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Abstract 

What is a cloud application precisely? In this paper, 

we formulate a computing cloud as a kind of graph, a 

computing resource such as services or intellectual 

property access rights as an attribute of a graph node, 

and the use of the resource as a predicate on an edge of 

the graph. It also proposes to model cloud computation 

as a set of paths in a subgraph of the cloud such that 

every edge contains a predicate that is evaluated to be 

true. Finally, it presents a set of algorithms to compose 

cloud computations, and model-based testing criteria to 

test cloud applications. 

1.  Introduction 

Cloud computing [10] is an emerging trend to deploy 

and maintain software and is being adopted by the 

industry such as Google [16], IBM [9], Microsoft [28], and 

Amazon [2]. Several prototype applications and platforms, 

such as the IBM “Blue Cloud” infrastructure [9], the 

Google App Engine [17], the Amazon Cloud [2], and the 

Elastic Computing Platform [13], have been proposed. 

However, when it comes to the question on how to model 

cloud applications, the question remains unexplored. In 

our previous work [24][25], we put forward several 

issues toward developing cloud applications. In this paper, 

we sketch an application model, and develop theoretical 

test adequacy criteria for testing applications in a cloud. 

There was a debate on programming-in-the-large 

versus programming-in-the-small [12]. It leads to the 

consensus of the software engineering community that 

software methodologies and techniques to support the 

former one should be different from those for the latter 

one. However, many recent proposals on cloud 

computing are “in the large”, such as how to scale an 

application to the internet scale. There is little discussion 

on the “in-the-small” side, despite that a “small cloud” is 

more manageable than a huge cloud, and thus having a 

more uniform strategy to manage cloud applications may 

be viable. 

Let us review some work on the “in-the-large” side. 

The first attempt to formulate the concepts of cloud 

computing can be at least traced back to 1997 [8][24]. 

Nevertheless, noticeable adoption of cloud computing by 

the industry has only been observed since 2007 [24]. 

Applications running on such a platform can be accessed 

via web clients, while the application software and data 

are kept at the (virtual) server side. A scenario is that 

components of an application are dynamically selected 

from a pool of services, and their coordination and 

computation are carried out at the client side, in the cloud, 

or both. Consistency in using various intellectual 

property (IP) rights, private data, ownerships of data of 

different clients and components intermix with the 

“distributed” program executions, which may be deeply 

embedded all over the cloud. 

In this paper, we present a model to support modeling, 

analysis and testing of computing clouds in-the-small. 

We first formulate the notion of a bare-bone cloud as a 

foundation for analyzing cloud computing. We use the 

real-life weather cloud system as a metaphor to refine the 

notion of bare-bone clouds to a kind of directed graph, 

which we called a cloud graph. In a cloud graph, every 

node is a computing entity; a computing resource such as 

a service or an IP right to use a particular service or data 

(e.g., image or photo) is modeled as an attribute of a node. 

The availability of an attribute of one node to another 

node is modeled as a predicate on an edge that connects 

from the latter node to the former one. Thus, a cloud 

execution can be modeled as a set of paths in a predicate-

enabled subgraph of a cloud graph.  

We also propose algorithms for compositional cloud 

computations and theoretical test adequacy criteria to 

assure the application quality of such cloud applications. 

Although the modeling can be applied to both “large” 

and “small” clouds, our algorithms are particularly viable 

to clouds-in-the-small, in the sense that a process (in the 

system sense) is capable to oversee the activities of the 

cloud, and exercise cloud management.  

The main contribution of this paper is threefold. (i) We 

present a graph-theoretic model of computing clouds. (ii) 

We formulate how to transform, compose, and 

decompose cloud graphs, in which computations are 

taking place. (iii) We propose the first family of model-

based testing criteria for testing cloud applications. 

The rest of the paper is organized as follows: Section 
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2 presents the concept of bare-bone clouds. Section 3 

uses a metaphor to show the three characteristics of a 

weather cloud system, and maps these characteristics to 

the properties of computing clouds. Section 4 presents a 

cloud graph model and discusses its properties and 

behaviors and develops a family of testing criteria, 

followed by a literature review in Sections 5. Section 7 

concludes the paper.  

