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Skeletal representations of shape have attracted enormous inter-
est ever since their introduction by Blum [Blum H (1973) J Theor Biol
38:205–287], because of their potential to provide a compact, but
meaningful, shape representation, suitable for both neural mod-
eling and computational applications. But effective computation of
the shape skeleton remains a notorious unsolved problem; existing
approaches are extremely sensitive to noise and give counterin-
tuitive results with simple shapes. In conventional approaches, the
skeleton is defined by a geometric construction and computed by
a deterministic procedure. We introduce a Bayesian probabilistic
approach, in which a shape is assumed to have ‘‘grown’’ from a
skeleton by a stochastic generative process. Bayesian estimation is
used to identify the skeleton most likely to have produced the
shape, i.e., that best ‘‘explains’’ it, called the maximum a posteriori
skeleton. Even with natural shapes with substantial contour noise,
this approach provides a robust skeletal representation whose
branches correspond to the natural parts of the shape.

computation � vision

Skeletal representations of visual shape, in which a shape
contour is represented in terms of local symmetries about a

set of possibly curving axes, have played a prominent role in
theories of visual shape ever since the introduction of the medial
axis transform (MAT) by Blum (1) and Blum and Nagel (2). The
MAT is widely suspected to play a role in cortical representa-
tions of visual shape, perhaps by a neural implementation of
Blum’s local ‘‘grassfire’’ procedure. Cells as early as primary
visual cortex show enhanced sensitivity near medial points (3, 4),
suggesting an early locus of computation. Moreover, medial axes
have known psychophysical correlates, including increased sen-
sitivity to contrast (5, 6) and position (7) and probe comparisons
in which latency patterns respect perceived axial structure (8).
Medial axes are also deeply intertwined in theories of how shapes
are decomposed into parts (9); for example, despite considerable
controversy about how part cuts (boundaries between percep-
tually distinct parts) are determined, there is substantial agree-
ment that part cuts must cross a medial axis (10). More broadly,
many higher-level theories of shape and shape recognition are
substantially based on axial representation of parts (11–13)
presupposing prior computation of some sort of skeletal shape
representation.

However, the computation of the medial axis skeleton suffers
from several notorious problems, including spurious axial
branches stemming from hypersensitivity to perturbations along
the contour, and counterintuitive results (forking) at the ends of
blunt parts (see Fig. 3 Insets). More recent advances in the
computation of the MAT (14–18) have reduced, but not elim-
inated, these problems, which seem to be endemic to the
underlying geometric conception of the MAT.

Summary of the Approach
The basic idea behind our approach is that real shapes owe their
structure to a mixture of generative and random factors, e.g.,
shapes that are the result of an underlying skeleton plus a
stochastic growth process. We apply Bayesian estimation to the
problem of identifying a shape’s most likely ‘‘generative skele-
ton,’’ under simple assumptions about the probability distribu-
tion of skeletons (providing a Bayesian prior), and a stochastic

model of how shapes are generated from skeletons (providing a
Bayesian likelihood function). The prior favors simple skeletons
with relatively few and relatively straight branches. The likeli-
hood model, i.e., the shape-generating stochastic process, as-
sumes that shapes are generated by a lateral outward growth
process in which there is some random variation in the direction
of growth away from the axis and some random variation in the
extent of growth. We then combine this prior and likelihood
function by Bayes’ rule, identifying the generative skeleton that
is most likely to have produced the shape. An axial branch is
included in this skeleton only when the additional skeletal
complexity it creates is more than offset by the improved
‘‘goodness of fit’’ to the shape. The estimated skeleton, called the
maximum a posteriori (MAP) skeleton, is the skeletal interpre-
tation that, under the generative assumptions underlying the
prior and likelihood functions, best ‘‘explains’’ the shape.

