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Robust Stability of Quantum Systems with Nonlinear Dynamic
Uncertainties

lan R. Petersen

Abstract— This paper considers the problem of robust stabil- In the paper [15], it is assumed thaf, is contained in
ity for a class of uncertain nonlinear quantum systems subjet g set of non-quadratic perturbation Hamiltonians bounded
to unknown perturbations in the system Hamiltonian. The  5000rding to a sector bound on the nonlinearity. In this
nominal system is a linear quantum system defined by a linear 151 obtained bust stabilit It in t f
vector of coupling operators and a quadratic Hamiltonian. case, [15] o alr_1e a r(_)_us Sa_ ity resuit in terms of a
This paper extends previous results on the robust stability frequency domain condition. This result can be regarded
of nonlinear quantum systems to allow for quantum systems as a quantum version of the classical small gain theorem
with dynamic uncertainties. These dynamic uncertaintiesee re-  for the case of static sector bounded nonlinearities; e.g.,
quired to satisfy a certain quantum stochastic integral qualratic see [19]. Also, the paper [16] limited attention to quadrati

constraint. The robust stability condition is given in terms of turbation Hamiltoni In thi f d .
a strict bounded real condition. This result is applied to the ~PErurbation Hamiitonians. in this case, a frequency damai

robust stability analysis of an optical parametric amplifier. robust stability condition is also obtained.

|. INTRODUCTION

In recent years, a number of papers have considered that js well known that the classical small gain robust
feedback control of systems whose dynamics are governggbility condition also applies in the case of nonlinear
by the laws of quantum mechanics instead of classicglynamic uncertainties. Such uncertainties can be destirbe
mechanics; see e.g., [1]-[13]. In particular, the pape®,[1 terms of integral quadratic constraints (IQCs); e.g., £&3.
[14] consider a framework for quantum systems defined ihe main result of this paper extends the quantum small gain
terms of a triple(S, L, ) where S is a Scattering Matrix, result of [15] to allow for nonlinear dynamic uncertainties
L is a vector of coupling operators, atflis a Hamiltonian \which are described by a certain quantum stochastic irltegra
operator. quadratic constraint (QSIQC). This uncertainty desaipti

The papers [15], [16] consider the problem of absolutgan be regarded as a continuous time quantum version of
stability of a quantum system defined in terms of a triplghe stochastic uncertainty constraint considered in [B1].
(S,L,H) where the quantum system Hamiltonian is depur main result, the presence of dynamic uncertainties is
composed asl{f = H; + H,, Hy is a known nominal represented by a perturbation Hamiltonian which depends

Hamiltonian andH> a perturbation Hamiltonian, which is on system variables which are in addition to those which
contained a Specified set of Hamiltoniavg. In particular, occur in the nominal System Hamiltonian.

the papers [15], [16] consider the case in which the nominal
Hamiltonian H; is a quadratic function of annihilation and

creation operators and the elements of the coupling oprerato An example in the paper [16] considers the robust stability
vector are linear functions of the annihilation and CrG’atiOana|ysis of a quantum System Consisting of a linearized opt|
operators. This case corresponds to a nominal linear quentia| parametric amplifier (OPA). Optical parametric ampiifie
system; for example, see [4], [5], [7], [8], [13]. The resutt  are widely used in the field of experimental quantum optics
[15], [16] were extended in [17] to allow for uncertainty inysed; see e.g. [22]-[24]. In particular, they can be used to
the coupling operatoL. Also, the results of [15] have been generate squeezed light, which has a smaller noise variance
used in the robust stability analysis of a quantum systefj one quadrature than the standard quantum limit would
consisting of a Josephson junction in a resonant cavity; seflow. This is at the expense of a larger noise variance in
[18]. the other quadrature; see e.g. [22]-[27]. Such an OPA can
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1. QUANTUM SYSTEMS WITH NONLINEAR DYNAMIC where
UNCERTAINTIES

In this section, we describe the general class of quantum
systems under consideration. As in the papers [10], [14]-
[16], [28], we consider uncertain nonlinear open quanturﬁnd
systems defined by parametefS, L, H) where S is the
scattering matrix, which is typically chosen as the idgntit
matrix, L is the coupling operator anél is the system
Hamiltonian operator which is assumed to be of the form Here,N,; € C™*", N,y € C™*", Ny € C™*" and Ny, €
C™x", Also, we write

Lo=[ Na Na2}|:a(;{::| (6)

Lo=[ Nu Nbg][bi;]. )