2.  Bare-Bone Clouds 

In this section, we present a bare-bone model to facili-

tate software designers to reason the composition and 

decomposition of computing clouds to meet the 

requirements of their applications. This model will also 

be used as the basis to derive our cloud graph model.  

In our bare-bone model, a computing cloud is modeled 

as a directed graph c showing a grid of computing 

resources. Each computing resource can be a service 

[3][5], IP rights, computing power, persistent storage, 

memory, or network bandwidth that connects multiple 

computing resources. We model such a bare-bone cloud c 

as a graph 〈V, E〉. V is a set of nodes, denoting the 

providers of computing resources. E (⊆ V × V) is a set of 

edges, each relating two providers that communicate 

directly with each other at the application level. Because 

different providers may offer different kinds of 

computing resource, each node n (∈ V) is also associated 

with a set of computing resources {r1, r2, …, rk}. 

Furthermore, a subcloud is a connected subgraph of a 

cloud. 

A certain resource ri may be associated with multiple 

nodes in the same cloud or in different clouds, or Have 

been “virtualized” [15]. We refer to a client that uses a 

computing resource as a cloud consumer (or simply a 

consumer), which is also a node in the cloud. For 

instance, a Hong Kong-based parcel agency may develop 

a tailor-made service that directly communicates with 

Google Map web services so that a consumer can use a 

mashup Google Map to locate their parcel. 
 

n1 { r1 } n2  { r2 }

Cloud Graph Node (Provider)

Cloud c

e (n1, n2)

Cloud Graph Edge (Provider Communication)
 

Figure 1. Example of bare-bone cloud. 

In the scenario above, the location of a particular 

Google Map service is transparent to the agent. For ease 

of presentation, we also refer to the computing cloud as c. 

In the bare-bone model, the Google Map provider is 

represented by a node n1 in the graph c, and n1 is associ-

ated with a map service r1. We use the notation n1.r1 to 

denote the consumption of the computing resource r1 

available at node n1. Similarly, the parcel agency can be 

modeled as a node (say, n2) that is associated with the 

tailor-made service r2. There is also an edge 〈n1, n2〉 in the 

cloud c to denote the consumption of a service in a cloud, 

which is shown in as a relation among n1, n2, r1, and r2 in 

the cloud. This is illustrated in Figure 1. 

3.  A Metaphor for Cloud Computing 

In this section, we study the lifecycle of a real-life 

weather cloud as a metaphor to enrich our model. 

3.1. Weather Cloud as a Metaphor  

We observe that a weather cloud exhibits at least three 

characteristics.  

(C1) The shape of a weather cloud changes constantly. 

Moreover, the entropy of the cloud and environmental 

factors such as pressure and wind play important roles on 

the changes in shape of the cloud. Furthermore, there is 

usually a chain reaction, rather than a single action-

reaction pattern. On the other hand, such a cloud reacts 

passively to these environmental factors.  

(C2) The water vapor grains that constitute a cloud 

may vary in size, type, shape, and composition. Different 

grains may merge to become a bigger grain, or a grain 

may decompose into smaller grains. However, once a 

composition or decomposition of grains has started, it is 

impractical to reverse the process. For this reason, the 

original state of a cloud is too costly to restore. This 

observation leads us to obsolete the notion of keeping the 

history of a cloud in our cloud model. 

(C3) Multiple clouds may merge to become a united 

cloud. Unlike object aggregation in the sense of object-

oriented modeling, the original composing elements of 

this newly formed cloud can hardly be distinguished. 

This observation leads us to obsolete the notion of 

keeping the boundaries of subclouds in our cloud model. 

3.2. Cloud Computing Based on the Metaphor 

Following the highlighted characteristics (C1−C3) of 

the metaphor in the last section, we proceed to study the 

mapped characteristics in cloud computing.  

(M1) Computing clouds should be adaptive. When-

ever a computing cloud detects changes in the 

environment, it needs to adjust itself to achieve a better 

performance in the new situation. Furthermore, according 

to our observation on chain reaction in C1, a cloud 

evolution is likely to trigger new changes in the environ-

ment, and hence the cloud will evolve further. In general, 

there is no explicit equilibrium point for such evolutions 

because the cloud is an open system. 

