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Robust Stability of Quantum Systems with Nonlinear Dynamic
Uncertainties

Ian R. Petersen

Abstract— This paper considers the problem of robust stabil-
ity for a class of uncertain nonlinear quantum systems subject
to unknown perturbations in the system Hamiltonian. The
nominal system is a linear quantum system defined by a linear
vector of coupling operators and a quadratic Hamiltonian.
This paper extends previous results on the robust stability
of nonlinear quantum systems to allow for quantum systems
with dynamic uncertainties. These dynamic uncertainties are re-
quired to satisfy a certain quantum stochastic integral quadratic
constraint. The robust stability condition is given in terms of
a strict bounded real condition. This result is applied to the
robust stability analysis of an optical parametric amplifier.

I. I NTRODUCTION

In recent years, a number of papers have considered the
feedback control of systems whose dynamics are governed
by the laws of quantum mechanics instead of classical
mechanics; see e.g., [1]–[13]. In particular, the papers [10],
[14] consider a framework for quantum systems defined in
terms of a triple(S,L,H) whereS is a Scattering Matrix,
L is a vector of coupling operators, andH is a Hamiltonian
operator.

The papers [15], [16] consider the problem of absolute
stability of a quantum system defined in terms of a triple
(S,L,H) where the quantum system Hamiltonian is de-
composed asH = H1 + H2, H1 is a known nominal
Hamiltonian andH2 a perturbation Hamiltonian, which is
contained a specified set of HamiltoniansW . In particular,
the papers [15], [16] consider the case in which the nominal
HamiltonianH1 is a quadratic function of annihilation and
creation operators and the elements of the coupling operator
vector are linear functions of the annihilation and creation
operators. This case corresponds to a nominal linear quantum
system; for example, see [4], [5], [7], [8], [13]. The results in
[15], [16] were extended in [17] to allow for uncertainty in
the coupling operatorL. Also, the results of [15] have been
used in the robust stability analysis of a quantum system
consisting of a Josephson junction in a resonant cavity; see
[18].

This work was supported by the Australian Research Council (ARC)
and the Air Force Office of Scientific Research (AFOSR). This material
is based on research sponsored by the Air Force Research Laboratory,
under agreement numbers FA2386-09-1-4089 and FA2386-12-1-4075. The
U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Air Force Research
Laboratory or the U.S. Government.

Ian R. Petersen is with the School of Engineering and Infor-
mation Technology, University of New South Wales at the Aus-
tralian Defence Force Academy, Canberra ACT 2600, Australia.
i.r.petersen@gmail.com

In the paper [15], it is assumed thatH2 is contained in
a set of non-quadratic perturbation Hamiltonians bounded
according to a sector bound on the nonlinearity. In this
case, [15] obtained a robust stability result in terms of a
frequency domain condition. This result can be regarded
as a quantum version of the classical small gain theorem
for the case of static sector bounded nonlinearities; e.g.,
see [19]. Also, the paper [16] limited attention to quadratic
perturbation Hamiltonians. In this case, a frequency domain
robust stability condition is also obtained.

It is well known that the classical small gain robust
stability condition also applies in the case of nonlinear
dynamic uncertainties. Such uncertainties can be described in
terms of integral quadratic constraints (IQCs); e.g., see [20].
The main result of this paper extends the quantum small gain
result of [15] to allow for nonlinear dynamic uncertainties
which are described by a certain quantum stochastic integral
quadratic constraint (QSIQC). This uncertainty description
can be regarded as a continuous time quantum version of
the stochastic uncertainty constraint considered in [21].In
our main result, the presence of dynamic uncertainties is
represented by a perturbation Hamiltonian which depends
on system variables which are in addition to those which
occur in the nominal system Hamiltonian.

