
HAL Id: inria-00329784
https://inria.hal.science/inria-00329784v1

Submitted on 13 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Redistribution Aware Two-Step Scheduling for
Mixed-Parallel Applications

Sascha Hunold, Thomas Rauber, Frédéric Suter

To cite this version:
Sascha Hunold, Thomas Rauber, Frédéric Suter. Redistribution Aware Two-Step Scheduling for
Mixed-Parallel Applications. IEEE International Conference on Cluster Computing - Cluster 2008,
Sep 2008, Tsukuba, Japan. pp.50 - 58, �10.1109/CLUSTR.2008.4663755�. �inria-00329784�

https://inria.hal.science/inria-00329784v1
https://hal.archives-ouvertes.fr

Redistribution Aware Two-Step Scheduling
for Mixed-Parallel Applications

Sascha Hunold #1, Thomas Rauber #2, Frédéric Suter ∗3

Department of Mathematics and Physics
University of Bayreuth, Germany

1 hunold@uni-bayreuth.de
2 rauber@uni-bayreuth.de
∗ Nancy Université / LORIA

UMR 7503 CNRS - INPL - INRIA - Nancy 2 - UHP, Nancy 1
3 Frederic.Suter@loria.fr

Abstract—Applications raising in many scientific fields exhibit
both data and task parallelism that have to be exploited ef-
ficiently. A classic approach is to structure those applications
by a task graph whose nodes represent parallel computations.
Scheduling such mixed-parallel applications is challenging even
on a single homogeneous platform, such as a cluster. Most of
the mixed-parallel application scheduling algorithms rely on two
decoupled steps: allocation and mapping. This separation can
induce unnecessary or costly data redistributions that have an
impact on the overall performance. This is particularly true for
data intensive applications. In this paper, we propose an original
approach in which the allocations determined in the first step
can be adapted during the second step in order to minimize the
impact of these data redistributions. Two redistribution aware
mapping strategies are detailed and a study of their impact on
the schedule length is proposed through a comparison with an
efficient two step algorithm over a broad range of experimental
scenarios.

I. INTRODUCTION

Scientific applications executed on parallel computing plat-
forms can exploit two types of parallelism: task parallelism
and data parallelism. A task-parallel application is partitioned
into a set of tasks with possible precedence and communica-
tion constraints. A data-parallel application typically exhibits
parallelism at the level of loops. A way to expose increased
parallelism, to achieve higher scalability and performance, is
to write parallel applications that use both types of parallelism,
using what is often called mixed parallelism. Mixed-parallel
applications are structured as graphs of data-parallel tasks.
Such structures arises naturally in many applications (see [1]
for a discussion of the benefits of mixed parallelism and for
application examples). A programming environment designed
to express and execute mixed-parallel applications on the grid
is TGrid [2]. This framework takes a task graph as input, finds
ready nodes in the task graph, and maps (schedules) them onto
different grid sites. Each of these nodes can be implemented
in a data-parallel way, for example using MPI.
One well-known challenge for mixed-parallel applications is

scheduling, that is making decisions for mapping computation
and data transfers to platform components to optimize some
performance metric. The vast majority of works that target the

scheduling of mixed-parallel applications use application ex-
ecution time, or makespan, as the performance metric. Mixed
parallelism adds another level of difficulty to the already
challenging scheduling problem for task-parallel applications.
This is because data-parallel tasks can be moldable, i.e., they
can be executed on various numbers of processors, with more
processors leading to faster task execution times. It raises
the additional question of how many processors should be
allocated to each data-parallel task.
The most popular parallel computing platforms today are

commodity clusters, which are therefore primary candidates
for running mixed-parallel applications. Most clusters consist
of identical compute nodes (at least when they are initially
put in production) and thus the question of scheduling mixed-
parallel applications on homogeneous platforms has been
studied by many researchers. Several practical scheduling
algorithms based on heuristics have been proposed in the
literature [3], [4], [5], [6] that proceed in two steps. In a first
step, the algorithm decides how many processors should be
allocated to each task, while in step two, the algorithm uses
a list scheduling approach to map tasks to sets of processors.
Most of these algorithms do not take data redistributions, in-
duced by data dependences, into account during the allocation
step as it is difficult to accurately estimate the redistribution
times before tasks are actually mapped onto the platform.
Ignoring redistributions while allocating may lead to two
types of situations that impact the overall performance of
the scheduling algorithm. First, subsequent tasks may have
close but different allocations that may imply a complex
data redistribution that could be avoided. Second, because of
contention on network links, data redistributions can delay the
start date of a task and thus compromise a schedule based only
on task execution time reduction. This becomes particularly
true for applications dominated by the data for which the
communication costs cannot be neglected.
In this paper, we propose an original approach in which

the allocations determined in the first step can be adapted
during the second step in order to minimize the impact of
the data redistributions. We first give some background and
related work in Section II. Then we present several strategies

978-1-4244-2640-9/08/$25.00 © 2008 IEEE 2008 IEEE International Conference on Cluster Computing50

used in the proposed Redistribution Aware Two-Steps (RATS)
scheduling algorithm in Section III. As our algorithm relies
on the allocation procedure of the HCPA algorithm [7], we
compare the schedules produced by RATS to those given by
HCPA over a broad range of scenarios in Section IV. Finally
we summarize the contributions and present future work in
Section V.