(M2) Computing clouds should only marginally de-

pend on the history. When a cloud is composed from 

subclouds, every individual subcloud may involve 
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different types and quantities of computing resources. 

According to our observation on the forgotten history in 

C2 and the passive reactions to the environmental 

changes in C1, the functionality of the composed cloud 

should be strongly decoupled from historical events.  

(M3) Computing clouds are normally tightly-

coupled. When the computing resources in a cloud 

cannot satisfy a computing requirement (such as 

processing a transaction to store a huge file in the net-

work), the cloud should be merged with another one to 

seek additional such resources. The extent of cloud 

integration may, however, vary. For instance, if the 

integration merely seeks sharing of certain resources, a 

simple way is to link up these clouds. Clouds in such a 

bridged cloud cluster can be loosely coupled. Neverthe-

less, after cloud integration, the computing resources may 

need to be redistributed among clouds. These clouds then 

become tightly coupled, and a split of the cloud may 

affect the computations taking place.  

Thus, adding such a bridge will result in chain reac-

tions (see C1) within a cloud cluster, which is then trans-

formed into a set of tightly coupled clouds. As such, a 

cloud cluster is hardly separable, and the assumption of a 

loosely coupled one appears to be out of the norm. Thus, 

keeping the boundaries of subclouds serves little practical 

purpose and may only increase the complexity of cloud 

management, which is of course undesirable (see C3).  

4.  Modeling and Testing Cloud Computation 

In this section, we present a model to formulate 

computing clouds in the small. Our model can be applied 

to clouds in the small.  

4.1. Formulation  

We propose to model the environment as a cloud as 

well. In so doing, an interaction between the environment 

and a cloud can be modeled as an interaction between 

two clouds [34] (dubbed as a cloud interaction). Thus, a 

chain reaction, possibly with the environment, can be 

modeled as a sequence of cloud interactions.  

In our bare-bone model (see Section 2), a cloud is a 

directed graph of providers and consumers, each provider 

carrying a set of computing resources. However, the 

access of resources is not modeled. Thus, we extend a 

cloud with a set (possibly empty) of labels attached to the 

edges of the cloud graph. Each of these labels is a 

predicate over the set of computing resources. Thus, a 

predicate on an edge decides whether the providers (that 

is, the nodes associated with the edge) have the 

computing resources available for consumption. 

Definition 1 (Cloud Graph). A cloud graph is a 4-

tuple G〈V, E, P, R〉. 〈V, E〉 is a bar-bone cloud. Every 

node v ∈ V is associated with a resource set {r1, r2, …, 

rn}, where each ri ∈ R is some computing resource. 

Every edge e ∈ E is associated with a predicate set {p1, 

p2, …, pm}, where each pi ∈ P is a first-order predicate 

over computing resource variables. 

We also use the notation e.[p] to denote the predicate p 

on the edge e. We say that the binding of variables in the 

predicate p is well formed if every variable is 

successfully bound to the computing resources of the 

nodes associated with the edge e. In other words, for 

every variable x on e.[p], if e = 〈n1, n2〉, then x should be 

bound to a resource in either n1 or n2. We further impose 

a health constraint on our model, namely, that only well-

formed predicates can be evaluated to be true or false.  

If an edge has a predicate that has been evaluated to be 

true, then the edge is said to be enabled. Otherwise, it is 

said to be disabled. Since an edge in the bare-bone model 

represents a direct communication between two providers, 

an enabled edge thus indicates that the underlying 

computing resources support the communication between 

the providers. A disabled edge models a failed 

communication between a consumer and a provider. 

In our model, edge enabling is an important element to 

support the reasoning of cloud computation. For instance, 

a primary cloud consumer may use a resource provided 

by a primary cloud provider, which, in turn, acts as a 

secondary cloud consumer that requires other computing 

resources from other secondary providers, and so on. 

This scenario can be modeled by a sequence of enabled 

edges in a cloud graph.  

Formally, an enabled subcloud sc is a subgraph of a 

cloud c such that every edge is enabled. However, not 

every enabled subcloud represents a cloud computation. 

Consider Figure 2, where two edges e1 = 〈n1, n2〉 and e2 = 

〈n2, n3〉 connect two nodes n1 and n3 via a third node n2.  