1
H=3[a" o }M[ o ] +f0.0%,2,27). (@)
L, o a
Herea is a vector of annihilation operators on the underlying { L# } = N { a¥t ]
Hilbert space ana* is the corresponding vector of creation N.. N
. al a2 a
operators. Also the vectors of operatdrandb? are defined = [ N#E N# ] { - }
similarly. FurthermoreM € C?"*?" is a Hermitian matrix a2 Tal
of the form
v { M, M, } o and
M¥ M Ly b
t # | T Nl
and My = M|, My = M. In the case of vectors of b
operators, the notatiohrefers to the transpose of the vector _ Np1 Nz b
of adjoint operators and in the case of matrices, this rotati B N,ﬁ N,ﬁ b#

refers to the complex conjugate transpose of a matrix. In the
case vectors of operators, the notatiomefers to the vector  The annihilation and creation operatagsand a# are

of adjoint operators and in the case of complex matricegssumed to satisfy the canonical commutation relations:
this notation refers to the complex conjugate matrix. Also,

the notation* denotes the adjoint of an operator. The matrix [ a a 171 & a a 17
M is assumed to be known and defines the nominal quadratic [ at } [ at } = [ ot ] [ at }
part of the system Hamiltonian. Furthermore, we assume
the uncertain non-quadratic part of the system Hamiltonian a 17 Ta 1F T
f(b,b% 2 z*) is defined by a formal power series of the - <{ ot ] { ot ] )
form
% oo = J 8
FO,0%, 2,27 = Y Skl b#)2F () I o B
k;o eO:oo whereJ = [ 0 —71 ] e.g., see [6], [11], [13]. Similarly,
= 3N S b H, (3 WEASSUMe
k=0 £=0 b b t
which is assumed to converge in some suitable sense. Here H p# ] ) { p# ] ] =J. (9)
Su(b,b#) = Sgk(b, b#)*, Hyy = Zk(z*)é, andz is a known
scalar operator defined by Also, we assume that all of the elements of the vectors
2 = Eya+ Eqad® and a# commute with all of the elements of the vectdrs
a ~ a and bv#.
- [ Ev By ] { a”* ] =k [ a” ] ’ ) To define the set of allowable perturbation Hamiltonians

The term f(b, b*, =, =*) is referred to as the perturbationf(')’ we first define the following formal partial derivatives:

Hamiltonian. It is assumed to be unknown but is con- Of (b, b 22 0o oo

tained within a known set which will be defined below. /(%072 2") a DO kSke(b,0%)2F1 () (10)
It follows from this definition thatf (b, b%, 2, 2*) is a self- k=1 (=0

adjoint operator. The fact that(b, b, z, z*) depends on the

quantitiesb and b# which do not appear in the nominal f(b b P .

Hamiltonian corresponds to our assumption that we allow é ZZk — 1)Spe(b, b7)2F72(2%)".

nonlinear dynamic uncertainties in the quantum system. k=1£=0
We assume the coupling operatbris known and is of _ _ (11)
the form Then, we consider the following quantum stochastic differ-

I L, 5 ential equations describing the uncertainty dynamics.,(e.g
T Ly ) see equations (1) and (2) in [29] and equations (7) and (9)



in [30]): as follows:

b b . _ [ f() of the form [3) such that
d[ p# ] = -t H b } L f (b, 0%, 2,2 )} dt w { conditions [IB) and{14) are satisfied’ (15)
m T We will consider the following notion of robust mean
1 I b LT dt square stability which is somewhat different from the def-
+ b p# | 0P . . . .
2 inition considered in [15] due to the presence of dynamic
1 _ 7T uncertainties.
4z Lb#, Z# ] Lydt Definition 1: An uncertain open quantum system defined
2 L by (S, L, H) where H is of the form [2),f(-) € W, and L
b is of the form [B) is said to beobustly mean square stable
+ LT\ aB# : :
v | if there exists a constamt> 0, such that for anyf(-) € W,
b T T
- LT]dB — [ a(t) ] [ a(t) ]
# | 1 = da < ¢
[me- Tl T Jo \ [ a*(t) | | a*(®) =
= —ZZZ H 2# } , Ske(b, b#)} 2F(2%) dt (16)
=0 4=
1k 0 T 0 , Here [ ai(g) ] denotes the Heisenberg evolution of the
—5INJIN, { i ]dt .
iB vector of operator{ ot }
JN|.J , 12
b [ dB# } (12) l1l. M AIN RESULTS

where B(t) is a vector of bosonic annihilation operators We will show that the following small gain condition is
corresponding to the quantum fields acting on the unceytaingufficient for the robust mean square stability of the nain
system andB(¢)# is the corresponding vector of creationduantum system under consideration whign) < V:
operators; e.g., see [31]. The vectBft) corresponds to 1) The matrix

