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Abstract

We develop a Bayesian variable selection method, called SVEN, based on a hierarchical

Gaussian linear model with priors placed on the regression coefficients as well as on the model

space. Sparsity is achieved by using degenerate spike priors on inactive variables, whereas

Gaussian slab priors are placed on the coefficients for the important predictors making the

posterior probability of a model available in explicit form (up to a normalizing constant). The

strong model selection consistency is shown to be attained when the number of predictors

grows nearly exponentially with the sample size and even when the norm of mean effects

solely due to the unimportant variables diverge, which is a novel attractive feature. An appeal-

ing byproduct of SVEN is the construction of novel model weight adjusted prediction intervals.

Embedding a unique model based screening and using fast Cholesky updates, SVEN produces

a highly scalable computational framework to explore gigantic model spaces, rapidly identify

the regions of high posterior probabilities and make fast inference and prediction. A tempera-

ture schedule guided by our model selection consistency derivations is used to further mitigate

multimodal posterior distributions. The performance of SVEN is demonstrated through a num-

ber of simulation experiments and a real data example from a genome wide association study

with over half a million markers.

Key words: GWAS, hierarchical model, posterior prediction, shrinkage, spike and slab, stochastic

search, subset selection.
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1 Introduction

In almost every scientific discipline, rapid collection of sophisticated data has been booming

due to recent advancements in technology. In biology, for example, automated sequencing tools

have made whole genome sequencing possible in a cost effective manner, thus providing variations

of millions of single nucleotides between individuals. On the other hand, because phenotypic data

are typically collected via carefully conducted scientific experiments or other observational studies,

number of observations remains on the smaller size, giving rise to regression problems where the

number of variables p far exceeds the sample size n. Nevertheless, only a few of these variables

are believed to be associated with the response. Thus, variable selection plays a crucial role in the

modern scientific discoveries.

Classical approaches to deal with the variable selection problems are through regularization

methods. A variety of methods using different penalization techniques have been proposed for

variable selection in the linear models, such as the lasso (Tibshirani, 1996; Datta and Zou, 2017),

SCAD (Fan and Li, 2001; Kim et al., 2008), elastic net (Zou and Hastie, 2005), adaptive lasso

(Zou, 2006), the octagonal shrinkage and clustering algorithm for regression (Bondell and Reich,

2008), L0-penalty for best subset regression (Bertsimas et al., 2016; Huang et al., 2018) and others.

These methods achieve sparsity by either penalizing the effect sizes or the model sizes but rarely

both. Several Bayesian variable selection methods exploit the connection between the penalized

estimators and the modes of Bayesian posterior densities under suitably chosen prior distributions

on the regression coefficients. Example includes the lasso-Laplace prior connection (Tibshirani,

1996), the hierarchical Bayesian lasso (Park and Casella, 2008) and other works by Kyung et al.

(2010), Xu and Ghosh (2015) and Roy and Chakraborty (2017).

Another popular approach to Bayesian variable selection is integrating the penalties on the

effect size and the model size via priors distributions. To that end, auxiliary indicator variables

indicating the presence or absence of each variable are introduced to obtain a ‘spike and slab’ prior
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on the regression coefficients. Here the ‘spike’ corresponds to the probability mass concentrated

at zero or around zero for the variables vulnerable to deletion and the ‘slab’ specifies prior un-

certainty for coefficients of other variables. Analysis using such models determines (selects) the

most promising variables by summarizing the posterior density of the indicator variables and/or

the regression coefficients. The seminal works of Mitchell and Beauchamp (1988); George and

McCulloch (1993, 1997) developed a hierarchy of priors over the regression coefficients and the

latent indicators and used Gibbs sampler to identify promising models in low dimensional setup

(see also Yuan and Lin, 2005; Ishwaran and Rao, 2005; Liang et al., 2008; Johnson and Rossell,

2012). Several of these methods have been recently modified and extended to the ultra-high dimen-

sional setup. Narisetty and He (2014) pioneered the theoretical study of Bayesian variable selection

in the ultra-high dimensional setup, Ročková and George (2014) introduced the EM algorithm for

fast exploration of high-posterior models, Yang et al. (2016) studied model selection consistency

and computational complexity when g-prior is placed on the regression coefficients, Shin et al.

(2018) extended the popular non-local priors to model selection and modified the stochastic shot-

gun model search algorithm (Hans et al., 2007), while Zhou and Guan (2019) and Zanella and

Roberts (2019) implemented Metropolis Hastings algorithms with an iterative complex factoriza-

tion and a tempered Gibbs sampler, respectively, for estimating posterior model probabilities.

From a practical standpoint, in the ultra-high dimensional set up, where the number of variables

(p) is much larger than the sample size (n), generally variable screening is performed to reduce the

number of variables before applying any of the aforementioned variable selection methods for

choosing important variables. The classical approaches as well as Narisetty and He (2014) resort

to a two stage procedure where they first use frequentist screening algorithms (Fan and Lv, 2008;

Wang and Leng, 2016) to reduce the dimension of the problem and then perform variable selec-

tion. Shin et al. (2018) as well as Cao et al. (2020) fuse the frequentist iterated sure independent

screening in their stochastic search algorithm. However, these screening methods are frequentist

procedures that are not guaranteed to be fidelitous to the Bayesian model in practice.
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In this work, we extend the classical variable selection model of Mitchell and Beauchamp

(1988) to the ultra-high dimensional setting. Following the path laid by Narisetty and He (2014)

we derive posterior consistency results. By considering zero (exact spike) inflated mixture pri-

ors for regression coefficients, we are able to introduce sparsity and relax some assumptions of

Narisetty and He (2014). Furthermore, we develop a novel methodology for variable selection in

the spirit of the stochastic shotgun search algorithm (Hans et al., 2007) with embedded screening

that is faithful to the hierarchical Bayesian model. We develop sophisticated computational frame-

work that allows us to consider larger search neighborhoods and compute exact unnormalized

posterior probabilities in contrast to Shin et al. (2018). Furthermore, in order to recover mod-

els with large posterior probabilities and mitigate posterior multimodality associated with variable

selection models, we use a temperature schedule that is guided by our posterior model selection

consistency asymptotics. We call this Bayesian method and the computational framework selection

of variables with embedded screening (SVEN). Keeping prediction of future observations in mind,

we develop novel methods for computing approximate posterior predictive distribution and predic-

tion intervals. In particular, using SVEN we construct two prediction intervals, called Z-prediction

intervals and Monte Carlo prediction intervals.

The rest of the paper is laid out as follows. In Section 2 we describe the hierarchical Bayesian

variable selection model and prove strong model selection consistency results (Section 2.1); de-

velop the SVEN framework (Section 2.2) and prediction methods (Section 3). We perform detailed

simulation studies in Section 4 and compare our methods to several other popular Bayesian and

frequentist methods. In Section 5 we analyze a massive dataset from an agricultural experiment

with n = 3, 951 and p = 546, 034 where among the Bayesian methods used for comparison only

our method is able to perform variable selection on the whole data. We also show the practical use-

fulness of our method in obtaining posterior predictive distribution and prediction intervals for the

yield of novel crop varieties. We conclude in Section 6 with some discussion and future research

directions. A supplement document containing the proofs of the theoretical results and some com-
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putational details is available with sections referenced here with the prefix ‘S’. The methodology

proposed here is implemented in an accompanying R package ‘bravo’ for Bayesian screening and

variable selection.

2 Bayesian variable selection with screening

2.1 Hierarchical mixture models

2.1.1 Model description

Let y = (y1, . . . , yn) denote a n×1 vector of response values, Z = (Z1, . . . , Zp) an n×p design

matrix of p potential predictors, with vector of partial regression coefficients µ ≡ (µ1, . . . , µp). We

assume latent indicator vector γ = (γ1, . . . , γp) ∈ {0, 1}p to denote a model such that the jth

predictor is included in the regression model if and and only if γj = 1. Corresponding to the

binary vector, the size of a model γ is denoted as |γ|, where |γ| =
∑p

j=1 γj . Also, with model

γ, let Zγ be the n × |γ| sub-matrix of Z that consists of columns of Z corresponding to model γ

and µγ be the vector that contains the regression coefficients for model γ. In the first hierarchy

of the Bayesian hierarchical mixture model we assume that the conditional distribution of y given

Z, γ, µ0, µ and σ2 is n-dimensional Gaussian and is given by

y|Z, γ, µ0, µ, σ
2 ∼ Nn(µ01n + Zγµγ, σ

2In), (1)

where µ0 is the intercept term and σ2 > 0 is the conditional variance. Thus (1) indicates that

each γ corresponds to a Gaussian linear regression model y = µ01 + Zγµγ + ε where the residual

vector ε ∼ Nn(0, σ2In). However, because the original covariates could have unbalanced scales,

a common approach is to reparameterize the above model using a scaled covariate matrix. To

that end, suppose Z̄ is the vector of column means of Z and D is the p × p diagonal matrix
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whose ith diagonal entry is the sample standard deviation of Zi (the ith column of Z) and let

X = (Z − 1nZ̄
>)D−1 denote the scaled covariate matrix. Also we assume that β = Dµ and

β0 = µ0 + Z̄>µ. The Bayesian hierarchical regression model after reparameterization is given by

y|β, β0, σ
2, γ ∼ Nn

(
1nβ0 +Xγβγ, σ

2I
)
, (2a)

βj|β0, σ
2, γ

ind∼ N
(

0,
γj
λ
σ2
)

for j = 1, . . . , p, (2b)(
β0, σ

2
)
|γ ∼ f

(
β0, σ

2
)
∝ 1/σ2, (2c)

γ|w ∼ f(γ|w) = w|γ|(1− w)p−|γ|. (2d)

In this hierarchical setup a popular non-informative prior is set for (β0, σ
2) in (2c) and a conjugate

independent normal prior is used on β given γ in (2b) with λ > 0 controlling the precision of the

prior independently from the scales of measurements. Note that under this prior, if a covariate is

not included in the model, the prior on the corresponding regression coefficient degenerates at zero.

In (2d) an independent Bernoulli prior is set for γ, where w ∈ (0, 1) reflects the prior inclusion

probability of each predictor. We assume λ and w are known non-random functions of n and p.

The hierarchical model (2) with centered X allows us to obtain the distribution of y given γ in

a closed form by integrating out β0, βγ and σ2 (Roy et al., 2018, section S6). Consequently, the

marginal likelihood function of γ is given by

L(γ|y) =

∫
R+

∫
Rγ

∫
R
f
(
y|γ, σ2, β0, βγ

)
f
(
βγ|γ, σ2, β0

)
f
(
σ2, β0

)
dβ0dβγdσ

2

= cn,p λ
|γ|/2|Aγ|−1/2R−(n−1)/2

γ , (3)

where Aγ = X>γ Xγ + λI, |Aγ| is the determinant of Aγ,

Rγ = ỹ>ỹ − ỹ>XγA
−1
γ X>γ ỹ = ỹ>ỹ − β̃>γ Aγβ̃γ = ỹ

(
I + λ−1XγX

>
γ

)−1
ỹ (4)
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is the ridge residual sum of squares, ỹ = y − ȳ1n, ȳ =
∑n

i=1 yi/n, β̃γ = A−1
γ X>γ ỹ and cn =

Γ((n− 1)/2)/π(n−1)/2 is the normalizing constant.

In order to identify the important variables, we use the (marginal) posterior distribution of γ.

Thanks to the explicit form of the marginal likelihood (3), this posterior density is given by

f(γ|y) ∝ f(y|γ)f(γ) ∝ λ|γ|/2|Aγ|−1/2R−(n−1)/2
γ w|γ|(1− w)p−|γ|.

It’s often convenient to work with log of the posterior density which is given by

log f(γ|y) = const+ 1
2 |γ| log λ− 1

2 log |Aγ| − 1
2(n− 1) logRγ + |γ| log(w/(1− w)). (5)

Remark 1. It is important to note that the regression model (1) on the original covariate scale

should be used for prediction, instead of (2) because the hierarchical prior (2b) is defined under the

assumption that 1>nX = 0 and X>j Xj = n for all j.

Remark 2. In this work we assume w is fixed. However, a popular alternative is to assign a Beta

prior on w, i.e., let w ∼ f(w) ∝ wa−1(1−w)b−1 for some a, b > 0. Then it is possible to integrate

out w from (2d) to obtain the marginal prior distribution of γ given by f(γ) = B(|γ|+a, p−|γ|+

b)/B(a, b), where B(·, ·) is the beta function. This will replace the last term in (5) by log f(γ).

Remark 3. As an alternative to the independent normal prior (2b), it is also possible to consider

Zellner’s g-prior (Zellner, 1986) on βγ given by βγ|γ, σ2 ∼ N|γ|
(
0, gσ2(X>γ Xγ)

−1
)

provided that

for every k ≤ n− 1, all n× k submatrices of X have full column rank and we restrict the support

of the prior distribution on γ to models of size at most n − 1. Assuming that g is a non-random

function of n and p, the marginal posterior of γ is then given by

fg(γ|y) ∝
[
ỹ>ỹ − g

g + 1
ỹ>Xγ(X

>
γ Xγ)

−1X>γ ỹ

]−(n−1)/2
w|γ|(1− w)p−|γ|

(1 + g)|γ|/2
I(|γ| < n),

where the priors on β0 and σ2 have been assumed to be the same as (2c).
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Ideally, as the sample size increases we would like the posterior of γ to concentrate more and

more on the important variables. Several works have alluded to asymptotic guarantees for strong

model selection consistency in the ultra-high dimensional regression where p is allowed to vary

subexponentially with n, i.e. min{n, p} → ∞ and (log p)/n→ 0.Here, the strong model selection

consistency implies that the posterior probability of the true set of variables converge to 1 as n

tends to infinity. Under shrinking and diffusing priors, Narisetty and He (2014) developed explicit

scaling laws for hyper-parameters that are sufficient for strong model selection consistency. On the

other hand, Shin et al. (2018), and more recently, Cao et al. (2020) established sufficient conditions

for strong model selection consistency under non-local type priors (Johnson and Rossell, 2012).

