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Abstract—Social networks have become essential for people’s
lives. The proliferation of web services further expands social
networks at an unprecedented scale, leading to immeasurable
commercial value for online platforms. Recently, the group
buying (GB) business mode is prevalent and also becoming more
popular in E-commerce. GB explicitly forms groups of users with
similar interests to secure better discounts from the merchants,
often operating within social networks. It is a novel way to further
unlock the commercial value by explicitly utilizing the online
social network in E-commerce. Participant recommendation, a
fundamental problem emerging together with GB, aims to find
the participants for a launched group buying process with an
initiator and a target item to increase the GB success rate. This
paper proposes Multi-View Graph Convolution for Participant
Recommendation (MVPRec) to tackle this problem. To differ-
entiate the roles of users (Initiator/Participant) within the GB
process, we explicitly reconstruct historical GB data into initiator-
view and participant-view graphs. Together with the social graph,
we obtain a multi-view user representation with graph encoders.
Then MVPRec fuses the GB and social representation with an
attention module to obtain the user representation and learns a
matching score with the initiator’s social friends via a multi-head
attention mechanism. Social friends with the Top-k matching
score are recommended for the corresponding GB process. Ex-
periments on three datasets justify the effectiveness of MVPRec in
the emerging participant recommendation problem. MVPRec is
open-sourced at https://github.com/Xiaolong-Liu-bdsc/MVPRec
to inspire further research in the new group buying E-commerce
business mode.

Index Terms—Recommender System, Group Buying, Graph
Neural Network

I. INTRODUCTION

The rapid developments of web services enlarge the ex-
pansion of social connections from various perspectives, such
as information propagation [1] and work collaboration [2].
Individuals, though with far physical distances, could establish
connections through online social platforms. As tools for ev-
eryday communication, social networks behind these platforms
offer substantial commercial value [3] such as advertising
revenue [4] and data monetization [5]. In E-commerce, social

networks have already been used for user modeling to provide
accurate recommendations [6]–[13].

Recently, the landing of Temu 1 in the US market raises
research interests in the success of Pinduoduo 2, its origin
counterpart from China. Pinduoduo distinguishes itself from
other e-commerce entities through its innovative promotion of
group buying (GB). This purchasing model, central to Pinduo-
duo’s operations, consolidates consumers to purchase the same
product, thereby leveraging merchant-offered discounts. This
strategy not only resonates with the concept of economies of
scale [14] but also presents a mutually beneficial scenario for
both users and merchants. Merchants benefit from increased
sales as the GB initiator effectively functions as a promoter,
attracting additional buyers. Concurrently, consumers enjoy
reduced prices. In contrast to approaches that implicitly har-
ness a user’s social network for user modeling [9], [15],
GB explicitly capitalizes on shared interests among users to
form groups, predominantly within social networks, aiming for
greater discounts on specific items. This methodology repre-
sents a novel approach in harnessing the commercial potential
of social networks for e-commerce platforms, significantly
deviating from traditional models.

The process of GB is illustrated in Figure 1. Each user
can play two roles in a group buying process, i.e., initiator
and participant. In this example, u1 has four friends in the
social platform (i.e., u2, u3, u4, and u5). As an initiator of the
GB process, u1 first finds a target item (smartphone) he/she
would like to buy. Then, he/she launches the GB process and
shares the item with friends to form groups. The GB will be
successful if the group size exceeds the threshold the merchant
set. Otherwise, he/she fails to get the item at a discounted rate.
In this example, u1 successfully forms groups with u4 and u5

to buy his desired item. In the same way, u1 can also act as a

1https://www.temu.com/
2https://www.pinduoduo.com/
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initiator participant friend

Smartphone Book

Fig. 1: The illustration of the process of group buying.
Initiating Group Buying: User u1 initiates a group buying
process and successfully forms a group with participants u4

and u5 to purchase a smartphone. Participating in Group
Buying: User u1 not only initiates a group buying process for
a smartphone but also participates as a member in a group
buying process initiated by u3 to purchase a book.

participant of the GB process launched by u3 to buy a book. In
the GB process, the initiator plays the leading role in finding
participants interested in his desired item while participants
are not dominant roles. A natural question arises to complete a
successful GB process: Which friend is willing to form groups
with you to buy this item?

