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Abstract— For a class of homogeneous hybrid systems we for some (T,J) € domé&, &(T,J) ¢ B, no matter
present a generalization to the hybrid systems framework of how big ¢ is.

Chetaev's theorem and we propose a set of local Lyapunov- 3) Solutions that grows by a factgy > 1, that is

like conditions for studying instability of the point z. = 0 . . .
and overshoots of solutions (nhamely when the norm of the solutions ¢ for which there exists a sa C R”

solution vector = at some time instant exceeds the norm of and such that if¢(0,0) in U then then[{(T, J)[ >
the initial condition of z). Based on these results, we design a p|€(0,0)|. Such behavior is denoted asershoot
sum of squares algorithm that constructs a suitable functia to
automatically fulfill such local conditions. . . . .
Point 1 is analyzed by proposing a Chetaev-like theorem [12,

. INTRODUCTION Theorem 4.3] generalized to the hybrid systems framework.
Points 2 and 3 are addressed by following a Lyapunov-like

dynamics depends on differential equations, and discre proach, that 'S, .by defining a set of conditions whose
processes whose behavior depends on a specific transition etlsfact|on, In a suitable subset of the state-spaceagtess
lation. A mass subject to Coulomb friction, robots contdll 2or 3. Base_d on such results, we propose two sum of
by a .finite state machine, electrical circ,uits that Combinsquares.algonthms [19] that construct a suitable fundtion
- ’ gutomatlcally fulfils such conditions.
analog and digital components, are all examples of systems
that combine continuous and discrete processes and thafThe use of sum of squares algorithms in control and, in
can be conveniently characterized within the hybrid systenparticular, the use of sum of squares algorithms to coristruc
framework. Lyapunov functions, is well developed. See for example,[17]
Several models of hybrid systems can be found in the li{21], [26], [27], [18]. A study of solutions behavior with
erature, [5], [7], [11], [16]. Here we consider the framelvor sum of squares, not related to stability problems, can be
outlined in [8] for which several structural results haveeve found in [20], where safety problems are taken into account
developed [10], [23], [24] and partially summarized in [9].(namely problems in which solutiomsust not entea given
Although several new phenomena arise from the interacticgubset of the state space or thrayst reachsome particular
of continuous and discrete dynamics, important results csubset of the state space). A similar approach based on
stability theory like Lyapunov-like tools, invariance peci- approximations of solutions with polyhedra is proposed in
ples and converse theorems, have been generalized to Pk Here we propose an approach to study the behavior of
hybrid systems framework, [1], [2], [3], [6], [10], [23]. solutions in the neighborhood of the poirnt = 0. Based on
Here we propose a “local” Lyapunov-like approach tcsuch analysis, if some solution either satisfies 1 or sagigfie
the study of properties of solutions to a particular class dhenz. is unstable. Intuitively, 3 is related to the properties
homogeneous hybrid systems [28] in the neighborhood of convergence of solutions ta.. Note that overshoots with
the pointz. = 0. We analyze the following cases: a large factorp do not necessarily indicate instability. They
1) Solutions that do not satisfy the classicé,)- C€an be considered as a characterization of the convergence
argument of stability concepts, that is, solutignfor ~ Properties of a given point.. Indeed, large overshoots can
which there exists @ € R-, and a set/ c R», Dbe interpreted as a sign of poor performance and the sum of
2. € U, such that for each € R, if £(0,0) € YNsB ~ Sguares program presented below is a tool to check whether
then, for some(T,.J) € domé, &(T,J) ¢ =B, no OF not this kind of phenomena occurs.

matter how smalb is. . The work is organized as follows: in Section Il, the hybrid
2) Solutions that grows unbounded from a suitable subsgstems framework is briefly introduced and the class of
of the state-space, that is, solutigqsuch that for any hyprig system considered is defined. The main theoretical
givene € R, there exists a sdif C R", z. € U, results, the sum of squares algorithm and an example are
such that for eacki € R if £(0,0) € U N 4B then, presented in Section IlI. Further analysis on sum of squares
Research supported in part by ENEA-Euratom and MIURimpIementation is d_eveloped in S_ection IV. The conclusion
for ni @i sp. uni roma2. i t follows. Proofs are in the Appendix.
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Hybrid systems combine continuous processes who



Il. HYBRID SYSTEM MODEL where I, Ip are disjoint and finite index sets. Note that

We consider a model of hybrid systems given by the tupI@ and D can overlap. Note also that it is possible to have
(C,F,D,G), whereC C R™ and D C R" are, respectively, C'UD #R". _ .
the flow setand thejump sef while F : R* = R and In a3|'m|lar way, consider set—valued'mappn'}@s R"=
G : R™ = R" are set-valued mappings, respectively,fiber R", fori € Ic, andG; : R* = R", for i € Ip, defined as
mapand theump map F andG characterize the continuous @s follows. For eachi € I¢, Fi(x) is a convex and closed
and the discrete evolution of the system, that is, the motictet defined by
of the state, whileC' and D characterize subsets @®&" () = { of{f|f=Fgxfork=1...rp} if ze RO

where such evolution may occur. A hybrid systéincan otherwise
be conveniently represented as follows (6)
&€ F(z) reC where F;;, € R™*™ andrp € N. For eachi € Ip, G;(z) is