The Bayesian hierarchical model (2) is similar to Narisetty and He’s (2014) model with the crucial

distinction that the spike prior is degenerate: P (βi = 0|γi = 0) = 1. Consequently, although most

assumptions used here for selection consistency are similar to those made by Narisetty and He

(2014), we are able to relax some of the conditions to allow for more noisy unimportant variables.

In the next section we describe strong model selection consistency results for (2).

2.1.2 Model selection consistency

We consider the ultra-high dimensional setting where the number of variables p is allowed

to vary subexponentially with the sample size. As established by Narisetty and He (2014) the

slab precision λ also needs to vary with n for strong model selection consistency. In order to

state the assumptions and the main results, we use the following notations. Abusing notation,

we interchangeably use a model γ either as a p-dimensional binary vector or as a set of indices

of non-zero entries of the binary vector. For models γ and s, γc denotes the complement of the

model γ, and γ ∨ s and γ ∧ s denote the union and intersection of γ and s, respectively. For two

real sequences (an) and (bn), an ∼ bn means an/bn → c for some constant c > 0; an � bn (or

bn � an) means bn = O(an); an � bn (or bn ≺ an) means bn = o(an). Also for any matrix

A, let αmin(A) and αmax(A) denote its minimum and maximum eigenvalues, respectively, and let
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α∗min(A) be its minimum nonzero eigenvalue. Again, abusing notations, for two real numbers a

and b, a ∨ b and a ∧ b denote max(a, b) and min(a, b), respectively. Define rγ = rank(Xγ) and for

ν > 0, r∗γ = rγ ∧ un(ν) where

un(ν) = p ∧ n

(2 + ν)logp
and ηnm(ν) = inf

|γ|≤un(ν)
α∗min(X>γ Xγ/n).

Finally for any fixed positive integer J , define

∆n(J) = inf
{γ:|γ|<J |t|,γ 6⊃t}

‖(I − Pγ)Xtβt‖2,

where Pγ = Xγ(X
>
γ Xγ)

−X>γ is the orthogonal projection matrix onto the column space of Xγ

and ‖ · ‖ denotes the L2 norm. Here, A− denotes the Moore-Penrose inverse of A. We assume the

following set of conditions.

C1. p = endn for some dn → 0 as n→∞, that is, logp = o(n).

C2. n/λ ∼ (n ∨ p2+3δ) for some δ > 0, and w ∼ p−1.

C3. y = β01n +Xtβt +Xtcβtc + ε where ε ∼ N (0, σ2In), the true model t is fixed and ‖Xtcβtc‖ �
√

log p.

C4. For δ given in C2, there exists J > 1 + 8/δ such that ∆n(J) � log(
√
n ∨ p), and for some

ν < δ, κ < (J − 1)δ/2,

ηnm(ν) �
(
n∨p2+2δ

n/λ
∨ p−κ

)
.

C5. For some positive constants a0 and b0, a0 < αmin

(
X>t Xt
n

)
< αmax

(
X>t Xt
n

)
< b0 ∀n.

The condition C2 states that the conditional distribution of βi given γi = 1 is diffused in the

sense that it’s conditional prior variance goes to infinity at a particular rate. The condition C3

greatly relaxes the boundedness assumption on ‖Xtcβtc‖ in Narisetty and He (2014), by slightly

strengthening the identifiability condition C4. Yang et al. (2016) obtained similar results under

g-priors on β but as mentioned by them our independence prior is ‘a more realistic choice’. More-
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over, Yang et al. (2016) assumed that αmin(X
>
γ Xγ/n) is bounded away from zero for all models γ

of size at most O(n/ log p), which is unrealistic because, for example, even when entries of X are

iid N(0,1), inf1≤i≤pX
>
i Xi/n converges to zero in probability. Because of the degenerated form of

the spike priors, the regularity assumptions on the submatrices of the design matrix X in C4 relax

the assumptions on the bound on their largest eigenvalues. Narisetty and He (2014) showed that

if the rows of X are independent isotropic sub-Gaussian random vectors then C4 holds with over-

whelmingly large probability (see also Chen and Chen, 2008; Kim et al., 2012; Shin et al., 2018).

The regularity assumption for the true model C5 is standard and has been used in both Narisetty

and He (2014) and Cao et al. (2020) without being explicitly stated.

Note that the condition C3 does not explicitly specify the true model t and the relaxation to

allow higher noise ‖Xtcβtc‖ warrants a validation of the identifiability of t. To that end, suppose

on the contrary that it is possible to include some variables, say s from tc into the true model and

still maintain the conditions C1-C5 for both t and t ∨ s as true models for every n. Then condition

C4 with γ = t (now excluding the apparently true variable s) would imply ‖(I − Pt)Xsβs‖2 =

‖(I −Pt)(Xtβt +Xsβs)‖2 = ‖(I −Pt)Xt∨sβt∨s‖2 � log(p∨
√
n). Here, the first equality follows

from the fact that PtXt = Xt. But because I − Pt is symmetric and idempotent,

‖Xsβs‖ ≥ ‖(I − Pt)Xsβs‖ �
√

log(p ∨
√
n) ≥

√
log p. (6)

However, condition C3 for t ∨ s implies ‖Xtc∧scβtc∧sc‖ �
√

log p. This with (6) implies that

‖Xtcβtc‖ = ‖Xsβs +Xtc∧scβtc∧sc‖ ≥ ‖Xsβs‖ − ‖Xtc∧scβtc∧sc‖ �
√

log p,

which contradicts condition C3. We now present the strong model selection consistency results.

Theorem 1. Assume conditions C1–C5 hold and that σ2 is known. Then the posterior probability

of the true model, f(t|y, σ2)→ 1 in probability as the sample size n approaches∞.
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Proof. The proof is given in Section S4 of the supplementary materials.

Note that the statement of Theorem 1 is equivalent to
(
1 − f(t|y, σ2)

)
/f(t|y, σ2) → 0 in

probability as n→∞. The proof of Theorem 1 also provides the rate of convergence given by,

1− f(t|y, σ2)

f(t|y, σ2)
� exp{−vn}+ ρn + ρ(J−1)|t|/2

n + exp
{
−v′

(
∆n(J)− v′′ log(

√
n ∨ p)

)}

with probability greater than 1 −
[
2 exp{−cn} + 2 exp{−c′ log p} + exp{−c′′∆n(J)}

]
for some

positive constants v, v′, v′′, c, c′ and c′′, where ρn = p−δ/2 ∧
(
p1+δ/2/

√
n
)
. It is encouraging that

despite relaxing the boundedness condition on ‖Xtcβtc‖, the rate of convergence remains the same

as in Narisetty and He (2014).

However, in practice σ2 is typically never known. In this case, we need a further assumption

that assigns a prior probability of zero on M̃ = {γ : rγ > rt + n/[(2 + ν ′) log p]} for some

ν ′ > ν ∨ (2/δ).

C6. For some ν > 0 and ν ′ > ν ∨ (2/δ), P
(
γ ∈ M̃

)
= 0.

This condition is same as in Narisetty and He (2014) and also equivalent to the assumptions on

the prior model sizes in Shin et al. (2018) and Cao et al. (2020).

Theorem 2. Assume conditions C1–C6 hold. Then the posterior probability of the true model,

f(t|y)→ 1 in probability as the sample size n approaches∞.

Proof. The proof is given in Section S5 of the supplementary materials.

Note that strong consistency results also imply that with probability tending to one, the true

model is the posterior mode, that is, P (t = arg maxγ f(γ|y)) → 1 as n → ∞. However, in

finite sample this need not be true. Furthermore, when the regularity conditions do not hold,

there may be multiple models with large posterior probabilities even for large n. Thus, we would

like to discover models with practically large posterior probability values. However, in ultra-high

dimensional problems, traditional computational methods based on Markov chain Monte Carlo
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(MCMC) algorithms have poor performance. Thus next we describe SVEN to explore the posterior

distribution f(γ|y). In particular, SVEN will be used to discover high probability regions and find

the maximum a posteriori (MAP) model arg maxγ f(γ|y).

2.2 Searching for high posterior probability models

2.2.1 Stochastic shotgun search algorithms

Hans et al. (2007) proposed the stochastic shotgun search (SSS) algorithm for recovering mod-

els with large posterior probabilities. To that end, for a given model γ let nbd(γ) = γ+ ∪ γ◦ ∪ γ−

denote a neighborhood of γ, where γ+ is an “added” set containing all the models with one of

the p − |γ| remaining covariates added to the current model γ, γ−is a “deleted” set obtained by

removing one variable from γ; and γ◦ is a “swapped” set containing the models with one of the

variables from γ replaced by one variable from γc. The SSS algorithm then starts with an initial

model g(0), and for k = 1, 2, . . .

- (SSS1) Compute f(γ|y) for all γ ∈ nbd(g(k−1)).

- (SSS2) Separately sample s+ from g(k−1)+, s◦ from g(k−1)◦ and s− from g(k−1)− with prob-

abilities proportional to f(·|y).

- (SSS3) Sample g(k) from s+, s◦ and s− with probability proportional to f(s+|y), f(s◦|y)

and f(s−|y) respectively.

After running for some prespecified large number of iterations, the algorithm then declares the

model discovered with the largest (unnormalized) posterior probability as the MAP model. Hans

et al. (2007) notes that the sampling probabilities in (SSS1) and (SSS2) can be replaced by the

Bayesian information criteria (BIC) and the sampling weights can be computed in parallel.

Following the success of SSS, Shin et al. (2018) propose further improvement. Note that, Shin

et al. (2018) use non-local priors, and so the posterior probabilities f(γ|y) are not available an-
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alytically. In fact, they resort to using computationally expensive Laplace approximation which

suggests exact numerical computations of these quantities are also not straightforward (see also

Cao et al., 2020). Also in ultra-high dimensional problems, SSS may not be scalable due to its im-

plementation. Thus Shin et al. (2018) propose a simplified stochastic shotgun search with screening

(S5) by dropping the “swapped” set from consideration and moreover, by screening out variables

from the “added” set. (Note that, in high dimension, the number of “swapped” models is much

larger than the numbers of “added” and “deleted” models.) For screening, borrowing ideas from

frequentist correlation screening of Fan and Lv (2008), they propose computing the least squares

residuals from a regression of y onXγ and compute the absolute correlations between each column

of Xγc and the residuals. They then propose keeping models in the “added” set corresponding to

the largest few of the absolute correlations. This greatly reduces the burden of computing f(γ|y)

for all γ in the “added” set. However, in their R package BayesS5, the authors have used ridge

residuals with unit ridge penalty instead of the least squares residuals. Nevertheless, the S5 algo-

rithm has been useful for exploring the posterior distribution of γ (Cao et al., 2020).

In the variable selection model (2), the Gaussian conjugacy provides analytically tractable

forms for f(γ|y) up to a normalizing constant. We also show that f(γ|y) can be rapidly com-

puted for the swapped models, thereby allowing us to include the swapped models in the neigh-

borhood. We thus develop a stochastic shotgun algorithm with (posetrior) model based screening

and develop scalable statistical computations for drawing fast Bayesian inference and prediction.

2.2.2 Selection of variables with embedded screening

In order to describe the SVEN algorithm, we first describe how to compute the unnormalized

posterior probabilities in the (SSS1) step. To that end, compute ζ = X>ỹ as D−1Z>ỹ once and for

all. Next, suppose we have a current model γ and we want to compute the posterior probabilities

of each model in γ+. Suppose Uγ is the upper triangular Cholesky factor of X>γ Xγ + λI and

vγ = U−>γ X>γ ỹ. In the algorithm below, scalar addition to vector, division between two vectors
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and other arithmetical and algebraic operation on vectors are interpreted as entry-wise operations,

as implemented in most statistical software (e.g. in R). Then

1. Compute S1 ← U−>γ X>γ by using forward substitution.

2. Update S2 ← S1ZD
−1. [No need to center Z because S11 = 0.]

3. Compute S3 as the sum of squares of each column of S2. Note that S2 is a |γ|× p matrix and

so these sums of squares should be computed without storing another |γ| × p matrix.

4. Set S4 ←
√
n+ λ− S3 where the arithmatical operations are performed entrywise on the

vector. Also in this operation, the entries corresponding to the variables in γ are ignored.

5. Compute S5 ← (ζ − S>2 vγ)/S4.

6. Compute S6 ← log detUγ + logS4

7. Compute S7 ← ‖ỹ‖2 − ‖vγ‖2 − S2
5

8. Compute S8 ← 0.5(|γ|+ 1) log λ− S6 − 0.5(n− 1) logS7 + (|γ + 1|) log(w/(1− w)).

Then for all i /∈ γ, the ith entry of S8 above contains the unnormalized posterior probability of

the model obtained by including i in γ. The other entries are ignored. For each model in γ−, its

posterior probability can be computed easily because typically |γ| is small. Furthermore, for each

γ′ ∈ γ− we can use the above algorithm to compute the unnormalized posterior probabilities of γ′′

in γ′+. Thus we can compute the (unnormalized) posterior probabilities of each model in nbd(γ).

Given the current model γ, the complexity for computing (unnormalized) f(γ|y) for all γ ∈

nbd(γ) by the above algorithm isO(|γ|3n+ |γ|4 + |γ|2‖Z‖0 + |γ|2p+ p), where ‖Z‖0 denotes the

number of non-zero elements in Z. Since |γ| is practically finite, the computational complexity

is simply O(n ∨ p + ‖Z‖0). If in addition, Z is sparse, as in the genome-wide association study

example in section 5, the complexity for computing all posterior probabilities in nbd(γ) is linear in
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both n and p. Finally, note that, the additional memory requirement for the above algorithm except

storing the Z matrix is practically O(n ∨ p). Also, different steps including step 2 of the above

algorithm can be performed in parallel using distributed computing architecture.

Using the above algorithm as the foundation, we now discuss the SVEN algorithm. Suppose

1 = T1 < T2 < · · · < Tm is a given temperature schedule. Let g(0) denote the empty model (i.e.

the model without any predictor included). Then, for i = 1, 2, . . . ,m

- Set g(i,0) to be the empty model. Then for k = 1, . . . , N

- (SVEN1) [Same as (SSS1)] Compute f(g ′|y) for all g ′ ∈ nbd(g(i,k−1)).

- (SVEN2) [Screening step] Consider at most 20 highest probability neighboring models. That

is, construct the setMk ⊆ nbd(g(i,k−1)) with |Mk| ≤ 20 such that g ′ ∈Mk only if

f(g ′|y) > % max
g′′∈nbd(g(i,k−1))

f(g′′|y)

and f(g ′|y) ≥ f(g ′′|y), ∀g ′′ ∈ nbd(g(i,k−1)) ∩Mc
k, where % is some prespecified number

(we use % = exp(−6)).

- (SVEN3) [Shotgun step] Assign the weight f(g ′|y)1/Ti to a model g ′ ∈Mk. Sample a model

fromMk using these weights and set it as g(i,k).

Our ability to efficiently compute posterior probability of all neighboring models allows us to

implement the screening (SVEN2) directly using the objective function f(γ|y). This is a key

difference between SVEN and S5 of Shin et al. (2018). Because models with large probabilities

could be separated by models with very low probabilities, a temperature schedule has been used.

Such tempering is quite common in simulated annealing (Kirkpatrick et al., 1983) and has also been

used in Shin et al. (2018). In order to choose a temperature schedule, we turn to our asymptotic

results from Section S4. In particular, the theory indicates that the log-posterior probabilities of
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good models with small model size are separated by roughly O(log p). Thus in order to facilitate

jumps between these models we set Tm = log p + log log p where the additional log log p is a

heuristic adjustment common in numerical computations. Also the remaining temperatures are

chosen to be equally spaced between 1 and Tm.

Note that at every temperature we start the SVEN algorithm at the empty model that are run

separately. Because the stochastic shotgun might have a tendency to wander off to obscure valleys

containing large number of variables especially under high temperature; running them separately

avoids getting trapped in such a valley. Most good models have small size and so they could be

explored relatively early when started multiple times from the empty model.

Note that our algorithm does not require explicitly storing the matrix X. Indeed, in many

applications, Z could be sparse and efficiently stored in the memory. The matrix X on the other

hand is always dense. Overall our method is extremely memory efficient, and we are able to

directly perform variable selection with significantly larger p than the other methods may handle.

In addition to the MAP model, our method also provides the posterior probability of all the

models explored by the algorithm and facilitate approximate Bayesian model averaging (Shin et al.,

2018). To that end, we sort the models {g(i,k), 1 ≤ i ≤ m, 1 ≤ k ≤ N} according to decreasing

posterior probabilities and retain the best (highest probability)K models γ(1), γ(2), . . . , γ(K) where

K is chosen so that f(γ(K)|y)/f(γ(1)|y) > ε where ε is a prespecified tolerance (we use log ε =

−16). Then we assign the weights

wi = f(γ(i)|y)/
K∑
k=1

f(γ(k)|y) (7)

to the model γ(i).We define the approximate marginal inclusion probabilities for the jth variable as

π̂j =
∑K

k=1wkI(γ
(k)
j = 1) and define the weighted average model (WAM) as the model containing

variables j with π̂j > 0.5. Note that if SVEN is allowed to run indefinitely to explore all 2p models

and ε is set as zero, then the WAM would be theoretically identical to the median probability model
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(Barbieri and Berger, 2004). However, computing the median probability model is infeasible when

p >> n because enumerating all the posterior probabilities of γ is practically impossible.

In the literature, mostly the MAP (more precisely the discovered MAP model) model is used

for prediction. In the next section we develop methods for point and interval predictions using the

top models γ(k)’s with associated weights wk’s.

3 Posterior predictive distribution and intervals

The posterior predictive distribution of the response y∗ at a new covariate vector z∗ ∈ Rp,

conditional on the observed covariate matrix Z and hyper-parameters λ and w is given by,

f(y∗|y) =
∑
γ

∫
Sγ
f(y∗|z∗, γ, µ0, µγ, σ

2)f(γ, µ0, µγ, σ
2|y, Z)dµ0dµγdσ

2, (8)

where f(y∗|z∗, µ0, µγ, γ, σ
2) is the density of N (µ0 + µ>γ z

∗
γ, σ

2) as given in (1), f(γ, µ0, µγ, σ
2

|y, Z) is the joint posterior density of (γ, µ0, µγ, σ
2) given (y, Z) deduced from the hierarchical

model (2), and Sγ = (0,∞) × R|γ| × R. Note that, the distribution (8) is not tractable. However,

as shown later in this section, posterior predictive mean and variance of y∗ can be expressed as

(posterior) expectations of some analytically available functions of γ. Also, samples from an

approximation of (8) can be drawn using our SVEN algorithm. Using these approaches, we now

propose two methods for computing approximate posterior prediction intervals for y∗.

3.1 A Z-prediction interval

In this section we describe some approximations to E(y∗|y) and Var(y∗|y) and use those to

construct an interval for y∗. To that end, from (2) we observe that β0 and βγ are conditionally
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independent given y, γ, σ2, and Z with

β0|y, Z, γ, σ2 ∼ N (ȳ, σ2/n), and βγ|y, Z, γ, σ2 ∼ N
(
A−1
γ X>γ ỹ, σ

2A−1
γ

)
, (9)

whereAγ = X>γ Xγ+λI as defined in section 2.1.1. Consequently, the full conditional distribution

of (µ0, µγ) is a (|γ|+ 1)-dimensional multivariate Gaussian distribution given by

µ0

µγ

∣∣∣∣σ2, γ, y ∼ N


ȳ − Z̄>γ FγDγX

>
γ ỹ

FγDγX
>
γ ỹ

 , σ2

n−1 + Z̄>γ FγZ̄γ −Z̄>γ Fγ

−FγZ̄γ Fγ


 , (10)

where Z̄γ and Dγ are sub-vector of Z̄ and sub-matrix of D, respectively corresponding to the

model γ, and Fγ = D−1
γ A−1

γ D−1
γ . Also,

σ2|γ, y ∼ IG((n− 1)/2, Rγ/2), (11)

where IG(a, b) denotes a inverse gamma random variable with density f(σ2) ∝ (σ2)−a−1 exp(−b/σ2),

and Rγ is defined in (4). Next, let z̃γ = z∗γ − Z̄γ and note that E(σ2|γ, y) = Rγ/(n − 3). Thus,

using iterated expectation and variance formulas, we have

E(y∗|y) = E
[
E
{
y∗|γ, σ2, µ0, µ, y

}
|y
]

= E
[
E
{
µ0 + µ>γ z

∗
γ|σ2, γ, y

}
|y
]

= ȳ + E
[{
z̃>γ FγDγX

>
γ ỹ
}
|y
]

and, (12a)

Var(y∗|y) = E
(
Var

{
y∗|γ, σ2, µ0, µ, y

}
|y
)

+ Var
(
E
{
y∗|γ, σ2, µ0, µ, y

}
|y
)

= E
(
σ2|y

)
+ Var

(
µ0 + µ>γ z

∗
γ|y
)

= E
[
E(σ2|γ, y)|y

]
+ E

[
Var

{
µ0 + µ>γ z

∗
γ|σ2, γ, y

}
|y
]

+ Var
[
E(µ0 + µ>γ z

∗
γ|σ2, γ, y)|y

]
= E

[
Rγ

n− 3

{
1 +

1

n
+ z̃>γ Fγ z̃γ

} ∣∣∣∣y]+ Var
[{
z̃>γ FγDγX

>
γ ỹ
}
|y
]

(12b)
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From (12a) and (12b) we see that both E(y∗|y) and Var(y∗|y) can be expressed as posterior expec-

tations of analytically available functions of γ. However, because the posterior of γ is not entirely

available, we propose using the models γ(1), . . . , γ(K) obtained from SVEN as described in sec-

tion 2.2.2 with weights w1, . . . , wK respectively, to approximate these expectations and variances.

We can use these approximate posterior predictive mean and variance of y∗ to obtain a (1 − α)

prediction interval for y∗ as Ê(y∗|y) ∓ zα/2V̂ar(y∗|y)1/2, where zα/2 is the (1 − α/2)th standard

normal quantile. We call this interval Z-prediction interval (Z-PI). Also, the posterior predictive

mean is used as a point estimate of y∗. In the next section, we describe an alternative method for

computing a prediction interval for y∗ using Monte Carlo simulation.

3.2 A Monte Carlo prediction interval

A prediction interval for y∗ can also be constructed using Monte Carlo (MC) samples generated

from the posterior predictive distribution (8). Specifically, a (1 − α) prediction interval for y∗ is

given by
[
F−1
y∗|y(α/2), F−1

y∗|y(1− α/2)
]
, where F−1

y∗|y(α) denotes the α-th quantile of the distribu-

tion (8). Now, we describe a method for sampling from an approximation of (8) using SVEN. To

that end, we consider f̃(y∗|y) given by

f̃(y∗|y) =
K∑
i=1

wi

∫
S
γ(i)

f(y∗|z∗, γ(i), µ0, µγ(i) , σ
2)f(µ0, µγ(i) , σ

2|γ(i), y, Z)dµ0dµγ(i)dσ
2, (13)

where wi’s are defined in (7), and γ(1), γ(2), . . . , γ(K) are the K highest probability models ob-

tained by SVEN as described in section 2.2.2. Thus, f̃(y∗|y) is the posterior predictive pdf f(y∗|y)

given in (8) except that the marginal posterior of γ is replaced by a mixture distribution of models

chosen by SVEN. Samples from (13) can be drawn as follows. First, we sample γ from the top K

models with P (γ = γ(k)) = wk, (1 ≤ k ≤ K). Given γ, we then sample σ2 from (11). Next given

γ and σ2, we sample β0 and βγ from (9). Then we compute µγ = D−1
γ βγ and µ0 = β0 − Z̄>γ µγ ,

which are samples from (10). Finally generate y∗ from N
(
µ0 + µ>γ z

∗
γ, σ

2
)
. We repeat the above
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process a large number of times and construct a (1− α) MC prediction interval (MC-PI) for y∗ as[
F̃−1(α/2), F̃−1(1− α/2)

]
, where F̃−1(·) denotes the empirical quantiles based on these sam-

ples. In practice, generally one wants prediction intervals at several new covariate vectors z∗’s. In

section S1 of the supplementary materials, we describe a computationally efficient way of drawing

multiple samples from (13) using the above method and thus simultaneously computing prediction

intervals at several new covariate vectors z∗’s.

4 Simulation studies

In this section, we study the performance of our SVEN method through several numerical ex-

periments, and compare it with some other existing methods. The competing variable selection

methods we consider are S5 (R package: BayesS5), EMVS (R package: EMVS), fastBVSR and

three penalization methods, LASSO, Elastic Net with elastic mixing parameter α = 0.5 (R pack-

age: glmnet) and SCAD (R package: ncvreg). As also noted in Shin et al. (2018), we could

not include BASAD (Narisetty and He, 2014) for its high computational burden and our ultra-high

dimensional examples. As used in Table 1 of Ročková and George (2014) we run EMVS with

v1 = 1000 and three choices for v0, namely, v0 = 0.2 (EMVS1), v0 = 0.6 (EMVS2) and v0 = 1

(EMVS3). For fastBVSR, the results are obtained using 100,000 MCMC iterations after a burn-in

of 10,000 steps. For S5 the hyperparameters are tuned using a function provided in BayesS5.

Moreover, we denote by piMOM and peMOM, respectively, the product inverse-moment and the

product exponential moment non-local priors used under S5. In addition, for piMOM and peMOM,

we use MAP and LS to denote the MAP estimator and the least squares estimator from the MAP

model, respectively. Under SVEN, both MAP and WAM models, as described in section 2.2 are

considered. For SVEN, we use N = 200 and the temperature schedule described in Section 2.2.2

with m = 9. Also, for SVEN, the ridge estimator β̃γ is used to estimate the regression coefficients

for the MAP and the WAM models.
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Table 1: Independent predictors (Section 4.1.1)

Method MSPE MSEβ

Coverage
probability (%)

Average
model size FDR (%) FNR (%)

Jaccard
Index (%)

SVEN(WAM) 0.6387 0.0083 100 5 0 0 100
SVEN(MAP) 0.6387 0.0083 100 5 0 0 100

piMOM(MAP) 0.6384 0.0081 100 5 0 0 100
peMOM(MAP) 0.6384 0.0080 100 5 0 0 100

piMOM(LS) 0.6387 0.0083 100 5 0 0 100
peMOM(LS) 0.6387 0.0083 100 5 0 0 100

fastBVSR 0.6478 0.0091 100 5.09 1.45 0 98.55
EMVS1 1.0087 0.3777 0 3.80 0 24 76
EMVS2 2.5203 1.8734 0 1.99 0 60.2 39.8
EMVS3 5.0909 4.3994 0 0.53 0 89.4 10.6
LASSO 0.7489 0.1146 100 56.5 87.34 0 12.66
SCAD 0.6454 0.0152 100 18.42 47.50 0 52.50

Elastic Net 0.8266 0.1898 100 91.15 93.08 0 6.92

4.1 Setup of experiments

Our numerical studies are conducted in six different simulation settings described below.

4.1.1 Independent predictors

In this example, entries of X are generated independently from N (0, 1). The coefficients are

specified as β1 = 0.5, β2 = 0.75, β3 = 1, β4 = 1.25, β5 = 1.5, and βj = 0,∀j > 5.

4.1.2 Compound symmetry

This example is taken from Example 3 in Wang (2009) and Example 2 in Wang and Leng

(2016). The rows of X are generated independently from Np
(
0, (1− ρ)Ip + ρ1p1

>
p

)
where we

take ρ = 0.6. The regression coefficients are set as βj = 5 for j = 1, . . . , 5 and βj = 0 otherwise.

21



Table 2: Compound symmetry (Section 4.1.2) with ρ = 0.6.

Method MSPE MSEβ

Coverage
probability (%)

Average
model size FDR (%) FNR (%)

Jaccard
Index (%)

SVEN(WAM) 48.3069 1.1912 100 5 0 0 100
SVEN(MAP) 48.3069 1.1892 100 5 0 0 100

piMOM(MAP) 48.2277 1.0018 100 5 0 0 100
peMOM(MAP) 50.1528 3.5669 94 4.96 0.37 1.2 98.5

piMOM(LS) 48.3069 1.1892 100 5 0 0 100
peMOM(LS) 50.2789 3.8758 94 4.96 0.37 1.2 98.5

fastBVSR 50.0479 2.5620 100 5.78 9.54 0 90.46
EMVS1 50.7090 7.0499 100 5.63 9.22 0 90.78
EMVS2 49.9839 5.3218 100 5.26 4.14 0 95.86
EMVS3 49.6243 4.5157 100 5.08 1.33 0 98.67
LASSO 55.2280 17.9975 100 51.02 89.94 0 8.44
SCAD 48.3167 1.2556 100 6.29 11.55 0 88.45

Elastic Net 57.5750 23.9724 100 89.68 93.76 0 6.24

Table 3: Autoregressive correlation (Section 4.1.3) with ρ = 0.6.

Method MSPE MSEβ

Coverage
probability (%)

Average
model size FDR (%) FNR (%)

Jaccard
Index (%)

SVEN(WAM) 2.1521 0.0173 100 3 0 0 100
SVEN(MAP) 2.1521 0.0173 100 3 0 0 100

piMOM(MAP) 2.1519 0.0172 100 3 0 0 100
peMOM(MAP) 2.1515 0.0168 100 3 0 0 100

piMOM(LS) 2.1521 0.0173 100 3 0 0 100
peMOM(LS) 2.1521 0.0173 100 3 0 0 100

fastBVSR 2.1961 0.0187 100 3.03 0.75 0 99.25
EMVS1 2.2738 0.1286 100 6.7 54.57 0 45.43
EMVS2 2.2803 0.1419 100 5.28 41.42 0 58.58
EMVS3 2.2947 0.1619 100 4.33 28.40 0 71.60
LASSO 2.3118 0.1641 100 28.16 76.82 0 23.19
SCAD 2.1592 0.0252 100 10.33 28.30 0 71.70

Elastic Net 2.4590 0.3754 100 54.35 91 0 9.00
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Table 4: Group structure with 3 groups (Section 4.1.5).

Method MSPE MSEβ

Coverage
probability (%)

Average
model size FDR (%) FNR (%)

Jaccard
Index (%)

SVEN(WAM)4 78.7067 299.4512 0 2.65 0 82.33 17.67
SVEN(MAP)4 81.0355 533.5387 0 3 0 80 20
SVEN(WAM)5 82.5443 1.8816 98 14.99 0.06 0.13 99.80
SVEN(MAP)5 82.1825 1.6467 98 15.02 0.25 0.13 99.62
piMOM(MAP) 81.3345 528.8252 0 3.02 0.4 80 19.98
peMOM(MAP) 81.7316 530.0427 0 3.02 0.4 80 19.98

piMOM(LS) 81.2392 528.7916 0 3.02 0.4 80 19.98
peMOM(LS) 81.6289 530.1160 0 3.02 0.4 80 19.98

fastBVSR 81.1029 326.776 0 4.14 1.38 72.87 27.01
EMVS1 79.0816 54.5117 86 15.20 2.07 0.93 97.03
EMVS2 77.8038 14.9534 99 15.05 0.38 0.07 99.56
EMVS3 77.5867 7.5430 100 15.02 0.13 0 99.88
LASSO 84.9837 111.852 0 9.36 63.49 28.93 29.96
SCAD 81.2506 530.2818 0 11.59 30.54 80 16.28

Elastic Net 85.7453 9.3598 100 68.03 65.94 0 34.06
4λ = n/p2, w =

√
n/p; 5λ = 200, w = 0.02.

Table 5: Factor model with 2 factors (Section 4.1.4).

Method MSPE MSEβ

Coverage
probability (%)

Average
model size FDR (%) FNR (%)

Jaccard
Index (%)

SVEN(WAM) 42.9106 0.3892 100 5 0 0 100
SVEN(MAP) 42.9103 0.3891 100 5 0 0 100

piMOM(MAP) 42.8731 0.3724 100 5 0 0 100
peMOM(MAP) 42.9491 0.4211 100 5.01 0.17 0 99.83

piMOM(LS) 42.9103 0.3891 100 5 0 0 100
peMOM(LS) 42.9361 0.4083 100 5.01 0.17 0 99.83

fastBVSR 67.0982 19.9837 87 6.14 18.52 3.60 79.89
EMVS1 64.6038 22.1115 95 19.13 66.40 1.00 33.59
EMVS2 56.7884 14.5042 95 11.58 45.34 1.00 54.64
EMVS3 53.4840 11.3980 94 9.08 34.73 1.20 65.20
LASSO 54.2887 11.2984 99 66.37 91.81 0.20 7.03
SCAD 43.1155 0.5743 100 11.56 27.99 0 72.01

Elastic Net 62.4327 19.4566 99 54.29 95.90 0.20 4.10
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Table 6: Extreme correlation (Section 4.1.6).

Method MSPE MSEβ

Coverage
probability (%)

Average
model size FDR (%) FNR (%)

Jaccard
Index (%)

SVEN(WAM) 14.0754 0.1571 100 5 0 0 100
SVEN(MAP) 14.0757 0.1569 100 5 0 0 100

piMOM(MAP) 14.0732 0.1547 100 5 0 0 100
peMOM(MAP) 14.0750 0.1562 100 5 0 0 100

piMOM(LS) 14.0757 0.1569 100 5 0 0 100
peMOM(LS) 14.0757 0.1569 100 5 0 0 100

fastBVSR 31.2771 32.1993 97 6.55 18.65 0.6 81.03
EMVS1 14.7568 2.6871 100 5.6 8.44 0 91.56
EMVS2 14.4561 1.5340 100 5.09 1.45 0 98.55
EMVS3 14.4218 1.3793 100 5.03 0.5 0 99.5
LASSO 15.3893 2.8732 100 13.77 61.13 0 23.68
SCAD 14.0799 0.1678 100 5.49 5.29 0 94.71

Elastic Net 15.5365 3.7949 100 65.87 86.75 0 13.25

4.1.3 Auto-regressive correlation

The auto-regressive correlation structure is commonly observed in time series data where the

correlation between observations depends on the time lag between them. In this example, we use

AR(1) structure where the variables further apart from each other are less correlated. Following

Example 2 in Wang and Leng (2016), Xj = ρXj−1 + (1− ρ2)1/2zj, for 1 ≤ j ≤ p, where X0 and

zj (1 ≤ j ≤ p) are iid ∼ Nn(0, In). We use ρ = 0.6 and set the regression coefficients as β1 = 3,

β4 = 1.5, β7 = 2 and βj = 0 for j 6∈ {1, 4, 7}.

4.1.4 Factor models

This example is from Meinshausen and Bühlmann (2006) and Wang and Leng (2016). With

a fixed number of factors, K, we first generate a p × K matrix F whose entries are iid standard

normal. Then the rows of X are independently generated from Np(0, FF> + Ip). We fix K = 2

and the regression coefficients are set to be the same as in Example 4.1.2.
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4.1.5 Group structure

This special correlation structure arises when variables are grouped together in the sense that

the variables from the same group are highly correlated. This example is similar to Wang and Leng

(2016) and is similar to example 4 of Zou and Hastie (2005) where 15 true variables are assigned

to 3 groups. We generate the predictors as Xm = z1 + ζ1,m, X5+m = z2 + ζ2,m, X10+m = z3 + ζ3,m

where zi are iid∼ Nn(0, In) and ζi,m
iid∼ Nn(0, 0.01In) for 1 ≤ i ≤ 3 and for m = 0, 1, 2, 3, 4. The

regression coefficients are set as βj = 3 for j ∈ {1, 2, . . . , 15} and βj = 0 otherwise.

4.1.6 Extreme correlation

This challenging example is the example 6 of Wang and Leng (2016). In this example, We

first simulate zj , j = 1, . . . , p and wj , j = 1, . . . , 5 independently from the multivariate standard

normal distribution Nn(0, In). Then the covariates are generated as Xj = (zj + wj)/
√

2 for

j = 1, . . . , 5 andXj = (zj+
∑5

i=1wi)/2 for j = 6, . . . , p. By setting the number of true covariates

to be 5 and let βj = 5 for j = 1, . . . , 5 and βj = 0 for j = 6, ..., p, the correlation between

the response and the unimportant covariates is around 2.5/
√

3 times larger than that between the

response and the true covariates, making it difficult to identify the important covariates.

Our simulation experiments are conducted using 100 simulated pairs of training and testing

data sets. For each of the simulation settings introduced above, we set p = 20, 000 and generate

training data set and testing data set of size n = 400 each. The error variance σ2 is determined by

setting theoretical R2 = 90% (Wang, 2009). The hyperparameters w and λ are chosen to be
√
n/p

and n/p2, respectively, except for group structure where we also use λ = 200 and w = 0.02 to

account for the high within-group correlation and relatively large true model size.

In order to evaluate the performance of the propose method, we compute the following metrics:

(1) mean squared prediction error based on testing data (MSPE); (2) mean squared error between

the estimated regression coefficients and the true coefficients (MSEβ); (3) coverage probability
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which is defined as the proportion of the selected models containing the true model (4) average

model size which is calculated as the average number of predictors included in the selected models

over all the replications (5) false discovery rate (FDR); (6) false negative rate (FNR) and (7) the

Jaccard index which is defined as the size of the intersection divided by the size of the union of

the selected model and the true model. All computations are done using single–threaded R on a

workstation with two 2.6 GHz 8-Core Intel R©E5-2640 v3 processors and 128GB RAM.

4.2 Simulation results and main findings

The average of the metrics of our simulation results are presented in Tables 1-6. For peMOM

and piMOM priors, the difference between the MAP and the LS only arise in the MSPE and the

MSEβ but not in the other metrics. We can observe from the tables that SVEN and S5 perform

much better than EMVS, fastBVSR and the three frequentist penalized methods in general. In most

settings, the penalized methods result in many false discoveries, yet attaining similar or worse cov-

erage probabilities compared to the Bayesian methods. Since the estimates of β from EMVS are

not sparse, it has higher MSEβ than SVEN and S5. As observed in Tables 5 and 6, fastBVSR

results in large values of MSPE and MSEβ due to poor estimates of β. Also, SVEN yields compet-

itive prediction errors and has better FDR and Jaccard indices in every case other than the group

structure.

For the case of group structure (Table 4) where there is a high correlation between the vari-

ables within the same group, SVEN with w =
√
n/p and λ = n/p2 and S5 both pick up only one

representative variable from each group, resulting in a high false negative rate and average model

size around three. Although elastic net regression successfully includes all the important variables

it also includes a large number of unimportant variables and thus leads to a very high false dis-

covery rate. However, by increasing the shrinkage to λ = 200 and increasing the prior inclusion

probability to w = 0.02, SVEN stands out from its competitors. In fact, if important predictors are
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anticipated to be highly correlated, this prior information can be incorporated by choosing a larger

value for λ.

In addition, we compare the computing times between S5 (with both piMOM and peMOM

priors) and SVEN and find that SVEN hits the MAP model faster than S5. The details are provided

in Section S2.

5 Real data analysis

We examine the practical performance of our proposed method by applying it to a real data

example. Cook et al. (2012) conducted a genome-wide association study on starch, protein, and

kernel oil content in maize. The original field trial at Clayton, NC in 2006 consisted of more

than 5,000 inbred lines and check varieties primarily coming from a diverse IL panel consisting

of 282 founding lines (Flint-Garcia et al., 2005). Because the dataset comes from a field trial,

the responses could be spatially autocorrelated. Thus we use a random row-column adjustment to

obtain the adjusted phenotypes of the varieties. However, marker information of only n = 3, 951

of these varieties are available from the panzea project (https://www.panzea.org/) which provide

information on 546,034 single nucleotide polymorphisms (SNP) markers after removing duplicates

and SNPs with minor allele frequency (MAF) less than 5%. We use the protein content as our

phenotype for conducting the association study. Because the inbred varieties are bi-allelic, we

store the marker information in a sparse format by coding the minor alleles by one and major

alleles by zero.

5.1 Marker selection after screening

We compare our method to S5, fastBVSR and the three penalized regression methods (LASSO,

Elastic Net and SCAD). Since both R packages BayesS5 (version 1.31) and glmnet (version

2.0-18) do not work on this massive data set, we perform a screening of these markers before
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LASSO (size = 1764.98)
Elastic Net (size = 1799.14)

SCAD (size = 16.62)
fastBVSR (size = 711.33)
S5(piMoM) (size = 27.57)

SVEN(MAP)² (size = 9.66)
SVEN(WAM)² (size = 9.32)

SVEN(MAP)¹ (size = 18.84)
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Figure 1: Boxplots for MSPE using SVEN, S5, fastBVSR, LASSO and Elastic net after screening. 1w =
1/p0, λ =

√
n0; 2w = 1/p0, λ = n0/p

2
0.

conducting variable selection so as to reduce the dimension of the data. We randomly split the data

into a training set of size n0 = 3, 851 and testing set of size 100. Then we use high dimensional

ordinary least squares projection (HOLP) screening method (Wang and Leng, 2016) to preserve

p0 = 3, 851 markers. Note that the training sets are formed by controlling the MAF of each

marker to be no less than 1.5%. Because markers tend to be highly correlated, we use SVEN with

w = 1/p0 but with two choices of λ : λ =
√
n0 (high shrinkage) and λ = n0/p

2
0 (low shrinkage);

and with m = 3 and N = 50 for selecting the markers. In our experience, both the model size

and MSPE lie in between the respective reported values for other intermediate values of λ that we

have tried. We repeat the entire process 50 times – each time computing the MSPE and the model

size from each method. The peMOM non-local prior in S5 failed to provide any result even after

100 hours of running, and S5 with the piMOM prior failed to provide a result in three cases. The

fastBVSR algorithm ran successfully in only 39 out of the 50 cases, while the complex iterative

factorization at the core of fastBVSR encountered floating point errors in the remaining 11 cases

and could not produce any result. In contrast, SVEN faced no difficulties and produced the results

within reasonable time.

The boxplots of these MSPEs are shown in Figure 1 along with the average model sizes. Over-

all SVEN, S5 and SCAD perform significantly better than the lasso, the elastic net regression and

fastBVSR and produce smaller MSPE with smaller model sizes. Moreover, SVEN and S5 pro-
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duce comparable MSPE values but SVEN results in more parsimonious models. SVEN with high

shrinkage produces slightly smaller MSPE but double model size than with low shrinkage.

5.2 Marker selection on the entire data set

Unlike other variable selection methods, SCAD and SVEN can be successfully directly applied

to the whole data set without any pre-screening. We ran the SVEN 50 times again with the temper-

ature schedule described in Section 2.2.2 with m = 3, with N = 100 iterations per temperature,

each time starting with a different random seed. Initially, we use w = 1/p and try several values

of λ as done in Section 5.1. The best models from these 50 runs vary suggesting the posterior sur-

face is severely multimodal. With λ = n/p2, we find that although the sizes of these best models

remain around nine, the number of unique markers included in at least one of these 50 best models

is over 30 (for SCAD these numbers were > 40 and > 60, respectively). Other larger values of λ

produce even larger models and more unique variables. Interestingly, by taking a further look into

the markers it identified, we discovered that the presence of some of these markers in a model is

always accompanied by the absence of certain other markers. More specifically, some pairs and

triplets of the markers are never included simultaneously in the MAP models but the frequencies

at which they are selected add up to 50. Thus to achieve more parsimonious models, we reduce w

to 1/p2 and use λ = n/p2. Using such a small w, the sizes of the best models from each run reduce

to around four and the number of unique markers that are included at least once in the 50 best

models comes down to eight. To verify our conjecture on the correlations between these markers,

we calculated the pairwise partial correlations between these eight markers. It turns out that the

pairs of markers that are never included in the same model are indeed relatively highly partially

correlated than other pairs. Figure 2 gives the partial correlations for those markers where the size

of the nodes indicates the number of times the markers are included in one of the 50 best models

and Pairs of markers that are never included or excluded jointly are joined by a line segment. Note
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Figure 2: Graph for the selected markers and their corresponding partial correlations using w = 1/p2 and
λ = n/p2. The SNP accession numbers of the selected markers are: 1=5 151885291, 2= 5 197591528,
3=5 200552088, 4=6 7585863, 5=7 153216557, 6=9 142949160, 7=10 72608193, and 8=10 110298386.

that the partial correlation between the connected markers are at least 29% whereas the largest

partial correlation for markers that are not connected is around 18%. The inclusion frequencies

of the pairs of connected markers add up to 50. Note that the fifth and sixth important markers

are not grouped with other markers because their inclusions or exclusions are not related with the

inclusion or exclusion of any other marker. Thus SVEN is able to identify pairs of markers that

have similar effect on the response.

Figure 3: Boxplots of the widths of MC-PIs (grey) and Z-PIs (white).

Next, we study the performance and the widths of the 90% and 95% Z-PIs and MC-PIs de-

scribed in Section 3. To that end, we randomly split the entire data into a training set of size

n = 3, 751 under the constraint that the MAF of each marker is at least 1.5% and a testing set of

size 200. We also remove any duplicated markers from the training set, which results in a smaller
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p = 544, 211. We generate 10,000 samples from the approximate posterior predictive distribution

(13) to compute the MC-PIs. We find that the Z-PIs and the MC-PIs attain identical coverage rates

and these are found to be 91% and 95% for the 90% and 95% prediction intervals, respectively.

The boxplots of the widths of the 200 intervals from each method are presented in Figure 3. We

find that widths of the the Z-PIs are less variable compared to the same for the MC-PIs. It is en-

couraging to see that despite non-normality of the posterior prediction distribution, the Z-PIs are

better than simulation based intervals.

6 Conclusion

In this article, we introduce a Bayesian variable selection method with embedded screening

for ultrahigh-dimensional settings. The model used here is a hierarchical model with well known

spike and slab priors on the regression coefficients. Use of the degenerate spike prior for inactive

variables not only results in sparse estimates of regression coefficients and (much) lesser compu-

tational burden, it also allows us to establish strong model selection consistency under somewhat

weaker conditions than Narisetty and He (2014). In particular, we prove that the posterior prob-

ability of the true model converges to one even when the norm of mean effects solely due to the

unimportant variables diverge. On the other hand, our method crucially hinges on the fact that

model probabilities are available in closed form (up to a normalizing constant) which is due to the

use of Gaussian slab priors on active covariates. We propose a scalable variable selection algorithm

with an inbuilt screening method that efficiently explores the huge model space and rapidly finds

the MAP model. The screening is actually model based in the sense that it is performed on a set

of candidate models rather than the set of potential variables. The algorithm also incorporates the

temperature control into a neighbor based stochastic search method. We use fast Cholesky update

to efficiently compute the (unnormalized) posterior probabilities of the neighboring models. Since

mean and variance of the posterior predictive distribution are shown to be means of analytically
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available functions of the models, a derivative of the proposed method is construction of novel pre-

diction intervals for future observations. Both Z based intervals and simulation based intervals are

derived and compared. In the context of the real data analysis, we observe that Z based prediction

intervals lead to the same coverage rates, although are narrower than Monte Carlo intervals. The

extensive simulations studies in section 4 and the real data analysis in section 5 demonstrate the

superiority of the proposed method compared with the other state of the art methods, even though

the hyperparameters in the proposed method are not carefully tuned. Among the Bayesian meth-

ods used for comparison, the package associated with the proposed algorithm seems to be the only

one that can be directly applied to datasets of dimension as high as the one analyzed here with the

computing resources mentioned before.

Based on the Cholesky update described in Section 2.2.2, SVEN can be extended to ac-

commodate the determinantal point process prior (Kojima and Komaki, 2016) on γ given by

p(γ|ω) ∝ ω|γ|
∣∣X>γ Xγ

∣∣ , where ω > 0. Variable selection and consistency of the resulting posteri-

ors for high dimensional generalized linear models are considered in Liang et al. (2013). It would

be interesting to extend our method to the generalized linear regression model setup. The dataset

we have used comes from an agricultural field trial and hence the observations are expected to be

spatially autocorrelated. Although we have used a two stage procedure by first obtaining spatially

adjusted genotypic effects, our model can be extended to include spatial random effects (Dutta and

Mondal, 2014). Also, in many applications, the covariates may have a non-linear effect on the

response and our method could be extended to additive models.

Supplemental materials The supplemental materials contain additional details on computations

and proofs of the theoretical results stated in the paper.
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Ročková, V. and George, E. I. (2014), “EMVS: The EM approach to Bayesian variable selection,” Journal
of the American Statistical Association, 109, 828–846.

Roy, V. and Chakraborty, S. (2017), “Selection of tuning parameters, solution paths and standard errors for
Bayesian lassos,” Bayesian Analysis, 12, 753–778.

Roy, V., Tan, A., and Flegal, J. (2018), “Estimating standard errors for importance sampling estimators with
multiple Markov chains,” Statistica Sinica, 28, 1079–1101.

Shin, M., Bhattacharya, A., and Johnson, V. E. (2018), “Scalable Bayesian variable selection using nonlocal
prior densities in ultrahigh-dimensional settings,” Statistica Sinica, 28, 1053.

Tibshirani, R. (1996), “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical
Society: Series B (Methodological), 58, 267–288.

Wang, H. (2009), “Forward regression for ultra-high dimensional variable screening,” Journal of the Amer-
ican Statistical Association, 104, 1512–1524.

Wang, X. and Leng, C. (2016), “High dimensional ordinary least squares projection for screening variables,”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78, 589–611.

34



Xu, X. and Ghosh, M. (2015), “Bayesian variable selection and estimation for group lasso,” Bayesian Anal-
ysis, 10, 909–936.

Yang, Y., Wainwright, M. J., and Jordan, M. I. (2016), “On the computational complexity of high-
dimensional Bayesian variable selection,” The Annals of Statistics, 44, 2497–2532.

Yuan, M. and Lin, Y. (2005), “Efficient empirical Bayes variable selection and estimation in linear models,”
Journal of the American Statistical Association, 100, 1215–1225.

Zanella, G. and Roberts, G. (2019), “Scalable importance tempering and Bayesian variable selection,” Jour-
nal of the Royal Statistical Society, Series B, 81, 489–517.

Zellner, A. (1986), “On assessing prior distributions and Bayesian regression analysis with g-prior distribu-
tions,” in Bayesian inference and decision techniques: Essays in Honor of Bruno de Finetti, eds. Goel,
P. K. and Zellner, A., Elsevier Science, 233–243.

Zhou, Q. and Guan, Y. (2019), “Fast model-fitting of Bayesian variable selection regression using the itera-
tive complex factorization algorithm,” Bayesian analysis, 14, 573.

Zou, H. (2006), “The adaptive lasso and its oracle properties,” Journal of the American statistical associa-
tion, 101, 1418–1429.

Zou, H. and Hastie, T. (2005), “Regularization and variable selection via the elastic net,” Journal of the
royal statistical society: series B (statistical methodology), 67, 301–320.

35



Supplement to

“Model Based Screening Embedded Bayesian Variable Selection for

Ultra-high Dimensional Settings”

Dongjin Li, Somak Dutta and Vivekananda Roy

S1 Efficient computations for multiple predictions

We describe in this section how we efficiently generate multiple y∗ in order to obtain the empir-

ical posterior predictive distribution and compute the Monte Carlo prediction intervals at several

new covariates z∗(1), . . . , z∗(L). Recall from Section 2.2.2 that for a model γ, Uγ is the upper tri-

angular Cholesky factor of X>γ Xγ + λI and vγ = U−>γ X>γ ỹ. The detailed procedure is described

below.

Algorithm Generate multiple y∗

1: Sample N models with replacement from the best K models returned by SVEN, with proba-
bilities proportional to wi defined in (7) for i = 1, . . . , K

2: From the models sampled from step 1, find the unique models γ1, . . . , γM such that∑m=M
m=1 Sm = N , where Sm denote the number of models identical to γm

3: Compute Uγm and vγm for m = 1, . . . ,M
4: for m = 1 to m = M do
5: for j = 1 to j = Sm do
6: Sample σ2 from IG ((n− 1)/2,Rγm/2)
7: Sample ei from N (0, σ2) for i = 1, . . . , |γm|
8: Compute µγm = D−1

γm

(
U−1
γm(vγm + e)

)
, where e = (e1, . . . , e|γm|)

>

9: Sample µ0 from N (ȳ − Z̄>γmµγm , σ2/n)
10: for ` = 1 to ` = L do
11: Generate y∗ from N

(
µ0 + z

∗(`)
γm µγm , σ

2
)

12: end for
13: end for
14: end for
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S2 Comparison of computation time

We examine the computation time it takes for SVEN to hit the MAP model for the first time,

and compare it with S5 under the piMOM and the peMOM priors. We simulate the data according

to Section 4.1.3, where Z has an AR(1) structure. We consider five different (n, p) pairs with p =

2n3/2 where n ∈ {100, 225, 400, 625, 900}. For each of the (n, p) pair, we obtain the computation

times over 10 replicates. For SVEN, we use w =
√
n/p, λ = n/p2 and N = 50 with the

temperature schedule described in Section 2.2.2 with m = 3. Again, S5 is implemented using

R-package BayesS5 using their default tuning parameter with only one repetition.

Figure S1 shows the median computation times SVEN and S5 take to first hit the MAP model,

excluding the preprocessing steps which are negligible. Both algorithms attain the same MAP

model for all the data sets. In general, SVEN hits the MAP model faster than S5 for both small and

large number of variables. Moreover, compared to S5, the computation time for SVEN increases

at a slower rate as p gets larger.
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Figure S1: The median computation time to first hit the MAP model for SVEN and S5.
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S3 Preliminary results

LetR∗γ = Ỹ >(I−Pγ)Ỹ which is the residual sum of squares obtained by ordinary least squares

and also let Qγ = λ|γ|/2|X>γ Xγ + λI|−1/2. Before proving the model selection consistency stated

in Theorems 1 and 2, we first provide some preliminary results on the bound of Qγ/Qt which will

be used to bound the posterior ratio of a given model γ to the true model t, and the bound of the

difference between Rt and R∗t .

Lemma 1. For any model γ 6= t, Qγ
Qt
≤ v

′
(nηnm(ν)/λ)−(r∗γ−rt)/2(ηnm(ν))−|t∧γ

c|/2 where v
′
> 0 is a

constant.

Proof. Because nonzero eigenvalues of X>γ Xγ and XγX
>
γ are identical, it follows that Qγ =

λ|γ|/2|X>γ Xγ +λI|−1/2 = |I+λ−1XγX
>
γ |−1/2. We first show that Qγ

Qγ∧t
≤ (nηnm(ν)/λ)−(r∗γ−rγ∧t)/2.

There are two cases depending on |γ| ≤, or > un(ν).

Case 1: Suppose |γ| ≤ un(ν). We then have

Qγ

Qγ∧t
= |I + λ−1XγX

>
γ |−1/2|I + λ−1Xγ∧tX

>
γ∧t|1/2

=
∣∣I + λ−1Xγ∧tX

>
γ∧t + λ−1Xγ∧tcX

>
γ∧tc
∣∣−1/2 ∣∣I + λ−1Xγ∧tX

>
γ∧t
∣∣1/2

=
∣∣∣I + λ−1X>γ∧tc

(
I + λ−1Xγ∧tX

>
γ∧t
)−1

Xγ∧tc
∣∣∣−1/2

.

Next, using Sherman–Morrison–Woodbury matrix identity we have,

(
I + λ−1Xγ∧tX

>
γ∧t
)−1

= I −Xγ∧t(X
>
γ∧tXγ∧t + λI)−1X>γ∧t.

Thus by letting E = X>γ∧tXγ∧t, F = X>γ∧tXγ∧tc and G = X>γ∧tcXγ∧tc we have

Qγ

Qγ∧t
=
∣∣λ−1{G+ λI − F>(E + λI)−1F}

∣∣−1/2
. (S1)
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However, note that G+ λI − F>(E + λI)−1F is the Schuar complement in

H =

E + λI F

F> G+ λI

 =

X>γ∧tXγ∧t + λI X>γ∧tXγ∧tc

X>γ∧tcXγ∧t X>γ∧tcXγ∧tc + λI,


so that the smallest eigenvalue of G+ λI − F>(E + λI)−1F is at least the smallest eigenvalue of

H which is, in turn, at least nηnm(ν) + λ because H can be obtained by applying one permutation

on the rows and columns of X>γ Xγ + λI. Consequently, from (S1), we finally have

Qγ

Qγ∧t
≤
(
λ−1(λ+ nηnm(ν)

)−rγ∧tc/2 ≤ (nηnm(ν)/λ)−(r∗γ−rγ∧t)/2

because |γ ∧ tc| ≥ rγ∧tc ≥ rγ − rγ∧t ≥ r∗γ − rγ∧t.

Case 2: If |γ| > un(ν) write γ = γ′ ∨ γ′′ where γ′ and γ′′ are disjoint, |γ′| ≤ un(ν) and

γ′ ∧ t = γ ∧ t. Then Qγ∧t = Qγ′∧t and

Qγ = |I + λ−1Xγ′X
>
γ′ + λ−1Xγ′′X

>
γ′′ |−1/2 ≤ |I + λ−1Xγ′X

>
γ′ |−1/2 = Qγ′ .

Since γ = γ′ ∨ γ′′, rγ ≥ rγ′ implying r∗γ ≥ r∗γ′ . Also, γ′ ∧ t = γ ∧ t. Hence,

Qγ

Qγ∧t
≤ Qγ′

Qγ′∧t
≤ (nηnm(ν)/λ)

−(r∗
γ′−rγ′∧t)/2 ≤ (nηnm(ν)/λ)−(r∗γ−rγ∧t)/2.

Furthermore,

Qγ∧t

Qt

= |I + λ−1Xγ∧tX
>
γ∧t|−1/2|I + λ−1XtX

>
t |1/2

=
∣∣∣(I + λ−1Xγ∧tX

>
γ∧t
)−1 (

I + λ−1Xγ∧tX
>
γ∧t + λ−1Xγc∧tX

>
γc∧t
)∣∣∣1/2

=
∣∣∣I + λ−1Xγc∧t

(
I + λ−1Xγ∧tX

>
γ∧t
)−1

X>γc∧t

∣∣∣1/2
≤
∣∣I + λ−1Xγc∧tX

>
γc∧t
∣∣1/2 ≤ v′ (n/λ)|γ

c∧t|/2 ,
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for some v′ > 0, where the second to last inequality holds because I + λ−1Xγ∧tX
>
γ∧t ≥ I and the

last inequality holds since the condition C3 is in force and the fact that Xγc∧t is a submatrix of Xt.

Since Xt is full rank, rt = rγ∧t + rγc∧t = rγ∧t + |γc ∧ t|. Thus finally we have,

Qγ

Qt

≤ v′ (nηnm(ν)/λ)−(r∗γ/2) (nηnm(ν)/λ)(rt−|γc∧t|)/2 (n/λ)|γ
c∧t|/2

= v′(nηnm(ν)/λ)−(r∗γ−rt)/2(ηnm(ν))−|γ
c∧t|/2.

Then, using Lemma 1, we have the following corollary.

Corollary 1. For any model γ 6= t,

PR(γ, t) =
f(γ|Y, σ2)

f(t|Y, σ2)
≤v′ (nηnm(ν)/λ)−(r∗γ−rt)/2 (ηnm(ν))−|γ

c∧t|/2 b|γ|−|t|n

× exp

{
− 1

2σ2
(Rγ −Rt)

}
,

where bn = w/(1− w) ∼ p−1, and v
′
> 0 is a constant.

Proof. The posterior of the model γ under (2a)-(2d) is given by

f(γ|Y, σ2) ∝ exp

{
− 1

2σ2

(
Ỹ >Ỹ − Ỹ >Xγ

(
X>γ Xγ + λI

)−1
X>γ Ỹ

)}
× λ|γ|/2

∣∣X>γ Xγ + λI
∣∣−1/2

w|γ|(1− w)p−|γ|

≤Qγb
|γ|
n exp

{
− 1

2σ2
Rγ

}
.
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Hence from lemma 1 we have

PR(γ, t) =
f(γ|Y, σ2)

f(t|Y, σ2)
=
Qγ

Qt

b|γ|−|t|n exp

{
− 1

2σ2
(Rγ −Rt)

}
≤v′ (nηnm(ν)/λ)−(r∗γ−rt)/2 (ηnm(ν))−|γ

c∧t|/2 b|γ|−|t|n

× exp

{
− 1

2σ2
(Rγ −Rt)

}
.

Lemma 2. For any sequence hn →∞, we have

P (Rt −R∗t > hn) ≤ exp(−c′nhn/λ) for some c′ > 0.

Proof. Since (n/λ)I+(
X>t Xt
n

)−1 ≥ (n/λ)I and 1>nX = 0, Sherman–Morrison–Woodbury identity

implies

0 ≤ Rt −R∗t = Y >Xt

[
(X>t Xt)

−1 −
(
λI +X>t Xt

)−1
]
X>t Y

= Y >Xt(X
>
t Xt)

−1
(
λ−1I + (X>t Xt)

−1
)−1

(X>t Xt)
−1X>t Y

≤ (n/λ)−1 Y >WY,

where W = nXt(X
>
t Xt)

−2X>t has rank |t| and by condition C5 has bounded eigenvalues. We

want to show that P (Rt − R∗t > hn) ≤ P
(
Y >WY > nλ−1hn

)
≤ exp (−c′nλ−1hn). Next, since

1>nX = 0, we have

Y >WY =(β>t X
>
t + β>tcX

>
tc + ε>)W (Xtβt +Xtcβtc + ε)

=β>t X
>
t WXtβt + β>t X

>
t WXtcβtc + β>t X

>
t Wε+ β>tcX

>
tcWXtβt

+ β>tcX
>
tcWXtcβtc + β>tcX

>
tcWε+ ε>WXtβt + ε>WXtcβtc + ε>Wε

=nβ>t βt + β>t X
>
t WXtcβtc + β>tcX

>
tcWXtβt + β>t X

>
t Wε+ ε>WXtβt

+ β>tcX
>
tcWε+ ε>WXtcβtc + β>tcX

>
tcWXtcβtc + ε>Wε.
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To find the bound of the tail probability, we spilt our proof into following five steps:

(i) First, we want to show that |β>t X>t WXtcβtc | �
√
n log p. It is clear that

|β>t X>t WXtcβtc| ≤ ‖Xtβt‖‖Xtcβtc‖αmax(W ),

and ‖Xtβt‖2 = β>t X
>
t Xtβt = nβ>t

(
X>t Xt
n

)
βt ≤ nc1‖βt‖2 for some constant c1 > 0. By

condition C5 we also know that αmax(W ) is bounded. Then with ‖Xtcβtc‖ �
√

log p from

condition C3, we have |β>t X>t WXtcβtc | ≤ c2

√
n log p for some constant c2 > 0.

(ii) Next we will show that |β>tcX>tcWXtcβtc | � log p. Condition C3 and the fact that W has

bounded eigenvalues implies that

|β>tcX>tcWXtcβtc | ≤ ‖Xtcβtc‖2αmax(W ) ≤ c3 log p

(iii) Next, we will show that P (ε>Wε ≥ a) ≤ P (c4χ
2
1,|t| ≥ a) for all a > 0, and n ≥ 1,

and for some c4 > 0, where χ2
1,|t| is distributed as χ2 with |t| degrees of freedom. To that

end, let W = PΛP>, where P is an orthogonal matrix and Λ = diag{λ1, . . . , λn} is the

diagonal matrix of the eigenvalues of W . Then, since P>ε ∼ N(0, σ2I), ε>Wε/σ2 =

ε>PΛP>ε/σ2 =
∑|t|

i=1 λi
G2
i

σ2 , where Gi
iid∼ N(0, σ2), i = 1, . . . , |t|. Since eigenvalues of W

are bounded, λiσ2 ≤ c5 for some c4 > 0 for all i = 1, . . . , |t|. Hence, P (ε>Wε ≥ a) =

P (σ2
∑|t|

i=1 λi
G2
i

σ2 ≥ a) ≤ P (c4χ
2
1,|t| ≥ a).

(iv) Next we want to show P (|β>tcX>tcWε| ≥ a) ≤ P (c5χ2,|t| ≥ a/
√

log p) for all a > 0, n ≥ 1

and for some c5 > 0, where χ2
2,|t| is distributed as χ2 with |t| degrees of freedom. To that

end, note that by Cauchy-Schwarz inequality,

|β>tcX>tcWε| ≤ ‖β>tcX>tc‖‖Wε‖

7



However, as in step (iii) above, ‖Wε‖2 is stochastically dominated by a constant multiple of

χ2−distributed random variable since W 2 = PΛ2P> has rank |t| and bounded eigenvalues.

Hence by Condition C3, there exists c5 > 0, such that

P (|β>tcX>tcWε| ≥ a) ≤ P (‖β>tcX>tc‖‖Wε‖ ≥ a) ≤ P
(
c5(log p)1/2χ2,|t| ≥ a

)

(v) Thus all sufficiently large n, we have

Y >WY ≤ 2β>t X
>
t Wε+ 2βtcXtcWε+ ε>Wε+ nβ>t βt + 2c2

√
n log p+ c3 log p.

Now note that 2β>t X
>
t Wε = 2nβ>t (X>t Xt)

−1X>t ε ∼ N(0, nC2
n), where

C2
n = 4σ2β>t

(
X>t Xt

n

)−1

βt

is bounded. Also note that

nλ−1hn − nβ>t βt − 2c2

√
n log p− c3 log p > nλ−1hn/2

and nλ−1hn/(log p) > 1 for sufficiently large n. Thus, for sufficiently large n, we have,

P
(
Y >WY > nλ−1hn

)
≤ P

(
2β>t X

>
t Wε+ 2βtcXtcWε+ ε>Wε >

1

2
nλ−1hn

)
≤ P

(
2β>t X

>
t Wε >

1

6
nλ−1hn

)
+ P

(
2βtcXtcWε >

1

6
nλ−1hn

)
+ P

(
ε>Wε >

1

6
nλ−1hn

)
≤ P

(
2β>t X

>
t Wε√

nCn
>

√
n

6

hn
Cnλ

)
+ P

(
c2

5χ
2
2,|t| >

1

36

(nλ−1hn)
2

log p

)
+ P

(
c4χ

2
1,|t| >

1

6

nhn
λ

)
≤ exp

(
−c′′nλ−2h2

n

)
+ exp

(
−c′′′nλ−1hn

)
+ exp

(
−c′′′′nλ−1hn

)
≤ exp

(
−c′nλ−1hn

)
,
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for some positive constants c′, c′′, c′′′ and, c′′′′.

S4 Proof of Theorem 1

To prove the model selection consistency, we use the same strategy as in Narisetty and He

(2014) by dividing the set of models into the following subsets:

(i) Unrealistically large models: M1 = {γ : rγ > un}, the models of rank greater than un.

Abusing notation we use un and un(ν) interchangeably.

(ii) Over-fitted models: M2 = {γ : γ ⊃ t, rγ ≤ un}, the models of rank smaller than un which

include all the important variables and at least one unimportant variables.

(iii) Large models: M3 = {γ : γ 6⊃ t, J |t| < rγ ≤ un}, that is, the models which miss one or

more important variables with rank greater than J |t| but smaller than un for some fixed

positive integer J .

(iv) Under-fitted models: M4 = {γ : γ 6⊃ t, rγ ≤ J |t|}, the models which have rank smaller

than J |t| and miss at least one important variable.

We aim to show that
∑

γ∈Mk
PR(γ, t)

P−→ 0 for each k = 1, 2, 3, 4, with σ2 known.

S4.1 Unrealistically large models

We first want to prove that the sum of posterior ratios PR(γ, t) over γ ∈ M1 converges expo-

nentially to zero. Note that M1 is empty if p < n/ log p2+ν . The reason is that if p < n/ log p2+ν ,

then un(ν) = p and rγ ≤ p, which contradicts the definition of M1. First, we want to find a set of

9



events that are almost unlikely to happen. So, note that for any s > 0,

P
[
∪γ∈M1

{
Rt −Rγ > n(1 + 2s)σ2

}]
≤ P

[
Rt > n(1 + 2s)σ2

]
≤ P

[
R∗t > (1 + s)nσ2

]
+ P

[
Rt −R∗t > snσ2

]
= P

[
R∗t
nσ2
− 1 > s

]
+ P

[
Rt −R∗t > snσ2

]
≤ exp{−cn}+ exp{−c′sn2σ2/λ}, (S2)

for some c, c′ > 0, due to Lemma A.2 of Narisetty and He (2014).

Now we consider the term nηnm(ν)/λ. Condition C2 indicates that nηnm(ν)/λ � n∨ p2+3δ because

ηnm(ν) is the smallest eigenvalue of a correlation matrix, i.e., ηnm(ν) < 1, and condition C4 implies

that nηnm(ν)/λ � n ∨ p2+2δ, that is,

(n ∨ p2+2δ) � nηnm(ν)/λ � (n ∨ p2+3δ). (S3)

Then we restrict our attention to the high probability event ∩γ∈M1 {Rt −Rγ ≤ n(1 + 2s)σ2} for

s < δ/2(2 + δ). Note that, in this case, the upper bound (S2) of the probability of the complement

of this event is bounded by 2 exp{−c′′n} for some c′′ > 0. First, by Lemma 1, we have

∑
γ∈M1

PR(γ, t) �
∑
γ∈M1

v′ (nηnm(ν)/λ)−(r∗γ−rt)/2 (ηnm(ν))−|γ
c∧t|/2 b|γ|−|t|n en(1+2s)/2

�
∑
γ∈M1

p−(1+δ)(un−|t|) (ηnm(ν))−|t|/2 b|γ|−|t|n en(1+2s)/2.

because for all γ ∈M1, r∗γ = rγ ∧ un = un, |γc ∧ t| ≤ |t| and condition C4 is in force. Recall that

bn ∼ p−1. Thus, (1 + bn)p ∼ 1. Also, by condition C1, p = exp(ndn) for some dn → 0. Then, due

10



to condition C4 un = n/ log p2+ν ≥ n/ log p2+δ since ν < δ, we have

∑
γ∈M1

PR(γ, t) �
∑
γ∈M1

e−(1+δ)(un−|t|)logpb|γ|−|t|n (ηnm(ν))−|t|/2en(1+2s)/2

�
∑
γ∈M1

e−(1+δ) n
(2+δ)logp logpen(1+2s)/2pκ|t|/2b|γ|−|t|n

� e−n(1+δ)/(2+δ)en(1+2s)/2pκ|t|/2
∑
γ∈M1

b(|γ|−|t|)
n

� e−n(1+δ)/(2+δ)en(1+2s)/2p(1+κ/2)|t|
p∑

|γ|=un

 p

|γ|

 b|γ|n

� e−n(1+δ)/(2+δ)en(1+2s)/2en(1+κ/2)|t|dn (1 + bn)p

� e−v
′n −→ 0,

as n→∞ for some v′ > 0, if s satisfies 1+2s < 2(1+δ)/(2+δ), i.e., s < δ/2(2+δ). Therefore,

we have ∑
γ∈M1

PR(γ, t)
P−→ 0. (S4)

S4.2 Over-fitted models

Models in M2 include all important variables plus one or more unimportant variables. For

γ ∈M2,

R∗t −R∗γ = Y >(I − Pt)Y − Y >(I − Pγ)Y = ‖(Pγ − Pt)(Xtβt +Xtcβtc + ε)‖2

= (‖(Pγ − Pt)Xtcβtc‖+ ‖(Pγ − Pt) ε‖)2 ≤
(
‖Xtcβtc‖+

√
ε>(Pγ − Pt)ε

)2

.
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Due to Lemma 1 of Laurent and Massart (2000) and the fact that ε>(Pγ − Pt)ε/σ2 ∼ χ2
rγ−rt , for

any x > 0 and for some
√

2/3 < v < 1, we have for all sufficiently large n,

P
[
R∗t −R∗γ > σ2(2 + 3x) (rγ − rt) logp

]
≤ P

[(
‖Xtcβtc‖+

√
ε>(Pγ − Pt)ε

)2

> σ2(2 + 3x) (rγ − rt) log p

]

= P

[
ε>(Pγ − Pt)ε

σ2(2 + 3x) (rγ − rt) log p
> 1−

2 ‖Xtcβtc‖
√
σ2(2 + 3x) (rγ − rt) log p− ‖Xtcβtc‖2

σ2(2 + 3x) (rγ − rt) log p

]

≤ P

[
ε>(Pγ − Pt)ε >

1

2
σ2(2 + 3vx) (rγ − rt) log p

]
≤ P

[
χ2
rγ−rt − (rγ − rt) >

1

2
{(2 + 3vx) log p− 1} (rγ − rt)

]
≤ P

[
χ2
rγ−rt − (rγ − rt) >

1

2

(
2 + 3v2x

)
(rγ − rt) log p

]
≤ P

{
χ2
rγ−rt − (rγ − rt) >

√
(rγ − rt) [(rγ − rt)(1 + x) log p+ a] + [(rγ − rt)(1 + x) log p+ a]

}
≤ exp {−(rγ − rt)(1 + x) log p+ a}

≤ c1 exp {−(1 + x) (rγ − rt) log p} = c1p
−(1+x)(rγ−rt),

(S5)

where c1 = exp(a) > 0 and a is a constant such that

√
(rγ − rt) [(rγ − rt)(1 + x) log p+ a] + [(rγ − rt)(1 + x) log p+ a] <

(
2 + 3v2x

)
(rγ − rt) log p.

Now, consider 0 < s < δ/8 and define the event

E1(γ) :=
{
Rt −Rγ > 2σ2(1 + 4s)(rγ − rt) log p

}
⊂
{
Rt −Rγ > 2σ2(1 + 2s)(rγ − rt) log p

}
.

Then, for a fixed dimension d > rt, consider the event U(d) :=
⋃
{γ:rγ=d}E1(γ). Since Rγ ≥ R∗γ ,

we have

P [U(d)] ≤P
[
∪{γ:rγ=d}

{
Rt −Rγ > 2σ2(1 + 2s) (rγ − rt) log p

}]
12



≤P
[
∪{γ:rγ=d}

{
Rt −R∗γ > 2σ2(1 + 2s) (rγ − rt) log p

}]
≤P

[
∪{γ:rγ=d}

{
R∗t −R∗γ > σ2(2 + 3s) (d− rt) log p

}]
+ P

[
Rt −R∗t > sσ2 (d− rt) log p

]
≤
∑
γ:rγ=d

P
[
R∗t −R∗γ > σ2(2 + 3s) (d− rt) log p

]
+ P

[
Rt −R∗t > sσ2 (d− rt) log p

]
≤
∑
γ:rγ=d

c1p
−(1+s)(d−rt) + exp

{
−c′nsσ2(d− rt)(log p)/λ

}
≤c1p

−(1+s)(d−rt)pd−rt + exp {−c′s(d− rt) log p}

=c1p
−s(d−rt) + p−c

′s(d−rt)

≤c3p
−c4s(d−rt),

for some c3, c4 > 0, where the fifth and the sixth inequality hold due to (S5), Lemma 2, condition

C2, and the fact that the event
{
R∗t −R∗γ > σ2(2 + 3s) (d− rt) log p

}
depends only on the projec-

tion matrix Pγ∧tc , so we can write the union ∪{γ:rγ=d} as a smaller set of events indexed by Pγ∧tc .

Note that since there exists at most pk subspaces of rank k, the cardinality of such projections is at

most pd−rt . Next, we consider the union of all such events U(d), that is,

P
[
∪{d>rt}U(d)

]
≤
∑
{d>rt}

P [U(d)] ≤ c3

∑
d>rt

p−c4s(d−rt)

≤ c3

∞∑
d−rt=1

p−c4s(d−rt) ≤ c3
p−c4s

1− p−c4s

=
c3

pc4s − 1
−→ 0 as n→∞

.
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Note that, r∗γ = rγ as rγ < un for γ ∈ M2. Then again restricting to the high probability event

∩{d>rt}U(d)c, by Lemma 1, (S3) and the fact that γc ∧ t is empty, we have

∑
γ∈M2

PR(γ, t) �
∑
γ∈M2

(nηnm(ν)/λ)−(r∗γ−rt)/2 b(|γ|−|t|)
n (ηnm(ν))−|γ

c∧t|/2

× exp

{
− 1

2σ2
(Rγ −Rt)

}
�
∑
γ∈M2

(
p−(2+2δ) ∧ n−1

)(rγ−rt)/2
b(|γ|−|t|)
n p(1+4s)(rγ−rt)

�
∑
γ∈M2

(
p1+δ ∨

√
n
)−(rγ−rt)

b(|γ|−|t|)
n p(1+4s)(rγ−rt)

�
∑
γ∈M2

(
p1+δ−1−4s ∨

√
np−1−4s

)−(rγ−rt)
b(|γ|−|t|)
n

�
∑
γ∈M2

(
p−δ/2 ∧ p

1+δ/2

√
n

)(rγ−rt)

b(|γ|−|t|)
n

�
(
p−δ/2 ∧ p

1+δ/2

√
n

) p∑
|γ|=|t|+1

 p

|γ| − |t|

 b(|γ|−|t|)
n

�
(
p−δ/2 ∧ p

1+δ/2

√
n

)
(1 + bn)p

∼ρn −→ 0,

as n → ∞, where ρn =
(
p−δ/2 ∧ p1+δ/2√

n

)
. In the above, we used the fact that ρn ≤ 1 and

rγ − rt ≥ 1. Note that, δ − 4s ≥ δ
2

since 0 < s < δ/8. Hence, we have

∑
γ∈M2

PR(γ, t)
P−→ 0. (S6)
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S4.3 Large Models

For models in M3 where the rank is at least J |t| and one or more important variables are not

inclued, similar to what we’ve shown in Section S4.2, for 0 < s < δ/d we use the event

E1(γ) ⊂
{
Rt −Rγ∨t > 2σ2(1 + 2s)(rγ − rt) log p

}
.

Then we consider the union of such events U(d) =
⋃
{γ:rγ=d}E1(γ), for d > J |t|, and s = δ/8.

Using (S5) with the fact that rγ∨t ≥ rγ and Lemma 2 we have

P [U(d)] ≤P
[
∪{γ:rγ=d}

{
Rt −Rγ∨t > 2σ2(1 + 2s) (rγ − rt) log p

}]
≤P

[
∪{γ:rγ=d}

{
Rt −R∗γ∨t > 2σ2(1 + 2s) (rγ − rt) log p

}]
≤

∑
{γ:rγ=d}

P
[
R∗t −R∗γ∨t > σ2(2 + 3s)(d− rt) log p

]
+ P [Rt −R∗t > sσ2(d− rt) log p]

≤c1p
−(1+s)(d−rt)pd + e−c

′nsσ2(d−rt)(log p)/λ

≤c5p
−c6d,

for some c5, c6 > 0.

Then,

P [∪{d>J |t|}U(d)] ≤
∑
d>J |t|

P [U(d)] ≤
∑
d>J |t|

c5p
−c6d −→ 0 as n→∞.

Now, we restrict our attention to the high probability event
⋂
{d>rt} U(d)c, we have

∑
γ∈M3

PR(γ, t) �
∑
γ∈M3

(nηnm(ν)/λ)−(r∗γ−rt)/2 (ηnm(ν))−|γ
c∧t|/2 b(|γ|−|t|)

n

× exp

{
− 1

2σ2
(Rγ −Rt)

}
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�
∑
γ∈M3

(
p1+δ ∨

√
n
)−(rγ−rt)

(ηnm(ν))−|t|/2 b(|γ|−|t|)
n p(1+4s)(rγ−rt)

�
∑
γ∈M3

(
p1+δ−1−4s ∨

√
np−1−4s

)−(rγ−rt)
pκ|t|/2b(|γ|−|t|)

n

�
∑
γ∈M3

(
p−δ/2 ∧ p

1+δ/2

√
n

)rγ−rt
pκ|t|/2b(|γ|−|t|)

n

�
(
p−δ/2 ∧ p

1+δ/2

√
n

)(J−1)rt+1

pδ(J−1)|t|/4
∑
γ∈M3

b(|γ|−|t|)
n

�ρ(J−1)rt+1
n pδ(J−1)|t|/4 (1 + bn)p

(∼ρ(J−1)|t|/2
n ) −→ 0

as n → ∞. In the above, we used the fact that κ < (J − 1)δ/2 by condition C4. Note that

ρ
rγ−rt
n ≤ ρ

(J−1)rt+1
n because rγ > J |t| = Jrt and ρn ≤ 1.

Thus, we have ∑
γ∈M3

PR(γ, t)
P−→ 0. (S7)

S4.4 Under-fitted Models

First, we will prove that for c ∈ (0, 1),

P [∪γ∈M4 {Rγ −Rt < ∆n(1− c)}] −→ 0,
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where ∆n ≡ ∆n(J) is defined in Condition C4. Since 1>nX = 0, by conditions C3 and C4 we

have

R∗γ −R∗γ∨t = ‖(Pγ∨t − Pγ)Y ‖2

= ‖(Pγ∨t − Pγ)Xtβt + (Pγ∨t − Pγ)Xtcβtc + (Pγ∨t − Pγ) ε‖2

= ‖(Pγ∨t − Pγ)Xtβt + (Pγ∨t − Pγ) ε‖2

≥ (‖(Pγ∨t − Pγ)Xtβt‖ − ‖(Pγ∨t − Pγ) ε‖)2

= (‖(I − Pγ)Xtβt‖ − ‖(Pγ∨t − Pγ) ε‖)2

≥
(√

∆n − ‖ (Pγ∨t − Pγ) ε‖
)2

,

for all large n. Since ‖Ptε‖2 /σ2 ∼ χ2
rt , for any v′ ∈ (0, 1), we have

P
[
∪γ∈M4

{
R∗γ −R∗γ∨t < (1− v′)2

∆n

}]
≤P

[
∪γ∈M4

{(√
∆n − ‖(Pγ∨t − Pγ) ε‖

)2

< (1− v′)2∆n

}]
≤P

[
∪γ∈M4

{
‖(Pγ∨t − Pγ) ε‖ > v′

√
∆n

}]
≤P

[
‖Ptε‖2 > v′

2
∆n

]
≤e−c7∆n , (S8)

for some constant c7 > 0. We also have for any v′ ∈ (0, 1),

P
[
∪γ∈M4

{
R∗γ∨t −Rγ∨t < −∆nv

′/2
}]

< e−c8∆n ,

for some constant c8 > 0. To see this, let Xγ∨t = Un×rΛr×rV
>
r×|γ∨t| be the SVD of Xγ∨t, where

r = rank(Xγ∨t). Then, Pγ∨t = UU> is the projection matrix onto the column space of Xγ∨t and

thus, using 1>nX = 0 and equation (4) in the main paper, we have

R∗γ∨t −Rγ∨t = Y >(I − UU>)Y − Y >
(
I + λ−1UΛ2U>

)−1
Y
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= Y >U
(
Λ2(λI + Λ2)−1 − I

)
U>Y

= λY >U(λI + Λ2)−1U>Y

≤ (nηnm(ν)/λ)−1 Y >UU>Y, (S9)

where the last inequality holds because λI + Λ2 ≥ Λ2 ≥ nηnm(ν)I .

Since the rank of U is at most (J + 1)|t|, by (S9) and (S3) we have

P

[
∪γ∈M4

{
R∗γ∨t −Rγ∨t < −∆n

v′

2

}]
�P

[
∪γ∈M4

{(
nλ−1ηnm(ν)

)−1
Y >UU>Y < −∆n

v′

2

}]
� exp

{
−v′nλ−1ηnm(ν)∆n

}
p(J+1)|t|

� exp
{
−p2+2δ∆n + (J + 1)|t| log p

}
�e−c8∆n (S10)

The last inequality above holds because by condition C4

(J + 1)|t| log p

∆n

−→ 0 as n→∞

Then with Rγ ≥ R∗γ , from (S8) and (S10), we have for any v ∈ (0, 1),

P [∪γ∈M4 {Rγ −Rγ∨t < ∆n(1− v)}]

≤P
[
∪γ∈M4

{
R∗γ −R∗γ∨t < ∆n(1− v/2)

]
+ P

[
∪γ∈M4

{
R∗γ∨t −Rγ∨t < −∆nv/2

}]
≤2e−c9∆n −→ 0, (S11)
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for some constant c9 > 0. Due to (S11) and Lemma 2 with condition C2, for 0 < c = 3v < 1, we

have

P [∪γ∈M4 {Rγ −Rt < ∆n(1− c)}]

≤P [∪γ∈M4 {Rγ −Rγ∨t < ∆n(1− 2v)}] + P [∪γ∈M4 {Rγ∨t −Rt < −∆nv}]

≤P [∪γ∈M4 {Rγ −Rγ∨t < ∆n(1− 2v)}] + P
[
∪γ∈M4

{
Rt −Rγ∨t > ∆nv

2
}]

≤ exp {−c9∆n}+ P
[
Rt −R∗t > ∆nv

2/2
]

+ P
[
∪γ∈M4

{
R∗t −R∗γ∨t

}
> ∆nv

2/2
]

≤ exp {−c9∆n}+ exp {−c′∆n}+ P
[
χ2
J |t| > ∆nv

2/2
]

≤3 exp {−c10∆n} → 0,

for some constant c10 > 0. Therefore, restricting to the high probability event

{Rγ −Rt ≥ ∆n(1− c),∀γ ∈M4}

, by corollary 1 and (S3) we get

∑
γ∈M4

PR(γ, t) �
∑
γ∈M4

(nηnm(ν)/λ)−(r∗γ−rt)/2 (ηnm(ν))−|γ
c∧t|/2 b(|γ|−|t|)

n exp

{
− 1

2σ2
(Rγ −Rt)

}
�
∑
γ∈M4

(
p2+3δ ∨ n

)|t|/2
pδ|t|/2b|γ|−|t|n exp

{
−∆n(1− c)/2σ2

}
, (S12)

because rt− r∗γ < rt = |t| and ηnm(ν) = (nηnm(ν)/λ)/(n/λ) � (p2+2δ ∨ n)/(p2+3δ ∨ n) = p−δ due
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to condition C2 and condition C4. Then by (S12) we have

∑
γ∈M4

PR(γ, t) � exp

{
− 1

2σ2

(
∆n(1− c)− σ2|t| log

(
p2+3δ ∨ n

)
− σ2(2 + δ)|t| log p

)} ∑
γ∈M4

b|γ|n

� exp

{
− 1

2σ2

[
∆n(1− c)− σ2|t|(log(p4+4δ ∨ np2+δ))

]}
(1 + bn)p

� exp

{
− 1

2σ2
(∆n(1− c)− c11τn)

}
−→ 0 as n→ 0,

(S13)

where c11 > 0 and τn = 5(1 + δ) log(
√
n ∨ p). To see the last inequality, we consider two cases.

First, if
√
n < p, τn = log(p5+5δ) and np2+δ < p4+δ < p4+4δ, and thus log(p4+4δ ∨ np2+δ) =

log(p4+4δ) < log(p5+5δ) = τn. Then, if
√
n > p, τn = log(n5(1+δ)/2). Then, p4+4δ < p5+5δ <

n5(1+δ)/2 and np2+δ < n2+δ/2 < n5(1+δ)/2. Therefore, log(p4+4δ ∨ np2+δ) < log(n5(1+δ)/2) = τn.

Also, the last line of (S13) holds because by condition C4, ∆n � log(
√
n ∨ p), that is, ∆n > τn.

Hence, we have ∑
γ∈M4

PR(γ, t)
P−→ 0. (S14)

Now, combining (S4), (S6), (S7) and (S14) we get
∑

γ 6=t PR(γ, t)
P−→ 0, which proves Theorem 1.

S5 Proof of Theorem 2

Next, we will show that with a prior on σ2 in (2c), the model selection consistency holds

under the assumption that P (γ ∈ M̃) = 0. Note that since log p = o(n) and ν ′ > ν, we have

M1 ⊂ M̃ eventually. Thus P (γ ∈ M1) = 0 for all large n. Therefore, we shall show that∑
γ∈M̃k

P̃R(γ, t)
P−→ 0 for k = 2, 3, 4 where M̃k = Mk ∩ M̃ and P̃R(γ, t) ≡ P (γ|Y )/P (t|Y ). By

(2d) and (3) of the main paper, we have

f(γ|Y ) = cn,pQγb
|γ|
n (1− w)pR−(n−1)/2

γ .
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By condition C2 and Lemma 1, we then get

P̃R(γ, t) � (nηnm(ν)/λ)−(r∗γ−rt)/2 (ηnm(ν))−|t∧γ
c|/2 b(|γ|−|t|)

n (Rγ/Rt)
−(n−1)/2. (S15)

Define

ζn :=
Rt

nσ2
− 1.

Due to our Lemma 2 and Lemma A.2(ii) of Narisetty and He (2014), for φ > 0, we have

P (|ζn| > 2φ) = P

(∣∣∣∣ R∗tnσ2
− 1 +

Rt −R∗t
nσ2

∣∣∣∣ > 2φ

)
≤ P

(∣∣∣∣ R∗tnσ2
− 1

∣∣∣∣ > φ

)
+ P

(
Rt −R∗t ≥ φnσ2

)
≤ 2 exp(−c12n),

(S16)

for some positive quantity c12 depending on φ. From (S15) we have

P̃R(γ, t) � (nηnm(ν)/λ)−(r∗γ−rt)/2 (ηnm(ν))−|t∧γ
c|/2 b(|γ|−|t|)

n

(
1 +

Rγ −Rt

nσ2(1 + ζn)

)−n−1
2

. (S17)

Define zn := (rγ−rt) log p/n. Note that for models inM2, rγ > rt. Since condition C6 is in force,

we have zn < 1/(2 + ν ′), and choose s > 0 and φ̃ > 0 such that 2(1 + 4s)/{(1− φ̃)(2 + ν ′)} < 1

and

1 <
(1 + 4s)

(1− φ̃)/
{

1− 2(1 + 4s)/[(1− φ̃)(2 + ν ′)]
} < (δ + 1)/2,

which is possible since ν ′δ > 2. Consequently,

xn := − log

(
1− 2

1 + 4s

1− φ̃
zn

)
<

2(1 + 4s)zn

(1− φ̃){1− 2(1 + 4s)zn/(1− φ̃)}
< 2(δ/2 + 1)zn. (S18)

where the first inequality follows from the fact that− log(1−x) < x/(1−x) for 0 < x < 1. Using

the similar way as in Section S4.2, we only consider the high probability event
{
∩{d>rt}U(d)c

}
∩
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{
|ζn| < φ̃

}
, where U(d) is defined the same as in Section S4.2. Note that on U(d)c, 1 + (Rγ −

Rt)/(nσ
2) > 1 − 2(1 + 4s)zn. Note that on M2, γc ∧ t is empty. Then, due to (S17), (S18), and

(S3) we obtain

∑
γ∈M2

P̃R(γ, t) �
∑
γ∈M2

(nηnm(ν)/λ)−(r∗γ−rt)/2 b(|γ|−|t|)
n exp

{(
n− 1

2

)
xn

}
�
∑
γ∈M2

(
p1+δ ∨

√
n
)−(rγ−rt)

b(|γ|−|t|)
n exp

{(n
2

)
xn

}
�
∑
γ∈M2

(
p1+δ ∨

√
n
)−(rγ−rt)

b(|γ|−|t|)
n p(δ/2+1)(rγ−rt)

∼ ρn → 0, as n→∞,

where ρn is defined in Section S4.2. Also, following from the proof for large models in Section

S4.3, we can show that ∑
γ∈M2∪M3

P̃R(γ, t)
P−→ 0.

For under-fitted models in M4, if ∆n = o(n), similar to (S12) and (S13) restricting to the high

probability event {Rγ −Rt ≥ ∆n(1− c)} ∩
{
|ζn| < φ̃

}
, we get

∑
γ∈M4

P̃R(γ, t) �
∑
γ∈M4

(nηnm/λ)|t|/2 (ηnm(ν))−|γ
c∧t|/2 b|γ|−|t|n

(
1 +

Rγ −Rt

nσ2(1 + ζn)

)−n
2

�
∑
γ∈M4

(
p2+3δ ∨ n

)|t|/2
pδ|t|/2b(|γ|−|t|)

n exp

{
− ∆n(1− c)

2σ2(1 + φ̃)

}
� exp

{
− 1

2σ2

(
∆n(1− c)/(1 + φ̃)− σ2|t| log

(
p2+3δ ∨ n

)
− σ2|t|(2 + δ) log p

)}
� exp

{
− 1

2σ2
(∆n (1− c′)− τn)

}
→ 0, as n→∞.
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If ∆n ∼ n, then by taking φ̃ < 1/2, we have for some v′ > 0 and c′ > 0

∑
γ∈M4

P̃R(γ, t) �
(
p2+3δ ∨ n

)|t|/2
p(1+δ/2)|t|

(
1 +

∆n (1− c′)
4nσ2

)−(n2 )

� (p ∨ n)(2+3δ)|t| e−v
′n → 0, as n→∞.
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