a vector of standard quantum Weiner processes. The set 1 i )

of allowable perturbation Hamiltonians will be defined in F=—JM- §JN;JN,1 is Hurwitz; — (17)
terms of quantum stochastic integral quadratic conssaint ,
(QSIQCs) for the systeni (1.2). These conditions are defined

o _ )Ly ET 7
in a similar way to the definition of dissipativity in [14]; HE R(sl = F) " JRE Hoo < 2 (18)

i.e., the given inequalities are required to hold for alemt 0 I
connections between the systelml(12) and an exosystem where¥ = I o0l

contained in a suitable class of exosystemis This leads to the following theorem.

For given constanty > 0 andd; > 0, we consider the  Thegrem 1:Consider an uncertain open nonlinear quan-
QSIQC tum system defined b§s, L, H) such thatS = I, H is of the
1T 1 form (@), L is of the form [b) andf(-) € W. Furthermore,

lim sup —/ <<w1 (BHwr(t)*) — — (z(t)z(t)*>> dt < §,, assume that the strict bounded real conditiod (17)] (18) is

T—o0 0 v (13) satisfied. Then the uncertain quantum system is robustly

where mean square stable.

AF (b(t), b(t)#, 2(t), 2(t)*)* To prove this theorem, we will consider quadratic “Lya-
wy(t) = e punov” operatord/ of the form
andb(t), b(t)*, z(t), z(t)* denote the Heisenberg evolutions V=[d o |P { ai } (19)

of the operatorsh, b#, z, z* respectively for the system
formed by the interconnection between the quantum systewhere P € C*"*2" is a positive-definite Hermitian matrix
(I2) and an exosysteri¥’; e.g., see [14]. Similarly, for a of the form

i | PP
given constant, > 0, we consider the QSIQC pP— { Pgl% Pfi ] _ (20)
T
lim sup 1 (wa (t)wa (t)*) dt < 6, (14) Hence, we consider a set of non-negative self-adjoint oper-
T—o0 0 atorsP defined as
where D V of the form [I9) such thaP > 0 is a
wa(t) = P flz,2%)" ~ | Hermitian matrix of the form[{20)
2\ = 922 ) (21)

. . Lemma 1:Given an hen
Here the notatior{-) denotes quantum expectation; e.g., see emma 1:Given anyV’ € P, the

[31]. Then we define the set of perturbation Hamiltoniats =122V =" V)] = —EXJPJET, (22)



which is a constant.
Proof: The proof of this result follows via a straightforward

but tedious calculation usingl(8). O
Lemma 2:Given anyV € P, then
V. f(0,0%,2,27)] = [V, z]wi —wi[z", V]
1 * 1 *
+§Mw2 — pWak (23)
where
# ) *
w - — Af((b, b7, z,2%) 7
0z
O f((b,b*,2,27)"
w = =
2 822 )
(24)
and the constant is defined as in[(22).
Proof: First, we note that given any € P, andk > 1,
Vz = [V,z]+2V;
k
Ve = Z 2"V, 2)2R T 4 2RV (25)
n=1
Also using Lemmadli, it follows that for any > 1,
AViz] = [Vizle 4
V2] = Vgl (n—1)2"%u. (26)

Therefore using[(25) and (P6), it follows that
k

Vk = Z[V7 22" LR (0= 1) 2Ry
n=1
28V
k
= Z[V, 22" 4 (0= 1)2R 2 4 2RV
n=1
-1
= K[V, z]2F "+ k(k2 )zk_Q,u + 2FV
which holds for anyk > 0. Similarly for any?¢ > 0,
(-1
(Z*)EV _ E(Z*)Zfl[z*, V] + ( 5 ) *(Z*)€72
+V(z%)"

Now given anyk > 0, £ > 0, we have using the notation
in @):
[V, Hy]

= K[V, 2]"(E)
+28V (2%)*

o kN —17 % 6(671) * *\0—2
M), V] - Sk e
_sz(Z*)é
k[‘/, z]zk—l(z*)é —ﬂzk(z*)é_l[z*,V]

zk—2 (Z*)Z _

(27)

Therefore,

[V, f(b, b7, 2,27)] DO Skel,bF)V, Hia

k=0 ¢=0
B Of (b, b#, 2, 2*)
= W=
Of (b, 0%, 2,2%)"
f% 2%, V]
1 O?f(b, b7, 2, 2*)
2” 022
10%f(b,b#, 2,2%)" |
5 g2 M @8

Now it follows from (24) that condition[{23) is satisfied]
Lemma 3:GivenV € P and L, defined as in[{5), then