We term this question as a participant recommendation
problem, which differs from previous problems utilizing so-
cial/group information. Social recommendation [9], [16] en-
riches users’ preferences by exploiting social homophily ef-
fect [17] (i.e., people are likely to build social relationships
with those with similar preferences toward items). It aims to
exploit user’s social networks to recommend items to users
rather than find the suitable participant. Besides, users play
the same role within a social link but different roles in GB
(Initiator/Participant). Similar to social recommendation [9],
[15], [16], [18], group recommendation [19]–[26], also known
as group decision-making, aims to recommend items to users
based on users’ enrolled groups of interest. It predicts the
user’s preference over items other than finding the participants
of GB. At the same time, groups in group recommendation are
usually long-term ones formed by users’ common interests.
However, groups in GB are usually short-term ones that vanish
after the process, which can only take several minutes.

Building an effective participant recommendation model
faces two challenges. (1) Role differentiation. In GB, a user’s
role is differentiated as either initiator or participant. The
initiator is the leading role for the corresponding GB process.
He/She finds the interested item, launches the GB process, and
finds suitable participants. In comparison, participants only
need to consider whether to join the group. Different users play
different roles in a single GB process, and one initiator user
may become the participant in another GB launch. Properly

differentiating the roles during modeling is the first distinctive
challenge in the participant recommendation problem. (2)
Heterogeneous information fusion. A GB process involves data
from both social networks and historical GB cases. Social
networks are formed between users to indicate their relation-
ships. One historical GB case involves at least two users and
one item. Social networks and GB processes exhibit different
information, and how to tackle the information heterogeneity
is the second challenge.

In this paper, we propose Multi-View Graph Convolution
for Participant Recommendation (MVPRec) to find suitable
participants among user’s social friends for an intended group-
buying process. To differentiate the user roles during the GB
process, we explicitly reconstruct historical GB data into an
initiator-view graph and a participant-view graph. After the
Light Graph Convolution [27], MVPRec obtains both initiator-
view and participant-view dense user representation. To fuse
the heterogeneous information, MVPRec further encodes the
social graph to obtain the user’s social representation and then
fuses it with initiator/participant-view representation via an
attention module. MVPRec recommends participants based on
both the initiator and the target item information. We propose
fusing initiator and target item information into a query vector
to match the suitable participants within the user’s social
friends. Then the Top-k participants are recommended with the
highest k matching score calculated by a participant prediction
module. Our main contributions are summarized as follows:

• Conceptually, we are among the earliest attempts to study
the participant recommendation problem, a new task
brought by the group buying E-commerce mode.

• Methodologically, we identify the challenges behind the
problem and propose MVPRec that can effectively find
suitable participants for a launched group buying process
with initiator and target item.

• Experimentally, we conduct extensive experiments on
three datasets to validate the effectiveness of MVPRec
on participant recommendation task.

II. DATA ANALYSIS

In this section, we present an overview of the GB data
statistics. BeiBei [28], an online retail platform based in China,
serves as the only presently accessible dataset for scholarly
investigation in the domain of group buying.

A. Number of groups buying with regard to group size.

In our initial analysis, we examined the distribution of group
sizes in each GB instance, as illustrated in Figure 2a. It was
observed that a significant majority of GB cases are character-
ized by groups comprising merely two individuals, suggesting
a typical scenario involving one initiator and one participant.
Furthermore, there is a noticeable inverse correlation between
the size of the group and the frequency of GB occurrences,
indicating a prevalent trend of smaller group sizes within this
context. This tendency towards smaller groups underscores the
relevance of prioritizing the top few recommended participants
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(a) Number of group buying with regard to
group size.
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(b) Distribution of group buying within the
social network.
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(c) Distribution of user initiator-participant
role ratio.

in evaluating the effectiveness of the model in practical appli-
cations. Consequently, this informed our decision to employ
the Top-3 ranking metric for the evaluative purposes in the
experimental section detailed in Sec. V-B.

B. Distribution of group buying within the social network.

In Figure 2b, the x-axis represents the initiator’s social
friend proportion in relation to the total participant count
in a GB scenario. The social ratio, quantified as 1, denotes
scenarios where all participants are within the initiator’s social
circle, while a ratio of 0 indicates a complete lack of social
connections among the participants. Empirical analysis reveals
that in most GB interactions, especially in cases where the
social ratio is greater than 0.5, the participants tend to be
within the initiator’s network of social acquaintances. Given
this pattern, our approach primarily focuses on recommending
participants from within the initiator’s social network in order
to effectively manage this phenomenon at a larger scale.