H= { e G@) wzeD. (1)  a set defined by

Intuitively, the evolution of the state either continugusl Gi(x) { {9lg=Guyzxfork=1...rq} ifzxce R(z)
flows throughC, by following the dynamic given byF, ‘ 0 otherwise
or it jumps from D, according toG. Such alternation of _(7)
jumps and flow intervals can be conveniently characterizefhere Gix € R"*" andrg € N. Then, flow and jump
by using a generalized notion of time, callegbrid time In ~ Mappings,F': R* = R™ andG : R" = R™, can be defined
what follows, we recall the notions of hybrid time and of&S
soluti(_)n. to a hybrid system. For d.etails, see _[8], [91, [1Q]. F(z) =t U Fy(z) G(z) = U Gi(z) (8)
Definition 1: A setE C R> x N is ahybrid time domain
if it is the union of infinitely many intervals of the form
[tj tj+1] x {7} where0 =tq < t; <ts <,..., or of finitely
many such intervals, with the last one possibly of the for
[t ti41) x L} [t 1) x {4}, or [t5,00] x {5}

i€lc i€lp
Note that F'(z) reduces toF;(x) when z belongs only to
fne coner™, for somei € Ic. The same holds fofi(z).
Hybrid systems of the form (1),(4)-(8) satisfy the follow-
Definition 2: A hybrid arc z is a mapz : domz — R™ ing basic_ conditionsSuch_conditions coincide with t@sic
such that (i)dom z is a hybrid time domain, and (ii) for each assumption®f [9] and with the fundamental conditions of

j, the functiont — x(t, 5) is a locally absolutely continuous [10] (the proof of Claim 1 is omitted for lack of space).
function on the interval; = {t : (,7) € doma}. Claim 1 (Basic Conditions)A hybrid systemH of Equa-

A hybrid arcz : domz — R” is a solution to the hybrid 0ns (1),(4)-(8) satisfies the following properties:

systen if z(0,0) € C' U D and 1) C CR™ andD C R"™ are closed sets iiR".

(i) for eachj € N such that/; has a nonempty interior, 2) F:R" = R" is an outer semicontinuous set-valued
o ] or I mapping, locally bounded o€" and, for eachr € C,
(t,j) € F(x(t, 7)) for a”most allé I e F(x) is nonempty and convex.

z(t,j) € C orall ¢ € [min /;, sup I;); 3) G : R™ = R™ is an outer semicontinuous set-valued

(ii) for each (¢, ) € dom« such that(t,j + 1) € dom =z, mapping, locally bounded o and, for eachr € D,

. : G(z) is nonempty.
t,j+1) € G(x(t, - .
2 i ‘ g c D@( 7) 3 Proof: C and D are finite union of closed sets.

A solution ¢ to a hybrid systenf is nontrivial if dom ¢ Boundedness of” andG follows from the fact that they are
contains at least one point different frof,0); maximal constructed from linear vector fields. Convexity®fz), for

if it cannot be extended, that is, there are no solutighs €ache € C, follows from the use of the convex-hull operator.
to # such thatdom¢ is a proper subset oflom¢’ and Finally, outer semicontinuity of” follows from the fact that
¢'(t,§) = £(t, j) for each(t, j) € dom &; completeif dom¢  its graph is closed. Thus, by [22, Theorem 5/7]is outer

is unbounded. semicontinuous. Analogously fa@¥. ]

In what follows we consider a particular class of hybrid Remark 1:Hybrid systems that satisfy the conditions of
systems in which flow set and jump set are defined as tikdaim 1 exhibit a sort of regularity of solutions that leads t
union of closed polyhedral cones, and flow map and jum@everal important results. For example, for such systeras, w
map are defined, respectively, as the convex hull and t@ve sequential compactness of the space of solutions, holds
union of several linear vector fields. For instance;lbe an [10, Theorem 4.4 and Lemma 4.3] and outer semicontinuous

index number inN, and letR® be a closed set defined asdependence of solutions on initial conditions, [9, TheoBdm

follows and [10, Corollary 4.8]. Regularity of solutions has eféect
mi? also on stability theory. See [10], [23] J
RO — z| o >0 (4) Remark 2:Switched linear systems with state dependent
m(i()i) switching policies, [13, Sections 3.3 and 3.4], and switthe

4 linear systems under arbitrary switching policies, [13¢-Se
wherer(?) belongs toN and mﬁ.’) € R'*" is a row vector, tion 2.1.4], can be characterized within the family of hybri
for eachj = 1,...,r(®. Then,C and D can be defined as Systems considered above. For example, for the case [13,
. , Sections 3.3 and 3.4], consider the system
c=[JRY D= J RY (5)

icle ielp ZE:A»LZE if IEGC“ Z:1,,N



where N € N and, for eachi = 1,...,N, A; € R**"