Bayesian Formulation, Priors, and Likelihood Functions
We begin by assuming a shape given by a discrete approximation
SHAPE � {x1, x2, . . ., xN} � R2. (We assume a closed shape, but
formally all that is required is a boundary with figure and ground
assigned, so that the direction of the field of normals is well
defined.) Skeletons are generated under a probability density
function p(SKEL); and in turn shapes are generated from
skeletons under a conditional probability density function play-
ing the role of a likelihood function p(SHAPE�SKEL). The key
idea is that this likelihood function expresses a generative model
of shape (19) so that selecting a particular skeletal interpreta-
tion, a particular generative skeleton, amounts to explaining the
observed shape in the most plausible way under the assumed
generative model. Following the Bayesian approach (20–22) the
plausibility of a particular skeletal description corresponds to its
posterior probability, given by Bayes’ rule:

p(SKEL�SHAPE) �
p�SHAPE�SKEL)p�SKEL)�i p�SHAPE�SKELi�p�SKELi�

, [1]

summing over all possible skeletons SKELi. Because the denom-
inator in this expression is constant for a given shape, we can
maximize it by maximizing the numerator, i.e., the product of the
prior and likelihood.

Priors. A skeleton SKEL consists of a set of axial segments
C1 . . . CK, hierarchically organized into a root contour,
branches, subbranches, etc. We define a prior probability density
p(SKEL), using a natural hierarchical extension of our earlier
work on contour information (23). For each axial segment Ci, we
induce a prior density p(Ci) by assuming that successive points
in its discrete approximation are generated by a density function
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centered on straight (zero curvature) continuation of the axis,
with angular deviation from collinearity � following a von Mises
distribution V(0°,b) � ecos(b�) [similar to a Gaussian (normal)
distribution but suitable for angular measurements (24)], which
has proved accurate in modeling human contour perception (23,
25). Under this assumption, relatively straight axes (� near zero)
have high probability, whereas probability decreases with larger
turning angles, i.e., with larger magnitude of curvature in the
underlying curve. Successive turning angles are assumed inde-
pendent, so the prior p(C) for a curve C containing a series �1,
�2 . . . of turning angles in its discrete approximation is �ip(�i).
To induce a prior over skeletons, we simply augment this prior
by assuming that axial branches Ci sprout with fixed probability
pC, which yields the probability of a skeleton SKEL comprising
K axes of

p�SKEL) � pC
K �

i

p�C i). [2]

This prior is high for skeletons with few and relatively straight
axes and diminishes with increased branching or increasing

curvature in any of the axial branches (Fig. 1), an assumption
emprically validated by the generally simple forms exhibited by
naturally occurring shapes (26). For a skeleton consisting of a
single axis, the prior reduces to the established prior for a simple
open contour (23) as seems natural.

Likelihoods. The next step in a Bayesian account is the adoption
of a likelihood model, in this case meaning a stochastic gener-
ative model by which a shape is produced from a hypothesized
skeleton. To capture the idea that the shape is ‘‘extruded’’
laterally from the generative skeleton, we assume that from each
point on each skeletal axis, ‘‘ribs’’ sprout on both sides, approx-
imately perpendicular to the axis (hence, primarily outward), but
with partly random lengths and directions (Fig. 2). More spe-
cifically, each rib sprouts in a direction that is perpendicular to
the axis plus a random directional error �x, chosen indepen-
dently for each rib (i.e., the rib ending at shape point x) from a
von Mises density centered on zero, i.e., �x � V(0,b�) with spread
parameter b�. The expected rib length � at each point v along the
axial segment C is given by a ‘‘rib length function’’ �C(vx), which
we estimate from the shape assuming only a continuity constraint
(see Methods). To this expected rib length �C(vx) is added a
random rib length error �x, chosen independently for each rib
from a normal distribution, � � N(0,�C

2 ). The expected rib
lengths �c(vx) are themselves drawn from an exponentially
decreasing density p(�) � e��� with decay constant �, meaning
that wider axial parts are less likely than narrower ones, with
probability decaying gradually with increasing widths. For each
shape point x, the expected rib length �, directional error �, and
rib length error � are mutually independent, so the likelihood of
the shape point p(x�SKEL) generated by a rib at point vx along
axis C is given by the product

p�x�SKEL) � p��C(vx))p��x)p��x). [3]