[V,%[aT aT}M[a‘;]]

1

a a
ta aye] o] gte e 5]
T
a a
= [a#} [PJMMJP][G#}
Also,
1 " 1 t
SLAV. Lo+ 5[LE VL, =
I 0
_ i
= Tr (PJNa { 0 o ]Naj)
1 [ a f + 1 a
~5 | gt | (NIINaJP+PINLING) | e |-
Furthermore,
a | a a
- ,[aT aT]P 0 =2JP 0

Proof: The proof of these identities follows via straightfor-

ward but tedious calculations usirg (8). O
Proof of Theorenilllt follows from (4) that we can write

|

a
a?

*

z

pta*+ Efo=[ B Bt ]|

|

Also, it follows from LemmdB that

a

o
EE{G#

a

[2*,V] = 2E#XJP { o

Furthermore]V, z] = [z*, V]* and hence,

a

;
[V, 2][z*, V] = 4 [ o } PJEETE#ZJP{ a‘; } . (29)

Also, we can write

(30)



Hence using Lemmia 3, we obtain

1 a
Syl ] 5
1 1 zz*
Lo 1oy *
+olalV Lal + 5 [La, ViLa + [V, 2]l VI+ 3
t F'P + PF
— { ‘;} +4PJNETE#YJP [ ‘;]
“ LS ETE#Y, “
+
+Tr <PJN,I { é X ]Naj> (31)

where F = —.JM — $JN]JN,.

We now observe that using the strict bounded real lemma,

(I32) and [(IB) imply that the matrix inequality

e~ 1 o~
F'P+PF+4PJSETE#SJP+—SETE#Y < 0. (32)
¥

will have a solutionP > 0 of the form [20); e.g., see [8],

[32]. This matrix P defines a corresponding operatore P

as in [19). From this, it follows using_(B1) that there exists

a constant, > 0 such that

1 [ a
—Z[‘/,§[GT aT]M_a#_]
1 1
+§LL[V, La] + §[sz, V]L, + [V, 2][z%, V]
1 o 'T a1 -
+¥ZZ +50 a# i a# ] < A (33)

with

0 0

Also, Lemma[? and the fact that’ commutes withL,
implies

g(v)

X:ﬂ(PJNg{I O}NQJ)EO.

1>

1 1
=iV, H] + S LIV L]+

= 71[‘/7f(bab#azaz*)]

LY, V]L

1 1 ]
+5 LAV, La] + 5 [LL. VIL

1 1
[V, zJw] 4+ wwq [2%, V] — 5ww§ + Ezwgu*.
(34)

Here, G(-) is the generator associated with the quantum 5_0/T<{ a(t;é T [ a(
£) t
0

system defined bysS, L, H); e.g., see [14]. Furthermore,
0 < ([V,2] —uwr) ([V, 2] —2wy)”
= [V,2][z", V] + 4|V, z]w] — [z, V] + wiw]
and hence
— o[V, ZJwy + w27, V] < [V, z][z", V] + wiw].
(35)

Also,

o
IN

1 1 :
() (-
= %uu* - %wzu* + %uwé + waws
and hence

1 * 1 * 1 * *
QW2 — pwy S pu” +wawy. (36)

Substituting [(3b),[(36), intd (34), it follows that

sove ][4

IA
|
=
=
DO | =
o
2
s
€
| p——
%o
—

1 1
+§LL[V, L.+ E[LL,V]LG

+[V, 2][", V] + R

1
+wwy — ?zz* + wows3. (37)

Then it follows from [3B) that

T
a a
00| o | |
3 1 * * 1 * *
< A+ THH + wiwj f?zz +wowj.  (38)

Now using a similar argument to that used in the proof
of Lemma 3.4 in [14], it follows from[(38) that given any
T >0,

IA
7N
>
+
-

=
t*
N—
~

However, (V(T)) > 0 since P > 0 and therefore, we can
write

T a af
< @ + A+ iuu*
v [ (w0 - 5 Gz
b [ st a



Taking the lim sup ag" — oo on both sides of this inequality =~ This Hamiltonian can be regarded as being of the form

and using[(1B),[(T4), it follows that @ with -
0 —xb
T — -
limsupl ' alt) a(t) dt M { b 0 ] ,
T—o00 T 0 a(t)# a t)#
f(b, b7, 2z, 2*) = 21y (@b*z — a*z*b), and z = a. Also, we

A + L + 442 calculate

S 5 T At s Ty
o[ ] e[ ]