(1) max\x\:cv(m) < ea

andC; is a conic subset dR”. Such systems can be easily (2) for a smalle € R-o and for somexr € CU D, |z| =

defined within the class of hybrid systems considered above,

by definingF;(z) = A;z if z € C; andF;(z) = () otherwise,
foreachi =1,..., N. g
Finally, following [9], for a hybrid systen?{, the point
x. = 0 is (i) stableif for eache > 0 there existsy > 0
such that any solution: to H with |2(0,0)| < ¢ satisfies
|z(t, j)| < eforall (¢,5) € domz; (i) pre-attractiveif there
existsd > 0 such that any solutior to H with |2(0,0)| <
0 is bounded and:(¢,j) — 0 ast + j — 0 wheneverz
is complete; (iii) pre-asymptotically stablé it is both pre-
stable and pre-attractive. By assumiRty\ (CUD) C B,_, if
the basin of pre-attractio,, = R" thenz. is globally pre-
asymptotically stablein such case we say that the system i
globally pre-asymptotically stable. Finally, we say thatis
unstableif it is not stable.

I1l. OVERSHOOTS AND INSTABILITY

A. Main results

The following theorem is a generalization of Chetaev’
Theorem [12, Theorem 4.3] to hybrid systems of Equatio
(1). Thus, it can be used to characterize thstability of
z. = 0 and it is related tdCase 1of the introduction.

4

c+eandV(z) > ¢
Choosep € R+ such thatoe > c+ ¢, and defind/ = {z €
CUD|V(z) >4, c¢<|z| < pc}. Suppose

(3) (VV(x),f)>0 Vee CNUNVS € F(x)

4 V(ig)—V(z)>0 Ve e DNU,Vg € G(x)

(5) lgl > ¢ Ve e DNU,Yg € G(x);

(6) Each maximal solutio§ to H with initial condition

£(0,0) € U is nontrivial.
Then, for each\ € R+, there exists a solutiof to . such
that if |£(0,0)| = A(c + ¢) then |(T, J)| > Ape, for some
(T, J) € dom¢.
s Proof: See section A.2 ]

The meaning of the conditions of the theorem above can
be explained by looking at Figure 1, where we considered
the case of a planar hybrid system for which the conditions
of Theorem 2 are satisfied. Conditions (1) and (2) guarantee
that the level set of V' is close to the circle of radius,
¥vhile conditions (3)-(6) guarantee that no solution caly sta

rever in the intersection of the grey colored set of Figure
with ¢ < |z| < pe. Note that, despite the conditions of the
theorem are local, parameterized withndp, the conclusion

Theorem 1:(Chetaev-like theorem) Consider a hybriddeﬁnes an entire subspace of initial conditions from which
system?{ of Equation (1) that satisfies 1), 2) and 3) of Claimthe solutions grow of a factqs

1, and definer, = 0. Let V : R™ — R be a continuously
differentiable function iC'u D. Chooser € R and define
U={zxeCuD|V(z) >0, |z|] < r}. Suppose that for
eachd > 0,U N B # () and that

1) (VV(x),f) >0 Ve e CNUVS € F(x);

2) V(g)—V(z)>0 Vr e DNU,VYg € G(x);

3) Each maximal solutio to A with initial condition

£(0,0) € U is nontrivial.

Thenz,. is unstable.

Proof: By using nontriviality of solutions, the argument

of the proof of Theorem 1 can be developed as in the pro
of [12, Theorem 4.3]. See appendix, Section A.1, for detalil
|
Remark 3:If C U D = R"™ then each solution t&{ is

nontrivial. In such a case, condition 3) of Theorem 1 is au-

tomatically satisfied. In general, local existence of a hotu
from each point ofU can be satisfying the conditions in

pe

of
S

Fig. 1. A function V' that satisfies the conditions of Theorem 2, for a

[10, Proposition 2.4]. Note that Theorem 1 is not restricte§/a"a" hybrid system.

to hybrid systems of Equations (1),(4)-(8) and it applies to
m

general hybrid systems (1) that satisfy 1), 2) and 3) of Clai
1.

The following theorem defines a set of Lyapunov-lik
conditions for studying overshoots of solutions to hybri

systems of Equations (1),(4)-(8). The theorem is param

terized with respect te > 0 andp > 1, that define the set

{z]c < |z| < pe} in which the conditions must be satisfied,

and it guarantees that at least one solugida A with initial
condition in¢ < [£(0,0)| < ¢+ e grows to|¢(T, J)| > pe,
for some giver(T, J) € dom¢. Theorem 2 is related tGase
3 of the introduction.

Theorem 2:Consider a hybrid systerfi{ of Equations
(1),(4)-(8). LetV : R™ — R be a continuously differentiable
function such that for somée R, ¢ € R>g

ﬁhat it guarantees thafx | |z] = pc} C {z|V(z) > (}.

By adding a simple condition to Theorem 2 it is possible
to characterize the instability of, = 0, as stated in the
following corollary. The key point of such condition is

dhus, it is possible to show that there exists a solution that
grows unbounded. Corollary 1 is related @ase 2of the
introduction.