Suppose n2 has two resources r1 and r2. The predicate p1 

on edge e1 is well formed by successfully binding varia-

ble x to r1. The predicate p2 on e2 is well-formed by 

binding variable y to r3 or r4. In this way, e1 can be 

enabled when r1 is available, and e2 can be enabled when 

either r3 or r4 is available. In this example, consecutive 

edges are not connected via shared computing resources. 

Thus, we add two health constraints to our model that 

represents cloud computation (see Definition 2.)  

Definition 2 (Cloud Computation). A cloud compu-

tation Ω for a cloud consumer n of a cloud c is a set of 

paths in an enabled subcloud c’ of c satisfying two condi-

tions: (i) n is a node of c’. (ii) For any path ρ ∈  Ω and for 

any two consecutive edges (say e1 and e2) on ρ, the node 

(say n’) connecting e1 and e2 should have at least one 

computing resource bound to the same set of variables 

that simultaneously enable the predicates on e1 and e2. 
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n3 { r3, r4 }n2 { r1, r2 }

Cloud c

n1 { }

e2.[p2]e1.[p1]

Cloud Graph Node (Provider)

Cloud Graph Edge (Provider Communication)

p1 : bound (r1, x) � enable (e1)

p2 : bound (r3, y) ∨bound (r4, y) � enable (e2)

bound is true when a resource is bound to a variable; otherwise, false.

enable sets the enabling of an edge true.

x, y : variables

r1 - r4 : resources

 

Figure 2. Example of enabled subcloud. 

4.2. Properties of cloud graphs 

In this section, we, referencing the graph theory [18], 

define a few utility properties of the cloud graph. They 

will be used in Section 4.3. 

Definition 3 (Cloud Computation Distance). A cloud 

graph distance for a cloud computation Ω in a cloud 

graph c, denoted by Dist (Ω), is the length of the shortest 

computation path in Ω. 

Obviously, Dist (Ω) = Dist ({ρ}) if and only (ρ∈ Ω and, 

∀ρ’ ∈ Ω, Dist ({ρ}) ≤ Dist ({ρ’})). 

The cloud computation distance measures the invoca-

tion sequence in the cloud graph. Due to the changing 

connectivity of the cloud graph, our heuristics is that the 

smaller the cloud graph distance is, intuitively, the better 

robustness the computation will be.  

Furthermore, if all edge has the same cost, a lower cost 

is expected with a smaller cloud computation distance. 

One may use the Dijkstra’s shortest path algorithm to 

find such a distance. 

However, we note that different edges in a cloud graph 

c may represent different distances and qualities in 

general. Therefore, we further propose a weighted cloud 

computation distance to distinguish such cases. A 

weighted cloud computation distance for a cloud 

computation Ω in a cloud graph c is dubbed as WeightD-

ist (Ω), which calculates the weighted length of a cloud 

computation in c. One may use a weighted version of the 

Dijkstra’s shortest path algorithm to find such a distance. 

Next, we define cloud graph connectivity that aims to 

reveal the internal structure of a cloud graph. The 

connectivity will also be used as the base of merging and 

splitting a cloud graph. We refer to the graph theory [18]  

to define the edge-connectivity of a cloud graph.  

Definition 4 (Cloud Graph Connectivity). A cloud 

graph G is said to be k-connected (k-edge-connected) if 

its edge connectivity is k or more. The edge connectivity 

is the size of a smallest edge cut. An edge cut of G is a 

set of edges whose removal renders G disconnected. 

We note that there are many algorithms to find edge 

cut in a given graph, and we denote such an algorithm as  

find-edgecut-set(G). In the next section, we will use these 

properties to develop the algorithms to model cloud 

computations. 

4.3. Cloud graph interaction 

Based on the definitions in Section 4.2, we proceed to 

model a cloud interaction between two clouds. As 

mentioned in Section 3, a cloud interaction represents the 

situation that a cloud may grow and shrink. Rather than 

studying a passive cloud, we study how a cloud 

computation can be grown or shrunk.  

A cloud interaction may be feasible only if it happens 

between the enabled subclouds of two clouds; or else, it 

lacks in computing resources to enable the interactions. 