The likelihood of the entire shape is the product of the likeli-
hoods of its constituent points,

P�SHAPE�SKEL) � �
x�SHAPE

p�x �SKEL). [4]

The MAP Skeleton
Given the prior and likelihood defined as above, the final step is
to compute the skeletal structure with maximum posterior
probability, the MAP skeleton. We propose estimation of this
skeleton as a ‘‘competence’’ or computational theory of mental
shape representation, meaning a specification of the function
that the human system is attempting to compute when it
represents shape (rather than an account of the implementation
it uses to compute it). We can maximize the posterior by,
equivalently, choosing the skeleton that minimizes the negative
logarithm of the posterior, often referred to as its description
length (DL) because it reflects the complexity of expressing the
hypothesis in an optimal code (27). Taking the negative loga-
rithm of Eq. 1, the DL of the skeletal posterior is just

Fig. 2. Likelihood model. (a) Illustration of the likelihood function,
p(SHAPE�SKEL), showing how a shape is generated stochastically from a
skeleton. Ribs sprout from each on both sides of each axis, in directions that
are perpendicular (normal) to the axis plus a random directional error �,
chosen independently for each rib. The ribs have lengths �C 	 �, where �C is
the rib length function of axis C, and � is a Gaussian error chosen indepen-
dently for each rib. The generated shape is the shape formed by the rib
endpoints. (b) A more complex shape and its MAP skeleton, showing esti-
mated ribs (i.e., axis-shape correspondences), color-coded to illustrate com-
mon axial sources. The distinct colors correspond well to perceptually distinct
parts of the shape.

Fig. 1. Illustration of the prior probability density over skeletons p(SKEL), illustrating how probability decreases as skeletons branch and�or as axial branches
bend.
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DL(SKEL�SHAPE) � � log[p(SKEL)]

� log[p(SHAPE�SKEL)] 	 const

� DL(SKEL) 	 DL(SHAPE�SKEL)

	 const. [5]

Apart from the constant term (the negative logarithm of the
denominator in Eq. 1) the DL has two additive components:
DL(SKEL), which reflects the complexity of the skeletal hy-
pothesis itself, and DL(SHAPE�SKEL), which reflects the com-
plexity of the shape as described by that skeleton. The MAP
skeleton is the description that minimizes the sum of these two
complexities. Hence the MAP skeleton is naturally regarded as
identifying the simplest description of the shape as the outcome
of a skeletal generative process. This attractive interpretation
stems directly from the Bayesian conception and is not shared by
other stochastic techniques for skeletal-axis computation.

The process of estimating the MAP skeleton requires inverting
the likelihood function by choosing, for each shape point, the
skeletal point that has ‘‘responsibility’’ for it, i.e., assigns it the
highest likelihood. This skeletal point is most likely to have
sprouted a rib whose endpoint is the shape point in question. (To
stabilize the computation, we allow shape points to have mixed
sources, treating them as probability-weighted mixtures of mul-
tiple ribs.) Part boundaries along the contour can be regarded as
points at which responsibility for contour points switches from
one axis to another (e.g., the boundaries between color-coded
regions in the hand in Fig. 2; see below). The shape likelihood
depends on this hypothesized ensemble of responsibilities,
whereas the responsibilities depend on the currently estimated
skeleton, suggesting a process similar to the well known expec-
tation–maximization procedure, in which we alternately (i)
estimate the correspondences (i.e., the ribs) between axial and
contour points (the expectation phase), and (ii) search through
the parametric space of skeletons, attempting to increase the
posterior (decrease the DL) given the currently hypothesized
correspondence (the maximization phase). This procedure is
described in more detail in Methods.

