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SUMMARY: A kind of brand-new robot, quantum robot, is proposed through fusing quantum 

theory with robot technology. Quantum robot is essentially a complex quantum system and it is 

generally composed of three fundamental parts: MQCU (multi quantum computing units), quan-

tum controller/actuator, and information acquisition units. Corresponding to the system structure, 

several learning control algorithms including quantum searching algorithm and quantum rein-

forcement learning are presented for quantum robot. The theoretic results show that quantum ro-

bot can reduce the complexity of O( 2N ) in traditional robot to O( NN ) using quantum 

searching algorithm, and the simulation results demonstrate that quantum robot is also superior 

to traditional robot in efficient learning by novel quantum reinforcement learning algorithm. 

Considering the advantages of quantum robot, its some potential important applications are also 

analyzed and prospected. 

KEYWORDS: Quantum robot; Quantum reinforcement learning; MQCU; Grover algorithm 

1   Introduction 

The naissance of robots and the establishment of robotics is one of the most important achievements 

in science and technology field in the 20th century [1-3]. With the advancement of technology [4-8], 

robots are serving the community in many aspects, such as industry production, military affairs, na-

tional defence, medicinal treatment and sanitation, navigation and spaceflight, public security, and so 

on. Moreover, some new-type robots such as nanorobot, biorobot and medicinal robot also come to 

our world through fusing nanotechnology, biology and medicinal engineering into robot technology. 

As viewed from the development tide of robots, intelligentization and micromation are two important 

directions. The key of intelligentization lies in improving the performance of sensors and increasing 



the speed of learning and behavior decision, and ceaseless micromation will consequentially bring on 

the occurrence of quantum effect. So many difficulties must be solved from some new angles. 

On the other hand, as one of the most resplendent achievements in the 20th century, quantum the-

ory is more rapidly developing. Especially, many results of quantum information technology have 

shown that quantum computer can effectively increase efficiency for solving some important classi-

cal problems and it even can solve some hard problems that classical computer can’t solve; quantum 

communication can realize high-precision secrecy communication and increase capacity of channel 

[9]. So manipulation of quantum systems and applications of quantum effect become a most impor-

tant research point for many scientists. Here, we consider the fusion of quantum theory and robot 

technology, and use quantum system to construct a new-type robot—quantum robot. The conception 

of quantum robot has been presented from physics by Benioff in 1998 [10,11], where he emphasized 

the importance of quantum computer in quantum robot and the quantum robot isn’t aware of its envi-

ronment, doesn’t make decisions, doesn’t carry out experiments or make measurement. However, we 

give a structure of quantum robot from engineering and consider the information exchange and learn-

ing control of quantum robot. Since quantum robot applies quantum effect, it solves the difficulties 

resulting from micromation. Moreover, the performance of sensors can be improved through equip-

ping quantum robot with quantum sensors [12-16], and the speed of robot learning and behavior 

decision can be increased using powerful parallel computing, fast searching ability and efficient 

learning of quantum algorithms.  

The organization of this paper is as follows. Section 2 presents a system structure of quantum ro-

bot and describes the functions of three fundamental parts including MQCU, quantum control-

ler/actuator and information acquisition units. In Section 3 we use Grover algorithm to searching 

problem of quantum robot and also propose a novel machine learning algorithm—quantum rein-

forcement learning (QRL) for quantum robot. The theoretic results show that quantum robot can 

reduce the complexity of O( 2N ) in traditional robot to O( NN ) using Grover algorithm, and the 

simulation results demonstrate that quantum robot is also superior to traditional robot in efficient 

learning by QRL algorithm. Section 4 compares quantum robot with classical robot and suggest some 

possible applications according to the advantages of quantum robot. Conclusion and remarks are 

given in Section 5.     



2   System Structure of Quantum Robot 

In 1998, Benioff firstly gave a conception of quantum robot where a quantum robot is described as a 

mobile quantum system that includes an on-board quantum computer and needed ancillary systems 

[10]. There, he emphasized the importance of quantum computer in quantum robot, and the robot 

described there has no awareness of its environment and doesn’t make decisions or measurements. 