(Due to space limit, we omit the proof.) We further 

observe that a computation should take place during a 

cloud interaction; otherwise, there is no enabled subcloud 

in at least one cloud, prohibiting a cloud interaction to 

occur. Based on such observations, we refine the idea of 

cloud interaction to the interaction of cloud computation. 

Definition 5 (Interaction of Cloud Computation). 

Given two cloud computations Ω1 and Ω2, if there are 

common sub-paths between Ω1 and Ω2 (i.e., Ω1 ∩ Ω2 ≠ 

∅), we say that there is an interaction between Ω1 and Ω2. 

(Note that, we have overloaded the symbols Ω1 and Ω2 to 

refer to their path sets, respectively.) 

Based on this interaction concept, we further identify 

that the computing resource binding for a common sub-

path on Ω1 may or may not be the same as that on Ω2. Let 

us consider two scenarios to illustrate our model. (We 

note that our model is not just applicable to these two 

scenarios.) 

Inconsistency Detection on cloud graph. First, if 

these two cloud computations compete for a shared 

computing resource on a node, it will result in resource 

contention. This can be checked via a subsequence 

checking operation between paths of Ω1 and Ω2 to 

identify whether there is any common sub-path (i.e., Ω1 

∩ Ω2 ≠ ∅). Once such a common sub-path has been 

identified, the predicates of both Ω1 and Ω2 on the sub-

path can be further checked on whether these predicates 

use the same computing resources of nodes on the sub-

path. If so, a resource confliction is detected. 

Cloud partitioning. Second, given a set of cloud com-

putations, we can determine whether two cloud 

computations may share any edges or nodes. If so, we 

may merge the two cloud computations to become one 

cloud computation. We can repeat the merging process 

until no two clouds share any edges or nodes. Thus, the 

original computing cloud is readily partitioned into 
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multiple subclouds, each subcloud containing a cloud 

computation, and a (remaining) cloud consisting of nodes 

that are not involved in any cloud computations (dubbed 

as a buffer cloud). Individual subclouds can then be used 

for further analysis or optimization. When a cloud 

computation is completed, the belonging subcloud may 

merge with to the buffer cloud. However, the procedures 

to split a cloud by using the current and local state still 

require more research. 

4.4. Dynamic cloud graph composition 

In this section, we demonstrate how our cloud graph 

model can be used in the dynamic composition of 

computing cloud. When the computing resources change, 

a cloud may require modifying its embedding cloud 

computation. It indicates a need of an algorithm to reform 

the original cloud graph to a new cloud graph so that the 

existing cloud computations may continue to execute. 

Similarly, for cloud management, a cloud may split into 

multiple clouds, or multiple clouds may merge together. 

To support such scenarios, we propose three algorithms 

for such purpose. 

Algorithm Reform_CloudGraph 

Inputs Cloud graph c 〈V, E, P, R〉 

Outputs Cloud graph c 〈V, E, P, R〉 

1 for each cloud computation Ω in c do 

  // Find the shortest cloud computation path: 

2  Ωρ ← {ρ | ∀ρ, ρ’ ∈ Ω, Dist({ρ’}) ≥ Dist({ρ})} 

3  for each ρ∈Ω do  

4   if ρ ∈ Ωρ then 

5    EnablePath(ρ) 

6   else 
7    DisablePath(ρ) 

8   end if 

9  end for 

10 end for 
 // Check if potential cloud computation path exists: 

11 for each ρ∈Ω do  

12  if ∃ni, nj, nk ∈ V, 〈ni, nj〉 ∈ E, 〈ni, nk〉 ∉ E, then 

13   let Rj and Rk be the resource set of nj and nk 

14   let Rj’ (⊆ Rj) be the resource subset  that ni      

  consumes from Rj 

15   if Rj’ ⊆ Rk and           

             EdgeDist (ni, nk) < EdgeDist( ni, nj), then 

    // Add a new edge to the graph: 

16    e ← 〈 ni, nk 〉 

17    let p be the predicate formed by Rj’ for e 

18    e.[p] ← true  // i.e., enable the edge 

19    E’ ← E ∪ e 

20   end if 

21  end if 

22 end for 

23 if the input cloud graph ≠ the output cloud graph then 

24     return Reform_CloudGraph(c) 

25 else  

26     return c 
 

4.4.1. Cloud graph reform procedure. We present the 

algorithm Reform_CloudGraph to reorganize a cloud 

computation so that it adapts to the changes in resource 

binding. In this algorithm, we define the functions 

EnablePath and DisablePath to bind and unbind re-

sources on each edge of a computation path, and define 

the function EdgeDist to calculate the distance of a single 

edge, which can represent network latency, cost, or the 

other measures on the QoS attributes of the edge. 

