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Abstract— For a class of homogeneous hybrid systems we
present a generalization to the hybrid systems framework of
Chetaev’s theorem and we propose a set of local Lyapunov-
like conditions for studying instability of the point xe = 0
and overshoots of solutions (namely when the norm of the
solution vector x at some time instant exceeds the norm of
the initial condition of x). Based on these results, we design a
sum of squares algorithm that constructs a suitable function to
automatically fulfill such local conditions.

I. I NTRODUCTION

Hybrid systems combine continuous processes whose
dynamics depends on differential equations, and discrete
processes whose behavior depends on a specific transition re-
lation. A mass subject to Coulomb friction, robots controlled
by a finite state machine, electrical circuits that combine
analog and digital components, are all examples of systems
that combine continuous and discrete processes and that
can be conveniently characterized within the hybrid systems
framework.

Several models of hybrid systems can be found in the lit-
erature, [5], [7], [11], [16]. Here we consider the framework
outlined in [8] for which several structural results have been
developed [10], [23], [24] and partially summarized in [9].
Although several new phenomena arise from the interaction
of continuous and discrete dynamics, important results on
stability theory like Lyapunov-like tools, invariance princi-
ples and converse theorems, have been generalized to the
hybrid systems framework, [1], [2], [3], [6], [10], [23].

Here we propose a “local” Lyapunov-like approach to
the study of properties of solutions to a particular class of
homogeneous hybrid systems [28] in the neighborhood of
the pointxe = 0. We analyze the following cases:

1) Solutions that do not satisfy the classical(δ, ε)-
argument of stability concepts, that is, solutionsξ for
which there exists aε ∈ R>0 and a setU ⊂ R

n,
xe ∈ U , such that for eachδ ∈ R>0, if ξ(0, 0) ∈ U∩δB
then, for some(T, J) ∈ dom ξ, ξ(T, J) /∈ εB, no
matter how smallδ is.

2) Solutions that grows unbounded from a suitable subset
of the state-space, that is, solutionsξ such that for any
given ε ∈ R>0, there exists a setU ⊂ R

n, xe ∈ U ,
such that for eachδ ∈ R>0 if ξ(0, 0) ∈ U ∩ δB then,
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for some (T, J) ∈ dom ξ, ξ(T, J) /∈ εB, no matter
how big ε is.

3) Solutions that grows by a factorρ > 1, that is,
solutions ξ for which there exists a setU ⊂ R

n

and such that ifξ(0, 0) in U then then|ξ(T, J)| >
ρ|ξ(0, 0)|. Such behavior is denoted asovershoot.

Point 1 is analyzed by proposing a Chetaev-like theorem [12,
Theorem 4.3] generalized to the hybrid systems framework.
Points 2 and 3 are addressed by following a Lyapunov-like
approach, that is, by defining a set of conditions whose
satisfaction, in a suitable subset of the state-space, guarantees
2 or 3. Based on such results, we propose two sum of
squares algorithms [19] that construct a suitable functionto
automatically fulfils such conditions.

The use of sum of squares algorithms in control and, in
particular, the use of sum of squares algorithms to construct
Lyapunov functions, is well developed. See for example [17],
[21], [26], [27], [18]. A study of solutions behavior with
sum of squares, not related to stability problems, can be
found in [20], where safety problems are taken into account
(namely problems in which solutionsmust not entera given
subset of the state space or theymust reachsome particular
subset of the state space). A similar approach based on
approximations of solutions with polyhedra is proposed in
[4]. Here we propose an approach to study the behavior of
solutions in the neighborhood of the pointxe = 0. Based on
such analysis, if some solution either satisfies 1 or satisfies 2
thenxe is unstable. Intuitively, 3 is related to the properties
of convergence of solutions toxe. Note that overshoots with
a large factorρ do not necessarily indicate instability. They
can be considered as a characterization of the convergence
properties of a given pointxe. Indeed, large overshoots can
be interpreted as a sign of poor performance and the sum of
squares program presented below is a tool to check whether
or not this kind of phenomena occurs.

The work is organized as follows: in Section II, the hybrid
systems framework is briefly introduced and the class of
hybrid system considered is defined. The main theoretical
results, the sum of squares algorithm and an example are
presented in Section III. Further analysis on sum of squares
implementation is developed in Section IV. The conclusion
follows. Proofs are in the Appendix.

Notation: The Euclidean norm of a vector and is denoted by| · |.
A continuous functionα(·) : [0, a) → [0,+∞) is said to belong to
classK if it is strictly increasing andα(0) = 0; it is said to belong
to classK∞ if a = +∞ andlimr→+∞ α(r) = +∞. For any given
setX ⊂ R

n, coX denotes the closed convex hull of points ofX.



II. H YBRID SYSTEM MODEL

We consider a model of hybrid systems given by the tuple
(C,F,D,G), whereC ⊆ R

n andD ⊆ R
n are, respectively,

the flow set and the jump set, while F : R
n ⇉ R

n and
G : Rn ⇉ R

n are set-valued mappings, respectively, theflow
mapand thejump map. F andG characterize the continuous
and the discrete evolution of the system, that is, the motion
of the state, whileC and D characterize subsets ofRn

where such evolution may occur. A hybrid systemH can
be conveniently represented as follows

H =

{

ẋ ∈ F (x) x ∈ C
x+∈ G(x) x ∈ D.

(1)

Intuitively, the evolution of the state either continuously
flows throughC, by following the dynamic given byF ,
or it jumps from D, according toG. Such alternation of
jumps and flow intervals can be conveniently characterized
by using a generalized notion of time, calledhybrid time. In
what follows, we recall the notions of hybrid time and of
solution to a hybrid system. For details, see [8], [9], [10].

Definition 1: A setE ⊆ R≥0×N is ahybrid time domain
if it is the union of infinitely many intervals of the form
[tj , tj+1]×{j} where0 = t0 ≤ t1 ≤ t2 ≤, . . . , or of finitely
many such intervals, with the last one possibly of the form
[tj , tj+1]× {j}, [tj , tj+1)× {j}, or [tj ,∞]× {j}.

Definition 2: A hybrid arc x is a mapx : domx → R
n

such that (i)domx is a hybrid time domain, and (ii) for each
j, the functiont 7→ x(t, j) is a locally absolutely continuous
function on the intervalIj = {t : (t, j) ∈ domx}.
A hybrid arc x : domx → R

n is a solution to the hybrid
systemH if x(0, 0) ∈ C ∪D and
(i) for eachj ∈ N such thatIj has a nonempty interior,

ẋ(t, j) ∈ F (x(t, j)) for almost allt ∈ Ij
x(t, j) ∈ C for all t ∈ [min Ij , sup Ij);

(2)

(ii) for each (t, j) ∈ domx such that(t, j + 1) ∈ domx,

x(t, j + 1) ∈ G(x(t, j))
x(t, j) ∈ D.

(3)

A solution ξ to a hybrid systemH is nontrivial if dom ξ
contains at least one point different from(0, 0); maximal
if it cannot be extended, that is, there are no solutionsξ′

to H such thatdom ξ is a proper subset ofdom ξ′ and
ξ′(t, j) = ξ(t, j) for each(t, j) ∈ dom ξ; completeif dom ξ
is unbounded.

In what follows we consider a particular class of hybrid
systems in which flow set and jump set are defined as the
union of closed polyhedral cones, and flow map and jump
map are defined, respectively, as the convex hull and the
union of several linear vector fields. For instance, leti be an
index number inN, and letR(i) be a closed set defined as
follows

R(i) =







x |





m
(i)
1

. . .

m
(i)

r(i)



x ≥ 0







(4)

wherer(i) belongs toN andm
(i)
j ∈ R

1×n is a row vector,
for eachj = 1, . . . , r(i). Then,C andD can be defined as

C =
⋃

i∈IC

R(i) D =
⋃

i∈ID

R(i) (5)

where IC , ID are disjoint and finite index sets. Note that
C andD can overlap. Note also that it is possible to have
C ∪D 6= R

n.
In a similar way, consider set-valued mappingsFi : R

n ⇉

R
n, for i ∈ IC , andGi : R

n ⇉ R
n, for i ∈ ID, defined as

as follows. For eachi ∈ IC , Fi(x) is a convex and closed
set defined by

Fi(x) =

{

co{f | f = Fikx for k = 1 . . . rF } if x ∈ R(i)

∅ otherwise
(6)

whereFik ∈ R
n×n andrF ∈ N. For eachi ∈ ID, Gi(x) is

a set defined by

Gi(x) =

{

{g | g = Gikx for k = 1 . . . rG} if x ∈ R(i)

∅ otherwise
(7)

where Gik ∈ R
n×n and rG ∈ N. Then, flow and jump

mappings,F : Rn ⇉ R
n andG : Rn ⇉ R

n, can be defined
as

F (x) = co
⋃

i∈IC

Fi(x) G(x) =
⋃

i∈ID

Gi(x) (8)

Note thatF (x) reduces toFi(x) when x belongs only to
one coneR(i), for somei ∈ IC . The same holds forG(x).

Hybrid systems of the form (1),(4)-(8) satisfy the follow-
ing basic conditions. Such conditions coincide with thebasic
assumptionsof [9] and with the fundamental conditions of
[10] (the proof of Claim 1 is omitted for lack of space).

Claim 1 (Basic Conditions):A hybrid systemH of Equa-
tions (1),(4)-(8) satisfies the following properties:

1) C ⊆ R
n andD ⊆ R

n are closed sets inRn.
2) F : Rn ⇉ R

n is an outer semicontinuous set-valued
mapping, locally bounded onC and, for eachx ∈ C,
F (x) is nonempty and convex.

3) G : Rn ⇉ R
n is an outer semicontinuous set-valued

mapping, locally bounded onD and, for eachx ∈ D,
G(x) is nonempty.

Proof: C and D are finite union of closed sets.
Boundedness ofF andG follows from the fact that they are
constructed from linear vector fields. Convexity ofF (x), for
eachx ∈ C, follows from the use of the convex-hull operator.
Finally, outer semicontinuity ofF follows from the fact that
its graph is closed. Thus, by [22, Theorem 5.7]F is outer
semicontinuous. Analogously forG.

Remark 1:Hybrid systems that satisfy the conditions of
Claim 1 exhibit a sort of regularity of solutions that leads to
several important results. For example, for such systems, we
have sequential compactness of the space of solutions holds,
[10, Theorem 4.4 and Lemma 4.3] and outer semicontinuous
dependence of solutions on initial conditions, [9, Theorem5]
and [10, Corollary 4.8]. Regularity of solutions has effects
also on stability theory. See [10], [23] y

Remark 2:Switched linear systems with state dependent
switching policies, [13, Sections 3.3 and 3.4], and switched
linear systems under arbitrary switching policies, [13, Sec-
tion 2.1.4], can be characterized within the family of hybrid
systems considered above. For example, for the case [13,
Sections 3.3 and 3.4], consider the system

ẋ = Aix if x ∈ Ci, i = 1, . . . , N.



whereN ∈ N and, for eachi = 1, . . . , N , Ai ∈ R
n×n

andCi is a conic subset ofRn. Such systems can be easily
defined within the class of hybrid systems considered above,
by definingFi(x) = Aix if x ∈ Ci andFi(x) = ∅ otherwise,
for eachi = 1, . . . , N . y

Finally, following [9], for a hybrid systemH, the point
xe = 0 is (i) stable if for each ǫ > 0 there existsδ > 0
such that any solutionx to H with |x(0, 0)| ≤ δ satisfies
|x(t, j)| ≤ ǫ for all (t, j) ∈ domx; (ii) pre-attractiveif there
existsδ > 0 such that any solutionx to H with |x(0, 0)| ≤
δ is bounded andx(t, j) → 0 as t + j → 0 wheneverx
is complete; (iii)pre-asymptotically stableif it is both pre-
stable and pre-attractive. By assumingR

n\(C∪D) ⊆ Bxe
, if

the basin of pre-attractionBxe
= R

n thenxe is globally pre-
asymptotically stable. In such case we say that the system is
globally pre-asymptotically stable. Finally, we say thatxe is
unstableif it is not stable.

III. OVERSHOOTS AND INSTABILITY

A. Main results

The following theorem is a generalization of Chetaev’s
Theorem [12, Theorem 4.3] to hybrid systems of Equations
(1). Thus, it can be used to characterize theinstability of
xe = 0 and it is related toCase 1of the introduction.

Theorem 1:(Chetaev-like theorem) Consider a hybrid
systemH of Equation (1) that satisfies 1), 2) and 3) of Claim
1, and definexe = 0. Let V : Rn → R be a continuously
differentiable function inC∪D. Chooser ∈ R>0 and define
U = {x ∈ C ∪ D |V (x) > 0, |x| ≤ r}. Suppose that for
eachδ > 0, U ∩ δB 6= ∅ and that

1) 〈∇V (x), f〉 > 0 ∀x ∈ C ∩ U, ∀f ∈ F (x);
2) V (g)− V (x) > 0 ∀x ∈ D ∩ U, ∀g ∈ G(x);
3) Each maximal solutionξ to H with initial condition

ξ(0, 0) ∈ U is nontrivial.
Thenxe is unstable.

Proof: By using nontriviality of solutions, the argument
of the proof of Theorem 1 can be developed as in the proof
of [12, Theorem 4.3]. See appendix, Section A.1, for details.

Remark 3: If C ∪ D = R
n then each solution toH is

nontrivial. In such a case, condition 3) of Theorem 1 is au-
tomatically satisfied. In general, local existence of a solution
from each point ofU can be satisfying the conditions in
[10, Proposition 2.4]. Note that Theorem 1 is not restricted
to hybrid systems of Equations (1),(4)-(8) and it applies to
general hybrid systems (1) that satisfy 1), 2) and 3) of Claim
1. y

The following theorem defines a set of Lyapunov-like
conditions for studying overshoots of solutions to hybrid
systems of Equations (1),(4)-(8). The theorem is parame-
terized with respect toc > 0 andρ > 1, that define the set
{x | c ≤ |x| ≤ ρc} in which the conditions must be satisfied,
and it guarantees that at least one solutionξ to H with initial
condition in c ≤ |ξ(0, 0)| ≤ c + ε grows to |ξ(T, J)| ≥ ρc,
for some given(T, J) ∈ dom ξ. Theorem 2 is related toCase
3 of the introduction.

Theorem 2:Consider a hybrid systemH of Equations
(1),(4)-(8). LetV : Rn → R be a continuously differentiable
function such that for someℓ ∈ R>0, c ∈ R≥0

(1) max|x|=c V (x) ≤ ℓ;
(2) for a smallε ∈ R>0 and for somex ∈ C ∪D, |x| =

c+ ε andV (x) > ℓ

Chooseρ ∈ R>1 such thatρc > c+ ε, and defineU = {x ∈
C ∪D |V (x) > ℓ, c ≤ |x| ≤ ρc}. Suppose

(3) 〈∇V (x), f〉 > 0 ∀x ∈ C ∩ U, ∀f ∈ F (x);
(4) V (g)− V (x) > 0 ∀x ∈ D ∩ U, ∀g ∈ G(x);
(5) |g| > c ∀x ∈ D ∩ U, ∀g ∈ G(x);
(6) Each maximal solutionξ to H with initial condition

ξ(0, 0) ∈ U is nontrivial.
Then, for eachλ ∈ R>0, there exists a solutionξ to H such
that if |ξ(0, 0)| = λ(c + ε) then |ξ(T, J)| ≥ λρc, for some
(T, J) ∈ dom ξ.

Proof: See section A.2
The meaning of the conditions of the theorem above can

be explained by looking at Figure 1, where we considered
the case of a planar hybrid system for which the conditions
of Theorem 2 are satisfied. Conditions (1) and (2) guarantee
that the level setℓ of V is close to the circle of radiusc,
while conditions (3)-(6) guarantee that no solution can stay
forever in the intersection of the grey colored set of Figure
1 with c ≤ |x| ≤ ρc. Note that, despite the conditions of the
theorem are local, parameterized withc andρ, the conclusion
defines an entire subspace of initial conditions from which
the solutions grow of a factorρ

x2

x1

C

D

C

D

ℓ1

ℓ2

cρc

V ≥ ℓ

ξ

Fig. 1. A function V that satisfies the conditions of Theorem 2, for a
planar hybrid system.

By adding a simple condition to Theorem 2 it is possible
to characterize the instability ofxe = 0, as stated in the
following corollary. The key point of such condition is
that it guarantees that{x | |x| = ρc} ⊆ {x |V (x) > ℓ}.
Thus, it is possible to show that there exists a solution that
grows unbounded. Corollary 1 is related toCase 2of the
introduction.

Corollary 1: Consider a hybrid systemH of Equations
(1),(4)-(8) and consider a pointxe = 0. Under the hypothesis
of Theorem 2, if conditions (1)-(6) hold and the following
condition is satisfied

(7) min|x|=ρc V (x) > ℓ,
thenxe is unstable.

Proof: See section A.3



Remark 4: It is important to mention that Theorems 1 and
2 are conservative. In fact, both overshoot of solutions to a
hybrid systemH and instability properties ofxe = 0 are the
results of the “behavior” ofone solution toH only, while
Theorem 1 and Theorem 2 require a particular “behavior” for
anentire setof solutions. For instance, consider the following
system withx ∈ R

2 defined asx = [x1 x2 ]
T .

H =

{

ẋ = x x ∈ {x |x1 ≥ 0, x2 = 0}
x+= 0 x ∈ R

2.

In this case, for any givenδ > 0, the hybrid arcξ1(t, 0) =
[ δet 0 ]T , for eacht ∈ R≥0, is a solution toH from the
initial condition [ δ 0 ]T . Thus,xe is unstable. Despite the
instability ofxe, Theorem 1 does not apply. In fact, consider
any given initial conditionx0 ∈ R

2, then the hybrid arc
ξ2(0, 0) = x0, ξ2(0, j) = 0, for eachj ∈ Z, j > 0, is a
solution toH. Thus, Condition (2) of Theorem 1 cannot be
satisfied. y

Theorem 3:Consider a hybrid systemH of Equations
(1),(4)-(8). Under the hypothesis of Theorem 2, if Conditions
(2)-(4), (6) of Theorem 2 are satisfied and Condition (1)
is replaced bymax|x|≤c V (x) ≤ ℓ, then the conclusion
of Theorem 2 still holds. Moreover, if Condition (7) of
Corollary 1 is also verified, than the conclusion of Corollary
1 still holds.

Proof: The proof can be developed by following an
argument similar to the one in Section A.2. In fact, by
max|x|≤c V (x) ≤ ℓ, each jump fromx ∈ U to some
g ∈ G(x), with |g| < c, would fall in {x |V (x) ≤ ℓ}, that
is forbidden by Condition (3) of Theorem 2.

B. Sum of squares algorithms

Under the assumptionC ∪ D = R
n, we can use the

following algorithms to find functionsV that fulfill the
conditions of Theorem 2. Then, we will use one of such
algorithms to construct functionsV that fulfill also the
conditions of Corollary 1.

Algorithm 1 is defined by a set of inequalities parame-
terized with respect to parameters:(case, k1, k2). A solution
to the set of inequalities is then computed by relaxing the
satisfaction problem of such inequalities to a sum of squares
decomposition problem. Then, if asolution is found, the
algorithm ends. Otherwise, the algorithm runs on a new
set of inequalities, constructed on a different selection of
(case, k1, k2), until each possible case of(case, k1, k2) have
been considered. In fact, by using a a parameterization with
(case, k1, k2), a non-convex search problem is reduced to
several convex problems, suitable for sum-of-squares imple-
mentation. Therefore, by running Algorithm 1 several times,
each of which on a different set of parameters, we explore
a non-convex search-space, searching for a functionV that
fullfills the conditions of Theorem 2. At each run:

(i) the input of the algorithm is filled by the data of the
hybrid systemH, by some parametersε, c, ρ, d1 and
d2, and by a selection of(case, k1, k2), as stated in
sectionINPUT.

(ii) A set of inequalities is then constructed, as stated in
sectionCONSTRAINTS. Each inequality uses variables
defined inVARIABLES.

(iii) A semidefinite program solver runs over such in-
equalities. A solution is computed by relaxing the
satisfiability problem of the whole set of inequalities
to a sum of squares decomposition problem. The sum
of squares decomposition problem is then solved by
using a semidefinite program solver.

(iv) If the solver finds a solution, the set of constraints is
feasible and algorithm 1 has a positive output, as stated
in OUTPUT.

The algorithm is based on the following polynomialq(x)

Definition 3: Let Q be a symmetric matrix in R
n×n,

defined as follows.

Q =







q11 . . . q1n
...

. . .
...

qn1 . . . qnn






(9)

Let q(x) be a polynomial defined as follows.

q(x) =
[

q01 . . . q0n
]

x+ x′Qx (10)

whereq0i belongs toR, for eachi ∈ {1, . . . , n}.
By suitable conditions on elements ofQ and on elements of
[q01 . . . q0n], q(x) can be interpreted as a function ofx that
is positive in some subset ofRn. Specifically, the parame-
terization(case, k1, k2) defines some specific conditions on
Q and on[q01 . . . q0n] so thatq(x) is necessarily greater
than zero in some subset ofRn. For example, consider a
planar space and assumeq11 + q22 > 0 andq12 = 0. Then,
q(x) = q01x1 + q02x2 + q11x

2
1 + q22x

2
2 is positive in a conic

subset ofR2. An example is summarized in Figure 2.

x1 − x2 ≥ 0

x
2

1
− 0.5x

2

2
≥ 0

1

√
2 x1

x2

x
2

1
− 0.5x

2

2
≥ 0

Fig. 2. Supposeq(x) = x1 − x2 + x2
1
− 0.5x2

2
, then the intersection

of {x | x1 − x2 ≥ 0} with {x |x2
1 − 0.5x2

2 ≥ 0} is a conic subset of
{x | q(x) ≥ 0}.

Also the following quantities are used in the algorithm.
Definition 4: For any giveni ∈ IC ∪ ID, the function

∆
(i)
2 (x) : Rn → R is defined as follows

∆
(i)
2 (x) =

r(i)
∑

j=1

pj(x)m
(i)
j x+

r(i)
∑

j=1

r(i)
∑

k=j+1

pjk(x)m
(i)
j xm

(i)
k x

+

r(i)
∑

j=1

r(i)
∑

k=j+1

r(i)
∑

h=k+1

pjkh(x)m
(i)
j xm

(i)
k xm

(i)
h x

+ . . . + p1,2,...,r(x)m1xm2x · . . . ·mr(i)x

where, for any given combination of indicesj,k,. . . ,
pj , pjk, . . . denote functions inRn → R≥0, defined by non-
negative polynomials of a given degree. We refer to the



whole set of polynomialspj, pjk, . . . by using the nameslack
polynomials.

Definition 5: Let ε1, ε2 ∈ R≥0 be two constants and let
∆1(ε1, ε2, ·) : Rn → R be a map defined with respect toε1
and onε2 as follows:

∆1(ε1, ε2, x) = −(|x|2 − ε21)(|x|
2 − ε22).

Note that, for eachi ∈ IC ∪ ID, ∆(i)
2 (x) is positive for

eachx in R(i) while it is possibly negative forx /∈ R(i),
based on the particular configuration of slack polynomials.
∆1(ε1, ε2, x) is positive forε1 ≤ |x| ≤ ε2, and is strictly
negative otherwise. A planar example of subset ofR

n with
positive∆1 and∆2 is in Figure 3.∆1 and∆2 are used in
Algorithm 1 for relaxing the conditions onV to hold only
in a subset ofRn.

∆
(i)
2 (x) ≥ 0

∆1(ε1, ε2, x) ≥ 0

ε1 ε2 x1

x2

∆1(ε1, ε2, x) ≥ 0

∆
(i)
2 (x) ≥ 0

∆1(ε1, ε2, x)<0

∆
(i)
2 (x) < 0
possibly

∆1(ε1, ε2, x) < 0

R(i)

∆
(i)
2 (x) < 0
possibly

Fig. 3. Subsets of the state-space related to the sign of∆1 and∆2.

Algorithm 1:

INPUT: data〈F,G,C,D〉 of the hybrid systemH;
constantsε, c, ρ ∈ R>0, with ε ≪ c andρ > 1;
constantsd1, d2 ∈ N, case ∈ {1, 2, 3} and, if case 6= 1,
k1 ∈ {1, . . . n}, k2 ∈ {k1+1, . . . , n}.

OUTPUT: feasibility of the sum of squares problem.

VARIABLES: scalarsℓ;
polynomials V (x), s

(ik)
1 (x), for each i in IC and k ∈

{1, . . . , rF }, s(ik)2 (x) for eachi in ID andk ∈ {1, . . . , rG},
s3(x), s4(x), ands(i)5 (x), s(i)6 (x), for eachi in ID, and all
the slack polynomials.

CONSTRAINTS: let V (x) be a polynomial of degreed2.
Let ǫ be a scalar variable.
• ∀i ∈ IC , ∀k ∈ {1, . . . , rF }, let s(ik)1 (x) be a polynomial
of degreed1

∂V

∂x
(x)Fikx−∆

(i)
2 (x) − s

(ik)
1 (x)∆1(c, ρc, x) > 0

s
(ik)
1 (x) ≥ 0

(11)

• ∀i ∈ ID, ∀k ∈ {1, . . . , rG}, let s(ik)2 (x) be a polynomial
of degreed1

V (Gikx)− V (x) −∆
(i)
2 (x)− s

(ik)
2 (x)∆1(c, ρc, x) > 0

s
(ik)
2 (x) ≥ 0

(12)

• Assumec + 3ε < ρc. Let s3(x), s4(x), s
(ik)
5 (x) and

s
(ik)
6 (x) be polynomials of degreed1

ℓ− V (x) − s3(x)∆1(c, c+ ε, x) ≥ 0

V (x) − ℓ− s4(x)∆1(c+ 2ε, c+ 3ε, x)− q(x) ≥ 0

ℓ ≥ 0

s3(x), s4(x) ≥ 0

∀i ∈ ID, ∀k ∈ {1, . . . , rG},

ℓ−V (x)− s
(ik)
5 (x)(c2 − x′G′

ikGikx)−∆
(i)
2 (x)+

−s
(ik)
6 (x)∆1(c, ρc, x) ≥ 0

s
(ik)
5 (x), s

(ik)
6 (x) ≥ 0

(13)

• q(x) satisfies the following inequalities:

if case = 1
∑n

i=1 qii > 0

if case = 2

{

∀i ∈ {1 . . . , n} , qii ≤ 0
2qk1k2 + qk1k1 + qk2k2 > 0

if case = 3

{

∀i ∈ {1 . . . , n} , qii ≤ 0
−2qk1k2 + qk1k1 + qk2k2 > 0

(14)
• Each use ofcone(i)(x) in inequalities (11),(12) and (13)
requires anew freshset of slack polynomials. Moreover for
each slack polynomial, sayp(x), a new constraintp(x) ≥ 0
is added.

Remark 5:The last bullet of Algorithm 1 requires a
new set of slack polynomials for each use of∆

(i)
2 (x). For

example, slack polynomials of∆(i)
2 (x) used in an inequality

that involvesGik1 in (12) must not be confused with slack
polynomials of∆(i)

2 (x) used in an inequality that involves
Gik2 in (12), with k1 6= k2. y

Remark 6:Despite the number of indices, the algorithm
is much more simple in practical cases. For example, if
differential equations replace differential inclusions,for each
cone, thenk = 1 in (11) and (12). y

Each inequality of Algorithm 1 can be divided into two
parts: the first part defines some constraints onV while the
second part uses∆1, ∆2 andq to guarantee the satisfaction
of such constraints only in a specific subset ofR

n. Suppose
now to run Algorithm 1 and to find a feasible solution to
the set of inequalities constructed by Algorithm 1, for some
hybrid systemH and for some selection of parameterscase,
k1 and k2. Then, the set of inequalities of Algorithm 1
guarantees the following properties.(i) By (11) and (12),
the derivative ofV (x) is positive, for eachx ∈ C and
each f ∈ F (x) such thatc ≤ |x| ≤ ρc. The difference
V (g)−V (x) is positive, for eachx ∈ D and eachg ∈ G(x)
such thatc ≤ |x| ≤ ρc. Inequalities (11) and (12) are related
to Conditions (3) and (4) of Theorem 2.(ii) By (14), q(x)
is not a non-positive function. To see this, note that ifQ is



not negative semi-definite, then there exists a conic subsetof
R

n such thatq(x) > 0. And so, inequalities (14) each break
a necessary condition for negative semi-definiteness ofQ.
(iii) The first inequality of (13) guarantees thatV (x) ≤ ℓ
for eachc ≤ |x| ≤ c + ε. Thus, it is related to Condition
(1) of Theorem 2. The second inequality of (13) guarantees
that V (x) > ℓ for some c + 2ε ≤ |x| ≤ c + 3ε. Then,
V (x) = ℓ in at least one point ofc + ε ≤ |x| ≤ c + 2ε.
Thus, it is related to Condition (2) of Theorem 2.(iv) If the
systemH jumps from a statex in {x | c ≤ |x| ≤ ρc} to
a stateg in {x | |x| ≤ c}, then the penultimate inequality of
(13) guarantees thatV (x) ≤ ℓ. Therefore, the system cannot
jump from the set{x |V (x) > ℓ} ∩ {c ≤ |x| ≤ ρc} to the
set{x | |x| < c}. Thus, that inequality is related to Condition
(5) of Theorem 2. It follows that a feasible solution to the
set of constraints above produces a functionV that satisfies
Conditions (1)-(5) of Theorem 2.

Proposition 1: For any given hybrid systemH defined
by Equations (1),(4)-(8), if(i) the set of inequalities of
Algorithm 1 has a feasible solution for some parameters
c ∈ R>0, ρ ∈ R, ρ > 1 and (case, k1, k2), and (ii) each
solution fromU = {x ∈ C ∪D |V (x) > ℓ, c ≤ |x| ≤ ρc} is
non trivial, whereV is the function constructed by Algorithm
1, then the conditions of Theorem 2 are satisfied with the
samec andρ.

Proof: See appendix, Section A.4.
The following modification to Algorithm 1 guarantees that

the functionV (x) is greater than a costantℓ > ℓ for each
point x such that|x| = ρc, as required by Corollary 1. For
instance, replace the second inequality of (13) with

V (x) − ℓ− s7(x)∆1(ρc− ε, ρc, x) ≥ 0

ℓ > ℓ

s7(x) ≥ 0

(15)

and delete (14). Then, the following proposition hold.
Proposition 2: For any given hybrid systemH defined by

Equations (1),(4)-(8), withC ∪ D = R
n if (i) the modified

set of inequalities of Algorithm 1 has a feasible solution for
some parametersc ∈ R≥0, ρ ∈ R, ρ > 1 and (case, k1, k2),
and (ii) each solution fromU = {x ∈ C ∪ D |V (x) >
ℓ, c ≤ |x| ≤ ρc} is non trivial, whereV is the function
constructed by Algorithm 1, then the conditions of Corollary
1 are satisfied with the samec andρ.

Proof: Inequality (15) can be written asV (x) ≥ ℓ +
s7(x)∆1(ρc− ε, ρc, x) from which V (x) ≥ ℓ > ℓ, for each
ρc− ε ≤ |x| ≤ ρc. Therefore,min|x|=ρc V (x) ≥ ℓ > ℓ, that
satisfies Condition (7) of Corollary1.

Remark 7:According to Theorem 3, Algorithm 1 still
works if we replaceℓ− V (x)− s3(x)∆1(c, c+ ε, x) ≥ 0 in
(13) with ℓ−V (x)−s3(x)((c+ε)2−xTx) ≥ 0 and we delete
the fifth inequality in (13). Note that this approach forces the
functionV to be lower thanℓ for |x| ≤ c, while Algorithm
1 leavesV practically unconstrained near the origin. In fact,
fifth inequality in (13) enforces a condition onV only if
some jumpg ∈ G(x), |g| ≤ c from c ≤ |x| ≤ ρc occurs. y

Remark 8:By (11), (12), Algorithm 1 searches for a
function V whose directional derivative and increment are
both positive inc ≤ |x| ≤ ρc. According to Theorem 2,

(a) λr = 0.5, ρ = 1.3 (b) λr = 1, ρ = 1.7

(c) λr = 2, ρ = 2.3 (d) λr = 4, ρ = 3.2

Fig. 4. Level sets greater or equal thanℓ of the functionV (x) constructed
by Algorithm 1, Example III-C. Note that the system is globally pre-
asymptotically stable forλr = 0.5 and for λr = 1 while it is unstable
for λr = 2 and forλr = 4.

such conditions onV can be relaxed by requiring that both
directional derivative and increment ofV are positive only
in a suitable subset ofRn. It follows that Algorithm 1 is
conservative. y

C. Example

Let us consider the following hybrid system

H =















ẋ =

[

0 1
−1 λr

]

x x ∈ C

x+ =

[

0 1
2

0 0

]

x x ∈ D

whereλr ∈ R is a parameter andC andD are defined as
follows

C =

{

x |

[

−1 0
0 1

]

x ≥ 0 or

[

1 0
0 −1

]

x ≥ 0

}

D =

{

x |

[

1 0
0 1

]

x ≥ 0 or

[

−1 0
0 −1

]

x ≥ 0

}

.

We increaseλr progressively so that the continuous dynam-
ics of the hybrid system is characterized (i) by an asymptotic
stable system, (ii) by a stable system and (iii) by an unstable
system. We use Algorithm 1 to estimate the overshoot ofH.
For instance, we studyH for increasing values ofλr and,
for eachλr, we run several times Algorithm 1 (forc = 0.5
andd2 = 10) looking for the greatest values ofρ for which
the set of constraints is still feasible. Some level sets of the
function V (x) constructed by Algorithm 1 are summarized
in Figure 4.



IV. N OTES ON SUM OF SQUARES IMPLEMENTATION

The problem of finding a solution to the set of inequalities
of each algorithm is addressed by replacing each inequality
with a sum-of-squares decomposition. In fact, the left-hand
side of each inequality involving polynomials is a polyno-
mial, say p(x). It follows that inequalitiesp(x) ≥ 0 can
be replaced byp(x) is a sum-of-squaresand each strict
inequality p(x) > 0 can be considered as a non-strict
inequality of the formp(x)− ǫxT x ≥ 0, with ǫ > 0 variable
of the problem, then replaced byp(x) − ǫxTx is a sum-of-
squares.

Note that, even though (i) polynomial inequalities con-
structed by each algorithm are linear with respect to the
set of variables and (ii) a sum of squares decomposition
problem can be solved in polynomial time, the computational
complexity of finding a solution to the set of inequalities
grows rapidly with the dimension of the state-space ofH,
with the degree of free polynomials used in the set of
inequalities, with the number of disjoint cones ofC ∪ D,
and with the number of matricesFik, Gik.

It is worth to mention that a sum-of-squares decomposition
is satisfied within the limits of numerical computation, there-
fore it cannot be exact. We need that, despite the numerical
approximation errors, the polynomials constructed by sum of
squares decomposition are still a feasible solution to the set
of inequalities. By following [15], such goal can be achieved
by considering a perturbed polynomial with a perturbation
magnitude that depends on the numerical approximations
errors of the decomposition (residuals). For instance, the
sum of squares decomposition problem of a polynomialp(x)
is rewritten by YALMIP [14] as a SDP problem. The data
of such formulation are stored in two matricesA and b.
A solution P is computed by running the solver SeDuMi
[25]. Then, the decomposition isp(x) = v(x)′Pv(x), where
v(x) is a base of monomials. Using [15, Theorem 4], if
the test λmin(P ) ≥ M‖ A(P )− b ‖∞ is verified, we have
that v(x)′Pv(x) is non-negative, that is, each inequality is
certified.

V. CONCLUSIONS

We have shown a set of local conditions for studying
solutions of a class of homogeneous hybrid systems in a
neighborhood of the pointxe = 0. Such conditions can
be used also to study the instability ofxe = 0. Based on
such results we proposed a sum of squares algorithm to
automatically fulfills such conditions. As a future work, it
could be interesting to design an algorithm based on relaxed
condition on derivative and on increment of Algorithm
1. In fact, according to Theorem 2, such conditions are
conservative.

APPENDIX

A. Overshoots and instability proofs.

1) Proof of Theorem 1.:From the assumptions of Theo-
rem 1, we have that for eachδ > 0, U ∩δB 6= ∅ therefore by
continuity ofV (x) in C ∪D, xe belongs to the border ofU .
Let ξ be a solution toH with initial condition ξ(0, 0) ∈ U .
By conditions (1), (2) and (3) of the theorem,ξ must leave
U . In fact, suppose that there existsξ with ξ(0, 0) ∈ U

such thatξ remains inU for all (t, j) ∈ dom ξ. Suppose
also thatV (ξ(0, 0)) = a, for somea ∈ R>0. Then, by
conditions (1) and (2) of the theorem,V (ξ(t, j)) ≥ a for
each(t, j) ∈ dom ξ, and the set{x ∈ U |V (x) ≥ a} is a
compact subset ofU . By the compactness of such set and
Claim 1, we can say that there existγ1, γ2 ∈ R>0 such that
〈∇V (x), f〉 > γ1, for eachx ∈ C ∩ {x ∈ U |V (x) ≥ a}
and eachf ∈ F (x), and V (g) − V (x) > γ2, for each
x ∈ D ∩ {x ∈ U |V (x) ≥ a} and eachg ∈ G(x).
By Condition (3), it follows that, for each(t, j) ∈ dom ξ,
V (ξ(t, j)) ≥ a + γ(t + j), whereγ = min{γ1, γ2}. Then,
by the fact thatV has a maximum on{x ∈ U |V (x) ≥ a},
ξ cannot stay forever in such compact set.
By (1) and (2) of the theorem,ξ cannot leaveU by flowing
across{x ∈ R

n |V (x) = 0} or by jumping to {x ∈
R

n |V (x) ≤ 0, |x| ≤ r}, therefore it leavesU by flowing
across{x ∈ U | |x| = r} or by jumping to{x ∈ C∪D | |x| >
r}. Because this happens for pointsx arbitrarily close to0,
xe is unstable. �

The following lemma will be used in the proof of Theorem
2 and of Corollary 1.

Lemma 1:Consider a hybrid systemH of Equations
(1),(4)-(8) and supposeξ is a solution toH. Then, for each
λ ∈ R>0, λξ is a solution toH.

Proof: By (4), (5), for each(t, j) ∈ dom ξ, if ξ(t, j) ∈
⋂

i∈I R
(i), for someI ⊆ ID or someI ⊆ IC , thenλξ(t, j) ∈

⋂

i∈I R
(i). By this fact and by Equations (6), (7) and (8), we

can say that
- for each (t, j) ∈ dom ξ such that(t, j + 1) ∈ dom ξ,
supposeξ(t, j + 1) ∈ G(ξ(t, j)). Then, λξ(t, j + 1) ∈
G(λξ(t, j));
- for each t, t ∈ R≥0 such that[t, t] × {j} ⊆ dom ξ. if
ξ̇(t, j) ∈ F (ξ(t, j)), for almost allt ∈ [t, t], thenλξ̇(t, j) ∈
F (λξ(t, j)), for almost allt ∈ [t, t].
It follows thatλξ is a solution toH.

2) Proof of Theorem 2.:By the continuity ofV and from
assumptions (1) and (2) of Theorem 2, we have thatU
is not empty andV (x) = ℓ for some pointx ∈ C ∪ D
such thatc ≤ |x| ≤ c + ε. Let ξ be a solution toH with
initial condition ξ(0, 0) ∈ U . Conditions (3)-(6) of Theorem
2 guarantee thatξ must leaveU in finite time (this can be
shown by following the argument of the proof of Theorem 1).
Consider a solutionξ to H with initial conditionξ(0, 0) ∈ U .
By Condition (3), such solution cannot leaveU by flowing
across{x ∈ R

n |V (x) = ℓ}, by Condition (4), it cannot
leaveU by jumping to{x ∈ R

n |V (x) ≤ ℓ, c ≤ |x| ≤ ρc}
and, by Condition (5),ξ cannot jump to{x ∈ R

n | |x| ≤ c}.
It follows thatξ leavesU by flowing across{x ∈ R

n | |x| =
ρc} or by jumping to{x ∈ R

n | |x| ≥ ρc}.
Consider now a solutionξ to H with initial condition
ξ(0, 0) ∈ U and, by (2),|ξ(0, 0)| = c + ε. Such solution
leavesU in finite time, that is,|ξ(T, J)| ≥ ρc, for some
(T, J) ∈ dom ξ. Therefore, by Lemma 1, the result of the
theorem follows. �

3) Proof of Corollary 1.: As stated in Theorem 2, each
solution ξ to H leavesU in finite time. Note that, by
Condition (7), each pointx ∈ C ∪D with |x| = ρc belongs
to U . This implies that the setU surrounds the origin,



therefore if a solutionξ leavesU , it cannot go back to the
set{x |x ∈ (C ∪D), x ≤ ρc} any more.
By the continuity ofV and by Conditions (1) and (7), we can
find two constantsℓ1, ℓ2 ∈ R such thatmin|x|=ρc V (x) = ℓ2,
ℓ < ℓ1 < ℓ2 and the setU1 = {x ∈ C∪D |V (x) = ℓ1, |x| ≤
ρc} surrounds the origin. It follows that (i) by continuity
of V and by Conditions (1) and (7),U1 is a subset ofU ,
so that solutionsξ to H with ξ(0, 0) ∈ U1 escapesU in
finite time by flowing or jumping to{x ∈ R

n | |x| ≥ ρc},
and (ii) by Conditions (3)-(6) and by Lemma 1 we can use
pieces of solutions toH from U1 to {x ∈ R

n | |x| ≥ ρc} to
construct a solutionξ to H that grows unbounded. Indeed,
inductively, consider a solutionξi to H with initial condition
ξi(0, 0) ∈ U1, wherei is a positive integer (an index). Such
solution enters the set{x ∈ R

n | |x| ≥ ρc} in finite time, say
(ti, ji) ∈ dom ξi. The pointξi(ti, ji) ∈ {x ∈ R

n | |x| ≥ ρc}
can be scaled so thatλiξi(ti, ji) ∈ U1, for someλi ∈ R>0.
Then, consider a solutionξi+1 to H with initial condition
ξi+1(ti+1, ji+1) = λiξi(ti, ji). Also such solution enters
the set{x ∈ R

n | |x| ≥ ρc} in finite time. Therefore, by
using solutionsξi with i ≥ 0 we can inductively define an
unbounded solutionξ as follows:
Base case:

ξ(0, 0) = ξ0(0, 0)

ξ(t, j) = ξ0(t, j) ∀(t, j) ∈ dom ξ0, (t, j) ≤ (t0, j0).

Inductive case: for eachi > 0

ξ(t+

(i−1)
∑

k=0

tk, j +

(i−1)
∑

k=0

jk) =
1

λi

ξi(t, j),

∀(t, j) ∈ dom ξi, (t+

(i−1)
∑

k=0

tk, j +

(i−1)
∑

k=0

jk) ≤ (ti, ji).

ξ grows unbounded by the fact that each solutionξi begins
from aU1 that is a proper subset of{x ∈ R

n | |x| < ρc} and
enters{x ∈ R

n | |x| ≥ ρc} in finite time. Instability ofxe

follows from Lemma 1. �

4) Proof of Proposition 1:V is a polynomial, therefore
it is continuously differentiable.
(1) First inequality of (13) can be rewritten asℓ− V (x) ≥
s3(x)∆1(c, c+ ε, x). Therefore,ℓ− V (x) ≥ 0 for eachc ≤
|x| ≤ c+ ε, that implies Condition (1) of Theorem 2.
(2) Rewrite the second inequality of (13) asV (x) − ℓ ≥
s4(x)∆1(c + 2ε, c + 3ε, x) + q(x), thenV (x) − ℓ ≥ 0 for
c + 2ε ≤ |x| ≤ c + 3ε and q(x) ≥ 0. By (14), q(x) is
non-negative in a conic subset ofRn, thereforeV (x)− ℓ ≥
0 in a subset ofc + 2ε ≤ |x| ≤ c + 3ε, as required by
Condition (2) of Theorem 2. In fact, denoteε(Alg.1) and
ε(Thm.2) respectively the constantsε of Algorithm 1 and of
Theorem 2, thenV satisfies Condition (2) of Theorem 2 with
ε(Thm.2) ≥ 2ε(Alg.1)

(3,4) (11) and (12) imply conditions (3) and (4) of Theorem
2, respectively.
(5) The fifth inequality of (13) can be interpreted asℓ −
V (x) ≥ s

(ik)
5 (x)(c2 − x′G′

ikGikx) for eachx ∈ R(i) and
c ≤ |x| ≤ ρc, where i ∈ ID. Thereforeℓ − V (x) ≥ 0 if
c − g ≥ 0, for eachx ∈ R(i), c ≤ |x| ≤ ρc and each
g ∈ G(x). By negation, ifV (x) > ℓ thenc−g < 0, for each

x ∈ R(i), c ≤ |x| ≤ ρc and eachg ∈ G(x), as required by
Condition (5) of Theorem 2.
(6) Condition (6) is (ii) of Proposition 1 �
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