C. Distribution of user initiator-participant role ratio.

In the context of GB interactions, users engage in distinct
roles, alternating between being initiators and participants.
This dynamic is quantitatively represented in Figure 2c, which
illustrates the user initiator-participant role ratio. A ratio of 1
in this context is indicative of a user predominantly assuming
the initiator role, whereas a ratio of 0 correlates with the user
consistently participating rather than initiating. The distribu-
tion pattern suggests that users typically undertake a mix of
both roles. This role variation is crucial, as it facilitates the
differentiation of user roles in GB, thereby enabling a more
nuanced understanding of their respective preferences.

Building upon this comprehensive data analysis, we have
developed an innovative model tailored to enhance the accu-
racy of participant recommendations. This model is particu-
larly attuned to the specific characteristics of the data under
consideration.

III. PRELIMINARY

In this section, we illustrate the preliminaries to understand
MVPRec, which includes task formulation and light graph
convolution.

A. Task Formulation

We formally formulate the problem of participant recom-
mendation task with group buying interactions. The problem
is defined on a set of users U = {u1, u2, ..., u|U|} and a set
of items I = {i1, i2, ..., i|I|}. A social network is denoted as
S ∈ R|U|×|U|, where Smn = 1 represents there is a social
connection between um and un, and we utilize Su to denote
the set of social friends of user u. We further define the group
buying interactions by P = {(u, i,Up)|u ∈ U , i ∈ I,Up ⊆ U},
where the initiator u purchases the item i with a set of k
participants Up = {up1, ..., upk}. Given an initiator u and a
target item i, the participant recommendation aims to retrieve
a social friend of u who is interested in i to form the group
to buy the target item.

B. Light Graph Convolution (LGCN)

MVPRec models both the social network and historical
group buying data as graphs. We use the Light Graph Con-
volution (LGCN) [27] as the encoder to obtain user/item
representation from different subgraphs. It is widely used due
to its efficiency. LGCN(∗) convolutes over graphs with the
message-passing mechanism to aggregate the neighborhood’s
information to the center node, which is defined as:

e(k+1)
u =

∑
v∈Nu

1√
|Nu|

√
|Ni|

e
(k)
i ,

e
(k+1)
i =

∑
u∈Ni

1√
|Ni|

√
|Nu|

e(k)u ,
(1)

where e
(k)
u , e

(k)
i denote the latent vectors of user u and item

i after k layers propagation. Nu denotes the set of items that
interact with user u, and Ni denotes the set of users interacting
with item i.

Following the completion of K layers of propagation, these
embeddings acquired at each layer are combined to create the
ultimate embedding for each user and item:

eu =

K∑
k=0

e(k)u , ei =

K∑
k=0

e
(k)
i . (2)

eu and ei are the encoded user/item representation with the
LGCN(∗).
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Fig. 3: Our multi-views propagation framework comprises three key components: 1.Multi-View Partitioning: We partition the
group buying graph P into initiator view Ginit and participant view Gpart to simplify complex relationships. Color-coded
events represent group buying instances, and we obtain user and item embeddings through LGCN aggregation. 2.Incorporating
Social Networks: Social network data from Gsocial enhances user embeddings in both initiator and participant views, creating
ultimate user representations. We also handle variations in item embeddings between these views, fusing them using a fusion
function and consistency loss. 3.Scoring and Prediction: Utilizing ultimate user embeddings and a unified item embedding
table, we apply a participant prediction module to predict user up’s preferences for a given initiator user u and target item i.

IV. PROPOSED MODEL: MVPREC

In this section, we illustrate the novel framework MVPRec
in detail. The framework is shown in Fig. 3. It consists
of the Embedding Layer, Multi-view Learning, Participant
Prediction, and consistency loss regularization.

A. Embedding Layer

In the same way words and phrases are represented through
deep learning techniques, embeddings are also commonly
employed in recommender systems, as demonstrated in works
such as LightGCN [27] and MF-BPR [29]. An embedding
layer functions as a lookup table that associates user or item
IDs with compact, dense vectors:

E(0) =
(

e(0)1 , e(0)2 , . . . , e(0)|U|+|I|

)
, (3)

where e(0) ∈ Rd is the d-dimensional dense vector for
user/item. Subsequently, an embedding retrieved from the
embedding table is introduced into a Graph Neural Network
(GNN) for the purpose of information aggregation. Thus, the
embedding retrieved from the embedding table is represented
as e

(0)
i to denote the representation before the first layer of

the model.