The algorithm accepts a cloud graph, and iteratively 

removes those edges that are not used by the current 

computation (#1−#10). It then looks for alternative 

resources provider (nk) of the current resources provider 

(ni), and replaces the latter node by the former node if the 

former one is closer to the original node than the latter 

one. Thus, the algorithm uses a hill-climbing strategy to 

optimize the overall edge distances of each cloud 

computation. 

An example showing the reform of a cloud graph c is 

given in Figure 3. Suppose the edge 〈n5, n3〉 in the cloud 

graph c (dashed line) has a smaller distance than through 

the edges 〈n5, n2〉 and 〈n2, n3〉. Therefore, we transform 

cloud graph c to c’ by enabling edge 〈n5, n3〉 and 

disabling edge 〈n5, n2〉. 

n1 n4

Cloud c

n2

n3

n5

n1 n4

Cloud c’

n2

n3

n5

e1.[p1]

e2.[p2]

e4.[p4]

e3.[p3]

e5.[p5]

e6.[p6]

e7.[p7]

e8.[p8]
e1.[p1]

e2.[p2]

e4.[p4]

e3.[p3]

e5.[p5]

e6.[p6]

e7.[p7]

e8.[p8]

 

Figure 3. An example cloud graph reform. 

The cloud graph reform procedure can be invoked 

right after the cloud graph changes. Two basic operations 

are graph splitting and graph merging. These two basic 

operations are presented in the next two sub-sections. 

4.4.2.  Cloud graph splitting procedure. A cloud 

(computation) graph c can be split into multiple 

subgraphs {c1, c2, …, cn} if the cloud graph connectivity 

(see Definition 4) is not more than a defined ceiling. 

Intuitively, the ceiling parameter controls the strength of 

coupling among nodes within each cloud computations 

(as captured by a notion of cloud).  

We present an algorithm Split_CloudGraph to show 

how a cloud graph can be split into multiple subgraphs. 

Each subgraph represents a sub-computation if it contains 

at least one node that at least one of its connecting edge 

has been enabled. In some cases, a split cloud may 

contain “ideal” nodes and edges, and thus, this sub-graph 

essentially represents no computation, and can be 

removed from the cloud computation set.  
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n1 n4

Cloud c

n1 n4

Cloud c1
Cloud c2

n2 n3
n5

n6

n7

n8

n2 n3

n5

n6

n7

n8

e1.[p1]

e2.[p2]

e3.[p3]

e4.[p4]

e5.[p5]

e6.[p6]

e7.[p7]

e8.[p8]

e9.[p9]

e10.[p10]

e1.[p1]

e2.[p2]

e3.[p3]

e4.[p4]

e5.[p5]

e7.[p7]

e8.[p8]

e9.[p9]

e10.[p10]

e6.[p6]

 

Figure 4. An example cloud graph split. 

Algorithm Split_CloudGraph 

Inputs Cloud graphs c 

Outputs Subcloud graphs c1, c2, …, cn 

 // Calculate the connectivity of cloud graph c: 

1 k ← connectivity (c) 

 // Split cloud graph c if k ≤ SPLIT_LEVEL: 

2 if k ≤ SPLIT_LEVEL then 

  // Find a set of edge cut of cloud graph c 

3  E’ ← find-edgecut-set (c) 

  // Remove edges in the edge cut sets: 

4   E ← E \ E’ 

5 end if 
6 collect the disconnected subgraphs as C 

 // Recursively process the disconnected subgraphs: 

7 for each c’∈C do 

8  Split_CloudGraph(c’) 

9 end for 
 

 

An example showing the split of cloud graph c is given in 

Figure 4. Suppose the SPLIT_LEVEL is set to be 1. Cloud 

graph c can be split into two subgraphs c1 and c2. The 

cloud graph split procedure can be invoked automatically 

or manual.Algorithm Merge_CloudGraph 

Inputs Cloud graphs c1〈V1, E1〉, c2〈V2, E2〉 

Outputs (Merged) cloud graph c〈V, E〉 

// Collect the interactions between c1 and c2: 