II. BACKGROUND

A. Application Model

A mixed-parallel application can be modeled as a Directed
Acyclic Graph (DAG) G = (N , E), where N = {ni | i =
1, . . . , N} is a set of nodes representing data-parallel tasks,
or “tasks” for short, and E = {ei,j | (i, j) ∈ {1, . . . , N} ×
{1, . . . , N}} is a set of edges between nodes, representing
communication between tasks. Each edge ei,j has a weight,
which is the amount of data (in bytes) that task ni must
send to task nj (we call nj a successor of ni and ni a
predecessor of nj). An important fact is that it is assumed
that the redistribution cost between subsequent tasks ni and
nj is zero when these tasks are executed on the same set of
processors. Without loss of generality, we assume that G has
a single entry task and a single exit task. Since data-parallel
tasks can be executed on various numbers of processors, we
denote by T (t, Np(t)) the execution time of task t if it were to
be executed on an allocation comprising Np(t) processors. The
overall execution time of G, or makespan, is defined as the time
between the beginning of G’s entry task and the completion
of G’s exit task.
To model data-parallel tasks, we assume that a task operates

on a dataset of m double precision elements. We arbitrarily
assume that processors have at most 1GByte of memory and
thus m ≤ 121M . We also assume that m is above 4M (if
m is too small, the data-parallel task should most likely be
aggregated with its predecessor or successor). The volume of
data communicated by a task to each of its children is equal
to m. As we target applications for which the communications
cannot be neglected, we model the computational complexity
of a task (number of operations) with the following expression:
a ·m, where a is picked randomly between 26 and 29, to cap-
ture the fact that such tasks often perform multiple iterations.
This is representative of a certain class of applications, for
instance a stencil computation on a

√
m×√m domain.

While the above provides a model for sequential task
execution, we also need to account for parallel executions,
i.e., for how task execution time varies with the number of
processors. We use a speedup model that is used extensively
in the literature, thus allowing our results to be compared with
previously published results consistently. This model is based
on Amdahl’s law [8] and specifies that a fraction α of a task’s
sequential execution time is non-parallelizable.We simply pick
random α values uniformly between 0% and 25%. With this
“Amdahl model”, an application task has different execution
times for different numbers of processors. This performance
model is monotonically decreasing, i.e., the more processors
are allocated to a task, the faster its execution is. We denote

by ωi the work of task ni, that is the product of its execution
time and the number of processors allocated to it.
Finally we assume that data are always distributed following

a one dimensional block distribution, which is one of the clas-
sic distribution scheme used in High Performance Computing.
For instance, if a task ni working on an amount of data of m
bytes is mapped onto p processors, each of them will own m/p
bytes. Such a data distribution allows us to easily determine
the communication matrix representation a data redistribution.
If the task nj , that is a successor of ni is mapped onto q
processors, it is possible to determine which amount of data
each of the p sending processors have to send to each of the
q receiving processors by computing the overlapping intervals
between the m/p and m/q distributions.
To illustrate this technique, let consider a simple example.

Task ni is working on 10 units of data and is mapped onto
p = 4 processors. Each of them thus own 2.5 units of data.
Task nj is mapped onto q = 5 processors. The corresponding
communication matrix is then given by Table I.

TABLE I

COMMUNICATION MATRIX FOR A REDISTRIBUTION OF 10 UNITS OF DATA

BETWEEN p = 4 SENDING AND q = 5 RECEIVING PROCESSORS.

q1 q2 q3 q4 q5

p1 2 0.5

p2 1.5 1

p3 1 1.5

p4 0.5 2

It has to be noticed that in this example the senders and
receivers constitute disjoint set of processors. When these sets
have elements in common, our redistribution algorithm tries
to maximize the amount of self communications.

B. Cluster Model

In this paper, we use a model representative of clusters
currently deployed in experimental or production grids such
as Grid’50001 or EGEE2. A cluster comprises a set of P
homogeneous nodes developing a certain processing power ex-
pressed in billions of floating operations per second (GFlop/s).
As we target a generic class of applications, that may not
take advantage of multi-threading, we consider that each node
comprises only one processing unit. We also assume that only
one task can be executed on a processing unit at a time.
Each node has its own network interface connected to a

private link. We assume that the communications follow the
bounded multi-port model, i.e., a node can send or receive
data from or to several nodes but the bandwidth of its private
link is then shared among the different flows.
The interconnection of the nodes within a cluster may

differ depending on the size of the cluster. In small clusters
(generally up to 64 nodes) all the nodes are usually connected
to the same switch, while in larger clusters nodes can be

1http://www.grid5000.fr
2http://www.eu-egee.org/

51

located in different cabinets, each having its own switch. The
cabinet switches are then connected to another switch to create
a hierarchical network. Our cluster model takes these two
configurations into account.