B. Multi-view learning

A user can act as an initiator or a participant in the
group buying process. Different roles play different parts in
the process. An initiator finds the target item and calls on
his/her friends to form groups to satisfy the group discount

requirement from the merchants while a participant only needs
to consider whether to accept the proposal from the initiator.

To reflect the role difference, MVPRec reconstructs the
group buying interactions P = {(u, i,Up)|u ∈ U , i ∈ I,Up ⊆
U} into two subgraphs Ginit = {(u, i)|u ∈ U , i ∈ I} and
Gpart = {(up, i)|up ∈ Up, i ∈ I}. Ginit is the initiator-
item bipartite graph that models the initiator-view information,
and Gpart is the participant-item bipartite graph to model
the participant-view information. Besides, we build the social
graph Gsocial ∈ R|U|×|U| from the social network S to generate
the social-view user representation. Then different views of
user/item embedding are obtained by encoding these three
graphs with LGCN [27] introduced in Sec. III-B as:

einitu , einiti = LGCN(Ginit),

epartup
, eparti = LGCN(Gpart),

esocialu = LGCN(Gsocial),

(4)

where einitu is the initiator-view user representation, and einiti ,
epartup

, eparti , esocialu are illustrated in the same way. For
Gsocial, LGCN performs convolution between social edges
similarly to the user-item bipartite graph. Separating the learn-
ing of different information directly into different views makes
MVPRec more easily to capture the differences of user roles
in the GB process.

We then design a fusion function fw(e1, e2) to adaptively



fuse information from different views as:

efuse = fw(e1, e2)

=
w · e1

w · e1 +w · e2
· e1 +

w · e2
w · e1 +w · e2

· e2,
(5)

where · is the dot product, and w ∈ Rd is the parameter
necessary in both numerator and denominator to adaptively
fuse information from different views. Then the initiator,
participant and item representation are obtained by different
fusion functions:

eu = fwinit(e
init
u , esocialu ),

eup = fwpart(e
part
up

, esocialup
),

ei = fwitem
(einiti , eparti ).

(6)

In MVPRec, we fine-grain user representation as initiator-view
eu and participant-view eup to differentiate the user roles in
the GB process. In one GB process, we use eu if u acts as the
initiator, and eup

if u is the participant.

C. Participant Prediction

After we obtain different views of user representation,
MVPRec predicts the participant of the GB process with
an initiator and target item. We assume the participant is
conditioned on both the initiator and target item and design a
linear layer to obtain the query embedding by fusing both the
information:

q = σ(W[eu||ei]), (7)

where || is the concatenation function, W ∈ Rd∗2d is a linear
transformation to keep query embedding q ∈ Rd, and σ is the
sigmoid function. Then we compute the likelihood of each
participant on the query in a multi-head manner [30] as:

P (up|u, i) =
1

H

H∑
h=1

exp(Wh
q q · Wh

keup)

exp(
∑

∀upj
∈Su

Wh
q q · Wh

keupj
)
, (8)

where Wh
q ∈ Rd∗d and Wh

k ∈ Rd∗d is the query/participant
transformation parameter on the h-th head. Multi-head atten-
tion mechanism allows the model to pay attention to different
parts of the input sequence simultaneously. Each head can
focus on different aspects of the context. Therefore, the
intricate collaborative signals of potential participants could
be captured in this way. Then the participant recommendation
loss function Lpart is defined as the negative log likelihood:

Lpart = −
∑

(u,i,Up)∈P

∑
∀up∈Up

lnP (up|u, i). (9)

By minimizing Lpart, we increase the likelihood of the
ground-truth participant given the initiator and target item.

D. Consistency loss

einiti and eparti are different views for item obtained from
Ginit and Gpart. In a GB process, both the initiator and
participant show their interest in the target item. We assume
item representation should reveal their common interest, and
einiti and eparti should not be differentiated in a large margin.