Results
Figs. 3–5 show typical examples of the MAP skeleton, along with
a conventional Voronoi-based implementation of Blum’s MAT
(1, 15) shown in Figs. 3–5 Insets for comparison. Simple shapes
(Fig. 3a) yield intuitive results devoid of spurious branches, and
the estimated skeleton is robust against contour noise (Fig. 3 b
and c). Fig. 4 more specifically illustrates the robustness of the
MAP skeleton as contour noise is introduced; the axial structure
of the human form is recovered in a substantially invariant way
in all three versions (a: no noise; b: noise throughout; c: noise on
one arm and one leg only). Fig. 4c exemplifies the difficult case
in which noise is added to some parts but not others, as in
Richards et al.’s (28) famous ‘‘fuzzy pear,’’ which cannot be
correctly handled by uniform smoothing techniques. Finally, Fig.
5 shows results for a variety of animal shapes. In each case the
MAP skeleton corresponds closely to the intuitive part structure
of the shape. The perceptual naturalness of these computed
skeletons can be taken as ‘‘instant psychophysics,’’ supporting
our claim that the MAP skeleton corresponds reasonably well to
psychological shape representations.

A critical component of MAP skeleton estimation is the
evaluation of candidate axes for inclusion in the hypothesized
skeleton. As noted above, traditional approaches to computing
the MAT have suffered from the problem of spurious axial
branches, interfering with what otherwise might be a desirable
isomorphism between the branches of a skeleton and the natural
parts of a shape. The Bayesian approach provides a tool for

handling this problem: a principled estimate of the statistical
‘‘significance’’ or evidence in favor of an axial branch. The
relevant comparison is between a skeletal hypothesis SKEL that
does not include the axial branch C and an augmented hypothesis
SKEL
 � SKEL 	 C that does include it (Fig. 6). Following
Bayes, we adopt the axial branch C if the posterior with it is
better than the posterior without it, i.e.

p��SKEL	C� �SHAPE)
p�SKEL�SHAPE)

 1. [6]

This condition can be easily restated in terms of DL,

DL(SKEL�SHAPE) � DL([SKEL	C] �SHAPE)  0, [7]

meaning that we should adopt axis C if doing so results in a net
reduction in complexity (DL).

The difference in DLs is sometimes referred to as the weight of
evidence, in this case quantifying the degree to which the added
descriptive accuracy (or goodness of fit) of the augmented skeletal
description offsets the added complexity of the additional axis. The
criterion is thus a principled one in that it accurately reflects
whether the new part yields a net benefit given the assumptions
underlying the prior and likelihood functions. Because the weight
of evidence quantifies the strength of posterior belief in the
candidate axis C, it may serve to quantify the perceptual ‘‘salience’’
of the corresponding part of the shape (29).

Fig. 3. Estimated MAP skeletons for the three simple shapes, showing the
absence of forking (a) and the invariance to contour noise (b and c). (a)
Rectangle. (b) Notched rectangle. (c) Noisy articulated blob. (Insets) Conven-
tional Voronoi-based MAT.
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More broadly, this argument raises the possibility that Bayes-
ian skeleton estimation might subsume such well known deter-
minants of parts as the minima rule (9) (that extrema of negative

contour curvature constitute likely part boundaries) and the
shortcut rule (10) (which holds that part cuts tend to be of
minimal length). In the Bayesian framework each of these
principles emerges as a by-product of the posterior maximiza-
tion, in that, although they play no overt role in the computation,
they tend to be obeyed by MAP skeletal estimates. For example,
MAP skeleton estimation does not in any way involve the
computation of curvature nor the identification of curvature
extrema. Yet the boundaries between the points stochastically
generated by one axial branch and another automatically tend to
lie in regions of negative contour curvature and in particular near
points of negative minima; so MAP skeletal estimates tend to
place part boundaries at those locations. The boundaries be-
tween color-coded rib regions in Fig. 2, which lie between the
fingers of the hand, are examples. The thrust of this argument
admittedly parallels traditional, nonstochastic arguments, in this
case amounting to a stochastic generalization of the transver-
sality principle (30). (Distinct axes tend under our prior to be
transverse, so stochastically generated ribs from distinct axes
tend to point in transverse directions, meaning that collections
of ribs stemming from a distinct axes tend to abut each other at
points of rapidly changing tangent direction, as in Figs. 2 and 6.)
But the Bayesian approach unifies what is otherwise a hetero-
geneous collection of disparate part-determination rules (31, 32)
under the umbrella of one overarching inferential goal, the
maximization of the skeletal posterior. Moreover, it provides a
unified account of both part boundaries (points along the
contour at which the shape divides) and part cuts (the resulting
divisions of the shape itself), which in standard accounts each
require its own distinct systems of rules, but which in ours both
fall out of the same computation. Most importantly, our account
has the potential to explain the well known pattern of exceptions
to standard rules, for example, part boundaries that fall in
positive-curvature regions of the bounding contour (31) and
negative minima that are not perceived as part boundaries (8, 10,
33). Each of the traditional rules holds under some circum-
stances and fails under others, but always in accord with the
maximization of the posterior.