Corollary 1: Consider a hybrid systert of Equations
(2),(4)-(8) and consider a point. = 0. Under the hypothesis
of Theorem 2, if conditions (1)-(6) hold and the following

condition is satisfied
(7) min|x|:pc V(m) >/,
thenz, is unstable.
Proof: See section A.3



Remark 4:1t is important to mention that Theorems 1 and (iii) A semidefinite program solver runs over such in-
2 are conservative. In fact, both overshoot of solutions to a  equalities. A solution is computed by relaxing the

hybrid systent{ and instability properties aof. = 0 are the satisfiability problem of the whole set of inequalities
results of the “behavior” obne solution to# only, while to a sum of squares decomposition problem. The sum
Theorem 1 and Theorem 2 require a particular “behavior” for of squares decomposition problem is then solved by
anentire sef solutions. For instance, consider the following using a semidefinite program solver.
system withz € R? defined ast = [z1 72]7. (iv) If the solver finds a solution, the set of constraints is
. feasible and algorithm 1 has a positive output, as stated
T=ux x€{x|zy >0, 22 =0} .
H= { T 2 in OUTPUT.
a7=0 z€eR% The algorithm is based on the following polynomigl:)
In this case, for any givea > 0, the hybrid arct;(¢,0) = o _ o
(et 0]7, for eacht € Rsy, is a solution toH from the Definition 3: Let @ be a symmetric matrix in R"*",
initial condition [6 0]7. Thus, z. is unstable. Despite the defined as follows.
instability of x., Theorem 1 does not apply. In fact, consider g1 --- qin
any given initial conditionz, € R?, then the hybrid arc Q=1 : . : 9)
£2(0,0) = xg, &(0,5) = 0, for eachj € Z, j > 0, is a : ' :
solution to. Thus, Condition (2) of Theorem 1 cannot be dni .-+ Gnn
satisfied. _ _ 4 Letg(z) be a polynomial defined as follows.
Theorem 3:Consider a hybrid systerfi{ of Equations g(z) = [q(n N q%] v+ 2 Qu (10)

(2),(4)-(8). Under the hypothesis of Theorem 2, if Condiiso

(2)-(4), (6) of Theorem 2 are satisfied and Condition (1yvhereq,; belongs toR, for eachi € {1,...,n}.

is replaced bymax, <.V (z) < ¢, then the conclusion By suitable conditions on elements @Qfand on elements of

of Theorem 2 still holds. Moreover, if Condition (7) of [go1 ... qon], ¢(z) can be interpreted as a functionothat

Corollary 1 is also verified, than the conclusion of Corgllar is positive in some subset @”. Specifically, the parame-

1 still holds. terization (case, k1, k2) defines some specific conditions on
Proof: The proof can be developed by following an@ and onjgo; ... gon] SO thatg(x) is necessarily greater

argument similar to the one in Section A.2. In fact, bythan zero in some subset &". For example, consider a

max|, <. V(r) < £, each jump fromz € U to some planar space and assumg + g22 > 0 andgi2 = 0. Then,

g € G(z), with |g| < ¢, would fall in {z|V(z) < ¢}, that q(z) = qo121 + qoa2 + q1177 + g2223 IS positive in a conic

is forbidden by Condition (3) of Theorem 2. B subset ofR2. An example is summarized in Figure 2.
B. Sum of squares algorithms N .
Under the assumptio® U D = R", we can use the . _ P ’ .
following algorithms to find functionsl” that fulfill the
conditions of Theorem 2. Then, we will use one of such DN R or
algorithms to construct function¥ that fulfill also the . BN P U
conditions of Corollary 1. oy =002 20 .7 ﬂ '
Algorithm 1 is defined by a set of inequalities parame-
terized with respect to paramete(suse, k1, k2). A solution Ti—22 >0 e

to the set of inequalities is then computed by relaxing the
satisfaction problem of such inequalities to a sum of scpiare
decomposition problem. Then, if solution is foundthe Frig 2. suppose(z) = 21 — x5 + 22 — 0.522, then the intersection
algorithm ends. Otherwise, the algorithm runs on a newf {z|z1 — z2 > 0} with {z|2? — 0.522 > 0} is a conic subset of
set of inequalities, constructed on a different selectién d«la(z) =0}
(case, k1, k2), until each possible case (fase, k1, ko) have . . . .
been considered. In fact, by using a a parameterization wifMS° t_hg_follov.vmg quantities are used in the algorithm.
(case, k1, k), a non-convex search problem is reduced to I%efmmon 4: For any giveni € Ic U Ip, the function
several convex problems, suitable for sum-of-squaresampl22 (%) : R” — R is defined as follows
mentation. Therefore, by running Algorithm 1 several times () @ .0
each of which on a different set of parameters, we explorg () ;) — ij(x) m§i)x + Z Z pjk(m)mg_i)mm;;)m
a non-convex search-space, searching for a fundtiathat = Pl
fullfills the conditions of Theorem 2. At each run: GG R
(i) the input of the algorithm is filled by the data of the ) @), @) (@)
hybrid system?, by some parameters ¢, p,d; and +Z Z Z Pikn (@) my @y xmy,

ds, and by a selection ofcase, k1, k2), as stated in
section! NPUT. + .o F i, (@) mez ..o mum T

j=1k=j+1 h=k+1

(i) A set of inequalities is then constructed, as stated iwhere, for any given combination of indicegk,...,
sectionCONSTRAI NTS. Each inequality uses variablesp;, p;x, ... denote functions ilR” — R>q, defined by non-
defined inVARI ABLES. negative polynomials of a given degree. We refer to the



whole set of polynomialg;, pjx, - - .
polynomials

by using the namslack

Definition 5: Let 1,2 € R>o be two constants and let

Aq(g1,€2,+) : R — R be a map defined with respect 4o
and one, as follows:

Ai(er,e0,2) = —(|af* —ef)(jzf* - &3).
Note that, for eachi € Ic U Ip, Ag) (x) is positive for
eachz in R while it is possibly negative for: ¢ R,

based on the particular configuration of slack polynomials.