TABLE I: Statistics of the Datasets

Dataset BeiBei Ciao Epinion
#Users 186,352 2,342 18,089
#Items 30,543 77,540 261,649
#Social 675,911 57,544 355,813
#GB 403,419 15,138 69,284

Thus, we further add a consistency loss to regularize einiti and
eparti to be similar to each other:

Lconsistency = − einiti · eparti

||einiti ||2 · ||eparti ||2
. (10)

Then the final loss for optimization is obtained as:

L = Lpart + λ1Lconsistency + λ2∥Θ∥22, (11)

where Θ represents all parameters within MVPRec. λ1 and λ2

are hyper-parameters to balance the loss weights.

V. EXPERIMENTS

In this section, we conduct extensive experiments on three
datasets to answer the following research questions (RQs):

• RQ1: Does MVPRec outperform existing methods in the
participant recommendation problem?

• RQ2: Are different components in MVPRec necessary to
increase the performance on the participant recommenda-
tion problem?

• RQ3: How do the hyper-parameters influence MVPRec?

A. Experiment Settings

1) Dataset: In this section, we introduce our experiments
on the public dataset: BeiBei, Ciao, and Epinion. The group
buying dataset BeiBei, a Chinese infant product platform,
is released by [28]. We randomly split the group buying
interactions of each initiator into the training set (80%), the
validation set (10)%), and the test set (10%). Owing to the
scarcity of datasets specifically tailored for group buying
analysis, we developed two additional datasets from Ciao
and Epinions, which are well-established in the domain of
social recommendation research. In these datasets, a purchase
made by a user and their friends involving a common item
is classified as group buying activity. The user who first
purchases the item is designated as the initiator. Subsequently,
friends who acquire the same item following the initiator are
identified as participants in this group buying activity. The
detail can be seen in Table I.

2) Baselines: To demonstrate the effectiveness of our
model, we compare MVPRec with several baselines on three
datasets. To our knowledge, J2PRec [31] stands as the sole
baseline that closely aligns with participant recommendations.
As several social and group recommender systems, such
as those presented in J2PRec, are primarily geared toward
offering personalized recommendations to users or groups.
Moreover, the formation of most group-buying records is
occasionally, they don’t directly align with our current task.



TABLE II: Comparison of Top-K performance on three datasets with baselines in participant recommendation problem. The
best and second-best results are in bold and underlined, respectively

.

Dataset Metric User-activity Cosine Similarity MF TransE RGCN J2PRec MVPRec Improv.

BeiBei

N@1 0.0946 0.0504 0.1336 0.1390 0.1342 0.1209 0.1396 0.43%
N@2 0.1545 0.0722 0.2145 0.2188 0.2106 0.1974 0.2252 2.93%
N@3 0.2054 0.1101 0.2779 0.2810 0.2684 0.2585 0.2915 3.74%
R@2 0.1896 0.0850 0.2619 0.2655 0.2553 0.2422 0.2753 3.69%
R@3 0.2914 0.1607 0.3884 0.3899 0.3709 0.3644 0.4078 4.59%

Ciao

N@1 0.1079 0.1186 0.1532 0.1506 0.0726 0.1266 0.1972 28.72%
N@2 0.1609 0.1779 0.2377 0.2044 0.1067 0.1926 0.2695 13.38%
N@3 0.1975 0.2222 0.2873 0.2373 0.1306 0.2335 0.3121 8.63%
R@2 0.1919 0.2125 0.2871 0.2358 0.1266 0.2312 0.3118 8.60%
R@3 0.2652 0.3011 0.3863 0.3018 0.1746 0.3131 0.3971 2.80%

Epinion

N@1 0.1674 0.2575 0.2398 0.1603 0.0700 0.1601 0.3225 34.49%
N@2 0.2369 0.2945 0.3028 0.1929 0.1074 0.2174 0.3755 24.01%
N@3 0.2651 0.3168 0.3366 0.2106 0.1242 0.2331 0.4056 20.50%
R@2 0.2775 0.3162 0.3396 0.2120 0.1292 0.2508 0.4065 19.70%
R@3 0.3340 0.3609 0.4072 0.2474 0.1628 0.2824 0.4667 14.61%

Consequently, we’ve made minor modifications to other base-
line methods to better adapt them to our specific requirements.
• User-activity: ranks the social friends according to their

activities, measured by the number of purchased records.
• Cosine Similarity: retrieves the most similar friends with the

initiator.
• MF [32]: employs matrix factorization to decompose the

user-item interaction matrix into latent vectors for users and
items by utilizing the Bayesian Personalized Ranking (BPR)
loss function.