Here, we give an alternative definition considering quantum robot sensing and processing informa-

tion of its external environment. Quantum robot is a mobile physical apparatus designed using quan-

tum effect of quantum system, which can sense the environment and its own state, and can also proc-

ess quantum information and accomplish some tasks. A quantum robot system includes three interac-

tional parts (Fig.1.): MQCU (multi quantum computing units), quantum controller and actuator, and 

information acquisition units. A detailed description of each part is given as follows.  

 

Fig. 1. System structure of quantum robot. A quantum robot includes three fundamental parts: 

MQCU, quantum controller and actuator, and information acquisition units.  



MQCU. MQCU is the information processing center and acts as the cerebrum of quantum robot. It 

receives some tasks described using quantum language and exchanges information with its 

environment via quantum sensors or external communication. By storing, analyzing, computing and 

processing all kinds of information including task information, environment information and sensing 

information, the cerebrum can construct some appropriate quantum control algorithms and export 

indication signal into quantum controller to tell actuator what operation should be carried out. 

Usually, MQCU is made up of many QCUs (quantum computing units), each QCU accomplishes 

some specific tasks and exchanges information with each other through quantum bus. And quantum 

bus may be a refreshable entanglement resource [17] or some other quantum circuits. Besides some 

general functions of classical bus such as CAN bus, PCI bus and PC104 bus, quantum bus should 

also be able to exchange or preprocess some quantum information. According to quantum 

information theory, the QCUs can exchange information with each other more rapidly and secretly 

than MCUs of classical robot. Here, each QCU is a quantum information processor and it can 

perform some concrete task such as quantum computing, quantum memory and task description. In 

actual application, quantum computer can be used as the main part of QCU.  

Quantum computer is a physical apparatus which can process quantum information and perform 

parallel computation by manipulating quantum state in a controlled way. In quantum computer, in-

formation unit (called quantum bit, or qubit) can lie in the coherent superposition state of logical state 

0 and 1, that is to say, it can simultaneously store 0 and 1, so it can effectively speed up the solutions 

of some classical problems, and even solve some hard problems that classical computer can’t solve. 

The essential characteristics of quantum computation are quantum superposition and quantum coher-

ence. With the rapid development of quantum computation technology, some quantum computer 

models can be constructed using NMR, ion traps and photons. In the present robot system, quantum 

computer can act as QCU and accomplish some specific tasks such as storing, analyzing, computing 

and processing all kinds of information to help MQCU construct some appropriate quantum control 

algorithms.   



Quantum controller and actuator. They are the execution and control apparatus of quantum robot. 

Quantum controller receives and processes indication signal from MQCU and informs actuator to 

carry out corresponding actions. It acts as the connection between the cerebrum (MQCU) and arm 

(actuator) of quantum robot. Commonly, quantum controller is a quantum system, such as quantum 

CNOT gate. Moreover, one may design useful quantum controller under the direction of rapidly 

developing quantum control theory [18-23].   

The actuator executes some actions determined by the indication signal from quantum controller. 

An actuator may be a pure quantum system or a semiclassical apparatus capable of processing quan-

tum information. Generally, the actuator can exchange quantum information as well as classical in-

formation with quantum controller. In some specific circumstances, the actuator and quantum con-

troller can be looked upon as an apparatus, which can directly receive information from MQCU and 

carry out some actions on its environments. Besides quantum sensor, the actuator is another interac-

tion channel between quantum robot and its environment.  

Information acquisition units. As the same as traditional robot, quantum robot need also perceive 

its environments and acquire information through information acquisition units. In the present robot, 

quantum sensor perceives the information of its environments and the robot may also receive some 

other information from distant mainframe or other quantum robots through external communication 

unit. Usually, the information to be acquired includes quantum information and classical information. 