Discussion
Among the most promising recent approaches to computing the
MAT are those based on stochastic methods (34–37), which
decrease sensitivity to noise by including a random element in
the computation. Like ours, these methods presume a partly
random rather than perfectly symmetric correspondence be-
tween opposing contour points and�or minimize some energy
functional that embodies an asymmetry cost. Nevertheless, like
Blum’s (1), most of these methods are based on the notion of
local symmetry, although treated stochastically rather than
deterministically. In particular, the medial axis itself is defined
geometrically as the locus of points equidistant between contour
points that have been designated as corresponding. In this sense,
these existing stochastic methods fall short of a fully Bayesian
approach in several respects, most specifically in that they lack
an overt probabilistic shape-generating model for the skeleton,
and for the shape given a skeleton, and thus lack well defined
priors and likelihood functions.

In contrast, our approach adopts a full-f ledged inverse-
probability conception, setting as the computational goal the
identification of a skeletal model most likely to have generated
the shape (38). This approach entails overtly decomposing the
observed shape into a ‘‘signal’’ process (the skeleton) and a
‘‘noise’’ process (the stochastic growth process). Of course,
visual features treated as noise in some contexts might best be
treated as signal in others (e.g., the notch in Fig. 3b, which might
in some contexts be better treated as a bite or ‘‘negative part’’),
suggesting that top-down factors may play a role as well. A
Bayesian approach has the benefit that such knowledge, when

a

b

c

Fig. 4. Estimated MAP skeletons for three variants of a human form,
showing the invariance of the MAP skeleton to noise. (a) Human form. (b)
Human form with added contour noise (independent and indentically distrib-
uted circular Gaussian deviates added to each vertex). (c) Human form with
contour noise on one arm and one leg only [compare with Richards et al.’s (28)
fuzzy pear]. (Insets) Conventional Voronoi-based MAT.
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available, may be readily incorporated into the model. As our
results suggest, however, a generic default generative model
gives reasonably good results with bottom-up geometry alone.

The MAP skeleton should not be regarded as an attempt to
compute the MAT per se, but rather to estimate a related but
distinct skeletal structure, the generative skeleton. The MAP

a

c

e

d

MAP skeleton

Conventional MAT

b

f

Fig. 5. Estimated MAP skeletons for a variety of animal shapes. (Insets) Conventional Voronoi-based MAT.

SKEL

SKEL+C

C

a b

Fig. 6. Schematic of the Bayesian posterior test for the statistical contribution of an axis. The axis C is accepted if the posterior p([SKEL 	 C]�SHAPE) with the
axis is higher than the posterior p(SKEL�SHAPE) without it. (a) Without the candidate axis, the variance in rib lengths is very high, because the single axis must
account for all points on the contour. (b) With the axis added to the hypothesized skeleton, the variance within each axis’s (i.e., like-colored) collection of ribs
is smaller. But this advantage comes as the cost of increased complexity in the skeleton, which entails a lower prior. The posterior test evaluates whether the
added descriptive accuracy (higher likelihood) offsets the increased complexity (lower prior). If it does, the axis satisfies the criterion and is ‘‘accepted.’’ The
difference in the two log posteriors (DLs), the weight of evidence for the axial part, provides a measure of its subjective salience.
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skeleton is not, in principle, necessarily medial, thought it tends to
maximize mediality, but only in conjunction with other properties
not present in the MAT, such as skeletal simplicity, and low
variance in the rib lengths. The previously noted problems con-
necting the MAT to psychological percepts of shape are widely
regarded as intrinsic to its fixed geometric definition. By contrast
the MAP skeleton represents a more abstract perceptual shape
description, which (like the MAT) brings out axial structure, but
(unlike the MAT) does so in such a way that is both perceptually
plausible and, in the sense that we have posed the problem,
inferentially optimal.