• TransE [33]: a knowledge graph embedding model designed
to represent entities and relationships as continuous vectors,
enabling the modeling of semantic relationships in struc-
tured data.

• RGCN [34]: a deep learning model tailored for processing
and reasoning over knowledge graphs by incorporating
graph convolutional operations.

• J2PRec [31]: is a joint product-participant recommendation
model that learns user and item embedding by iteratively
aggregating from the relational group-buying graph.
To adapt MF to the participant recommendation task,

we introduce a dot product operation between the item
vector and participant vector to determine whether to
recommend a particular participant for a specific group
buying, without taking the initiator into account. For the
utilization of TransE and RGCN, we introduce five relations
(buy as initiator, buy as participant, bought by initiator,
bought by participant, friend of) along with their
corresponding interactions to construct the relational
graph. The final outcome is evaluated using a score function
applied to (up, buy as participant, i).

3) Evaluation Method: In the evaluation stage, we rank
the ground-truth participants with all friends of the initiator.
For effectiveness, we adopt Recall@k and NDCG@k as the
metrics by setting k ∈ {1, 2, 3}, which aligns with real-world
applications where the top matches are of utmost importance.

4) Hyper-parameter Setting: For all baselines and our
model, we fix the embedding size as 32 with the Adam opti-

mizer. Grid search is conducted to tune the hyperparameters
in MVPRec. The learning rate is searched in {1e-1, 5e-2,
1e-2, 5e-3, 1e-3, 5e-4, 1e-4} and weight decay is tuned in
{1e-3, 1e-4, 1e-5, 1e-6} for all models. Since the number of
LGCN layers K, the coefficient on consistency loss λ1, and
the number of heads L are the unique parameters in our model,
we tune them in {1, 2, 3, 4, 5}, {0.2, 0.4, 0.6, 0.8, 1.0}, and
{1, 2, 3, 4, 5}, respectively.

B. RQ1: Performance Comparison

Overall comparison results are shown in Table II. The best
results are in boldface, and the second-best results are under-
lined. The improvement is calculated by subtracting the best
performance value of the baselines from that of MVPRec and
then using the difference to divide the former. We summarize
the following key observations:

• Our proposed MVPRec method performs best and outper-
forms all the baseline methods in the three datasets. We
hypothesize these large stable gains result from the capabil-
ity of MVPRec to address the issue of role differentiation
and heterogeneous information fusion.

• The simple MF method performs better than other baselines
in Ciao and Epinion datasets, where per user has more
social relations and more frequent group-buying behaviors.
Compared with MF, GNN-based baselines applied on such
heterogeneous graphs with denser edges may suffer from the
over-smoothing problem, which leads to indistinguishable
user representations. However, as a GNN-based model,
MVPRec efficiently differentiates participant users from
initiator users and thus shows even more obvious superiority
over MF and other baselines in these two denser datasets.

• Although J2PRec is also a method designed for the GB
problem, it neglects the distinction between the views of
initiators and participants on items. Therefore, in more strict
evaluation metrics, such as Recall@K and NDCG@K with
K ≤ 3, it performs even worse than simpler methods like
MF. In contrast, by distinguishing participants’ views from
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Fig. 4: The influence of model hyper-parameters lr, K, L, and λ1.

initiators’ views, MVPRec outperforms J2PRec by up to
101.44% in all datasets.
Since there’s no significant difference in terms of scalability

and efficiency compared to the baseline graph convolution
method, we do not include those experiments.

C. RQ2: Ablation Study

In this section, we perform an ablation study to evaluate
the impact of each module on the overall framework on
BeiBei and Ciao datasets. We consider 4 variants: 1) Variant
A replaces multi-view learning by unifying the initiator role
and participant role, 2) Variant B abandons consistency loss
on aligning item embeddings from two views, 3) Variant C is
built by removing the multi-head attention mechanism, and
4) Variant D removes query strategy in Eq.7 and matches
the participants directly with item embedding ei. According
to the comparison shown in Fig 5, we have the following
observations:
• After removing the multi-view learning module, there are

significant performance drops on both metrics, especially
46.88% of NDCG@3 and 44.27% of Recall@3 on Ciao
dataset. It greatly signifies the importance of modeling
distinct views within the group buying behavior.