Hence, the conditior (16) is satisfied with

0  Fka 0 Ay
c= A + Luu* + % + % > 0. In order to apply Theoref 1 to this system, we first calculate
do 49 % o the dynamics of the system uncertainfy](12). Indeed, we
5 calculate
V. |LLUSTRATIVE EXAMPLE b, F(b,b*,2,2%)] = 2Zixaz:
In this section, we present an example to illustrate the : Ky O
theory developed in this paper. In this example, we con- JNy JNy - = [ 0 Ky ] ;
sider the linearized model of an optical parametric amplifie 0
(OPA); e.g., see [23], [25]. An OPA consists ok& optical JNJ = [ \/;—b } ;
medium contained in an optical cavity driven by coherent Vb
fields at a fundamental and second harmonic frequencies; w, = Of (b,b%, 2, 2*)* = —%\a*b;
e.g., see [23], [24]. The® medium allows for coupling 0z ’
between the fundamental electromagnetic field and the sec- wy = 0.
ond harmonic electromagnetic field. The construction of apence, [Ip) implies
OPA is illustrated in Figur&ll. p
db = —2bdt + 2xazdt — \/rydB;
Partially réflecting Ft.l"y reflecting w B 2%)(&* b (39)
mirror mirror 1 = — .

In this case, the dynamics fér are decoupled from these
dynamics and need not be considered. Setting the noise input
to zero in the systeni (89), we calculate the transfer functio
from z to w; to be

Input Fields

(2)

medium

X

4 2%
G(s) = ——2 9%
,,,,,,,,,, s+ &

This transfer functior;ﬁis stable and ha& > norm
[G(5)]lee = |G(0)| = 222 Also, if we set the input to

b

e

Output Fields ,’% zero in [39), we can calculate the steady state covariance of
wi(t) as
Fig. 1. Schematic diagram of an OPA system. Here, the red $ioks . T y o s
represent the fields at the fundamental frequency and treedzished lines limsup — (w1 (t)w (t)*) dt = 4x“aa™.
represent the fields at the second harmonic frequency. T—00 0

Then, since the systeni_(39) is linear, it follows that the

This quantum system is described by the trip$e L, H)  condition [IB) will be satisfied with
whereS =1,

L= [ ia ], Lo = v/Kqa, Ly = /s,
b and §; = 4y%aa*. Also, sincew; = 0, it follows that

andH =1y (2ab*a + b*a® — ba*? — 2a*a*b). Here,a is the ~ condition [14) is satisfied with, = 0.

annihilation operator associated with the fundamentalenod We now calculate the matrices and £/, and the transfer
of the system and is the annihilation operator associatedunction H(s) = E#% (sI — F)~' J2ET in order to check
with the second harmonic mode of the system. Algo; 0  conditions [(IV) and(18). Indeed, we calculate

is a constant associated with ty¢?) optical medium, and B ] ~
ke > 0 and k, > 0 are constants associated with the F= [ 2 j,{(a }7 E=[1 0],
cavity mirror reflectivities at the fundamental and second 2
harmonic frequencies respectively. Furthermarandb are  and .
complex constants representing the steady state valués of t H(s) = - (5 JF?“) .
fundamental and second harmonic fields within the cavity. $% 4 Kqs + S — x2bb*

Kb
= 40
77 8x%aar (40)




It is straightforward to verify that the matrik’ is Hurwitz  [12]
if and only if B 13

Ka > 2xD]. 41 ™
Also, H(s) has a real zero at = —“ and real poles at |14

s = —%* £ x|b|. From this, it follows that//> norm of

H(s) is given by 1]
2K

K2 — 4x2bb* (16]

Hence, it follows using[{40) that conditioh (18) is satisfied

if and only if [17]

[1H (s)]loc = [H(0)] =

2K - Kb
K2 — 4x2bb*  16x2aa*

(18]
& 322)(2&&* < K2 — 4\*bb*
Kb

[19]
& 4y (8ﬁaa* +bb*) < K2
Kb

[20]

Note, that if this condition is satisfied, then it immedigtel [21]
follows that the condition[{41) will be satisfied and hence,

the matrix ' will be Hurwitz. Hence using Theoref 1, we 5y
can conclude that if this condition is satisfied then the OPf23]

system will be robustly mean square stable. [24]

V. CONCLUSIONS [25]

In this paper, we have extended the robust stability result
of [15] to the case of nonlinear dynamic uncertainties de[-26]
scribed in terms of a stochastic integral quadratic coimgtra
This also led to a robust stability condition in the form of
a small gain condition. This condition was then applied th
robust stability analysis of a quantum system model for a

OPA and a stability condition for this system was obtained.
[28]

27
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