1 V ← ∅, E ← ∅ 

2 numOfInteraction ← 0 

3 for each v1∈V1 do 

4  for each v2∈V2 do 

5   if ∃e = 〈v1, v2〉 or 〈v2, v1〉    such that e.P is true  

6              then 

    numOfInteraction ← numOfInteraction + 1 

7   end if 

8  end for 

9 end for 
// Merge cloud graphs if the number of interactions is  

// above MERGE_LEVEL: 

10 if numOfInteraction ≥ MERGE_LEVEL then 

  // First, combine cloud graphs c1 and c2 into c: 

11  V ← V1 ∪ V2 

12  E ← E1 ∪ E2 

13 end if 
 // Then, reform c: 

14 Reform_Graph(c) 
 

 

4.4.3.  Cloud graph merging procedure. We present an 

algorithm to show how two cloud graphs can be merged. 

More than two cloud graphs can also be merged using 

this algorithm iteratively. 

An example showing the merging of cloud graph c is 

shown in Figure 5. Suppose the MERGE_LEVEL is set to 

be 2. Two cloud graphs c1 and c2 have two interactions 

(shown in dashed lines). Then we form a union of c1 and 

c2 into cloud graph c. After that, we reform c. 
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Figure 5. An example cloud graph merge. 

Contrast to the cloud graph splitting procedure, the 

cloud graph merge procedure can be invoked when 

certain thresholds of cloud clusters have been reached. 

When graphs are merged, there will be opportunities to 

share resources which are not feasible because related 

resources may be located in disconnected cloud graphs. 

Thus, for optimization purpose, the algorithm 

Reform_CloudGraph can optionally be invoked right 

afterward. 

We formulate the notion of self-optimization (reform) 

of a cloud to address both evolving resource qualities and 

the changing environment. In particular, we use a 

hierarchical and incremental approach to merge or split 

cloud graphs. Suppose, for instance, that a mobile device 

has been modeled as a cloud graph c consisting of one 

node. When the device moves to another location, it 

usually needs to disconnect from the current cloud (say, 

c1) and connect to another one (say, c2). Such a procedure 

happens frequently to mobile devices. We can represent 

such actions through the split and merge procedures. 

Moreover, the environmental data of cloud c can be 

transferred from its previous surrounding cloud c1 to 

current surrounding cloud c2. 

4.5. Testing  

Testing is the de facto activities to assure the quality of 

any application. We believe that cloud application is not 
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an exception. In general, testing criteria define whether 

adequacy test has been conducted. To the best of our 

knowledge, there is no proposal on testing criteria 

[23][27] for testing cloud applications in the literature.  

This section proposes a couple of criteria based.  

The first criterion (all-predicates) tests whether the 

application has decided to use the resources properly. If 

safety is a needed, this criterion can be further refined 

into a family of well-known MC/DC-like testing criteria. 

Owing to page limit, we omit this family in this paper.  

Criterion 1 (all-predicates): Given a cloud 

computation graph c, the all-predicates criterion is 

fulfilled by a test set T if every predicate in c has been 

exercised by at least once test case in T. 

The second criterion is to test whether the application 

can be performed correctly after horizontal scaling of the 

cloud. However, there are potentially infinite number of 

possible scaling, and thus, it is infeasible to test every 

configuration. We resolve to test whether computation 

equivalence can be achieved after mutation of the cloud 

graph. Such mutation can be achieved through simulation 

and virtualization techniques. 

We define that a cloud graph m is called a mutant of a 

cloud graph c if (1) one of the predicates of c has been 

mutated using a mutation operator for mutation testing 

[33] to form m, (2) one of the node or edge has been 

removed from c, or (3) one of the nodes of c has been 

duplicated in d and relabeled to new distinct node of d. A 

mutant is said to be killed if the output of the mutant is 

not the same as that of the original program. (We note 

that in our model, the output can be measured at the 

predicate level or node level.) 