• The multi-head attention mechanism and query strategy play
pivotal roles in determining the performance of MVPRec on
the BeiBei dataset. Their influences are significant, as evi-
denced by an average decrease of 35.6% in both NDCG@3
and Recall@3 when these components are altered.
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Fig. 5: Ablation study of MVPRec.



• The introduction of the consistency loss mechanism has the
potential to further enhance the model’s performance. This
enhancement is evident, with a notable increase of 24% in
NDCG@3 and a substantial 29.69% increment in Recall@3
on the BeiBei dataset.

D. RQ3: Hyper-parameter Analysis

In this section, we analyze the effect of four essential hyper-
parameters in MVPRec by NDCG@3, including 1) learning
rate, 2) number of layers K in LGCN, 3) number of heads H
in multi-head attention mechanism, and 4) the coefficient on
consistency loss λ1. Experiment results are shown in Fig. 4.

The learning rate, a ubiquitous hyperparameter in many
deep learning models, governs the rate at which an algorithm
adapts its parameters. Based on the observations from Fig-
ure 4a, Figure 4e, and Figure 4i, it’s apparent that the optimal
learning rate values differ between datasets, and this parameter
significantly impacts overall performance. The hyperparameter
K is introduced in LGCN module and is an influential hyper-
parameter in the GNN-based recommender systems. Stacking
more layers, as we increase K, leads to capturing higher
connectivities in the graph. The performances on all datasets
achieve the best results when K = 3. Like the learning rate,
the number of heads H varies depending on the dataset in
question. The coefficient λ1 regulates the level of consistency
between item information in two distinct views. As depicted in
Figure 4d, Figure 4h, and Figure 4l, the model’s performance
generally shows an uptrend with increasing values of λ1, but
performance declines as this coefficient becomes excessively
large.

VI. RELATED WORKS

In this section, we provide a comprehensive review of
various domains that are most relevant to GB, including
collaborative filtering recommenders, social recommendation,
group recommendation, and group-buying recommendation.

A. Collaborative Filtering Recommenders

With the assumption that users with similar interests are
likely to have similar preferences toward items, collaborative
filtering methods [35] filter the interaction information be-
tween users and items and finally give the recommendation to
the targeted users. The hybrid recommendation technique fuses
various recommendation methods to make the best of both
worlds. The model-based CF methods have been widely used
in different recommendation scenarios. Matrix factorization
(MF) [32], which projects users and items into latent vectors,
models the historical interactions as the inner product of their
projected vectors. Unlike MF, neural collaborative filtering
(NCF) [36] models non-linearity via neural networks. Light-
GCN [27] is a graph-based recommendation model focusing
on simplicity and scalability. It just keeps the neighborhood
aggregation part for collaborative filtering. SGL [37] con-
structs contrastive views from the user-item bipartite graph
by randomly dropping nodes and edges and maximizes the
agreement between embeddings from contrasting perspectives

to learn robust user and item embeddings. DirectAU [38]
directly aligns connected user-item pairs with a uniformity
regularization. GraphAU [39] further considers high-order
collaborative filtering signal with alignment and uniformity
loss, which is currently state-of-the-art method.

Collaborative filtering recommenders focus on learning user
behavior patterns hidden behind observed user-item historical
interactions, which is the commonly used data in current
widely-applied recommender systems. This paper studies an
emerging business mode (Group Buying) that greatly impacts
the current E-commerce landscape. It is becoming prevalent
with the E-commerce platform Temu and Pinduoduo. Differ-
ent from collaborative filtering recommenders, our proposed
MVPRec focuses on the new participant recommendation task
underneath the group buying business model.

B. Social Recommendation

With the paths among users and edges between users and
items, a random walk model TrustWalker [40] could pro-
vide confident recommendations with a collaborative filtering
method. Based on MF, SocialMF incorporates social influ-
ence into learning latent vectors. Beexternals, many GNNs-
based social recommendation models have achieved state-
of-the-art performance. GraphRec [9] is the first work to
apply GNNS to the social recommendation. It models the
user preferences by combining the first-order aggregations
from social and item neighbors via the attention mechanism.
DiffNet [10] designs a layer-wise influence propagation layer
to model user’s latent vector by averaging the information
of his/her friends. However, it neglects that collaborative
interests in user-item interactions also play an essential role
in learning user preferences. DiffNet++ [11], an extension of
DiffNet, is proposed to jointly model the high-order interests
in both social networks and the user-item bipartite graph.
MHCN [41] combines hypergraph modeling and graph neural
network to model high-order social relations with hyperedges.
ConsisRec [7] considers the inconsistency problem in social
recommendation, and in each step it samples consistent social
neighbors for aggregation. FeSoG [26] studies the social
recommendation task under the federated learning setting.
The disentangled social recommendation model DSR [42] first
disentangles the user embeddings in the social networks into
multiple facets and then updates final user embeddings via a
facet-level attention mechanism. Considering user’ preference
is dynamic and influenced by friends, Song et al. [43] design
a dynamic attention module to capture user’s current interests
by dynamically inferring the friends with different influences.