Ajq(e1,e9,x) is positive fore; < |z| < e5, and is strictly
negative otherwise. A planar example of subseR&fwith

positive A; and A, is in Figure 3.A; and A, are used in
Algorithm 1 for relaxing the conditions o to hold only
in a subset ofR™.

T2
Aq(e1,69,2) <0

AV () <0

possibl
. Y A(e1,62,2) >0

- €1 g2

_ el Al(El,’EQ,IE)<O
P Aj(e1,89,T) > 0/’

A(i) >0 y )

2 (@20, AD(z) <0

' possibly

Fig. 3. Subsets of the state-space related to the sighiond As.

Algorithm 1:

I NPUT: data(F,G,C, D) of the hybrid systen¥{;
constants:, ¢, p € Ryq, With e < ¢ andp > 1;
constantsd;,ds € N, case € {1,2,3} and, if case # 1,
ki € {1,... n}, ko € {k1+1,...,n}.

OUTPUT: feasibility of the sum of squares problem.

VARI ABLES: scalars(;
polynomials V (), 1”“)( ), for eachi in I and k €
{1,...,rr}, s;"‘”( ) for eachi in Ip andk € {1,...,rg},
s3(x), sa(z), ands( (z), st (z), for eachi in ID, and all
the slack polynomials.

CONSTRAI NTS: let V(z) be a polynomial of degreé..
Let ¢ be a scalar variable.

o Viels, Vke{l,...,rp}, let s(”c () be a polynomial
of degreed;

ov i ik
%(ac)Flkw - Ag )(1’) - sg *) (2)A1(c, pc,z) >0
s&ik) (x) >

(11)

o Vielp,Vke{l,...,ra}, let s(““)( ) be a polynomial

of degreed;

V(Girx) — - Ag) () — sgk) ()Aq (e, pc,x) >0

séik) () >0
(12)

V(x)

e Assumec + 3¢ < pc. Let s3(z), sa(x), sé k)(x) and
sé”“) (z) be polynomials of degreé,

L=V (z) —s3(x)A1(c,c+e,2) >0
V(z) =€ — sa(x)A1(c+2e,¢+ 3e,2) —q(z) >0
£>0
s3(x), sa(x) =2 0
ViEID,Vl{JE{l,...,Tg},
-V (z)— sgk) (z)(c* — /Gl Gix) — Ag) (x)+

—s¢ () A1 (e, pe,z) > 0
s (@), 55" (2) > 0

(13)
e ¢(z) satisfies the following inequalities:
if case =1 >G>0
if =2 P =
case 2qk1k2 + le kl + qkzkz > 0
- V@E{ln} qii <0
if = v
case 3 _2q]€1k2 + ke ky + Qkoko >0
(14)

e Each use ofone®(z) in inequalities (11),(12) and (13)
requires anew freshset of slack polynomials. Moreover for
each slack polynomial, sgy(x), a new constrainp(z) > 0

is added.

Remark 5:The last bullet of Algorithm 1 requwes a
new set of slack polynomials for each usemf . For
example, slack polynomials af! )( ) used in an mequality
that involvesGig, in (12) must not be confused with slack
polynomials ofAél) (z) used in an inequality that involves
Gik2 in (12), with k1 7é ko. J

Remark 6: Despite the number of indices, the algorithm
is much more simple in practical cases. For example, if
differential equations replace differential inclusiofas, each
cone, therk = 1 in (11) and (12). J

Each inequality of Algorithm 1 can be divided into two
parts: the first part defines some constraints/owhile the
second part used, As andq to guarantee the satisfaction
of such constraints only in a specific subsefRéf. Suppose
now to run Algorithm 1 and to find a feasible solution to
the set of inequalities constructed by Algorithm 1, for some
hybrid systen?{ and for some selection of parameteuse,
k1 and ko. Then, the set of inequalities of Algorithm 1
guarantees the following propertie@) By (11) and (12),
the derivative ofV(x) is positive, for eache € C and
each f € F(z) such thate < |z| < pe. The difference
V(g)—V(x) is positive, for eachx € D and eacly € G(x)
such thate < |z| < pe. Inequalities (11) and (12) are related
to Conditions (3) and (4) of Theorem i) By (14), ¢(x)
is not a non-positive function. To see this, note thaliis