Criterion 2 (all-reforms): The all-reforms criterion is 

said to be fulfilled by a test set T if every mutant (after 

applying the algorithm Reform_CloudGraph) can be killed 

by T.  

Since cloud scalability should be transparent to a cloud 

computation, thus even through mutation has been 

occurred, the computation should not be affected if it can 

compute an output. Chances are, the mutants will make 

resources (via predicate mutants) unavailable for the 

cloud computation. Such a mutated cloud computation 

should either fail to produce results if it works properly. 

This property forms a correctness criterion to test and 

analyze cloud computation in our model. 

Owing to page limit, testing criteria to test applications 

against cloud splitting and merging have not been 

presented. We also note that the above-mentioned testing 

criteria are theoretical in nature. We are studying whether 

they can be effective by examining the fault classes [20] 

that have been developed in the software engineering 

community. 

5.  Related Work 

This section reviews the literature related to our work.  

The paradigm of grid computing is close to that of 

cloud computing. Foster and Kesselman [14] take the 

grid as a computing infrastructure and introduce the 

notion of grid computing. They illustrate how grids can 

be used to solve research problems such as diagnostic 

problems and the Aero-engine DP problem. Existing 

research (e.g., [6][7][15]) on grid computing focuses on 

the computing resource organization and computing task 

distribution. On the contrary, cloud computing 

emphasizes on user experience when using cloud services. 

Next, we review the context-aware computing. Con-

text-aware computing is important to provide adaptive 

behaviors to systems. Lu et al. [23] propose a technique 

to test pervasive software surrounded by different ser-

vices. Mokhtar et al. [29] illustrate the problem of 

composition in the environment of pervasive computing. 

Lee et al. [21] propose to use a smart space middleware 

to hide the complexity involved in context-aware and 

automated service composition. Anhalt et al. [1] outline a 

general solution to support contextual awareness. Our 

previous work [24] discusses the context-awareness of 

cloud computing by comparing the key characteristics of 

cloud computing with pervasive computing and services 

computing [30]. Our model has put special focus on 

modeling the environmental contexts of clouds. It is 

because each computing device in a cloud can be 

deployed on different machines, the environmental 

contexts may play an important role in determining the 

quality of the resultant clouds.  

Compared to the service-oriented applications, many 

researchers have suggested that a computing cloud may 

also provide services. Our previous work [24] compares 

the key characteristics of cloud computing and services 

computing. Lin et al. [22] put cloud computing and IT as 

a Service (ITaaS) together, and propose to study them 

from both the technology and business model 

perspectives. Our previous work [26] proposes to solve 

the service selection problem by using link analysis 

techniques. In cloud computing, different computing 

resources also need to be evaluated and ranked. As such, 

only qualified resources will be used by the computing 

clouds. Such filtering process will increase the quality of 

the computing clouds.  

Testing criteria for service-related systems have been 

proposed [23][27]. We are not aware of any existing 

testing criteria for cloud applications. 

Cloud interactions can be considered similar to the 

interactions among services. However, we have learnt 

from services computing that such consumption or data 

exchange between services may result in integration 

problem [27] that may affect cloud compositions. Assur-

ing the quality and providing dependability of cloud 

interactions warrant more research efforts. 
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6.  Concluding Remarks 

Cloud computing is an emerging computing model that 

requires more research attention. In this paper, we have 

presented a graph-theoretic model aiming to describe and 

reason applications of computing cloud in the small, and 

their interactions. We have studied the concept of a cloud 

as a graph, the representation of resources as node 

attributes, the use of resources as a predicate, and an 

execution as a set of directed paths of a cloud graph. Our 

model can be viewed as a kind of predicate-based graph.  

Through the notion of predicate-enabled subclouds, we 

have studied how cloud interactions can be captured and 

represented by our model to support formal analysis. We 

have further illustrated how to use our model to conduct 

analysis on cloud composition and detection of anomalies. 

We have further proposed model-based test adequacy 

criteria to support the testing of cloud applications.  

Our model also has several limitations. Currently, it 

only supports stateless atomic operations or cloud 

computations that can be expressed in the form of 

context-free grammars. One may incorporate different 

types of scalability, exception handling, and dynamic 

binding among attributes of nodes. Service transactions 

and explicit concurrency have not been studied. Model 

development to address them could be valuable. 
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