However, according to quantum theory, the acquisition of quantum information is difficult since 

quantum measurement destroys the quantum state of system. So quantum nondemolition (QND) 

measurement is an important task in quantum robot. In the robot system, quantum sensor acts as a 

key role for information acquisition. Quantum sensor is a kind of microstructure sensor, which is 

designed by applying quantum effect. To classical faint signal, nowadays two kinds of quantum 

sensors, superconduction quantum interference device (SQUID) sensor [13,14] and quantum well 

Hall sensor [15, 16], can be used in the quantum robot.  

SQUID sensor is extremely sensitive magnetic sensor that is based on the principles of supercon-

ductivity, the Meissner effect, flux quantisation and the Josephson effect. Using Josephson effect, 

SQUID sensor can convert minute changes in current or magnetic field to a measurable voltage and 

detect magnetic fields as small as 10-10 Tesla. Quantum well Hall sensor is a kind of high-



performance micro Hall sensor and uses two-dimensional electron gases to obtain a compromise 

between high mobility and high carrier concentration while maintaining a reasonably high sheet 

resistance. For example, we can construct a quantum well Hall sensor through sandwiching thin InAs 

layers between AlGaSb layers and the sensor has high magnetic sensitivity and very excellent tem-

perature stability as a result of a good confinement of two dimensional electron gases in quantum 

well structure. So quantum well Hall sensor can be used to detect faint electric magnetic field under 

different kinds of circumstances. Using high sensitivity and good temperature stability of quantum 

sensors, we can equip the present quantum robot with them to measure extremely weak electromag-

netic field. Simultaneously, scientists are studying other new-types of quantum sensors which can 

acquire quantum information. Once they are realized, we may also equip quantum robot with them to 

sense all kinds of quantum signals and feed back them into MQCU. 

Moreover, the quantum robot has a communication interface to exchange information with distant 

mainframe or other quantum robots, which can constitute a multi quantum robot system (Fig.2.). In 

external communication, quantum information can be exchanged and the advantages of quantum 

communication such as high information channel capability, perfect security and quantum teleporta-

tion can be fully used. 

 

 
Fig. 2. Multi quantum robot system (where qubot, i.e. quantum robot).  

Based on the above structure, it is obvious that quantum robot is also a kind of robot system which 

has the ability to accomplish certain tasks through perceiving environments with sensors and acting 

upon those environments with actuators. The characteristics rest with the physical implementation 

and their particular process of information. Suppose the task of quantum robot is to assist doctor with 

medical service in biomedicine, the information of task decomposition described by quantum lan-

guage is sent to MQCU, moreover MQCU also receives some sensing information from external 

environments, and every QCU is in charge of some specific work such as track, navigation, estima-

tion, diagnosis, etc. According to the processing results of MQCU, quantum controller obtains indi-



cation signal from MQCU and informs actuator to carry out corresponding actions on external envi-

ronments. Repeatedly, information acquisition units perceive environments and send sensing infor-

mation into MQCU, MQCU processes the information and exports new signal or learning control 

algorithm to quantum controller and actuator until the task is accomplished. In the process, the design 

of learning control algorithm is a key aspect. Considering the characteristics of quantum robot, we 

will present two algorithms: quantum Grover algorithm [24] for robot searching and quantum rein-

forcement learning algorithm for learning of quantum robot. 

3   Learning Control Algorithms for Quantum Robot 

Just like traditional robot, a key aspect of quantum robot is also to design high-efficiency learning 

control algorithm. To traditional robot, it is difficult to perform some algorithms with high complex-

ity and satisfy the requirement for real-time process because CPU cannot compute fast enough and 

the integration of chip is limited. However, quantum robot is essentially made up of many quantum 

systems and MQCU lies in the central position of whole quantum robot system, so one can use the 

ability of quantum parallel processing to design corresponding learning control algorithm, which can 

effectively reduce the complexity of solving problem and speed up information processing. So after 

the introduction of fundamental concepts of quantum parallel computation in subsection 3.1, we 

describe the Grover algorithms for searching problems of mobile robot and propose a novel quantum 

reinforcement learning algorithm. 

3.1   Parallel Processing of Quantum Robot 

Quantum robot is essentially a complex quantum system and its state is also represented with quan-

tum state. To conveniently process all kinds of information, here we consider encoding all informa-

tion according to qubits. In quantum information theory, the state of arbitrary qubit can be written 

into a superposition state as follows: 

〉+〉=〉 1|0|| βαψ                                                              (1) 

where α  and β  are complex coefficients and satisfy 1|||| 22 =+ βα . 〉0|  and 〉1|  are two or-

thogonal states (also called eigenstates of quantum state 〉ψ| ), and they correspond to logic states 0 



and 1. 2||α  represents the occurrence probability of 〉0|  when this qubit is measured, and 2|| β  is 

the probability of obtaining result 〉1| . The value of classical bit is either Boolean value 0 or 1, but 

qubit can be prepared in the coherent superposition state of 0 and 1, i.e. qubit can simultaneously 

store 0 and 1, which is one of the main differences between traditional robot and quantum robot.  

According to quantum information theory, the quantum computing process can be looked upon as 

a unitary transformation U  from input qubit to output qubit and U  is also a linear transformation. 

Since quantum robot is essentially a quantum system and MQCU lies in the central position of quan-

tum robot, some process of quantum robot can also be looked upon as corresponding transformation. 

If one applies a transformation U  to a superposition state, the transformation will act on all eigen-

states of this superposition state and the output will be a new superposition state by superposing the 

results of eigenstates. So when quantum robot processes function )(xf  by the method, the trans-

formation U  can simultaneously work out many different results for a certain input x . This is 

analogous with classical parallel processing, so we call it parallel processing of quantum robot. And 

the ability of strong parallel processing is an important advantage of quantum robot over traditional 

robot.  

Consider an n-qubit cluster which lies in the following superposition state: 
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where the length of x  is n , xC  is complex coefficients and 2|| xC  represents occurrence probabil-

ity of 〉x|  measuring state 〉ψ| . 〉x|  has 2n values, so the superposition state can be looked upon as 

the superposition state of all integers from 1 to 2n. Since  U  is linear, processing function )(xf  can 

give out: 
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where 〉0,| x  represents the input joint state and 〉)(,| xfx  is the output joint state. Based on the 

above analysis, it is easy to find that an n-qubit cluster can simultaneously process 2n states. However, 

this is different from classical parallel processing as quantum parallel processing doesn’t necessarily 

make a tradeoff between processing time and needed physical space. In fact, it provides an exponen-



tial-scale processing space in the n-qubit linear physical space. So quantum robot can effectively 

speed up information process and faster solve some problems such as navigation and decision. 

3.2   Searching Algorithm of Quantum Robot 

Just as traditional robot, most planning and control problems of quantum robot can also come down 

to searching problems. Thus we will put forth an abstract robot planning problem, and apply quan-

tum Grover algorithm to it as an example. 

First let’s consider a robot planning system whose state evolves according to certain transition 

probabilities that depend on a control u . If the robot is in state i  and chooses control u  according 

to a policy π , it will move to state j  with probability )(upij  and a cost ),,( juig . Now suppose 

that the desirability of a state is defined as V , which means the value of a state. The task of robot 

planning system is to find out the optimal sequence of )(stateV , which satisfies some forms of 

Bellman’s equation 

],|)(),,([min)( ** uijVjuigEiV
u

+=        (for all i , j )                     (4)   

where ],|[ uiE ⋅  is the expected value. So at a certain state i , the robot planning problem is simply 

an unstructured searching problem to find the action ia  (or the next state j ) which is the optimal. 

As for unstructured searching problems of searching space N, algorithm complexity is O( N ) in 

classical computation. In robotics, it is an important task to search suitable action from action space 

based on the current state of robot. If the complexity of state (or action) space is O( N ), the problem 

complexity in traditional robot is O( 2N ), but quantum robot can reduce the complexity to O( NN ) 

by using Grover searching algorithm.  

If there are N actions ( 122 −≥≥ nn N ), express them with n qubits: 
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where the length of l is n. For convenience, formula (5) can also be expressed as  
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Assume the cell to be found corresponds to 〉k| , now we use quantum Grover algorithm to complete 

the searching task. 

At first, we prepare a quantum state  
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which is an equal weight superposition state. This can be accomplished by applying the Hadamard 

transformation to each qubit of the n-qubit state 0000L  [9, 25]. Then we construct a reflection 

transform  

IssU s −= 2                      (8) 

Geometrically, when sU  acts on an arbitrary vector, it preserves the component along 〉s|  and flips 

the component in the hyperplane orthogonal to 〉s| . Thus if apply sU  to 〉0|ψ , we get 
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where  
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Now we give another reflection transform  

IkkU k +−= 2                                   (11) 

where k  is the k-th eigenstate and by applying it to state 〉0|ψ , we obtain  
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It is easy to see that kU  only changes the amplitude’s sign of k  in the superposition state. Thus 

we can form a unitary transformation (Grover iteration) [9, 24] 

    ksG UUU =                         (13) 



By repeatedly applying the transformation GU  on 0ψ , we can enhance the probability amplitude 

of k  while suppressing the amplitude of all the other states ki ≠  [24]. Iterating the transforma-

tion enough times, we can perform a measurement on the system to make the state 〉0|ψ  collapse 

into k  with a probability of almost 1.  

    Define angle θ  satisfying n2/1sin 2 =θ . After applying the GU  j times to 0ψ , the amplitude 

of k  will become  

          ))12sin(( θ+= ja j
k     (14) 

If θθπ 4/)2( −=j , then 2/)12( πθ =+j  and 1=j
ka . However, we must perform an integer 

number of iterations. Boyer has shown in [26] that the probability of failure is no more than 1/2N if 

we perform the Grover iteration )4/int( θπ  times (here the function )int(x  return the integer part 

of x  ). According to Grover algorithm, when N is large, quantum robot can find the action corre-

sponding to k  with a high probability of [1-O( N/1 )]. Since Grover algorithm can find needed 

result with almost 1 probability in N  steps, quantum robot reduces the complexity and can find 

suitable action from action space based on the current state of robot. If the number of states is 104, 

considering different number of actions, the problem complexities in traditional robot and quantum 

robot can be compared as Table 1. From the Table, we can find that the advantage of quantum robot 

is more and more prominent with the increase of number of actions. 

Table 1. Comparisons of problem complexities in traditional robot and quantum robot 

Number of actions 102 103 104 105 106 107 108 
Complexity in 
 traditional robot 

106 107 108 109 1010 1011 1012 

Complexity in 
quantum robot 

105 3.2×105 106 3.2×106 107 3.2×107 108 

3.3   Learning Algorithm of Quantum Robot 

The essence of robot learning is to deal with state-action pair {State(t), Action(t)} [31]. Learning 

methods are generally classified into supervised, unsupervised and reinforcement learning (RL). 

Supervised learning requires explicit feedback provided by input-output pairs and gives a map from 



input to output. And unsupervised learning only processes on the input data. However, RL uses a 

scalar value named reward to evaluate the input-output pairs and learns by interaction with environ-

ment through trial-and-error. Since 1980s, RL has become an important approach to machine intelli-

gence [27-30], and is widely used in artificial intelligence, especially in robot [32- 34], due to its 

good performance of on-line adaptation and powerful learning ability of complex nonlinear system 

[27, 28, 35]. To adapt learning algorithm to quantum robot, we propose a novel learning method--

quantum reinforcement learning (QRL) inspired by the quantum superposition and quantum parallel-

ism. 

Let sN  and aN  be the number of states and actions, then choose numbers m and n, which are 

characterized by the following inequations:  
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Use m and n qubits to represent state set S＝{s} and action set A＝{a} respectively: 
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Thus they may be in superposition state: 
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where sss iyxC += and aaa ivuC +=  are complex numbers. The mapping from states to actions 

is ASsf →= :)( π  and we will get: 
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2|| aC  denotes the probability of 〉a|  when 〉n
sa|  is measured. Based on the above express, the 

procedural form of QRL can be described as follows. 

 

Procedure QRL 
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(2) Take action 〉a| , observe next state 〉)('| ms , reward r  
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Until for all states ε≤∆ |)(| sV . 

 

QRL is inspired by the state superposition principle of quantum state and quantum parallel compu-

tation. The state value can be represented with quantum state and be obtained by randomly observing 

the simulated quantum state, which will lead to state collapse according to quantum measurement 

postulate. And the occurrence probability of eigenvalue is denoted by probability amplitude, which is 

updated according to rewards. So this approach represents the whole state-action space with the su-

perposition of quantum state and makes a good tradeoff between exploration and exploitation using 

probability. What’s more, the representation method is consistent with quantum parallel computation 

and can speed up learning dramatically. 

In [27], Bertsekas and Tsitsiklis have verified that stochastic iterative algorithms, under certain ex-

ploration policy, converge at the optimal state value function *)(sV  with probability 1 when the 

following hold ( where kα  is stepsize): 
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And QRL is the same as traditional RL, but differences lie in: (1) exploration policy is based on the 

collapse theory of quantum measurement while being observed; (2) parallel computation. So the 

modification of RL does not affect the characteristic of convergence and QRL algorithms converge 

when (18) holds. 



To evaluate QRL algorithm in practice, consider the typical rooms with corridor example, grid-

world environment of four rooms and surrounding corridors as shown in Fig. 3. Each cell of the grid 

corresponds to an individual state of the environment. From any state the robot (or agent) can per-

form one of four primary actions: up, down, left and right, and actions that would lead into a blocked 

cell are not executed. The task of the algorithms is to find an optimal policy which will let the robot 

move from S to G with minimized cost (or maximized rewards). The simulation environment is based 

on Windows 2000 and Visual C++, and the results are processed with Matlab 6.5. 

Experimental set-up. In QRL, the action selecting policy is obviously different from traditional RL 

algorithms, which is inspired by the collapse theory of quantum measurement. And probability 

amplitudes 2|| aC  is used to denote the probability of an action defined as 
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)12~0(1313×  grid world, the initial state and the goal are cell(4,4) and cell(8,8) respectively. 

 

 
Fig. 3. The example of rooms with corridor is a gridworld environment with cell-to-cell actions (up, 

down, left and right). The labels S and G indicate the initial state and the goal in the simulation ex-

periment described in the text.  



 
Fig. 4. Performance of QRL in the example of rooms with corridor. 

Results and analysis. Learning performance for QRL is plotted in Fig. 4. We observe that given a 

proper stepsize (alpha < 0.10) this algorithm learns extraordinarily fast at the beginning phase, and 

then steadily converges to the optimal policy that costs 25 steps to the goal G. As the stepsize in-

creases from 0.02 to 0.10, this algorithm learns faster but more unsteadily. When the stepsize is 0.20, 

it cannot converge to the optimal policy. The results show that QRL algorithm excels other RL algo-

rithms in the following two main aspects: (1) Action selecting policy makes a good tradeoff between 

exploration and exploitation using probability, which speeds up the learning and guarantees the 

searching over the whole state-action space as well. (2) Updating is carried through parallel, which 

will be much more prominent in the future when practical quantum apparatus comes into use instead 

of being simulated on traditional computers. 

4   Applications of Quantum Robot 

Before presenting the potential applications of quantum robot, we firstly compare quantum robot 

with traditional robot. Since quantum robot applies quantum effect and can process quantum infor-

mation, there are many differences between quantum robot and traditional robot (Table 2).  



Table 2. Comparisons between quantum robot and traditional robot 

Compared items Quantum robot Traditional robot 
System property Quantum system Mechanical system 
On-board Sensors Quantum sensors such as 

SQUID sensors and quan-
tum well Hall sensors 

Infrared sensors, ultra-
sonic sensors, CCD cam-
era and etc. 

Law to obey Quantum mechanical law Classical mechanical law 
Information processing  
centre 

MQCU (Multi quantum 
computing units) 

Classical processor such 
as classical computer 

Information Quantum information and 
classical information 

Classical information 

Delicacy High Relatively lower 
Space size Microcosmic  Mostly macro 
Technical difficulty More difficult Easier 
Communication manner Quantum communication 

and classical communica-
tion 

Classical communication 

Parallel process ability Powerful Weak 
 

Thus it can be seen that quantum robot as a brand-new robot can solve the difficulties resulting from 

micromation. It makes use of quantum sensor to acquire quantum information as well as classical 

information from its environments and has extremely high delicacy, which effectively overcomes the 

limitation of existing sensors’ performance. At the same time, it can directly use the advantages of 

quantum information technology to speed up the control and decision of robot. So it will have wide 

application prospect in the fields of military affairs, national defense, aviation and spaceflight, bio-

medicine, science research, safety engineering and other daily life.  

For example, it can be used as patrol warrior in military affairs and national defense. If we have 

measured in advance the magnetic fields near important ports and military bases, using the high deli-

cacy of quantum sensor, quantum robot may perceive the faint change of magnetic field resulting 

from the closing of nuke and scout to effectively forewarn decision-maker. In aviation and space-

flight, it can be used to design Mars detector and moon vehicle to accomplish space exploration 

through using its high delicacy of perceiving environments, powerful ability of processing informa-

tion and more secure communication. In biomedicine, it can be used to patient with a contagious 

disease for examining or tracking state of an illness, and acts as SARS nurse and contagion doctor. 

Once quantum robot is successfully constructed, considering the minisize characteristic, it will be 

possible to establish molecule-scale medicinal robot. Thus quantum robot can be injected into body, 

moves along with blood circulation, and detects potential pathological changes in body. At the same 

time, it will likely provide a brand-new way to study life. In science research, it is possible to use 



quantum robot to solve most complex problems with less physical resources and provide a test-bed 

for experiment research of physics, chemistry and information so that some experiment realization of 

quantum communication, quantum computing and quantum control will possibly become easier. In 

safety engineering, one may take advantage of the high delicacy and small size of quantum robot to 

many aspects such as anti-terror forewarning, fire forecasting, guarding against theft and traffic di-

recting. 

5   Conclusion 

With the advancement of technology, robots have been widely applied to many fields. At the same 

time, some new-type robots such as nanorobot, biorobot and medicinal robot also come to our world. 

This paper proposes another new-type robot—quantum robot, by fusing quantum theory into robot 

technology. A quantum robot is a mobile physical apparatus designed using quantum effect of quan-

tum system, which can sense the environment and its own state, and can also process quantum infor-

mation and accomplish some tasks. It should be composed of three fundamental parts: MQCU, quan-

tum controller and actuator, and information acquisition units. To adapt some algorithm to the system 

structure of quantum robot, quantum searching algorithm is presented and quantum reinforcement 

learning is proposed for quantum robot. The theoretic results show that quantum robot can reduce the 

complexity of O( 2N ) in traditional robot to O( NN ) using quantum Grover algorithm, and the 

simulation experiments demonstrate that quantum robot is also superior to traditional robot in effi-

cient learning since quantum reinforcement learning makes a good tradeoff between exploration and 

exploitation using probability. So it has many potential important applications in military affairs, 

national defense, aviation and spaceflight, biomedicine, science research, safety engineering and 

other daily life.  

To implement a real quantum robot is no doubt a very challenging mission, which consists of three 

kinds of work: (1) synthesis architecture for quantum robot systems; (2) physical implementation 

including computing units, sensors, actuators and communication hardware; (3) software level re-

searches such as related theories and programming issues. Though our work is only the first step to 

practical quantum robot, it has luciferous future with the rapid development and gradual maturation 

of quantum information technology and quantum control theory. 
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