a necessary condition for negative semi-definitenes§) .of
(i) The first inequality of (13) guarantees the(z) < ¢ ‘ /
for eache < |z| < ¢+ e. Thus, it is related to Condition [ ) L ,
(1) of Theorem 2. The second inequality of (13) guarantees ™ [°¢\® = o = o /09 = 2o =% ) j
that Vi(x) > ¢ for somec + 2¢ < |z| < ¢+ 3e. Then, N\ N
V(z) = £ in at least one point ot + ¢ < |z| < ¢ + 2e.
Thus, it is related to Condition (2) of Theorem (&) If the
systemH jumps from a state: in {z|c < |z] < pc} to
a stateg in {z||z| < ¢}, then the penultimate inequality of
(13) guarantees thaf(z) < ¢. Therefore, the system cannot
jump from the set{z |V (x) > ¢} N {c < |z| < pc} to the
set{x ||z| < c}. Thus, that inequality is related to Condition
(5) of Theorem 2. It follows that a feasible solution to the
set of constraints above produces a funcfidthat satisfies
Conditions (1)-(5) of Theorem 2.

Proposition 1: For any given hybrid systeri{ defined
by Equations (1),(4)-(8), if(i) the set of inequalities of
Algorithm 1 has a feasible solution for some parameters
¢ € Rog, p € R, p > 1 and (case, k1, k2), and (i) each
solution fromU = {z € CUD |V (z) > ¢, ¢ < |z| < pc} is
non trivial, whereV is the function constructed by Algorithm
1, then the conditions of Theorem 2 are satisfied with theig. 4. Level sets greater or equal thaof the functionV' (z) constructed

not negative semi-definite, then there exists a conic suifset // —
R™ such thaty(«) > 0. And so, inequalities (14) each break j

© A\=2,p=23 d) A\ =4, p=32

samec and p. by Algorithm 1, Example [lI-C. Note that the system is gldpapre-
. : : asymptotically stable for, = 0.5 and for A, = 1 while it is unstable
Proof: See appendix, Section A.4. B () —2andfor\, —4

The following modification to Algorithm 1 guarantees that
the functionV (z) is greater than a costaéit> ¢ for each

point z such thatlz| = pc, as required by Corollary 1. For g,chy conditions of” can be relaxed by requiring that both

instance, replace the second inequality of (13) with directional derivative and increment & are positive only
V(x) — T — s7(z)Ar (pe — &, pe, ) > 0 in a suitable subset dR™. It follows that Algorithm 1 is
Z conservative. .
0>/ (15)
s7(x) >0 C. Example
and delete (14). Then, the following proposition hold. Let us consider the following hybrid system
Proposition 2: For any given hybrid systeri{ defined by
Equations (1),(4)-(8), withC' U D = R™ if (i) the modified i = |0 1 ] v zeC
set of inequalities of Algorithm 1 has a feasible solution fo H = -1 1)‘"
some parameterse R>o, p € R, p > 1 and (case, k1, k2), T = [ 0 3 ] z zeD
and (i) each solution fromlU = {z € C U D|V(x) > 0 0

¢, c < |z| < pc} is non trivial, whereV is the function
constructed by Algorithm 1, then the conditions of Corallar
1 are satisfied with the sameand p.

Proof: Inequality (15) can be written ag(z) > ¢ + o {zl { -1 0 } 2> 0 o { 1 0 ] . 0}
o - 0 -1 -
1

where )\, € R is a parameter and’ and D are defined as
follows

s7(x)Aq (pe — €, pe, z) from which V(z) > ¢ > ¢, for each 0 1

pc — e < |z| < pe. Thereforemin,—,. V(z) > ¢ > ¢, that 1 0 _ 0

satisfies Condition (7) of Corollary. [ | D = {$| { 0 1 ] x> 0or [ 0 1 ] x> 0} .
Remark 7:According to Theorem 3, Algorithm 1 still

works if we replace — V(x) — s3(x)A1(c,c+¢e,2) > 0in  We increase\, progressively so that the continuous dynam-

(13) with/—V (z) —s3(x)((c+e)?>—zTz) > 0 and we delete ics of the hybrid system is characterized (i) by an asymgtoti

the fifth inequality in (13). Note that this approach fordes t stable system, (ii) by a stable system and (iii) by an unstabl

function V' to be lower thart for |z| < ¢, while Algorithm  system. We use Algorithm 1 to estimate the overshod{of

1 leavesV practically unconstrained near the origin. In factFor instance, we stud§{ for increasing values o, and,

fifth inequality in (13) enforces a condition oW only if  for each),, we run several times Algorithm 1 (far= 0.5

some jumpg € G(z), |g| < c frome < |z| < pc occurs. 5 andd, = 10) looking for the greatest values pffor which
Remark 8:By (11), (12), Algorithm 1 searches for athe set of constraints is still feasible. Some level setshef t

function V' whose directional derivative and increment ardunction V' (x) constructed by Algorithm 1 are summarized

both positive inc < |z| < pe. According to Theorem 2, in Figure 4.



