in the conversation.

Promondia Chat sessions can be connected to IRC chan-
nels. The information transferred is mapped both ways. If
the session is moderated, the IRC channel will also be mod-
erated.

4.3.3 Voting and Surveys

A VoteModerator applet lets an administrator configure a
question and a set of suggested answers. The users can
choose one of the answers to cast their votes using aVoter
client. The results can be transmitted automatically or after
approval by the moderator. In Figure 5, aVoter is shown.
The already known votes are presented as colored bars
behind the suggested answers.

4.3.4 Shared Whiteboard

The Shared Whiteboard is a multi-user vector-oriented
drawing program. Lines, polygons, rectangles, ovals, text,
and imported images can be added to a shared canvas (see
Figure 6). This kind of functionality can be used as a sub-
session of a conferencing system to illustrate ideas or dis-
cuss designs.

4.3.5 Games

A simple board game for 2 to 10 players has also been
implemented to illustrate that multi-player games can be
seen as a form of group communication with very formal
interaction rules.

5 Related Work

Most work on Web-based collaboration focuses on asyn-
chronous database- and transaction-oriented cooperation.
An example is theBSCW system [BHST95, ApBu96]
developed as part of theCoopWWW project [Appe96]. Cur-
rent implementations of synchronous communication for
the Web are mostly limited to chats or other predefined
functionality.

GroubWeb [GrRo96] is a collaborative Web Browser that
is built on top ofGroupKit [RoGr96]. This approach can
even make Web browsing a fully collaborative activity;
however it does not improve accessibility of group commu-
nication, since proprietary software has to be installed. The
same applies to RAVE [EAU95], which uses browser plug-
ins for presenting real-time data feeds. CoWeb [JGKZ95]
solves these problems by using Java, but it is not program-
mable.

GroCo is a simple, but flexible system based on message
passing and implemented for the alpha release of Java
[Walt95, Walt96]. The data objects sent in the messages are
restricted to certain types.

Mushroom is a very promising and ambitious project that
focuses on an intuitive user interface. Aroom metaphor is
used to represent a session. Persistent data can be stored in

Figure 5: AVoter client

7

a room for asynchronous cooperation. Users may enter a
room and meet for synchronous cooperation. [KCDH96,
Kind96]. A Java-based implementation is under way, but
not available yet.

JavaSoft is working on a collaboration API [Burr96] that
is based on ITU recommendation T.122 [ITU122]. This API
does not yet cover higher-level functionality for session
management and configuration.

6 Conclusion and Future Work

We have discussed some of the issues involved in designing
an architecture for a group communication infrastructure
for the World Wide Web. We believe that building such an
infrastructure can help people to communicate more effi-
ciently, since it would make these application more accessi-
ble.

Promondia, our award-winning2 implementation of such
a system is freely available for academic and non-profit
organizations at

http://www4.informatik.uni-erlangen.de/promondia/.
It is used to provide chat services on many public Web sites3

in the Internet. It is unique in that it is the only flexible, high
level infrastructure currently available for building synchro-
nous group-communication applications for the Web. How-

2.Promondia (formerly called COMO) has won the following awards:
• JavaCup, Category “Internet/Web Agents”:

Group Winner (US$ 75.000)
• Java Applet Rating Service:

Top 1 % Web Applet, Top 10 Web Applet
• Gamelan Featured Applet, Gamelan Cool Applet

3.Web sites using Promondia to provide chat services include:
http://www.women.com, http://www.orientation.com
http://www.worldkids.net, http://www.surria.com
http://www.chip.de, http://www.mainpost.de

Figure 6: TheShared Whiteboard client with a loaded image and some graphics.

8

ever, it lacks many of the features necessary for a globally
usable system.

There is still a lot of work to be done. In particular, we
are currently working on a scalable reliable multicast back-
bone. The programming models that have been suggested in
the past can be combined to let the developer choose the
model that is most suitable for the task. However, we feel
that it would be helpful to integrate these models in a way
that allows for component reusability. For that, we are cur-
rently investigating the usability of a model with a hierarchy
of light weight communication channels and with a very
weak distinction between channels and sessions.

7 References

[ApBu96] W. Appelt, U. Busbach: “The BSCW system: a WWW
based application to support cooperation of distributed
groups.” 1996.
<http://orgwis.gmd.de/~busbach/wetice.ps>

[Appe96] W. Appelt: “CoopWWW: interoperable tools for
cooperation support using the World Wide Web.” In:
Proc. of the ERCIM Workshop on CSCW and the Web
(St. Augustin, Germany, Feb. 1996).
<http://orgwis.gmd.de/projects/W4G/proceedings/
coopwww.html>

[Bego96] Begole, J. (1996): Review of Como.
< http://www.cs.vt.edu/~hci/virtSchool/
ComoReview.HTM>

[BHST95] R. Bentley, T. Horstmann, K. Sikkel, J. Trevor:
“Supporting collaborative information sharing with
the World Wide Web: the BSCW shared workspace
system.” In:Proc. of the 4th WWW Conf. (Boston,
MA, 1995).
<http://orgwis.gmd.de/~bscw/papers/boston-95/
BOSTON.html>