The main benefit of our approach is the intuitive skeletons that
MAP skeleton estimation tends to produce, with each axis corre-
sponding to one perceived ‘‘part,’’ even with substantial contour
noise (Figs. 3–5). This approach allows a compact, low-dimensional,
but intuitive representation of shape, with enormous potential
applications for shape recognition (12, 13), computer-based index-
ing of shape databases (18), and understanding of the function of
long-range connections in visual cortex (4, 39, 40).

Moreover, our approach offers a number of important technical
tools not provided by other methods, including a principled mea-
sure of the statistical evidence in favor of an axis (the difference in
the log posteriors with and without the axis), the maximum value
of the posterior over the space of skeletons, which gives a measure
of how well any skeletal description explains the given shape, and
a principled measure of shape complexity, the DL of the MAP
skeleton. Each of these quantities has a natural psychological
correlate, respectively, the subjective part salience, the subjective
‘‘axiality’’ of the shape, and the subjective complexity of the shape,
none of which has received rigorous definitions in the literature
before to our knowledge. All of these advantages stem from the
underlying idea of formulating shape representation as a Bayesian
inference problem, bringing it into line with a growing segment of
modern perceptual theory (20, 21) and drawing closer to Attneave’s
original goal (41) of understanding shape as an information-
processing problem.

Methods
Here, we sketch a computational procedure for estimating the
MAP skeleton. As mentioned, we regard our theory as a ‘‘theory
of the computation,’’ not a processing model; the computational
implementation should be taken simply as a ‘‘proof of concept’’ that
the MAP skeleton is computable and has the intended desirable
properties and not as a realistic model of neural shape processing.

We seek the skeletal description with minimum DL, defined as
the negative logarithm of the posterior probability p(SKEL�SHAPE).
The rib length function is estimated by pooling ribs within a moving
mask with a fixed width (plus or minus �1⁄3 the length of a typical
axis in the examples shown), enforcing the constraint of a contin-
uous length function connected to each axis. (This pooling intro-
duces some dependence among the estimated ribs, making Eq. 3
only an approximation.) We also assume a von Mises distribution
on the deviation between the inward-pointing shape normal and the
rib, which is amplified when this deviation exceeds 
�2 and has the
effect of preventing ‘‘explanation from outside the shape.’’

To estimate the skeleton, we use a gradient descent procedure
loosely based on expectation–maximization. We use the con-
ventional Voronoi-based MAT (15) to form an initial, grossly
overfitted estimate of the skeleton. This point set is organized
into a hierarchical structure by merging axes so as to maximize
collinearity within each axis. Then all nonroot axes are subjected
to the Bayesian posterior ratio test of significance (Eq. 4); axes
failing the test are then pruned. The remaining axes are param-
eterized by using a piecewise cubic spline approximation, with
knot points at every axial branch point, and additional knot
points chosen successively until the spline approximation fits the
original axis to within a fixed tolerance, resulting in a variable
number m of knot points per axis. This procedure yields a
representation having 2m parameters per axis (plus one addi-
tional parameter required to code the location of the root axis).
With this parametric description as a starting point, an iterative
gradient procedure is initiated, with two stages alternating:

1. Estimate the ‘‘ribs’’ by associating each contour point with
some set of axis points that explain it. For each shape point
x, we choose the axis point and side (left or right) that assigns
x the highest likelihood (Eq. 3).

2. With the rib correspondences fixed, take one step down the
gradient of DL (equivalently, up the gradient of posterior).
We use a standard simplex method (Nelder-Mead) to exe-
cute the gradient descent.

This procedure converges to an estimate of the MAP skeleton,
examples of which are shown in Figs. 4 and 5.
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