IV. NOTES ON SUM OF SQUARES IMPLEMENTATION such that¢ remains inU for all (¢,j) € dom¢. Suppose

The problem of finding a solution to the set of inequalitieg!so thatV(£(0,0)) = a, for somea € Rso. Then, by
of each algorithm is addressed by replacing each inequal§@nditions (1) and (2) of the theorer,(¢(¢,j)) > a for
with a sum-of-squares decomposition. In fact, the leftechan€ach(t,j) € dom¢, and the sefz € U[V(z) > a} is a
side of each inequality involving polynomials is a polyno-compact subset off. By the compactness of such set and
mial, say p(z). It follows that inequalitiesp(z) > 0 can Claim 1, we can say that there exigt, 7> € R, such that
be replaced byp(z) is a sum-of-squaresand each strict (VV(2), f) > m, for eachz € CN{z € U[V(z) > a}
inequality p(z) > 0 can be considered as a non-stric@Nd €achf € F(z), and V(g) — V(z) > 7, for each
inequality of the formp(z) — ezx > 0, with ¢ > 0 variable ¢ € D N {z € U|V(z) > a} and eachg € G(z).
of the problem, then replaced byz) — e2”z is a sum-of- BY Condition (3), it follows that, for eaclft, j) € dom¢,
squares V(&(t, 7)) = a+~(+ ), wherey = min{~v;,v2}. Then,

Note that, even though (i) polynomial inequalities conbY the fact that” has a maximum oz € U |V (z) > a},
structed by each algorithm are linear with respect to thg cannot stay forever in such compact set. _
set of variables and (i) a sum of squares decompositid®y (1) and (2) of the theoreng, cannot leavé/ by flowing
problem can be solved in polynomial time, the computation@cross{z € R"|V(z) = 0} or by jumping to {z €
complexity of finding a solution to the set of inequalitiesR” |[V(z) < 0,[z] <1}, thergfore_ it leaved/ by flowing
grows rapidly with the dimension of the state-spacetf across{z € U ||xz| = r} or by jumping to{z € CUD | [x| >
with the degree of free polynomials used in the set of}- Because this happens for pointsarbitrarily close to0,
inequalities, with the number of disjoint cones 6fu D, e iS unstable. u
and with the number of matrices;,, Gy The following lemma will be used in the proof of Theorem

Itis worth to mention that a sum-of-squares decompositiop and of Corollary 1.
is satisfied within the limits of numerical computation,fi®e | emma 1:Consider a hybrid systen#{ of Equations
fore it cannot be exact. We need that, despite the numeriqal (4)-(8) and supposg is a solution to¥. Then, for each
approximation errors, the polynomials constructed by sém g, ¢ R_ "¢ is a solution to?L.
squares decomposition are still a feasible solution to #te s Proof: By (4), (5), for each(t, j) € dom¢, if £(t, ) €

ofneduails & oloning 15 such Qo can e ache ) 1. for somel T o somel I hena1.) ¢
_ (4) ' i
magnitude that depends on the numerical approximatio ier 1. By this fact and by Equations (6), (7) and (8), we

errors of the decomposition (residuals). For instance, the n say that
sum of squares decomposition problem of a polynoma)
is rewritten by YALMIP [14] as a SDP problem. The dat
of such formulation are stored in two matrices and b.

A solution P is computed by running the solver SeDuMi;,, . . - S

[25]. Then, the decomposition jgz) = v(z)' Pv(x), where £(t7) € .F(E(t’]))’ for almost allt € [£,7], thenA{(t, 7) €
. . : F(NE(t, 7)), for almost allt € [t, £].

v(z) is a base of monomials. Using [15, Theorem 4], 'flt follows that \¢ is a solution toX -

the test Amin (P) > M| A(P) —b ||, is verified, we have o

that v(z)’ Pu(z) is non-negative, that is, each inequality is 2) Proof of Theorem 2.By the continuity ofV" and from

certified. assumptions (1) and (2) of Theorem 2, we have that

is not empty andV (x) = ¢ for some pointz € C U D
V. CONCLUSIONS such thate < |z| < ¢+ ¢. Let ¢ be a solution toH with
We have shown a set of local conditions for studyingnitial condition£(0,0) € U. Conditions (3)-(6) of Theorem
solutions of a class of homogeneous hybrid systems in Zguarantee thag must leaveU in finite time (this can be
neighborhood of the point, = 0. Such conditions can shown by following the argument of the proof of Theorem 1).
be used also to study the instability of = 0. Based on Consider a solutiod to # with initial condition£(0,0) € U.
such results we proposed a sum of squares algorithm By Condition (3), such solution cannot leale by flowing
automatically fulfills such conditions. As a future work, itacross{z € R™|V(z) = ¢}, by Condition (4), it cannot
could be interesting to design an algorithm based on relaxéghve U by jumping to{z € R" |V (z) < ¢,¢ < |z| < pc}
condition on derivative and on increment of Algorithmand, by Condition (5)§ cannot jump to{z € R" [ [z| < c}.
1. In fact, according to Theorem 2, such conditions ar follows that¢ leavesU by flowing acrosgz € R™ | |z| =

for each(t,j) € dom¢ such that(t,j + 1) € domé,
asupposeg(t,j + 1) € G((t, 7). Then, Xé(t,5 + 1) €
GOE(t,J)); )
- for eacht,t € R>g such that[t, ] x {j} C dom¢. if

conservative. pc} or by jumping to{z € R™ | |z| > pc}.
Consider now a solutior¢ to H with initial condition
APPENDIX £(0,0) € U and, by (2),1£(0,0)] = ¢ + . Such solution
A. Overshoots and instability proofs. leavesU in finite time, that is,|¢(T, J)| > pc, for some
1) Proof of Theorem 1.From the assumptions of Theo- (T, J) € dom¢. Therefore, by Lemma 1, the result of the
rem 1, we have that for ea¢h> 0, U NéB + ) therefore by theorem follows. L
continuity of V(z) in CUD, x. belongs to the border df. 3) Proof of Corollary 1.: As stated in Theorem 2, each

Let ¢ be a solution tagH with initial condition£(0,0) € U.  solution £ to H leavesU in finite time. Note that, by
By conditions (1), (2) and (3) of the theoreghmust leave Condition (7), each point € C U D with |z| = pc belongs
U. In fact, suppose that there existswith £(0,0) € U to U. This implies that the set/ surrounds the origin,



therefore if a solutior¢ leavesU, it cannot go back to the z € R, ¢ < |z| < pc and eachy € G(x), as required by

set{z |z € (CUD),xz < pc} any more.
By the continuity ofl” and by Conditions (1) and (7), we can(6)
find two constantg,, /> € R such thatmin,—,. V(z) = £a,

¢ <ty <tlyandtheset; = {x € CUD|V(x) = {1, |z| <

pc} surrounds the origin. It follows that (i) by continuity
of V and by Conditions (1) and (7}/; is a subset ofJ,

so that solutiong to H with £(0,0) € U; escapedJ in
finite time by flowing or jumping to{z € R™||z| > pc},
and (ii) by Conditions (3)-(6) and by Lemma 1 we can use
pieces of solutions t@¢{ from U; to {x € R™||z| > pc} to
construct a solutiog to H that grows unbounded. Indeed,
inductively, consider a solutioy to H with initial condition
€i(0,0) € Uy, wherei is a positive integer (an index). Such 5
solution enters the sdtc € R™ | |z| > pc} in finite time, say
(ti,j;) € dom&;. The pointé;(t;,j;) € {z € R™||z| > pc}
can be scaled so that¢;(t;, j;) € Ui, for some); € Rso.
Then, consider a solutio§;1; to H with initial condition
&iv1(tit1,Jiv1) = Ni&(ti, j:). Also such solution enters
the set{z € R"||z| > pc} in finite time. Therefore, by [
using solutionst; with ¢ > 0 we can inductively define an
unbounded solutiog as follows:

(1]

~

(3]

(4

(6]

(7]

Base case: [10]
£(0,0) = &(0,0) 1]
E(tv.]) = £O(taj) V(t,]) € domfo, (tv.]) < (t()vj())' (12]

Inductive case: for each> 0 Hﬂ

(i—1) (i—1) 1
EE+ ) ti+ D> k)= y@-(t,j), [15]
k=0 k=0 t
(i—1) (i—1) [16]
Y(t,j) € dom&, (t+ D tr i+ Y dk) < (ti, i)
k=0 k=0 [17]

& grows unbounded by the fact that each solutfpiibegins

from aU; that is a proper subset ¢f € R" | |z| < pc} and

enters{z € R"||z| > pc} in finite time. Instability ofz, [18]

follows from Lemma 1. [

4) Proof of Proposition 1:V is a polynomial, therefore [19]
it is continuously differentiable.

(1) First inequality of (13) can be rewritten ds- V' (z) > [20]

sg(x)A1(c,c+¢e,x). Thereforel — V(x) > 0 for eache <

|z| < ¢+ ¢, that implies Condition (1) of Theorem 2. 21]

(2) Rewrite the second inequality of (13) &3(x) — ¢ >

sa(z)A1(c + 2e,¢+ 3¢, x) + g(x), thenV(xz) — ¢ > 0 for

c+ 2 < |z|] < ¢+ 3¢ andg(x) > 0. By (14), ¢(z) is [22]

non-negative in a conic subset ®Bf’, thereforeV (z) — ¢ > I
0 in a subset ofc + 2¢ < |z| < ¢ + 3¢, as required by
Condition (2) of Theorem 2. In fact, denotg,;, ) and
£(Thm.2) respectively the constantsof Algorithm 1 and of
Theorem 2, thelv” satisfies Condition (2) of Theorem 2 with
E(Thm.2) = 2€(Alg.1)

(3,4) (11) and (12) imply conditions (3) and (4) of Theorem
2, respectively.

(5) The fifth inequality of (13) can be interpreted &s-
V(z) > s (2)(c® — 2'G, Girx) for eachz € R®) and

¢ < |z| < pe, wherei € Ip. Therefore! — V(z) > 0 if
c—g >0, for eachz € R¥, ¢ < |z| < pc and each
g € G(x). By negation, if’(x) > ¢ thenc—g < 0, for each

[24]
[25]

[26]

[27]

(28]

9] R. Goebel, R. Sanfelice, and A. Teel.

Condition (5) of Theorem 2.

Condition (6) is (ii) of Proposition 1 |
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