An example in the paper [16] considers the robust stability
analysis of a quantum system consisting of a linearized opti-
cal parametric amplifier (OPA). Optical parametric amplifiers
are widely used in the field of experimental quantum optics
used; see e.g. [22]–[24]. In particular, they can be used to
generate squeezed light, which has a smaller noise variance
in one quadrature than the standard quantum limit would
allow. This is at the expense of a larger noise variance in
the other quadrature; see e.g. [22]–[27]. Such an OPA can
be made using a nonlinear optical medium in an optical
cavity; for example, see [23], [25]–[27]. This allows for the
interaction between a fundamental optical field and a second
harmonic optical field. The paper [16] analyzed a linearized
model of the OPA which considered only the fundamental
field and the fundamental mode of the cavity. To illustrate
the results of this paper, we will analyze a linearized model
of an OPA which considers both the fundamental and second
harmonic fields and cavity modes. In this case, the second
harmonic cavity mode will be considered as a dynamic
uncertainty satisfying a QSIQC.
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II. QUANTUM SYSTEMS WITH NONLINEAR DYNAMIC

UNCERTAINTIES

In this section, we describe the general class of quantum
systems under consideration. As in the papers [10], [14]–
[16], [28], we consider uncertain nonlinear open quantum
systems defined by parameters(S,L,H) where S is the
scattering matrix, which is typically chosen as the identity
matrix, L is the coupling operator andH is the system
Hamiltonian operator which is assumed to be of the form

H =
1

2

[

a† aT
]

M

[

a

a#

]

+ f(b, b#, z, z∗). (1)

Herea is a vector of annihilation operators on the underlying
Hilbert space anda# is the corresponding vector of creation
operators. Also the vectors of operators,b andb# are defined
similarly. Furthermore,M ∈ C2n×2n is a Hermitian matrix
of the form

M =

[

M1 M2

M
#
2 M

#
1

]

(2)

and M1 = M
†
1 , M2 = MT

2 . In the case of vectors of
operators, the notation† refers to the transpose of the vector
of adjoint operators and in the case of matrices, this notation
refers to the complex conjugate transpose of a matrix. In the
case vectors of operators, the notation# refers to the vector
of adjoint operators and in the case of complex matrices,
this notation refers to the complex conjugate matrix. Also,
the notation∗ denotes the adjoint of an operator. The matrix
M is assumed to be known and defines the nominal quadratic
part of the system Hamiltonian. Furthermore, we assume
the uncertain non-quadratic part of the system Hamiltonian
f(b, b#, z, z∗) is defined by a formal power series of the
form

f(b, b#, z, z∗) =

∞
∑

k=0

∞
∑

ℓ=0

Skℓ(b, b
#)zk(z∗)ℓ

=

∞
∑

k=0

∞
∑

ℓ=0

Skℓ(b, b
#)Hkℓ, (3)

which is assumed to converge in some suitable sense. Here
Skℓ(b, b

#) = Sℓk(b, b
#)∗, Hkℓ = zk(z∗)ℓ, andz is a known

scalar operator defined by

z = E1a+ E2a
#

=
[

E1 E2

]

[

a

a#

]

= Ẽ

[

a

a#

]

. (4)

The termf(b, b#, z, z∗) is referred to as the perturbation
Hamiltonian. It is assumed to be unknown but is con-
tained within a known set which will be defined below.
It follows from this definition thatf(b, b#, z, z∗) is a self-
adjoint operator. The fact thatf(b, b#, z, z∗) depends on the
quantitiesb and b# which do not appear in the nominal
Hamiltonian corresponds to our assumption that we allow
nonlinear dynamic uncertainties in the quantum system.

We assume the coupling operatorL is known and is of
the form

L =

[

La

Lb

]

(5)

where

La =
[

Na1 Na2

]

[

a

a#

]

(6)

and

La =
[

Nb1 Nb2

]

[

b

b#

]

. (7)

Here,Na1 ∈ C
m×n, Na2 ∈ C

m×n, Nb1 ∈ C
m̃×ñ andNb2 ∈

Cm̃×ñ. Also, we write

[

La

L#
a

]

= Na

[

a

a#

]

=

[

Na1 Na2

N
#
a2 N

#
a1

] [

a

a#

]

and
[

Lb

L
#
b

]

= Nb

[

b

b#

]

=

[

Nb1 Nb2

N
#
b2 N

#
b1

] [

b

b#

]

.

The annihilation and creation operatorsa and a# are
assumed to satisfy the canonical commutation relations:

[

[

a

a#

]

,

[

a

a#

]†
]

∆
=

[

a

a#

] [

a

a#

]†

−
(

[

a

a#

]# [
a

a#

]T
)T

= J (8)

whereJ =

[

I 0
0 −I

]

; e.g., see [6], [11], [13]. Similarly,

we assume
[

[

b

b#

]

,

[

b

b#

]†
]

= J. (9)

Also, we assume that all of the elements of the vectorsa

and a# commute with all of the elements of the vectorsb
andb#.

