
 Live and Incremental Whole-System Migration
of Virtual Machines Using Block-Bitmap

Yingwei Luo #1, Binbin Zhang #, Xiaolin Wang#, Zhenlin Wang *2, Yifeng Sun#, Haogang Chen#

Department of Computer Science and Technology, Peking University, P.R.China, 100871
1 lyw@pku.edu.cn

* Dept. of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
2 zlwang@mtu.edu

Abstract—In this paper, we describe a whole-system live

migration scheme, which transfers the whole system run-time
state, including CPU state, memory data, and local disk storage,
of the virtual machine (VM). To minimize the downtime caused
by migrating large disk storage data and keep data integrity and
consistency, we propose a three-phase migration (TPM)
algorithm. To facilitate the migration back to initial source
machine, we use an incremental migration (IM) algorithm to
reduce the amount of the data to be migrated. Block-bitmap is
used to track all the write accesses to the local disk storage
during the migration. Synchronization of the local disk storage in
the migration is performed according to the block-bitmap.
Experiments show that our algorithms work well even when I/O-
intensive workloads are running in the migrated VM. The
downtime of the migration is around 100 milliseconds, close to
shared-storage migration. Total migration time is greatly
reduced using IM. The block-bitmap based synchronization
mechanism is simple and effective. Performance overhead of
recording all the writes on migrated VM is very low.

I. INTRODUCTION
VM migration refers to transferring run-time data of a VM

from one machine (the source) to another machine (the
destination). After migration, VM continues to run on the
destination machine. Live migration is a migration during
which the VM seems to be responsive all the time from
clients’ perspective. Most research focuses on migrating only
memory and CPU state assuming that the source and
destination machines use shared disk storage. But in some
scenarios, the source and destination machines cannot share
the disk storage. So the local disk storage should also be
migrated. This paper describes a whole-system live migration,
which moves all the VM state to the destination, including
memory data, CPU state, and local disk storage. During the
migration, the VM keeps running with a negligible downtime.

We propose a Three-Phase Migration (TPM) scheme to
minimize the downtime while maintaining disk storage data
integrity and consistency. The three phases are pre-copy,
freeze-and-copy, and post-copy. The original VM is only
suspended during the freeze-and-copy phase and then resumes
on the destination machine. In the pre-copy phase, before the
local memory is pre-copied, local disk storage data are
iteratively transferred to the destination while using a block-
bitmap to track all the write accesses. In the freeze-and-copy
phase, the block-bitmap, which contains enough information
for later synchronization, is sent to the destination. In the post-

copy phase, we take an approach that combines pull and push.
According to the block-bitmap, the destination pulls a dirty
block if it is accessed by a read request, while the source
pushes the dirty blocks continuously to ensure that the
synchronization can be completed in a finite time. A write
request in the destination to a dirty block will overwrite the
whole block and thus does not require pulling the block from
the source VM.

We developed an Incremental Migration (IM) algorithm
to greatly reduce the migration time. The block-bitmap
continues to track all the write accesses to the disk storage in
the destination after the primal migration and only the new
dirty blocks need to be synchronized if the VM needs to
migrate back to the source machine later on. IM will be very
useful when the migration is used for host machine
maintenance and the migration back and forth between two
places to support telecommuting, for instance.

In our design and implementation, we intend to minimize
downtime and disruption time such that the clients can barely
notice the service interruption and degradation. We further
control total migration time and amount of data transferred.
These metrics will be explained in detail in section III.

The rest of the paper is structured as follows. In section II
we discuss related work. In section III we analyze the problem
requirements and describe the metrics to evaluate the VM
migration performance. In section IV and section V we
describe TPM and IM in detail, including their design and
some implementation issues. In section VI we describe our
evaluation methodology and present the experimental results.
Finally we conclude and outline our future work in section VII.

II. RELATED WORK
In this section, we discuss the existing research on VM

migration, including live migration with shared disk storage
and whole-system migration with local disk storage.

A. Live Migration with Shared Disk Storage
Two representative live migration systems, Xen live

migration [1, 11] and VMware VMotion, share similar
implementation strategies. Both of them assume shared disk
storage. Take Xen live migration as an example. It uses a pre-
copy mechanism that iteratively copies memory to the
destination, while recording dirty memory pages. Then at a
right time, it suspends the VM, and copies the remaining dirty
memory pages and CPU state to the destination. It resumes the

VM at the destination after all the memory has been
synchronized. Because only a few pages may be transferred
during VM pausing, the downtime is usually too short for a
client to notice. Both Xen live migration and VMotion only
focus on the memory state and run-time CPU state; So VM
can be migrated only between two physical machines using
shared storage.