C. Related Work

As discussed earlier, most of the scheduling algorithms for
mixed parallel applications on homogeneous clusters proceed
in two phases [3], [4], [5], [6]. A prominent algorithm is
CPA (Critical Path and Area-based scheduling) [4], which
aims at finding the best compromise between two quantities.
The first quantity is the length of the critical path, i.e., the
path in the application task graph on which the sum of the
edge and node weights is maximal. We denote the length of
the critical path by C∞. The second quantity is the ratio of
the total work, i.e., W =

∑N

i=0 ωi, by the total number of
processors. We denote this ratio by W . The principle of the
CPA algorithm is to start by allocating only one processor
to each task. Therefore, initially C∞ is larger than W . Then,
at each iteration, CPA adds one more processor to the task
belonging to the critical path that benefits the most from
this 1-processor allocation increase. The allocation process
stops when C∞ becomes smaller than W . Indeed, the case
C∞ = W corresponds to an optimal trade-off because both
these quantities are lower bounds of the application makespan.
Depending on application and platform characteristics, CPA
may lead to excessively large allocations that can prevent the
concurrent execution of independent tasks. Two algorithms
address this limitation. MCPA [3] limits processor allocations
to ensure that all the tasks in a level of the application DAG
can be executed concurrently. This algorithm is applicable only
to very regular DAGs. HCPA [7], which is also applicable
to heterogeneous multi-cluster platforms, employs a modified
definition of W to remove the bias induced by a large number
of available processors. All of these last three algorithms use
a list-scheduling-based task mapping phase in which tasks are
mapped to processors in order of decreasing ”bottom level”
(i.e., distance to the graph exit task), accounting for data
communication and data redistribution costs.
It has been shown that HCPA produces shorter schedules

than CPA (or at least of same length) and is applicable to a
larger class of applications than MCPA. Thus we chose to use
the allocation procedure of HCPA as a basis for this work.

III. REDISTRIBUTION AWARE MAPPING

As mentioned above, the totally decoupled allocation and
mapping procedures of two-step scheduling algorithms may
cause important data redistribution to satisfy data dependences
and favor network contention. As we assume that there is
no data redistribution if two subsequent tasks are mapped on
the same set of processors, the main idea of this paper is
to reconsider allocations determined in the first step while
mapping tasks. The proposed mapping procedure acts on a
list of ready tasks because when a task becomes ready, all its
predecessors have already been mapped. It is thus possible to

estimate accurately the respective finish time of a task using
several modified allocations for mapping.
Two different strategies can be applied as shown by Fig-

ure 1. The former consists in packing a task, i.e., reducing
its allocation, to obtain the same number of processors as
its parent task while the latter stretches the allocation, i.e.,
allocates more processors to the task. Behind these obvious
strategies lie several related issues that are addressed in the
following sections.

processors processors

tim
e

T3

T1

T3

T2

T1

T2

T2

T1

T3

pack

stretch

Fig. 1. Motivating example.

A. Stretching Allocations

Stretching an allocation may lead to a double gain, as it
avoids a data redistribution and reduces the execution time
of the task, but at the price of a higher resource usage.
Furthermore this may prevent concurrent execution of ready
tasks. Finally if some tasks are allocated on small sets of
processors by the allocation procedure of CPA or HCPA, this
means these tasks are not critical. Consequently, the number
of processors that can be added to a determined allocation has
to be bounded. We propose two options: the first one, named
delta, is only concerned by avoiding a redistribution while the
second, named time-cost, takes care of the additional work
implied by the stretching of the allocation.
In the delta strategy, we define δ+ as the minimal dif-

ference between the allocations of task t and that of one
its predecessors: δ+ = mini (Np(predi(t))−Np(t)). We
determine δmax, the maximal allowed value for δ+ on a
per task basis from a parameter (called maxdelta) of the
redistribution aware mapping procedure. This parameter takes
values in R

+ and describes the fraction of the number of
processors of the original allocation that can be added. For
example, if Np(t) = 6 and maxdelta = 0.5, this means
that the stretched allocation can comprise at most 9 processors
(6 + 0.5× 6) and that δmax = 3 for this task.
According to these definitions, when a task t is ready to

schedule, the delta mapping procedure:
1) Check if δ+ ≤ δmax,
2) Find the predecessor(s) of t corresponding to that δ+.

Keep the original allocation if there is no corresponding
predecessor,

3) Map t on the same processors as those of the selected
predecessor (if found).

52

In the time-cost strategy, we consider the ratio between the
work corresponding to the original allocation a task and the
work achieved if this task were to be executed on one of its
parents’ allocation:

ρi =
T (t, Np(t)) ×Np(t)

T (t, Np(predi(t))) ×Np(predi(t))
. (1)

In addition to this ratio definition, we also have to set
a threshold, ρmin as a parameter of the mapping procedure
to determine which allocations are candidate. This parameter
takes values in the]0 · · · 1] interval. The closer ρ is to 1,
the better it is, as this means a better balance between the
reduction of the execution time of a task and the augmentation
of the work needed for its execution. According to this
definition, when a task t is ready to schedule, the time-cost
mapping procedure:

1) Find the predecessor(s) of t producing the maximum
value for ρi. ,

2) Check if ρi ≥ ρmin. Keep the original allocation if not.
3) Map t on the same processors as those of the selected

predecessor (if found).

B. Packing Allocations

Packing the allocation of a task increases its execution
time, as the performance model is monotonically decreasing.
But this can be compensated by two consequences of such a
reduction of the number of allocated processors. First, it may
allow a task to start earlier as it has to wait for the availability
of less processors. Then using a smaller allocation leaves
more room for the execution of other potentially concurrent
tasks and thus increase the exploitation of task parallelism.
As for stretching we propose to apply the delta and time-cost
strategies, but with slight adjustments.
In the delta strategy, the allocations of the predecessors

candidate for packing are now larger than that of task t.
We thus define δ− = maxi (Np(predi(t))−Np(t)). We
also define δmin as the minimal allowed value for δ− on a
per task basis from a parameter (called mindelta) of the
redistribution aware mapping procedure. This parameter takes
values in R

− and describes the fraction of the number of
processors of the original allocation that can be removed. For
example, if Np(t) = 6 and mindelta = -0.5, this means
that the packed allocation can comprise 3 processors at least
(6− 0.5× 6) and that δmin = −3 for this task.
According to these definitions, when a task t is ready to

schedule, the delta mapping procedure:

1) Check if δ− ≥ δmin,
2) Find the predecessor(s) of t corresponding to that δ−.

Keep the original allocation if there is no corresponding
predecessor,

3) Map t on the same processors as those of the selected
predecessor (if found).

In the time-cost strategy, the mapping procedure just has
to ensure that the finish time of the tasks whose allocation is
packed is not worse than before packing.

C. Ready Tasks List Sorting

Another important issue is related to the order in which
the ready tasks are considered for mapping. Indeed, when
a task finishes its execution, more than one of its children
may become ready. This raises the following question: ”Which
of these tasks has to be handled first?”. As the different
candidates have at least one predecessor in common, taking
an allocation modification decision for one of them can have
a negative impact on the others. For instance, stretching the
allocation of a task may cause a postponing of potentially
concurrent tasks by not leaving enough resources available.
As mentioned in Section II-C, the CPA and HCPA mapping

procedures sort the list of ready tasks by decreasing bottom
level. The rationale behind this order is that the farther a task is
from the end of the application, the more critical it is and thus
has to be scheduled with the highest priority. Consequently, we
propose to keep this ordering of the list of ready tasks but to
apply a secondary sort to order the tasks of same priority. This
sort has to be stable, i.e., has to keep the same order among
tasks that have the same bottom level priority. We propose
to apply two different sorting strategies in our redistribution
aware mapping procedure. Sorting is done before mapping a
ready node.
The first strategy is related to the δ+ and δ− parameters

defined in previous sections. As δ+ takes positive values while
δ− takes negative ones, we define δ(t) as the minimum of
the δ+ and (−δ−) values for task t. The rationale is to
prioritize tasks which require less modifications of their initial
allocation. The δ sorting strategy thus applies a secondary sort
to the list of the ready tasks by increasing δ(t) values.
The second strategy takes care of the time-cost tradeoff

found during the allocation step. For each ready task we
compute the maximal gain in terms of execution time, that
can be achieved if this task were to be executed on one of its
parents’ processor set. We define this gain as:

gain(t) = max
i

(T (t, Np(t))− T (t, Np(predi(t)))) . (2)

The time-cost sorting strategy applies a secondary sort to
the list of the ready tasks by decreasing gain(t) values.
Algorithm 1 presents the pseudo code of our redistribution

aware two step scheduling algorithm.

IV. EVALUATION

We use simulation for evaluating our proposed algorithm
and for comparing it to previously proposed heuristics. Simu-
lation allows us to perform a statistically significant number of
experiments for a wide range of application configurations (in
a reasonable amount of time). We use the SIMGRID toolkit [9],
[10] as the basis for our simulator. SIMGRID provides the
required fundamental abstractions for the discrete-event sim-
ulation of parallel applications in distributed environments
and was specifically designed for the evaluation of scheduling
algorithms. We use SIMGRID v3.3-r5344.

53

Algorithm 1 RATS
1: compute allocation /* from HCPA */
2: while not all nodes scheduled do
3: for each ready node do do
4: compute delta / estimate execution time
5: end for
6: sort ready nodes
7: while list of ready nodes is not empty do
8: node = pop from list of ready nodes
9: if a parent allocation matches delta or time-cost conditions

then
10: map node onto parent’s allocation
11: recompute the values delta or execution time for all ready

nodes only if they have been computed using this parent
allocation

12: resort ready nodes if necessary
13: else
14: map using HCPA
15: end if
16: end while
17: end while

A. Experimental Setup

In this paper we consider three clusters of Grid’5000 as a
target simulated platform. Two of them, named grillon and
grelon are located in Nancy while the third is located in Lille,
named chti. Each cluster uses a Gigabit switched interconnect
internally (100μs latency and 1Gb bandwidth). The grelon
cluster is divided into five cabinets, each comprising 24 nodes.
Thus this cluster has a hierarchical network. Table II summa-
rizes the number of processors per cluster and the computation
speed of the processors in each cluster, in GFlop/sec. These
values were obtained with the High-Performance Linpack
benchmark over the AMD Core Math Library (ACML).

TABLE II

CLUSTER CHARACTERISTICS.

Cluster chti grelon grillon

#proc. 20 120 47

Gflop/sec 4.311 3.185 3.379

As our work focuses on data redistribution, it is important
to present how the network is modeled within the SIMGRID

toolkit. As mentioned before, SIMGRID assumes a bounded
multi-port model, i.e., a node can send or receive data from
or to several nodes but the bandwidth of its private link is
then shared among the different flows. Each network link is
represented by its latency λ and its bandwidth β. To simulate
gigabit networks more precisely, SIMGRID uses an empirical
bandwidth β′ = min(β, Wmax

RTT
) where Wmax is the size

of the maximal TCP window and RTT is the round trip
time between the computers. In case of multi-hop connection,
the RTT is twice the sum of the respective latency of
the different links. Finally SIMGRID models the sharing of
network resources among the different communication flows
implementing Max-Min fairness. A quantitative comparison
between the communication model of SIMGRID and packet-
level simulators can be found in [11].

To evaluate the benefits of reconsidering allocations during
the mapping step, we use four types of applications and rely on
parallel task model presented in Section II-A. We first consider
two kinds of randomly generated application DAGs: layered
and irregular. In layered DAGs, all the tasks in a given level
have the same cost. Consequently, all the transfers between
the same two levels share the same communication cost while
in irregular DAGs tasks that belong to a same level may have
different costs. This allows us to capture the heterogeneous
and unpredictable aspects of scientific workflows.
For both kinds, we generate applications that consist of 25,

50 or 100 data-parallel tasks. We use three popular parameters
to define the shape of each DAG: width, regularity and density.
The width determines the maximum parallelism in a DAG,
that is the number of tasks in the largest level. A small value
leads to ”chain” graphs and a large value leads to ”fork-join”
graphs. The regularity denotes the uniformity of the number of
tasks in each level. A low value means that levels contain very
dissimilar numbers of tasks, while a high value means that all
levels contain similar numbers of tasks. The density denotes
the number of edges between two levels of a DAG, with a low
value leading to few edges and a large value leading to many
edges. These three parameters take values between 0 and 1.
In our experiments we use values 0.2 and 0.8 for density and
regularity and 0.2, 0.5 and 0.8 for width. Furthermore, for
irregular DAGs only, we add random ”jumps edges” that go
from level l to level l + jump, for jump = 1, 2, 4 (the case
jump = 1 corresponds to no jumping ”over” any level). Since
some elements are random, for each DAG type we generate
3 sample DAGs. We refer the reader to our DAG generation
program and its documentation for more details [12]. Table III
summarizes the different parameters used to generate our
random DAGs and the associate values.

TABLE III

RANDOM DAG GENERATION PARAMETERS AND VALUES.

Layered Irregular
#computation tasks 25, 50, 100

non-parallelizable fraction [0.0; 0.25]

width 0.2, 0.5, 0.8

density 0.2, 0.8

regularity 0.2, 0.8

jump length - 1, 2, 4

#samples 3

Total 108 324

In addition to these randomly generated task graphs, we also
considered task graphs of two High Performance Computing
kernels: Fast Fourier Transformation and Strassen’s matrix
multiplication algorithm. For these two applications graphs
the shape is fixed by the algorithms but the costs associated
to computation and transfer nodes are generated following
the same generation approach as for the random graphs. We
generate 25 samples for each parameter combination leading
to 100 FFT DAGs and 25 Strassen DAGs.
The FFT task graph can be divided in two parts corre-

54

sponding respectively to the recursive calls and the butterfly
operations of the algorithm. For k data points, there are
2×k−1 recursive call tasks and m×log2 k butterfly operation
tasks. The main feature of the FFT task graph is that every
path from the start node to any of the exit tasks is a critical
path, i.e., computation or communication tasks in a given level
have the same cost. In the FFT-related experiments, we used
k, the number of data points as a parameter of our simulations
(2, 4, 8, and 16), to generate FFT-shaped DAGs with different
number of tasks (5, 15, 39 and 95).
As for the FFT application graph, all the entry tasks of the

Strassen’s matrix multiplication algorithm are on a critical path
and computation or communication tasks in a given level have
the same cost. A Strassen DAG comprises 25 tasks.

B. Impact of Redistribution Aware Mapping

We measure the impact of the redistribution aware mapping
as follows. For the 557 application configurations, we compute
a schedule using RATS (Redistribution Aware Two Step) and
one using HCPA [7]. For each schedule we compute its
makespan (lower values mean better performance) and its total
work (lower values mean lower resource consumption).
Two versions of RATS are compared. The first version

relies on the delta strategy, i.e., aims at avoiding one data
redistribution per task by changing the original allocation by
at most a factor δ and sorting the ready tasks by increasing
values of δ as explained in the previous section. The second
version adopts a time-cost strategy that stretches an allocation
only if the ratio between execution time and work done is
improved or pack the allocation only if the task can finish
earlier and sort the ready tasks according to the gain that can
be achieved. For this first comparison, we use a naive value
(0.5) for each parameter. For mindelta (resp. maxdelta),
this value means that an allocation can be at most decreased
(resp. increased) by 50%. For minrho, the efficiency loss can
be at most of 50%.

 0

 0.5

 1

 1.5

 2

m
ak

es
pa

n
re

la
tiv

e
to

 H
C

P
A

DAGs

Delta
Time−cost

Fig. 2. Relative makespan of RATS using the delta (mindelta =
maxdelta = 0.5) and the time-cost (packing allowed and minrho = 0.5)
strategies compared to HCPA on the grillon cluster.

Figure 2 shows the makespan achieved for each application
configuration by the two versions of RATS relative to that

achieved by HCPA on the grillon cluster. The data points are
sorted by increasing value of this relative makespan. Note that
the data sets are sorted independently. We see that across our
application configurations the makespan achieved by the delta
strategy is on average 9% shorter than HCPA and leads to
shorter schedules in 72% of the scenarios. We can also see
that the time-cost strategy leads to better results as on average
this strategy leads to makespans 16% shorter than HCPA and
to shorter schedules in 80% of the scenarios. We did not find
any particular trends in this data with respect to application
configuration characteristics. Furthermore, similar results were
obtained on the chti and grelon clusters.

 0

 0.5

 1

 1.5

 2

w
or

k
re

la
tiv

e
to

 H
C

P
A

DAGs

Delta
Time−cost

Fig. 3. Relative work of RATS using the delta (mindelta = maxdelta
= 0.5) and the time-cost (packing allowed and minrho = 0.5) strategies
compared to HCPA on the grillon cluster.

Similarly, Figure 3 shows the total work of the schedules
produced on the grillon cluster by RATS relative to that
of schedules produced by HCPA for all application config-
urations. We see that overall both RATS versions do not
consume much more resources than HCPA. We can also see
that the delta strategy consumes less resources than the time-
cost which is coherent with the better makespans achieved by
the time-cost strategy. Again, similar results were obtained on
the chti and grelon clusters.

C. Tuning δ and ρ Parameters

In this section we describe how the behavior of the two
versions of RATS can be tuned to trade off its resource usage
for average performance (i.e., obtain a lower average makespan
over our range of mixed-parallel applications).
In the delta strategy, two parameters (mindelta and

maxdelta) have an influence on the allocation modifications.
In the previous section we fixed them to 0.5. We now try to
determine which pair of values allows to achieve the smallest
makespan relative to HCPA, for each cluster but also for each
type of applications. Figure 4 presents the methodology we
used and the results obtained for FFT DAGs on the grillon
cluster. For both parameters we tested 4 values: 0, 0.25, 0.5
and 0.75. Another value (1) was tested for maxdelta only,
as allowing to remove all the processors of an allocation
when packing does not make sense. Then we compute the

55

-0.75-0.5-0.25 0

 0
 0.25

 0.5
 0.75

 1

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

av
g

m
ak

es
pa

n
re

la
tiv

e
to

 H
C

P
A

mindelta

maxdelta

Fig. 4. Relative makespan of RATS using the delta strategy for FFT DAGs
compared to HCPA on the grillon cluster as (mindelta, maxdelta) vary.

average makespan relative to that achieved by HCPA for each
combination of mindelta and maxdelta.
We can see on that particular example that changing for

larger allocations (allowed by a larger maxdelta) leads to
a better average relative makespan. It can be easily explained
by the possibility to use more resources to execute a given
task. On the other hand, decreasing the value of mindelta
can also improve a schedule, mainly because more tasks can
be executed in parallel with smaller allocations, but only to a
certain extent. Furthermore, the impact of the value taken by
mindelta is more sensitive to the application characteristics
as shown in Table IV.
In the time-cost strategy, there are also two variable param-

eters but one is a boolean enabling or disabling the possibility
to pack allocations. We noticed that setting this boolean to
true (i.e., enable allocation packing) always produces shorter
schedules. It has to be recalled that in the time-cost strategy
an allocation is packed if and only if the finish time of
the corresponding task is reduced. Allowing the mapping
procedure to pack allocations can thus sparsely have a negative
impact on the schedule length.

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
g

m
ak

es
pa

n
re

la
tiv

e
to

 H
C

P
A

minrho

no packing allowed
packing allowed

Fig. 5. Relative makespan of RATS using the time-cost strategy for irregular
random DAGs compared to HCPA on the grillon cluster when minrho varies.

The other parameter is minrho and acts on allocation
stretching. As for mindelta and maxdelta, we have tested
several values (0.2, 0.4, 0.5, 0.6, 0.8 and 1) and determined
which value leads to the best average relative makespan for
each cluster-application type pair. Small values of minrho
allows for more flexibility as allocations can be stretched even
if the time-cost ratio between initial and stretched allocations
is not very good.
Figure 5 details a particular example (irregular random

DAGs on the grillon cluster) to show that allowing allocations
to be packed gives better performance and a threshold can be
found (here 0.5), and beyond that, there is no need to increase
the flexibility.
Table IV summarizes the different values of mindelta,

maxdelta and minrho that have been determined for each
application type and cluster. These values will be used in the
next section to perform another comparison between the two
versions of RATS and HCPA.

TABLE IV

VALUES OF THE RATS PARAMETERS (MINDELTA ,MAXDELTA ,MINRHO)

DEPENDING ON APPLICATION TYPE AND CLUSTER.

FFT Strassen Layered Random

chti (-.5, 1, .2) (-.25, .5, .5) (-.5, 1, .2) (-.75, 1, .5)

grillon (-.5, 1, .2) (0, 1, .4) (-.25, 1, .2) (-.75, 1, .5)

grelon (-.25, .75, .4) (-.25, 1, .5) (-.5, 1, .2) (-.75, 1, .4)

D. Comparing Tuned RATS to HCPA

In this section we complete the study of the impact of a
redistribution aware mapping on schedule length started in
Section IV-B. Instead of using naive values, we now rely on the
tuned values given in Table IV for the following experiments.
We first present the same graphs as in Section IV-B in

Figures 6 and 7 that show the makespan and work achieved for
each application configuration by the two versions of RATS
relative to that achieved by HCPA on the grillon cluster. Both
data sets have been sorted independently, and thus, cases exist
where the delta strategy outperforms the time-cost approach.

 0

 0.5

 1

 1.5

 2

m
ak

es
pa

n
re

la
tiv

e
to

 H
C

P
A

DAGs

Delta
Time−cost

Fig. 6. Relative makespan of RATS using the delta and the time-cost
strategies with tuned values compared to HCPA on the grillon cluster.

56

TABLE V

PAIR-WISE COMPARISON OF THE SCHEDULING ALGORITHMS. EACH CELL CONTAINS THE VALUES FOR chti / grillon / grelon.

HCPA delta time-cost combined (in %)

HCPA
better 154 / 133 / 161 103 / 88 / 82 23.1 / 19.8 / 21.8
equal XXX 17 / 45 / 27 21 / 50 / 22 3.4 / 8.5 / 4.4
worse 386 / 379 / 369 433 / 419 / 453 73.5 / 71.6 / 73.8

delta
better 386 / 379 / 369 188 / 199 / 128 51.5 / 51.9 / 44.6
equal 17 / 45 / 27 XXX 49 / 90 / 40 5.9 / 12.1 / 6.0
worse 154 / 133 / 161 320 / 268 / 389 42.5 / 36.0 / 49.4

time-cost
better 433 / 419 / 453 320 / 268 / 389 67.6 / 61.7 / 75.6
equal 21 / 50 / 22 49 / 90 / 40 XXX 6.3 / 12.6 / 5.6
worse 103 / 88 / 82 188 / 199 / 128 26.1 / 25.8 / 18.9

 0

 0.5

 1

 1.5

 2

w
or

k
re

la
tiv

e
to

 H
C

P
A

DAGs

Delta
Time−cost

Fig. 7. Relative work of RATS using the delta and the time-cost strategies
with tuned values compared to HCPA on the grillon cluster.

We can see that there is only a slight improvement for the
time-cost strategy, which is normal as packing was already
allowed in Figure 2 and 0.5 was a appropriate value in most
scenarios. The impact of tuning is more significant for the
delta approach. In the case of the grillon cluster, schedules
are now 13% shorter (9% without tuning) and RATS leads
to shorter schedules in more cases. Similar improvements are
made on the other clusters as schedules were 8% shorter and
now are 11% shorter.
It has to be noticed that this improvement in terms of

makespan is not made to detriment of the resource usage. Even
if allocations can be more stretched (as maxdelta is larger),
the delta strategy still consumes less resources than HCPA in
the vast majority of scenarios.
In addition to this comparison, the number of times that each

scheduling algorithm produced better, equal or worse schedule
length compared to every other algorithm was counted for
the 557 experiments. Each cell in Table V indicates the
comparison results of the algorithm on the left with the
algorithm on the top respectively on chti / grillon / grelon.
The combined column shows the percentage of scenarios in
which the algorithm on the left gives a better, equal or worse
performance than all other algorithms combined. The ranking
of the algorithms, based on occurrences of best results, is
{time-cost, delta, HCPA} which confirms the data of Figure 6.

We can also see that the time-cost strategy achieves better
results as the size of the cluster grows while the delta strategy
produces better schedules on small and medium sized clusters.
One possible explanation is that the estimations of the redistri-
bution time made in the time-cost version do not take network
contention into account. For a given application, contentions
are more likely to occur on a small cluster than on a lager
one. Consequently, the decisions taken by RATS becomes
more accurate when the size of the cluster grows. Another
possible explanation is that the bigger the cluster is the more
possible targets for mapping an allocation exist. Since the
delta approach does not rely on performance estimations when
mapping tasks, the introduced error while mapping allocations
will have a bigger impact if many processors are available.

An interesting complement to this study of the number
of occurrences of better quality schedules is to evaluate the
degradation from best. This allows us to determine the relative
quality of the schedules produced by an algorithm when these
schedules are not the bests. Table VI shows results obtained
with two computation methods for the degradation from best.
The first line presents the average over the total number of
experiments (557) of the percent relative difference between
the makespan achieved by an algorithm and the best makespan
achieved for a given experiment. We can see that when
the time-cost version of RATS is not the best heuristic, the
schedule lengths produced are less than 6% longer in average.
This percentage even decreases as the size of the cluster grows.
Conversely, the schedules produced by the delta version of
RATS get farther from the best ones as the cluster size grows.

TABLE VI

AVERAGE DEGRADATION FROM BEST.

HCPA delta time-cost

chti
avg over all exp. 26.19% 6.60% 5.76%

not best 453 299 239
avg over # not best 61.03% 15.39% 13.42%

grillon
avg over all exp. 45.97% 13.87% 5.16%

not best 465 361 229
avg over # not best 111.81% 33.74% 12.54%

grelon
avg over all exp. 51.71% 19.31% 2.74%

not best 478 412 165
avg over # not best 174.57% 65.18% 9.24%

57

One may criticize this averaging method as if a heuristic
is often the best, dividing the sum of each of its particular
degradations from best – which often are 0 – by the total
number of experiments biases the results. To alleviate such
a critic, Table VI also shows a second way to compute the
average degradation from best in which the sum is divided
by the number of experiments where the heuristic did not
produced the best schedule length. The second line of the
table shows, for each scheduling algorithm, the number of
such experiments, while the third line presents the average
degradation from best of each algorithm computed by that
second method. The degradation remains excellent for the
time-cost version (less than 15%) while that of HCPA reaches
very high values, i.e., produces schedules that are more than
twice as long as the best one.

V. CONCLUSION

Two-step algorithms for scheduling mixed-parallel applica-
tions on clusters structured as a task graph whose nodes are
data-parallel computations have been developed [3], [4], [5],
[6], [7]. However these algorithms separate the determination
of the number of processors to allocate to each task from
the process that decides on which processors of the cluster
each task is to be executed. In this paper, we set out to
develop RATS, a scheduling algorithm that addresses the
issues related to data redistributions inherent to two step
algorithms by reconsidering the allocations determined in the
first step during the second step. Two tunable redistribution
aware mapping procedure were proposed and we assessed
their impact on the length of the produced schedules over a
broad range of application configurations. The former strategy
tries to avoid one data redistribution per task by using the
processor set of a predecessor if the modification is less than
a certain δ. The latter strategy modifies allocations only if
the time-cost ratio is preserved. Experiments has shown that
the proposed redistribution aware mapping procedures reduce
the completion time of the applications in a vast majority
of scenarios. Moreover the time-cost strategy leads to better
results and stays very close to the best solution when it is

not already the best one. Finally we shown that the tunable
parameters allows the scheduling algorithm to adapt itself
to platform and application characteristics to produce shorter
schedules.
As a future work we aim at extending this work to multi-

cluster platforms in which heterogeneity and high latency
network connections have to be taken into account. We also
plan to further analyze the relationships between applications
and platform characteristics and our tunable parameters to
allow the automatic tuning of our scheduling algorithm.

REFERENCES

[1] S. Chakrabarti, J. Demmel, and K. Yelick, “Modeling the Benefits of
Mixed Data and Task Parallelism,” in Symposium on Parallel Algorithms
and Architectures (SPAA’95), 1995, pp. 74–83.

[2] S. Hunold, T. Rauber, and G. Rünger, “TGrid – Grid Runtime Support
for Hierarchically Structured Task-parallel Programs,” in Proceedings
of the Fifth International Workshop on Algorithms, Models and Tools
for Parallel Computing on Heterogeneous Networks (Heteropar’06).
Barcelona, Spain: IEEE Computer Society Press, Sept. 2006.

[3] S. Bansal, P. Kumar, and K. Singh, “An Improved Two-Step Algorithm
for Task and Data Parallel Scheduling in Distributed Memory Machines,”
Parallel Computing, vol. 32, no. 10, pp. 759–774, 2006.

[4] A. Radulescu and A. van Gemund, “A Low-Cost Approach towards
Mixed Task and Data Parallel Scheduling,” in 15th International Con-
ference on Parallel Processing (ICPP), Valencia, Spain, Sept. 2001.

[5] S. Ramaswany, “Simultaneous Exploitation of Task and Data Parallelism
in Regular Scientific Applications,” Ph.D. dissertation, Univ. of Illinois,
Urbana-Champaign, 1996.

[6] T. Rauber and G. Rünger, “Compiler Support for Task Scheduling
in Hierarchical Execution Models,” Journal of Systems Architecture,
vol. 45, pp. 483–503, 1998.

[7] T. N’takpé, F. Suter, and H. Casanova, “A Comparison of Scheduling
Approaches for Mixed-Parallel Applications on Heterogeneous Plat-
forms,” in 6th International Symposium on Parallel and Distributed
Computing. Hagenberg, Austria: IEEE Computer Press, July 2007.

[8] G. Amdahl, “Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities,” in AFIPS 1967 Spring Joint
Computer Conference, vol. 30, Apr. 1967, pp. 483–485.

[9] H. Casanova, A. Legrand, and M. Quinson, “SimGrid: a Generic
Framework for Large-Scale Distributed Experiments,” in 10th IEEE
International Conference on Computer Modeling and Simulation. IEEE
Computer Society Press, Mar. 2008.

[10] SimGrid, http://simgrid.gforge.inria.fr.
[11] K. Fujiwara and H. Casanova, “Speed and Accuracy of Network

Simulation in the SimGrid Framework,” in First International Workshop
on Network Simulation Tools (NSTools), Nantes, France, Oct. 2007.

[12] DAG Generation Program, http://www.loria.fr/∼suter/dags.html.

58

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