To define the set of allowable perturbation Hamiltonians
f(·), we first define the following formal partial derivatives:

∂f(b, b#, z, z∗)

∂z

∆
=

∞
∑

k=1

∞
∑

ℓ=0

kSkℓ(b, b
#)zk−1(z∗)ℓ; (10)

∂2f(b, b#, z, z∗)

∂z2
∆
=

∞
∑

k=1

∞
∑

ℓ=0

k(k − 1)Skℓ(b, b
#)zk−2(z∗)ℓ.

(11)
Then, we consider the following quantum stochastic differ-
ential equations describing the uncertainty dynamics (e.g.,
see equations (1) and (2) in [29] and equations (7) and (9)



in [30]):

d

[

b

b#

]

= −ı

[[

b

b#

]

, f(b, b#, z, z∗)

]

dt

+
1

2

(

L
†
b

[[

b

b#

]

, LT
b

]T
)T

dt

+
1

2

[

L
#
b ,

[

b

b#

]T
]T

Lbdt

+

[[

b

b#

]

, LT

]

dB#

−
[[

b

b#

]

, L†

]

dB

= −ı

∞
∑

k=0

∞
∑

ℓ=0

[[

b

b#

]

, Skℓ(b, b
#)

]

zk(z∗)ℓdt

−1

2
JN

†
b JNb

[

b

b#

]

dt

−JN
†
b J

[

dB
dB#

]

, (12)

where B(t) is a vector of bosonic annihilation operators
corresponding to the quantum fields acting on the uncertainty
system andB(t)# is the corresponding vector of creation
operators; e.g., see [31]. The vectorB(t) corresponds to
a vector of standard quantum Weiner processes. The set
of allowable perturbation Hamiltonians will be defined in
terms of quantum stochastic integral quadratic constraints
(QSIQCs) for the system (12). These conditions are defined
in a similar way to the definition of dissipativity in [14];
i.e., the given inequalities are required to hold for all inter-
connections between the system (12) and an exosystemW̃

contained in a suitable class of exosystemsW̃ .
For given constantsγ > 0 and δ1 ≥ 0, we consider the

QSIQC

lim sup
T→∞

1

T

∫ T

0

(

〈w1(t)w1(t)
∗〉 − 1

γ2
〈z(t)z(t)∗〉

)

dt ≤ δ1,

(13)
where

w1(t) =
∂f(b(t), b(t)#, z(t), z(t)∗)∗

∂z

andb(t), b(t)#, z(t), z(t)∗ denote the Heisenberg evolutions
of the operatorsb, b#, z, z∗ respectively for the system
formed by the interconnection between the quantum system
(12) and an exosystem̃W ; e.g., see [14]. Similarly, for a
given constantδ2 ≥ 0, we consider the QSIQC

lim sup
T→∞

1

T

∫ T

0

〈w2(t)w2(t)
∗〉 dt ≤ δ2, (14)

where

w2(t) =
∂2f(z, z∗)∗

∂z2
.

Here the notation〈·〉 denotes quantum expectation; e.g., see
[31]. Then we define the set of perturbation HamiltoniansW

as follows:

W =

{

f(·) of the form (3) such that
conditions (13) and (14) are satisfied

}

. (15)

We will consider the following notion of robust mean
square stability which is somewhat different from the def-
inition considered in [15] due to the presence of dynamic
uncertainties.

Definition 1: An uncertain open quantum system defined
by (S,L,H) whereH is of the form (1),f(·) ∈ W , andL
is of the form (5) is said to berobustly mean square stable
if there exists a constantc > 0, such that for anyf(·) ∈ W ,

lim sup
T→∞

1

T

∫ T

0

〈

[

a(t)
a#(t)

]† [
a(t)
a#(t)

]

〉

dt ≤ c.

(16)

Here

[

a(t)
a#(t)

]

denotes the Heisenberg evolution of the

vector of operators

[

a

a#

]

.

III. M AIN RESULTS

We will show that the following small gain condition is
sufficient for the robust mean square stability of the nonlinear
quantum system under consideration whenf(·) ∈ W :

1) The matrix

F = −ıJM − 1

2
JN †

aJNa is Hurwitz; (17)

2)
∥

∥

∥Ẽ
#Σ (sI − F )

−1
JΣẼT

∥

∥

∥

∞
<

γ

2
(18)

whereΣ =

[

0 I

I 0

]

.

This leads to the following theorem.
Theorem 1:Consider an uncertain open nonlinear quan-

tum system defined by(S,L,H) such thatS = I, H is of the
form (1), L is of the form (5) andf(·) ∈ W . Furthermore,
assume that the strict bounded real condition (17), (18) is
satisfied. Then the uncertain quantum system is robustly
mean square stable.

To prove this theorem, we will consider quadratic “Lya-
punov” operatorsV of the form

V =
[

a† aT
]

P

[

a

a#

]

(19)

whereP ∈ C2n×2n is a positive-definite Hermitian matrix
of the form

P =

[

P1 P2

P
#
2 P

#
1

]

. (20)

Hence, we consider a set of non-negative self-adjoint oper-
atorsP defined as

P =

{

V of the form (19) such thatP > 0 is a
Hermitian matrix of the form (20)

}

.

(21)
Lemma 1:Given anyV ∈ P , then

µ = [z, [z, V ]] = [z∗, [z∗, V ]]
∗
= −ẼΣJPJẼT , (22)



which is a constant.
Proof: The proof of this result follows via a straightforward
but tedious calculation using (8). ✷

Lemma 2:Given anyV ∈ P , then

[V, f(b, b#, z, z∗)] = [V, z]w∗
1 − w1[z

∗, V ]

+
1

2
µw∗

2 −
1

2
w2µ

∗ (23)

where

w1 = =
∂f((b, b#, z, z∗)

∂z

∗

,

w2 = =
∂2f((b, b#, z, z∗)

∂z2

∗

,

(24)

and the constantµ is defined as in (22).
Proof: First, we note that given anyV ∈ P , andk ≥ 1,

V z = [V, z] + zV ;

...

V zk =

k
∑

n=1

zn−1[V, z]zk−n + zkV. (25)

Also using Lemma 1, it follows that for anyn ≥ 1,

z[V, z] = [V, z]z + µ;

...

zn−1[V, z] = [V, z]zn−1 + (n− 1)zn−2µ. (26)

Therefore using (25) and (26), it follows that

V zk =

k
∑

n=1

[V, z]zn−1zk−n + (n− 1)zn−2zk−nµ

+zkV

=
k
∑

n=1

[V, z]zk−1 + (n− 1)zk−2µ+ zkV

= k[V, z]zk−1 +
k(k − 1)

2
zk−2µ+ zkV

which holds for anyk ≥ 0. Similarly for anyℓ ≥ 0,

(z∗)ℓV = ℓ(z∗)ℓ−1[z∗, V ] +
ℓ(ℓ− 1)

2
µ∗(z∗)ℓ−2

+V (z∗)ℓ.

Now given anyk ≥ 0, ℓ ≥ 0, we have using the notation
in (3):

[V,Hkℓ]

= k[V, z]zk−1(z∗)ℓ +
k(k − 1)

2
µzk−2(z∗)ℓ

+zkV (z∗)ℓ

−ℓzk(z∗)ℓ−1[z∗, V ]− ℓ(ℓ− 1)

2
µ∗zk(z∗)ℓ−2

−zkV (z∗)ℓ

= k[V, z]zk−1(z∗)ℓ − ℓzk(z∗)ℓ−1[z∗, V ]

+
k(k − 1)

2
µzk−2(z∗)ℓ − ℓ(ℓ− 1)

2
µ∗zk(z∗)ℓ−2.

(27)

Therefore,

[V, f(b, b#, z, z∗)] =

∞
∑

k=0

∞
∑

ℓ=0

Skℓ(b, b
#)[V,Hkℓ]

= [V, z]
∂f(b, b#, z, z∗)

∂z

−∂f(b, b#, z, z∗)

∂z

∗

[z∗, V ]

+
1

2
µ
∂2f(b, b#, z, z∗)

∂z2

−1

2

∂2f(b, b#, z, z∗)

∂z2

∗

µ∗. (28)

Now it follows from (24) that condition (23) is satisfied.✷
Lemma 3:GivenV ∈ P andLa defined as in (5), then

[V,
1

2

[

a† aT
]

M

[

a

a#

]

] =

[

[

a† aT
]

P

[

a

a#

]

,
1

2

[

a† aT
]

M

[

a

a#

]]

=

[

a

a#

]†

[PJM −MJP ]

[

a

a#

]

.

Also,

1

2
L†
a[V, La] +

1

2
[L†

a, V ]La =

= Tr

(

PJN †
a

[

I 0
0 0

]

NaJ

)

−1

2

[

a

a#

]†
(

N †
aJNaJP + PJN †

aJNa

)

[

a

a#

]

.

Furthermore,
[[

a

a#

]

,
[

a† aT
]

P

[

a

a#

]]

= 2JP

[

a

a#

]

.

Proof: The proof of these identities follows via straightfor-
ward but tedious calculations using (8). ✷

Proof of Theorem 1.It follows from (4) that we can write

z∗ = E
#
1 a# + E

#
2 a =

[

E
#
2 E

#
1

]

[

a

a#

]

= Ẽ#Σ

[

a

a#

]

.

Also, it follows from Lemma 3 that

[z∗, V ] = 2Ẽ#ΣJP

[

a

a#

]

.

Furthermore,[V, z] = [z∗, V ]∗ and hence,

[V, z][z∗, V ] = 4

[

a

a#

]†

PJΣẼT Ẽ#ΣJP

[

a

a#

]

. (29)

Also, we can write

zz∗ =

[

a

a#

]†

ΣẼT Ẽ#Σ

[

a

a#

]

. (30)



Hence using Lemma 3, we obtain

−ı[V,
1

2

[

a† aT
]

M

[

a

a#

]

]

+
1

2
L†
a[V, La] +

1

2
[L†

a, V ]La + [V, z][z∗, V ] +
zz∗

γ2

=

[

a

a#

]†




F †P + PF

+4PJΣẼT Ẽ#ΣJP

+ 1
γ2ΣẼ

T Ẽ#Σ





[

a

a#

]

+Tr

(

PJN †
a

[

I 0
0 0

]

NaJ

)

(31)

whereF = −ıJM − 1
2JN

†
aJNa.

We now observe that using the strict bounded real lemma,
(17) and (18) imply that the matrix inequality

F †P+PF+4PJΣẼT Ẽ#ΣJP+
1

γ2
ΣẼT Ẽ#Σ < 0. (32)

will have a solutionP > 0 of the form (20); e.g., see [8],
[32]. This matrixP defines a corresponding operatorV ∈ P1

as in (19). From this, it follows using (31) that there exists
a constantδ0 > 0 such that

−ı[V,
1

2

[

a† aT
]

M

[

a

a#

]

]

+
1

2
L†
a[V, La] +

1

2
[L†

a, V ]La + [V, z][z∗, V ]

+
1

γ2
zz∗ + δ0

[

a

a#

]† [

a

a#

]

≤ λ̃. (33)

with

λ̃ = Tr

(

PJN †
a

[

I 0
0 0

]

NaJ

)

≥ 0.

Also, Lemma 2 and the fact thatV commutes withLb

implies

G(V )
∆
= −ı[V,H ] +

1

2
L†[V, L] +

1

2
[L†, V ]L

= −ı[V, f(b, b#, z, z∗)]

−ı[V,
1

2

[

a† aT
]

M

[

a

a#

]

]

+
1

2
L†
a[V, La] +

1

2
[L†

a, V ]La

= −ı[V,
1

2

[

a† aT
]

M

[

a

a#

]

]

+
1

2
L†
a[V, La] +

1

2
[L†

a, V ]La

−ı[V, z]w∗
1 + ıw1[z

∗, V ]− 1

2
ıµw∗

2 +
1

2
ıw2µ

∗.

(34)

Here, G(·) is the generator associated with the quantum
system defined by(S,L,H); e.g., see [14]. Furthermore,

0 ≤ ([V, z]− ıw1) ([V, z]− ıw1)
∗

= [V, z][z∗, V ] + ı[V, z]w∗
1 − ıw1[z

∗, V ] + w1w
∗
1

and hence

− ı[V, z]w∗
1 + ıw1[z

∗, V ] ≤ [V, z][z∗, V ] + w1w
∗
1 .

(35)

Also,

0 ≤
(

1

2
µ− ıw2

)(

1

2
µ− ıw2

)∗

=
1

4
µµ∗ − ı

2
w2µ

∗ +
ı

2
µw∗

2 + w2w
∗
2

and hence

ı

2
w2µ

∗ − ı

2
µw∗

2 ≤ 1

4
µµ∗ + w2w

∗
2 . (36)

Substituting (35), (36), into (34), it follows that

G(V ) + δ0

[

a

a#

]† [
a

a#

]

≤ −ı[V,
1

2

[

a† aT
]

M

[

a

a#

]

]

+
1

2
L†
a[V, La] +

1

2
[L†

a, V ]La

+[V, z][z∗, V ] +
1

γ2
zz∗ +

1

4
µµ∗

+w1w
∗
1 −

1

γ2
zz∗ + w2w

∗
2 . (37)

Then it follows from (33) that

G(V ) + δ0

[

a

a#

]† [

a

a#

]

≤ λ̃+
1

4
µµ∗ + w1w

∗
1 − 1

γ2
zz∗ + w2w

∗
2 . (38)

Now using a similar argument to that used in the proof
of Lemma 3.4 in [14], it follows from (38) that given any
T > 0,

〈V (T )〉 − V (0)

=

∫ T

0

〈G(V (t))〉 dt

≤
(

λ+
1

4
µµ∗

)

T

−δ0

∫ T

0

〈

[

a(t)
a(t)#

]† [
a(t)
a(t)#

]

〉

dt

+

∫ T

0

(

〈w1(t)w1(t)
∗〉 − 1

γ2
〈z(t)z(t)∗〉

)

dt

+

∫ T

0

〈w2(t)w2(t)
∗〉 dt.

However,〈V (T )〉 ≥ 0 sinceP > 0 and therefore, we can
write

δ0

T

∫ T

0

〈

[

a(t)
a(t)#

]† [
a(t)
a(t)#

]

〉

dt

≤ V (0)

T
+ λ+

1

4
µµ∗

+
1

T

∫ T

0

(

〈w1(t)w1(t)
∗〉 − 1

γ2
〈z(t)z(t)∗〉

)

dt

+
1

T

∫ T

0

〈w2(t)w2(t)
∗〉 dt.



Taking the lim sup asT → ∞ on both sides of this inequality
and using (13), (14), it follows that

lim sup
T→∞

1

T

∫ T

0

〈

[

a(t)
a(t)#

]† [
a(t)
a(t)#

]

〉

dt

≤ λ

δ0
+

1

4δ0
µµ∗ +

δ1

δ0
+

δ2

δ0
.

Hence, the condition (16) is satisfied with

c =
λ

δ0
+

1

4δ0
µµ∗ +

δ1

δ0
+

δ2

δ0
≥ 0.

✷

IV. I LLUSTRATIVE EXAMPLE

In this section, we present an example to illustrate the
theory developed in this paper. In this example, we con-
sider the linearized model of an optical parametric amplifier
(OPA); e.g., see [23], [25]. An OPA consists of aχ(2) optical
medium contained in an optical cavity driven by coherent
fields at a fundamental and second harmonic frequencies;
e.g., see [23], [24]. Theχ(2) medium allows for coupling
between the fundamental electromagnetic field and the sec-
ond harmonic electromagnetic field. The construction of an
OPA is illustrated in Figure 1.

Fully reflecting
mirror

Partially reflecting

mirror

Input Fields

Output Fields

medium

PSfrag replacements

κ1
κ2

χ
(2)

Fig. 1. Schematic diagram of an OPA system. Here, the red solid lines
represent the fields at the fundamental frequency and the blue dashed lines
represent the fields at the second harmonic frequency.

This quantum system is described by the triple(S,L,H)
whereS = I,

L =

[

La

Lb

]

, La =
√
κaa, Lb =

√
κbb,

andH = ıχ
(

2āb∗a+ b̄∗a2 − b̄a∗2 − 2ā∗a∗b
)

. Here,a is the
annihilation operator associated with the fundamental mode
of the system andb is the annihilation operator associated
with the second harmonic mode of the system. Also,χ > 0
is a constant associated with theχ(2) optical medium, and
κa > 0 and κb > 0 are constants associated with the
cavity mirror reflectivities at the fundamental and second
harmonic frequencies respectively. Furthermore,ā and b̄ are
complex constants representing the steady state values of the
fundamental and second harmonic fields within the cavity.

This Hamiltonian can be regarded as being of the form
(1) with

M =

[

0 −ıχb̄

ıχb̄∗ 0

]

,

f(b, b#, z, z∗) = 2ıχ (āb∗z − ā∗z∗b), andz = a. Also, we
calculate

Na =

[ √
κa 0
0

√
κa

]

, Nb =

[ √
κb 0
0

√
κb

]

.

In order to apply Theorem 1 to this system, we first calculate
the dynamics of the system uncertainty (12). Indeed, we
calculate

[b, f(b, b#, z, z∗)] = 2ıχāz;

JN
†
b JNb =

[

κb 0
0 κb

]

;

JN
†
b J =

[ √
κb 0
0

√
κb

]

;

w1 =
∂f(b, b#, z, z∗)∗

∂z
= −2ıχā∗b;

w2 = 0.

Hence, (12) implies

db = −κb

2
bdt+ 2χāzdt−√

κbdB;
w1 = −2ıχā∗b. (39)

In this case, the dynamics forb∗ are decoupled from these
dynamics and need not be considered. Setting the noise input
to zero in the system (39), we calculate the transfer function
from z to w1 to be

G(s) = −4ıχ2āā∗

s+ κb

2

.

This transfer function is stable and hasH∞ norm
‖G(s)‖∞ = |G(0)| = 8χ2āā∗

κb

. Also, if we set the inputz to
zero in (39), we can calculate the steady state covariance of
w1(t) as

lim sup
T→∞

1

T

∫ T

0

〈w1(t)w1(t)
∗〉 dt = 4χ2āā∗.

Then, since the system (39) is linear, it follows that the
condition (13) will be satisfied with

γ =
κb

8χ2āā∗
(40)

and δ1 = 4χ2āā∗. Also, sincew2 = 0, it follows that
condition (14) is satisfied withδ2 = 0.

We now calculate the matricesF andẼ, and the transfer
functionH(s) = Ẽ#Σ (sI − F )

−1
JΣẼT in order to check

conditions (17) and (18). Indeed, we calculate

F =

[

−κa

2 −χb̄

−χb̄∗ −κa

2

]

, Ẽ =
[

1 0
]

,

and

H(s) =
−
(

s+ κa

2

)

s2 + κas+
κ2
a

4 − χ2b̄b̄∗
.



It is straightforward to verify that the matrixF is Hurwitz
if and only if

κa > 2χ|b̄|. (41)

Also, H(s) has a real zero ats = −κa

2 and real poles at
s = −κa

2 ± χ|b|. From this, it follows thatH∞ norm of
H(s) is given by

‖H(s)‖∞ = |H(0)| = 2κa

κ2
a − 4χ2b̄b̄∗

.

Hence, it follows using (40) that condition (18) is satisfied
if and only if

2κa

κ2
a − 4χ2b̄b̄∗

<
κb

16χ2āā∗

⇔ 32
κa

κb

χ2āā∗ < κ2
a − 4χ2b̄b̄∗

⇔ 4χ2

(

8
κa

κb

āā∗ + b̄b̄∗
)

< κ2
a.

Note, that if this condition is satisfied, then it immediately
follows that the condition (41) will be satisfied and hence,
the matrixF will be Hurwitz. Hence using Theorem 1, we
can conclude that if this condition is satisfied then the OPA
system will be robustly mean square stable.

V. CONCLUSIONS

In this paper, we have extended the robust stability result
of [15] to the case of nonlinear dynamic uncertainties de-
scribed in terms of a stochastic integral quadratic constraint.
This also led to a robust stability condition in the form of
a small gain condition. This condition was then applied the
robust stability analysis of a quantum system model for an
OPA and a stability condition for this system was obtained.
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