B. Whole-System Migration with Local Disk Storage
Whole-system migration will migrate the whole-system

state of a VM, including its CPU state, memory data, and local
disk storage data, from the source to the destination machine.

A simple way to migrate a VM with its local storage is
freeze-and-copy, which first freezes the VM to copy its
whole-system state to the destination, and then restarts the
VM at the destination. Internet Suspend/Resume [3, 5] is a
mature project using freeze-and-copy to capture and transfer a
whole VM system. A copy and only the copy of all the VM
run-time state are transferred without any additional
redundancy. It results a severe downtime due to the large size
of the storage data. The Collective [4, 10] project also uses the
freeze-and-copy method. It introduces a set of enhancements
to decrease the size of transmitted data. All the updates are
captured in a Copy-on-Write disk. So only the differences of
the disk storage need to be migrated. However, even
transferring disk updates could causes significant downtimes.

Another method is on-demand fetching [5], which first
migrates memory and CPU state only with delayed storage
migration. The VM immediately resumes on the destination
after the memory and CPU state migration. It then fetches
storage data on-demand over network. The downtime is the
same to the shared-storage migration downtime. But it will
incur residual dependence on source machine, even an
irremovable dependence. So on-demand fetching can’t be
utilized for source machine maintenance, load-balance
migration, or other federated disconnected platforms such as
Grids and PlanetLab. Furthermore, it actually decreases
system availability, for its dependency on two machines. Let p
(p<1) stand for a machine’s availability, then the migrated
VM system’s availability is p2, which is less than p.
Considering the network connection failure, the actual
availability must be less than p2.

Bradford et al. propose to pre-copy local storage state to the
destination while VM still running on the source [6]. During
the migration all the write accesses to the local storage are
recorded and forwarded to the destination, to ensure
consistency. They use a delta, a unit consisting of the written
data, the location of the write, and the size of the written data,
to record and forward the write access for synchronization.
After the VM resumes on the destination, all the write
accesses must be blocked before all forwarded deltas are
applied. It shows the same downtime to the shared-storage
migration. But it may cause a long I/O block time for the
synchronization. Furthermore there may be some redundancy
in the delta queue, which can frequently happen because of
locality of storage accesses.

In conclusion, there is still much to do to find out how to
migrate large-size local storage in an endurable migration time

while remaining a short downtime, how to synchronize
storage state using as less redundant information as possible,
and how to keep a finite dependency on the source machine.
This paper addresses these questions.

III. PROBLEM ANALYSIS AND DEFINITION
The goal of our system is to migrate the whole-system state

of a VM from the source to the destination machine, including
its CPU state, memory data, and local disk storage data.
During the migration time the VM keeps running. This section
describes the key metrics and requirements for a whole-
system live migration.

A. Definition of the Metrics
The following metrics are usually used to measure the

effectiveness of a live migration scheme:
• Downtime is the time interval during which services

are entirely unavailable [1]. It is the time from when
VM pauses on the source machine to when it resumes
on the destination. Synchronization is usually
performed in downtime. So the synchronization
mechanism impacts on downtime.

• Disruption time is the time interval during which
clients connecting to the services running in the
migrated VM observe degradation of service
responsiveness—requests by the client take longer
response time [6]. It is the time during which the
services on the VM show lower performance due to the
migration from a client’s perspective. The transfer rates
and methods for synchronization have influence on
disruption time.

• Total migration time is the duration from when the
migration starts to when the states on both machines are
fully synchronized [1]. Decrease the size of transferred
data, e.g. to compress the transferred data before
sending it, will show a reduction in total migration time.

• Amount of migrated data is the amount of data
transmitted during the whole migration time. The
minimal amount is the size of the run-time states,
including the memory size, storage size, CPU state size,
etc.. Usually it will be larger than the actual run-time
state size, except for the freeze-and-copy method,
because there must be some redundancy for
synchronization and protocols.

• Performance overhead is the decrement of the service
performance caused by migration. It is evaluated by the
comparison of the service throughput during the
migration and without migration.

A high-bandwidth network connection between the source
and the destination will decrease downtime, disruption time,
and migration time to a certain extent.

B. Requirements for a Whole-System Live Migration
Based on the metrics discussed in section III-A, an ideal

VM migration is a whole-system migration with short
downtime, minimized disruption time, endurable migration
time, and negligible performance overhead. And it only
transfers the run-time states without any redundancy. But this

ideal whole-system live migration is hard to implement.
Transferring large-volume local storage incurs a long
migration time. It is difficult to maintain the consistency of
the storage between the source and destination during such a
long migration time while retaining a short downtime. The
design of our system focuses on the following requirements:

• