
To Appear in IEEE APSCC 2009 (Singapore; Dec 7-11, 2009)

Modeling and Testing of Cloud Applications
*

W.K. Chan
†

City University of Hong Kong

Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

Lijun Mei

The University of Hong Kong

Pokfulam, Hong Kong

ljmei@cs.hku.hk

Zhenyu Zhang

The University of Hong Kong

Pokfulam, Hong Kong

zyzhang@cs.hku.hk

Abstract

What is a cloud application precisely? In this paper,

we formulate a computing cloud as a kind of graph, a

computing resource such as services or intellectual

property access rights as an attribute of a graph node,

and the use of the resource as a predicate on an edge of

the graph. It also proposes to model cloud computation

as a set of paths in a subgraph of the cloud such that

every edge contains a predicate that is evaluated to be

true. Finally, it presents a set of algorithms to compose

cloud computations, and model-based testing criteria to

test cloud applications.

1. Introduction

Cloud computing [10] is an emerging trend to deploy

and maintain software and is being adopted by the

industry such as Google [16], IBM [9], Microsoft [28], and

Amazon [2]. Several prototype applications and platforms,

such as the IBM “Blue Cloud” infrastructure [9], the

Google App Engine [17], the Amazon Cloud [2], and the

Elastic Computing Platform [13], have been proposed.

However, when it comes to the question on how to model

cloud applications, the question remains unexplored. In

our previous work [24][25], we put forward several

issues toward developing cloud applications. In this paper,

we sketch an application model, and develop theoretical

test adequacy criteria for testing applications in a cloud.

There was a debate on programming-in-the-large

versus programming-in-the-small [12]. It leads to the

consensus of the software engineering community that

software methodologies and techniques to support the

former one should be different from those for the latter

one. However, many recent proposals on cloud

computing are “in the large”, such as how to scale an

application to the internet scale. There is little discussion

on the “in-the-small” side, despite that a “small cloud” is

more manageable than a huge cloud, and thus having a

more uniform strategy to manage cloud applications may

be viable.

Let us review some work on the “in-the-large” side.

The first attempt to formulate the concepts of cloud

computing can be at least traced back to 1997 [8][24].

Nevertheless, noticeable adoption of cloud computing by

the industry has only been observed since 2007 [24].

Applications running on such a platform can be accessed

via web clients, while the application software and data

are kept at the (virtual) server side. A scenario is that

components of an application are dynamically selected

from a pool of services, and their coordination and

computation are carried out at the client side, in the cloud,

or both. Consistency in using various intellectual

property (IP) rights, private data, ownerships of data of

different clients and components intermix with the

“distributed” program executions, which may be deeply

embedded all over the cloud.

In this paper, we present a model to support modeling,

analysis and testing of computing clouds in-the-small.

We first formulate the notion of a bare-bone cloud as a

foundation for analyzing cloud computing. We use the

real-life weather cloud system as a metaphor to refine the

notion of bare-bone clouds to a kind of directed graph,

which we called a cloud graph. In a cloud graph, every

node is a computing entity; a computing resource such as

a service or an IP right to use a particular service or data

(e.g., image or photo) is modeled as an attribute of a node.

The availability of an attribute of one node to another

node is modeled as a predicate on an edge that connects

from the latter node to the former one. Thus, a cloud

execution can be modeled as a set of paths in a predicate-

enabled subgraph of a cloud graph.

We also propose algorithms for compositional cloud

computations and theoretical test adequacy criteria to

assure the application quality of such cloud applications.

Although the modeling can be applied to both “large”

and “small” clouds, our algorithms are particularly viable

to clouds-in-the-small, in the sense that a process (in the

system sense) is capable to oversee the activities of the

cloud, and exercise cloud management.

The main contribution of this paper is threefold. (i) We

present a graph-theoretic model of computing clouds. (ii)

We formulate how to transform, compose, and

decompose cloud graphs, in which computations are

taking place. (iii) We propose the first family of model-

based testing criteria for testing cloud applications.

The rest of the paper is organized as follows: Section

* This research is supported in part by the General Research Fund of the

Research Grant Council of Hong Kong (project nos. 123207, 717308,

and 717506), and the Strategic Research Grant of City University of
Hong Kong (project no 7002464).

† Corresponding author.

To Appear in IEEE APSCC 2009 (Singapore; Dec 7-11, 2009)

2 presents the concept of bare-bone clouds. Section 3

uses a metaphor to show the three characteristics of a

weather cloud system, and maps these characteristics to

the properties of computing clouds. Section 4 presents a

cloud graph model and discusses its properties and

behaviors and develops a family of testing criteria,

followed by a literature review in Sections 5. Section 7

concludes the paper.

2. Bare-Bone Clouds

In this section, we present a bare-bone model to facili-

tate software designers to reason the composition and

decomposition of computing clouds to meet the

requirements of their applications. This model will also

be used as the basis to derive our cloud graph model.

In our bare-bone model, a computing cloud is modeled

as a directed graph c showing a grid of computing

resources. Each computing resource can be a service

[3][5], IP rights, computing power, persistent storage,

memory, or network bandwidth that connects multiple

computing resources. We model such a bare-bone cloud c

as a graph 〈V, E〉. V is a set of nodes, denoting the

providers of computing resources. E (⊆ V × V) is a set of

edges, each relating two providers that communicate

directly with each other at the application level. Because

different providers may offer different kinds of

computing resource, each node n (∈ V) is also associated

with a set of computing resources {r1, r2, …, rk}.

Furthermore, a subcloud is a connected subgraph of a

cloud.

A certain resource ri may be associated with multiple

nodes in the same cloud or in different clouds, or Have

been “virtualized” [15]. We refer to a client that uses a

computing resource as a cloud consumer (or simply a

consumer), which is also a node in the cloud. For

instance, a Hong Kong-based parcel agency may develop

a tailor-made service that directly communicates with

Google Map web services so that a consumer can use a

mashup Google Map to locate their parcel.

n1 { r1 } n2 { r2 }

Cloud Graph Node (Provider)

Cloud c

e (n1, n2)

Cloud Graph Edge (Provider Communication)

Figure 1. Example of bare-bone cloud.

In the scenario above, the location of a particular

Google Map service is transparent to the agent. For ease

of presentation, we also refer to the computing cloud as c.

In the bare-bone model, the Google Map provider is

represented by a node n1 in the graph c, and n1 is associ-

ated with a map service r1. We use the notation n1.r1 to

denote the consumption of the computing resource r1

available at node n1. Similarly, the parcel agency can be

modeled as a node (say, n2) that is associated with the

tailor-made service r2. There is also an edge 〈n1, n2〉 in the

cloud c to denote the consumption of a service in a cloud,

which is shown in as a relation among n1, n2, r1, and r2 in

the cloud. This is illustrated in Figure 1.

3. A Metaphor for Cloud Computing

In this section, we study the lifecycle of a real-life

weather cloud as a metaphor to enrich our model.

3.1. Weather Cloud as a Metaphor

We observe that a weather cloud exhibits at least three

characteristics.

(C1) The shape of a weather cloud changes constantly.

Moreover, the entropy of the cloud and environmental

factors such as pressure and wind play important roles on

the changes in shape of the cloud. Furthermore, there is

usually a chain reaction, rather than a single action-

reaction pattern. On the other hand, such a cloud reacts

passively to these environmental factors.

(C2) The water vapor grains that constitute a cloud

may vary in size, type, shape, and composition. Different

grains may merge to become a bigger grain, or a grain

may decompose into smaller grains. However, once a

composition or decomposition of grains has started, it is

impractical to reverse the process. For this reason, the

original state of a cloud is too costly to restore. This

observation leads us to obsolete the notion of keeping the

history of a cloud in our cloud model.

(C3) Multiple clouds may merge to become a united

cloud. Unlike object aggregation in the sense of object-

oriented modeling, the original composing elements of

this newly formed cloud can hardly be distinguished.

This observation leads us to obsolete the notion of

keeping the boundaries of subclouds in our cloud model.

3.2. Cloud Computing Based on the Metaphor

Following the highlighted characteristics (C1−C3) of

the metaphor in the last section, we proceed to study the

mapped characteristics in cloud computing.

(M1) Computing clouds should be adaptive. When-

ever a computing cloud detects changes in the

environment, it needs to adjust itself to achieve a better

performance in the new situation. Furthermore, according

to our observation on chain reaction in C1, a cloud

evolution is likely to trigger new changes in the environ-

ment, and hence the cloud will evolve further. In general,

there is no explicit equilibrium point for such evolutions

because the cloud is an open system.

(M2) Computing clouds should only marginally de-

pend on the history. When a cloud is composed from

subclouds, every individual subcloud may involve

To Appear in IEEE APSCC 2009 (Singapore; Dec 7-11, 2009)

different types and quantities of computing resources.

According to our observation on the forgotten history in

C2 and the passive reactions to the environmental

changes in C1, the functionality of the composed cloud

should be strongly decoupled from historical events.

(M3) Computing clouds are normally tightly-

coupled. When the computing resources in a cloud

cannot satisfy a computing requirement (such as

processing a transaction to store a huge file in the net-

work), the cloud should be merged with another one to

seek additional such resources. The extent of cloud

integration may, however, vary. For instance, if the

integration merely seeks sharing of certain resources, a

simple way is to link up these clouds. Clouds in such a

bridged cloud cluster can be loosely coupled. Neverthe-

less, after cloud integration, the computing resources may

need to be redistributed among clouds. These clouds then

become tightly coupled, and a split of the cloud may

affect the computations taking place.

Thus, adding such a bridge will result in chain reac-

tions (see C1) within a cloud cluster, which is then trans-

formed into a set of tightly coupled clouds. As such, a

cloud cluster is hardly separable, and the assumption of a

loosely coupled one appears to be out of the norm. Thus,

keeping the boundaries of subclouds serves little practical

purpose and may only increase the complexity of cloud

management, which is of course undesirable (see C3).

4. Modeling and Testing Cloud Computation

In this section, we present a model to formulate

computing clouds in the small. Our model can be applied

to clouds in the small.

4.1. Formulation

We propose to model the environment as a cloud as

well. In so doing, an interaction between the environment

and a cloud can be modeled as an interaction between

two clouds [34] (dubbed as a cloud interaction). Thus, a

chain reaction, possibly with the environment, can be

modeled as a sequence of cloud interactions.

In our bare-bone model (see Section 2), a cloud is a

directed graph of providers and consumers, each provider

carrying a set of computing resources. However, the

access of resources is not modeled. Thus, we extend a

cloud with a set (possibly empty) of labels attached to the

edges of the cloud graph. Each of these labels is a

predicate over the set of computing resources. Thus, a

predicate on an edge decides whether the providers (that

is, the nodes associated with the edge) have the

computing resources available for consumption.

Definition 1 (Cloud Graph). A cloud graph is a 4-

tuple G〈V, E, P, R〉. 〈V, E〉 is a bar-bone cloud. Every

node v ∈ V is associated with a resource set {r1, r2, …,

rn}, where each ri ∈ R is some computing resource.

Every edge e ∈ E is associated with a predicate set {p1,

p2, …, pm}, where each pi ∈ P is a first-order predicate

over computing resource variables.

We also use the notation e.[p] to denote the predicate p

on the edge e. We say that the binding of variables in the

predicate p is well formed if every variable is

successfully bound to the computing resources of the

nodes associated with the edge e. In other words, for

every variable x on e.[p], if e = 〈n1, n2〉, then x should be

bound to a resource in either n1 or n2. We further impose

a health constraint on our model, namely, that only well-

formed predicates can be evaluated to be true or false.

If an edge has a predicate that has been evaluated to be

true, then the edge is said to be enabled. Otherwise, it is

said to be disabled. Since an edge in the bare-bone model

represents a direct communication between two providers,

an enabled edge thus indicates that the underlying

computing resources support the communication between

the providers. A disabled edge models a failed

communication between a consumer and a provider.

In our model, edge enabling is an important element to

support the reasoning of cloud computation. For instance,

a primary cloud consumer may use a resource provided

by a primary cloud provider, which, in turn, acts as a

secondary cloud consumer that requires other computing

resources from other secondary providers, and so on.

This scenario can be modeled by a sequence of enabled

edges in a cloud graph.

Formally, an enabled subcloud sc is a subgraph of a

cloud c such that every edge is enabled. However, not

every enabled subcloud represents a cloud computation.

Consider Figure 2, where two edges e1 = 〈n1, n2〉 and e2 =

〈n2, n3〉 connect two nodes n1 and n3 via a third node n2.

Suppose n2 has two resources r1 and r2. The predicate p1

on edge e1 is well formed by successfully binding varia-

ble x to r1. The predicate p2 on e2 is well-formed by

binding variable y to r3 or r4. In this way, e1 can be

enabled when r1 is available, and e2 can be enabled when

either r3 or r4 is available. In this example, consecutive

edges are not connected via shared computing resources.

Thus, we add two health constraints to our model that

represents cloud computation (see Definition 2.)

Definition 2 (Cloud Computation). A cloud compu-

tation Ω for a cloud consumer n of a cloud c is a set of

paths in an enabled subcloud c’ of c satisfying two condi-

tions: (i) n is a node of c’. (ii) For any path ρ ∈ Ω and for

any two consecutive edges (say e1 and e2) on ρ, the node

(say n’) connecting e1 and e2 should have at least one

computing resource bound to the same set of variables

that simultaneously enable the predicates on e1 and e2.

To Appear in IEEE APSCC 2009 (Singapore; Dec 7-11, 2009)

n3 { r3, r4 }n2 { r1, r2 }

Cloud c

n1 { }

e2.[p2]e1.[p1]

Cloud Graph Node (Provider)

Cloud Graph Edge (Provider Communication)

p1 : bound (r1, x) � enable (e1)

p2 : bound (r3, y) ∨bound (r4, y) � enable (e2)

bound is true when a resource is bound to a variable; otherwise, false.

enable sets the enabling of an edge true.

x, y : variables

r1 - r4 : resources

Figure 2. Example of enabled subcloud.

4.2. Properties of cloud graphs

In this section, we, referencing the graph theory [18],

define a few utility properties of the cloud graph. They

will be used in Section 4.3.

Definition 3 (Cloud Computation Distance). A cloud

graph distance for a cloud computation Ω in a cloud

graph c, denoted by Dist (Ω), is the length of the shortest

computation path in Ω.

Obviously, Dist (Ω) = Dist ({ρ}) if and only (ρ∈ Ω and,

∀ρ’ ∈ Ω, Dist ({ρ}) ≤ Dist ({ρ’})).

The cloud computation distance measures the invoca-

tion sequence in the cloud graph. Due to the changing

connectivity of the cloud graph, our heuristics is that the

smaller the cloud graph distance is, intuitively, the better

robustness the computation will be.

Furthermore, if all edge has the same cost, a lower cost

is expected with a smaller cloud computation distance.

One may use the Dijkstra’s shortest path algorithm to

find such a distance.

However, we note that different edges in a cloud graph

c may represent different distances and qualities in

general. Therefore, we further propose a weighted cloud

computation distance to distinguish such cases. A

weighted cloud computation distance for a cloud

computation Ω in a cloud graph c is dubbed as WeightD-

ist (Ω), which calculates the weighted length of a cloud

computation in c. One may use a weighted version of the

Dijkstra’s shortest path algorithm to find such a distance.

Next, we define cloud graph connectivity that aims to

reveal the internal structure of a cloud graph. The

connectivity will also be used as the base of merging and

splitting a cloud graph. We refer to the graph theory [18]

to define the edge-connectivity of a cloud graph.

Definition 4 (Cloud Graph Connectivity). A cloud

graph G is said to be k-connected (k-edge-connected) if

its edge connectivity is k or more. The edge connectivity

is the size of a smallest edge cut. An edge cut of G is a

set of edges whose removal renders G disconnected.

We note that there are many algorithms to find edge

cut in a given graph, and we denote such an algorithm as

find-edgecut-set(G). In the next section, we will use these

properties to develop the algorithms to model cloud

computations.

4.3. Cloud graph interaction

Based on the definitions in Section 4.2, we proceed to

model a cloud interaction between two clouds. As

mentioned in Section 3, a cloud interaction represents the

situation that a cloud may grow and shrink. Rather than

studying a passive cloud, we study how a cloud

computation can be grown or shrunk.

A cloud interaction may be feasible only if it happens

between the enabled subclouds of two clouds; or else, it

lacks in computing resources to enable the interactions.

(Due to space limit, we omit the proof.) We further

observe that a computation should take place during a

cloud interaction; otherwise, there is no enabled subcloud

in at least one cloud, prohibiting a cloud interaction to

occur. Based on such observations, we refine the idea of

cloud interaction to the interaction of cloud computation.

Definition 5 (Interaction of Cloud Computation).

Given two cloud computations Ω1 and Ω2, if there are

common sub-paths between Ω1 and Ω2 (i.e., Ω1 ∩ Ω2 ≠

∅), we say that there is an interaction between Ω1 and Ω2.

(Note that, we have overloaded the symbols Ω1 and Ω2 to

refer to their path sets, respectively.)

Based on this interaction concept, we further identify

that the computing resource binding for a common sub-

path on Ω1 may or may not be the same as that on Ω2. Let

us consider two scenarios to illustrate our model. (We

note that our model is not just applicable to these two

scenarios.)

Inconsistency Detection on cloud graph. First, if

these two cloud computations compete for a shared

computing resource on a node, it will result in resource

contention. This can be checked via a subsequence

checking operation between paths of Ω1 and Ω2 to

identify whether there is any common sub-path (i.e., Ω1

∩ Ω2 ≠ ∅). Once such a common sub-path has been

identified, the predicates of both Ω1 and Ω2 on the sub-

path can be further checked on whether these predicates

use the same computing resources of nodes on the sub-

path. If so, a resource confliction is detected.

Cloud partitioning. Second, given a set of cloud com-

putations, we can determine whether two cloud

computations may share any edges or nodes. If so, we

may merge the two cloud computations to become one

cloud computation. We can repeat the merging process

until no two clouds share any edges or nodes. Thus, the

original computing cloud is readily partitioned into

To Appear in IEEE APSCC 2009 (Singapore; Dec 7-11, 2009)

multiple subclouds, each subcloud containing a cloud

computation, and a (remaining) cloud consisting of nodes

that are not involved in any cloud computations (dubbed

as a buffer cloud). Individual subclouds can then be used

for further analysis or optimization. When a cloud

computation is completed, the belonging subcloud may

merge with to the buffer cloud. However, the procedures

to split a cloud by using the current and local state still

require more research.

4.4. Dynamic cloud graph composition

In this section, we demonstrate how our cloud graph

model can be used in the dynamic composition of

computing cloud. When the computing resources change,

a cloud may require modifying its embedding cloud

computation. It indicates a need of an algorithm to reform

the original cloud graph to a new cloud graph so that the

existing cloud computations may continue to execute.

Similarly, for cloud management, a cloud may split into

multiple clouds, or multiple clouds may merge together.

To support such scenarios, we propose three algorithms

for such purpose.

Algorithm Reform_CloudGraph

Inputs Cloud graph c 〈V, E, P, R〉

Outputs Cloud graph c 〈V, E, P, R〉

1 for each cloud computation Ω in c do

 // Find the shortest cloud computation path:

2 Ωρ ← {ρ | ∀ρ, ρ’ ∈ Ω, Dist({ρ’}) ≥ Dist({ρ})}

3 for each ρ∈Ω do

4 if ρ ∈ Ωρ then

5 EnablePath(ρ)

6 else
7 DisablePath(ρ)

8 end if

9 end for

10 end for
 // Check if potential cloud computation path exists:

11 for each ρ∈Ω do

12 if ∃ni, nj, nk ∈ V, 〈ni, nj〉 ∈ E, 〈ni, nk〉 ∉ E, then

13 let Rj and Rk be the resource set of nj and nk

14 let Rj’ (⊆ Rj) be the resource subset that ni

 consumes from Rj

15 if Rj’ ⊆ Rk and

 EdgeDist (ni, nk) < EdgeDist(ni, nj), then

 // Add a new edge to the graph:

16 e ← 〈 ni, nk 〉

17 let p be the predicate formed by Rj’ for e

18 e.[p] ← true // i.e., enable the edge

19 E’ ← E ∪ e

20 end if

21 end if

22 end for

23 if the input cloud graph ≠ the output cloud graph then

24 return Reform_CloudGraph(c)

25 else

26 return c

4.4.1. Cloud graph reform procedure. We present the

algorithm Reform_CloudGraph to reorganize a cloud

computation so that it adapts to the changes in resource

binding. In this algorithm, we define the functions

EnablePath and DisablePath to bind and unbind re-

sources on each edge of a computation path, and define

the function EdgeDist to calculate the distance of a single

edge, which can represent network latency, cost, or the

other measures on the QoS attributes of the edge.

The algorithm accepts a cloud graph, and iteratively

removes those edges that are not used by the current

computation (#1−#10). It then looks for alternative

resources provider (nk) of the current resources provider

(ni), and replaces the latter node by the former node if the

former one is closer to the original node than the latter

one. Thus, the algorithm uses a hill-climbing strategy to

optimize the overall edge distances of each cloud

computation.

An example showing the reform of a cloud graph c is

given in Figure 3. Suppose the edge 〈n5, n3〉 in the cloud

graph c (dashed line) has a smaller distance than through

the edges 〈n5, n2〉 and 〈n2, n3〉. Therefore, we transform

cloud graph c to c’ by enabling edge 〈n5, n3〉 and

disabling edge 〈n5, n2〉.

n1 n4

Cloud c

n2

n3

n5

n1 n4

Cloud c’

n2

n3

n5

e1.[p1]

e2.[p2]

e4.[p4]

e3.[p3]

e5.[p5]

e6.[p6]

e7.[p7]

e8.[p8]
e1.[p1]

e2.[p2]

e4.[p4]

e3.[p3]

e5.[p5]

e6.[p6]

e7.[p7]

e8.[p8]

Figure 3. An example cloud graph reform.

The cloud graph reform procedure can be invoked

right after the cloud graph changes. Two basic operations

are graph splitting and graph merging. These two basic

operations are presented in the next two sub-sections.

4.4.2. Cloud graph splitting procedure. A cloud

(computation) graph c can be split into multiple

subgraphs {c1, c2, …, cn} if the cloud graph connectivity

(see Definition 4) is not more than a defined ceiling.

Intuitively, the ceiling parameter controls the strength of

coupling among nodes within each cloud computations

(as captured by a notion of cloud).

We present an algorithm Split_CloudGraph to show

how a cloud graph can be split into multiple subgraphs.

Each subgraph represents a sub-computation if it contains

at least one node that at least one of its connecting edge

has been enabled. In some cases, a split cloud may

contain “ideal” nodes and edges, and thus, this sub-graph

essentially represents no computation, and can be

removed from the cloud computation set.

To Appear in IEEE APSCC 2009 (Singapore; Dec 7-11, 2009)

n1 n4

Cloud c

n1 n4

Cloud c1
Cloud c2

n2 n3
n5

n6

n7

n8

n2 n3

n5

n6

n7

n8

e1.[p1]

e2.[p2]

e3.[p3]

e4.[p4]

e5.[p5]

e6.[p6]

e7.[p7]

e8.[p8]

e9.[p9]

e10.[p10]

e1.[p1]

e2.[p2]

e3.[p3]

e4.[p4]

e5.[p5]

e7.[p7]

e8.[p8]

e9.[p9]

e10.[p10]

e6.[p6]

Figure 4. An example cloud graph split.

Algorithm Split_CloudGraph

Inputs Cloud graphs c

Outputs Subcloud graphs c1, c2, …, cn

 // Calculate the connectivity of cloud graph c:

1 k ← connectivity (c)

 // Split cloud graph c if k ≤ SPLIT_LEVEL:

2 if k ≤ SPLIT_LEVEL then

 // Find a set of edge cut of cloud graph c

3 E’ ← find-edgecut-set (c)

 // Remove edges in the edge cut sets:

4 E ← E \ E’

5 end if
6 collect the disconnected subgraphs as C

 // Recursively process the disconnected subgraphs:

7 for each c’∈C do

8 Split_CloudGraph(c’)

9 end for

An example showing the split of cloud graph c is given in

Figure 4. Suppose the SPLIT_LEVEL is set to be 1. Cloud

graph c can be split into two subgraphs c1 and c2. The

cloud graph split procedure can be invoked automatically

or manual.Algorithm Merge_CloudGraph

Inputs Cloud graphs c1〈V1, E1〉, c2〈V2, E2〉

Outputs (Merged) cloud graph c〈V, E〉

// Collect the interactions between c1 and c2:

1 V ← ∅, E ← ∅

2 numOfInteraction ← 0

3 for each v1∈V1 do

4 for each v2∈V2 do

5 if ∃e = 〈v1, v2〉 or 〈v2, v1〉 such that e.P is true

6 then

 numOfInteraction ← numOfInteraction + 1

7 end if

8 end for

9 end for
// Merge cloud graphs if the number of interactions is

// above MERGE_LEVEL:

10 if numOfInteraction ≥ MERGE_LEVEL then

 // First, combine cloud graphs c1 and c2 into c:

11 V ← V1 ∪ V2

12 E ← E1 ∪ E2

13 end if
 // Then, reform c:

14 Reform_Graph(c)

4.4.3. Cloud graph merging procedure. We present an

algorithm to show how two cloud graphs can be merged.

More than two cloud graphs can also be merged using

this algorithm iteratively.

An example showing the merging of cloud graph c is

shown in Figure 5. Suppose the MERGE_LEVEL is set to

be 2. Two cloud graphs c1 and c2 have two interactions

(shown in dashed lines). Then we form a union of c1 and

c2 into cloud graph c. After that, we reform c.

n1 n4

Cloud c1 Cloud c2

n2
n3

n5

n6

n7

n8

n1

n4
Cloud c

n2
n3

n5

n6

n7

n8

Merge

Reform

e1.[p1]
e2.[p2]

e3.[p3]

e4.[p4]

e5.[p5]

e6.[p6] e7.[p7]

e8.[p8]

e9.[p9]

e10.[p10]
e11.[p11]

e1.[p1]

e2.[p2]

e3.[p3]

e4.[p4]

e5.[p5]

e6.[p6]

e11.[p11]

e7.[p7]

e8.[p8]

e9.[p9]

e10.[p10]

e12.[p12]

n1

n4
Cloud c

n2
n3

n5

n6

n7

n8e1.[p1]

e2.[p2]

e3.[p3]

e4.[p4]

e5.[p5]

e6.[p6]

e11.[p11]

e7.[p7]

e8.[p8]

e9.[p9]

e10.[p10]

e12.[p12]

Figure 5. An example cloud graph merge.

Contrast to the cloud graph splitting procedure, the

cloud graph merge procedure can be invoked when

certain thresholds of cloud clusters have been reached.

When graphs are merged, there will be opportunities to

share resources which are not feasible because related

resources may be located in disconnected cloud graphs.

Thus, for optimization purpose, the algorithm

Reform_CloudGraph can optionally be invoked right

afterward.

We formulate the notion of self-optimization (reform)

of a cloud to address both evolving resource qualities and

the changing environment. In particular, we use a

hierarchical and incremental approach to merge or split

cloud graphs. Suppose, for instance, that a mobile device

has been modeled as a cloud graph c consisting of one

node. When the device moves to another location, it

usually needs to disconnect from the current cloud (say,

c1) and connect to another one (say, c2). Such a procedure

happens frequently to mobile devices. We can represent

such actions through the split and merge procedures.

Moreover, the environmental data of cloud c can be

transferred from its previous surrounding cloud c1 to

current surrounding cloud c2.

4.5. Testing

Testing is the de facto activities to assure the quality of

any application. We believe that cloud application is not

To Appear in IEEE APSCC 2009 (Singapore; Dec 7-11, 2009)

an exception. In general, testing criteria define whether

adequacy test has been conducted. To the best of our

knowledge, there is no proposal on testing criteria

[23][27] for testing cloud applications in the literature.

This section proposes a couple of criteria based.

The first criterion (all-predicates) tests whether the

application has decided to use the resources properly. If

safety is a needed, this criterion can be further refined

into a family of well-known MC/DC-like testing criteria.

Owing to page limit, we omit this family in this paper.

Criterion 1 (all-predicates): Given a cloud

computation graph c, the all-predicates criterion is

fulfilled by a test set T if every predicate in c has been

exercised by at least once test case in T.

The second criterion is to test whether the application

can be performed correctly after horizontal scaling of the

cloud. However, there are potentially infinite number of

possible scaling, and thus, it is infeasible to test every

configuration. We resolve to test whether computation

equivalence can be achieved after mutation of the cloud

graph. Such mutation can be achieved through simulation

and virtualization techniques.

We define that a cloud graph m is called a mutant of a

cloud graph c if (1) one of the predicates of c has been

mutated using a mutation operator for mutation testing

[33] to form m, (2) one of the node or edge has been

removed from c, or (3) one of the nodes of c has been

duplicated in d and relabeled to new distinct node of d. A

mutant is said to be killed if the output of the mutant is

not the same as that of the original program. (We note

that in our model, the output can be measured at the

predicate level or node level.)

Criterion 2 (all-reforms): The all-reforms criterion is

said to be fulfilled by a test set T if every mutant (after

applying the algorithm Reform_CloudGraph) can be killed

by T.

Since cloud scalability should be transparent to a cloud

computation, thus even through mutation has been

occurred, the computation should not be affected if it can

compute an output. Chances are, the mutants will make

resources (via predicate mutants) unavailable for the

cloud computation. Such a mutated cloud computation

should either fail to produce results if it works properly.

This property forms a correctness criterion to test and

analyze cloud computation in our model.

Owing to page limit, testing criteria to test applications

against cloud splitting and merging have not been

presented. We also note that the above-mentioned testing

criteria are theoretical in nature. We are studying whether

they can be effective by examining the fault classes [20]

that have been developed in the software engineering

community.

5. Related Work

This section reviews the literature related to our work.

The paradigm of grid computing is close to that of

cloud computing. Foster and Kesselman [14] take the

grid as a computing infrastructure and introduce the

notion of grid computing. They illustrate how grids can

be used to solve research problems such as diagnostic

problems and the Aero-engine DP problem. Existing

research (e.g., [6][7][15]) on grid computing focuses on

the computing resource organization and computing task

distribution. On the contrary, cloud computing

emphasizes on user experience when using cloud services.

Next, we review the context-aware computing. Con-

text-aware computing is important to provide adaptive

behaviors to systems. Lu et al. [23] propose a technique

to test pervasive software surrounded by different ser-

vices. Mokhtar et al. [29] illustrate the problem of

composition in the environment of pervasive computing.

Lee et al. [21] propose to use a smart space middleware

to hide the complexity involved in context-aware and

automated service composition. Anhalt et al. [1] outline a

general solution to support contextual awareness. Our

previous work [24] discusses the context-awareness of

cloud computing by comparing the key characteristics of

cloud computing with pervasive computing and services

computing [30]. Our model has put special focus on

modeling the environmental contexts of clouds. It is

because each computing device in a cloud can be

deployed on different machines, the environmental

contexts may play an important role in determining the

quality of the resultant clouds.

Compared to the service-oriented applications, many

researchers have suggested that a computing cloud may

also provide services. Our previous work [24] compares

the key characteristics of cloud computing and services

computing. Lin et al. [22] put cloud computing and IT as

a Service (ITaaS) together, and propose to study them

from both the technology and business model

perspectives. Our previous work [26] proposes to solve

the service selection problem by using link analysis

techniques. In cloud computing, different computing

resources also need to be evaluated and ranked. As such,

only qualified resources will be used by the computing

clouds. Such filtering process will increase the quality of

the computing clouds.

Testing criteria for service-related systems have been

proposed [23][27]. We are not aware of any existing

testing criteria for cloud applications.

Cloud interactions can be considered similar to the

interactions among services. However, we have learnt

from services computing that such consumption or data

exchange between services may result in integration

problem [27] that may affect cloud compositions. Assur-

ing the quality and providing dependability of cloud

interactions warrant more research efforts.

To Appear in IEEE APSCC 2009 (Singapore; Dec 7-11, 2009)

6. Concluding Remarks

Cloud computing is an emerging computing model that

requires more research attention. In this paper, we have

presented a graph-theoretic model aiming to describe and

reason applications of computing cloud in the small, and

their interactions. We have studied the concept of a cloud

as a graph, the representation of resources as node

attributes, the use of resources as a predicate, and an

execution as a set of directed paths of a cloud graph. Our

model can be viewed as a kind of predicate-based graph.

Through the notion of predicate-enabled subclouds, we

have studied how cloud interactions can be captured and

represented by our model to support formal analysis. We

have further illustrated how to use our model to conduct

analysis on cloud composition and detection of anomalies.

We have further proposed model-based test adequacy

criteria to support the testing of cloud applications.

Our model also has several limitations. Currently, it

only supports stateless atomic operations or cloud

computations that can be expressed in the form of

context-free grammars. One may incorporate different

types of scalability, exception handling, and dynamic

binding among attributes of nodes. Service transactions

and explicit concurrency have not been studied. Model

development to address them could be valuable.

References

[1] J. Anhalt, A. Smailagic, D. P. Siewiorek, F.

Gemperle, D. Salber, S. Weber, J. Beck, and J.

Jennings. Toward context-aware computing:

experiences and lessons. IEEE Intelligent Systems,

16 (3): 38–46, 2001.

[2] Amazon Elastic Compute Cloud. Available at

http://aws. amazon.com/ec2/. (Last access July 9,

2009.)

[3] B. Benatallah, R. M. Dijkman, M. Dumas, and Z.

Maamer. Service-composition: concepts,

techniques, tools and trends. In Service-Oriented

Software System Engineering: Challenges and

Practices, pages 48–66. Idea Group, Hershey, PA,

2005.

[4] S. Brin and L. Page. The anatomy of a large-scale

hypertextual Web search engine. Computer

<etworks and ISD< Systems, 30 (1–7): 107–117,

1998.

[5] M. Broy, I. H. Kruger, and M. Meisinger. A formal

model of services. ACM Transactions on Software

Engineering and Methodology (TOSEM), 16 (1):

Article No. 5, 2007.

[6] R. Buyya. Economic-based Distributed Resource

Management and Scheduling for Grid Computing.

PhD Thesis. Monash University, Melbourne,

Australia, 2002.

[7] R. Buyya, C. S. Yeo, and S. Venugopal. Market-

oriented cloud computing: vision, hype, and reality

for delivering IT services as computing utilities. In

Proceedings of the 10th IEEE International

Conference on High Performance Computing and

Communications (HPCC 2008), pages 5–13, 2008.

[8] R. Chellappa. Cloud computing: emerging

paradigm for computing. In I<FORMS 1997.

Dallas, TX, 1997.

[9] Cloud Computing. IBM. Available at

http://www.ibm.com/ ibm/cloud/. (Last access

July 9, 2009.)

[10] Cloud Computing. Wikipdia. Available at

http://en.wiki pedia.org/wiki/Cloud_computing.

(Last access July 9, 2009.)

[11] K. A. Delic and M. A. Walker. Emergence of the

academic computing clouds. Ubiquity, 9 (31): 1,

2008.

[12] F. DeRemer, and H. Kron. Programming-in-the

large versus programming-in-the-small. In

Proceedings of the international Conference on

Reliable Software, pages 114–121, 1975.

[13] Enomaly Homepage. Available at

http://www.enomaly.com/. (Last access July 9,

2009.)

[14] I. Foster and C. Kesselman (editors). The Grid:

Blueprint for a <ew Computing Infrastructure.

Morgan Kaufmann, San Francisco, CA, 1999.

[15] I. Foster, C. Kesselman, and S. Tuecke. The

anatomy of the grid: enabling scalable virtual

organizations. International Journal of High

Performance Computing Applications, 15(3):200–

222, 2001.

[16] Google and the wisdom of clouds. Business Week.

2007. Available at

http://www.businessweek.com /magazine/con-
tent/07_52/b4064048925836.htm.

[17] Google App Engine. Google. Available at

http://code. google.com/appengine/. (Last

access February 8, 2009.)

[18] Graph Theory. Wikipedia. Available at http://en.
wikipedia.org/wiki/Graph_theory. (Last access

February 8, 2009.)

[19] B. Hayes. Cloud computing. Communications of the

ACM, 51 (7): 9–11, 2008.

[20] M.F. Lau and Y.T. Yu. An extended fault class

hierarchy for specification-based testing. TOSEM,

13 (3):247–276, 2005.

[21] C. Lee, S. Ko, S. Lee, W. Lee, and S. Helal.

Context-aware service composition for mobile

network environments. In Ubiquitous Intelligence

and Computing, volume 4611 of Lecture Notes in

Computer Science, pages 941–952, 2007.

[22] G. Lin, G. Dasmalchi, and J. Zhu. Cloud computing

and IT as a service: opportunities and challenges. In

To Appear in IEEE APSCC 2009 (Singapore; Dec 7-11, 2009)

Proceedings of the IEEE International Conference

on Web Services (ICWS 2008), page 5, 2008.

[23] H. Lu, W. K. Chan, and T. H. Tse. Testing

pervasive software in the presence of context

inconsistency resolution services. In Proceedings of

the 30th International Conference on Software

Engineering (ICSE 2008), pages 61–70, 2008.

[24] L. Mei, W. K. Chan, and T. H. Tse. A tale of

clouds: paradigm comparisons and some thoughts

on research issues. In Proceedings of the 2008

IEEE Asia-Pacific Services Computing Conference

(APSCC 2008), pages 464–469, 2008.

[25] L. Mei, Z. Zhang, and W.K. Chan. More tales of

clouds: software engineering research issues from

the cloud application perspective. In Proceedings of

the 33rd Annual IEEE International Computer

Software and Applications Conference (COMPSAC

2009), (vol. 1, pages 525−530, 2009.

[26] L. Mei, W. K. Chan, and T. H. Tse. An adaptive

service selection approach to service composition.

In Proceedings of ICWS 2008, pages 70–77, 2008.

[27] L. Mei, W. K. Chan, and T. H. Tse. Data flow

testing of service-oriented workflow applications.

In Proceedings of ICSE 2008, pages 371–380,

2008.

[28] Microsoft plans ‘cloud’ operating system. <ew York

Times. 2008. Available at

http://www.nytimes.com/2008/10/28/technolog
y/ 28soft.html.

[29] S. B. Mokhtar, D. Fournier, N. Georgantas, and V.

Issarny. Context-aware service composition in

pervasive computing environments. In Rapid

Integration of Software Engineering Techniques,

volume 3943 of Lecture Notes in Computer

Science, pages 129–144, 2006.

[30] D. Saha and A. Mukherjee. Pervasive computing: a

paradigm for the 21st century. IEEE Computer, 36

(3): 25–31, 2003.

[31] D. Thomas. Enabling application agility: software

as a service, cloud computing and dynamic

languages. Journal of Object Technology, 7 (4): 29–

32, 2008.

[32] A. Weiss. Computing in the clouds. netWorker,

11(4):16–25, 2007.

[33] Wikipedia. Mutation testing. Available at:

http://en.wikipedia.org/wiki/Mutation_testing.

[34] When clouds collide. The Economist. 2008.

Available at http://www.economist.com
/business/displaystory.cfm?story_id=10650607.