[Burr96] R. Burridge: Java Shared Data API.
<http://java.sun.com/people/richb/jsda/>

[DPK+96] M. Day, J. Patterson, J. Kucan, W. Meng Chee, D.
Mitchell: Notification Service Transfer Protocol
(NSTP), Version 1.0. Techn. Report 96-08, Lotus Inc.,
1996. <http://www.lotus.com/research/21ae.htm>

[E96] Electric Communities:The E programmer’s manual,
1996. <http://www.communities.com>

[EAU95] P. England, R. Allen, R. Underwood: “RAVE: Real-
time services for the Web.” In:Computer Networks
and ISDN Systems, Volume 28, pp. 1547-1558,
Elsevier, May 1996.
<http://www5conf.inria.fr/fich_html/papers/>

[Gele89] D. Gelernter. “Multiple tuple spaces in Linda.” In:
Proc. of PARLE ‘89, Springer-Verlag, 1989, pp. 20-27.

[GrRo96] S. Greenberg, M. Roseman: “GroupWeb: A
Groupware Web Browser.” In:Video Proceedings of
ACM CSCW’96 Conference on Computer Supported
Cooperative Work. Boston, USA, ACM Press
(Videotape), 1996. A two page summary is available at
<http://www.cpsc.ucalgary.ca/projects/grouplab/
papers/CSCWVideoPapers/GroupWebPaper.ps>

[GUN96] T.C.N. Graham, T. Urnes, R. Nejabi: “Efficient
distributed implementation of semi-replicated
synchronous groupware.” In:Proc. of the ACM Symp.
on User Interf. Softw. and Techn., ACM Press, Nov.
1996. <http://www.cs.yorku.ca/~graham/uist96.html>

[ITU122] International Telecommunication Union
Recommendation T.122.
<http://www.itu.int/ITU-Databases/Macbeth/>

[JGRZ95] S. Jacobs, M. Gebhardt, S. Kethers, W. Rzasa: “Filling
HTML forms simultaneously: CoWeb - architecture
and funcitonality” In:Computer Networks and ISDN
Systems, Volume 28, pp. 1385-1395, Elsevier, May
1996.
<http://www5conf.inria.fr/fich_html/papers/P43/
Overview.html>

[Kaffe96] Kaffe Home Page. 1996.
<http://www.tjwassoc.demon.co.uk/kaffe/kaffe.htm>

[KCDH96] T. Kindberg, G. Coulouris, J. Dollimore, J. Heikkinen:
“Sharing objects over the Internet: the Mushroom
approach.” In:Proc. of Global Internet 96 (London,
UK, Nov. 1996).

[Kind96] T. Kindberg: “Mushroom: a framework for
collaboration and interaction across the Internet.” In:
Proc. of the ERCIM Workshop on CSCW and the Web
(St. Augustin, Germany, Feb. 1996).
<http://orgwis.gmd.de/projects/W4G/proceedings/
mushroom.html>

[ORF96] Robert Orfali, Dan Harkey, Jeri Edwards:The
Essential Distributed Objects Survivial Guide, John
Wiley & Sons Inc.,New York 1996.

[OiRe93] J. Oikarinen, D. Reed: Internet Relay Chat Protocol.
Request for Comments #1459, May 1993.
<http://www.internic.net/rfc/rfc1459.txt>

[Rie96] T. Riechmann: Security in large distributed, object-
oriented systems. Techn. Report TR-I4-96-02, IMMD
IV, Univ. of Erlangen-Nürnberg, June 1996.
<http://www4.informatik.uni-erlangen.de/TR/ps/
TR-I4-96-02.ps.Z>

[RoGr96] M. Roseman, S. Greenberg: “Building real time
groupware with GroupKit, a groupware toolkit.” In:
ACM Trans. on Computer Human Interaction, ACM
Press, March 1996.
<http://www.cpsc.ucalgary.ca/projects/grouplab/>

[SCFV96] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson:
RTP: a transport protocol for real-time applications.
Request for Comments #1889, Jan. 1996.
<http://www.internic.net/rfc/rfc1889.txt>

[TIBC96] TIBCO Inc.: White Paper [about the Rendevouz
Information Bus], 1996.
<http://www.rv.tibco.com/rv-whitepaper20.html>

[Walt95] M. Walther:Primitives for group communications in
electronic meeting systems. Diss., Bond University,
Canberra, Australia, 1995.

[Walt96] M. Walther: “Supporting development of synchronous
collaboration tools on the Web with GroCo”. In:Proc.
of the ERCIM Workshop on CSCW and the Web (St.
Augustin, Germany, Feb. 1996).
<http://orgwis.gmd.de/projects/W4G/proceedings/
groco.html>

[WWWi96]WWWinda Home Page.
<http://info.gte.com/ftp/circus/Orchestrator/
documentation/WWWinda.html>