Contrasting with the concept of social recommendation,
GB entails a collective purchasing behavior involving multiple
consumers. The key objective of participant recommendation
is to identify potential friends who are likely to engage in a
joint purchase of a targeted item alongside the initiator.

C. Group Recommendation

Group recommendation aims to learn group representation
by aggregating information from group members, and calculat-



ing the rating score from groups to items for recommendation.
These models handle a group of users as a whole and ignore
the distinctions of users in the same group. AGREE [19]
adapts group representation by assigning attention weights to
group members. MoSAN [44] models the user’s preference
with respect to all other members in the same group by
sub-attention module. GroupIM [20] maximizes the mutual
information between the user representation and their group
representations which are aggregated from its members’ pref-
erences via the attention mechanism. Further, Zhang et al. [45]
design a double-scale node dropout strategy to generate self-
supervision signals to alleviate the data sparsity issue and
capture both the intra- and inter-group interactions among
users. Suggesting groups to potential users is a highly relevant
task that has attracted considerable attention from both the
academic and industrial sectors. CFAG [46] devises tripartite
graph convolution layers to aggregate information from dif-
ferent types of neighborhoods (users, items, and groups) and
proposes a propagation augmentation (PA) layer to mitigate
data sparsity. GTGS [47] incorporates a THC layer to transfer
item preferences from members to groups, ensuring user
interests contribute to group identification, and employs Cross-
view Self-Supervised Learning (CSSL) to maintain consis-
tency between item and group preferences for each user.

The data format employed in group recommendation, often
encompassing social relations, bears resemblance to that used
in GB. However, a distinctive aspect of GB is the dual
role framework it offers users: they can function either as
initiators or participants. This is a notable departure from the
conventional single-role paradigm prevalent in social networks
and groups.

D. Group Buying Recommendation

GBGCN [28] designs in-view (initiator view and participant
view) propagation and cross-view (user in initiator view,
user in participant view, item in initiator view, and item in
participant view) propagation to let embedding capture the
high-order information and the preferences of different roles,
and finally predicts the probability of a user launching a
successful group buying with the item in data by combining
the preferences of initiator and participants over that item.
SHGCN [48] aims to enhance personalized recommendations
by building hypergraph for each group-buying data with
regarding the item as the hyperedge to capture the inhomo-
geneous social influence and learn the user preferences in a
fine-grained manner. Different from friend recommendation
which recommends similar users to the target user, participant
recommendation needs to take the initiator and item into
consideration since they both have influences on the decision
of potential participants. J2PRec [31] proposes a joint learning
framework to recommend both items and participants to max-
imize the GB likelihood. It updates user and item embedding
by aggregating from relational group-buying graph under a
probabilistic framework on both recommendation tasks.

In contrast to prior research in the domain of GB, our model,
referred to as MVPRec, places particular emphasis on the

core task of recommending prospective participants from one’s
social network, a fundamental function within GB platforms.

VII. CONCLUSION

With the prevalence of group buying in many e-commerce
platforms, the participant recommendation task is still un-
der exploration. This study introduces a novel framework,
MVPRec, designed to enhance participant recommendations
in the context of group buying. We introduce the multi-view
learning module to differentiate the roles of users (Initia-
tor/Participant) with the GB. We construct a multi-view user
representation through graph encoders by fusing these two
views with the social graph. Subsequently, MVPRec seam-
lessly integrates these GB and social representations, leverag-
ing an attention module to synthesize a comprehensive user
representation. Furthermore, the model harnesses the power
of a multi-head attention mechanism to learn matching scores
by considering the social connections between Initiators and
their friends. This multifaceted approach enhances the efficacy
of participant recommendations in group buying scenarios.
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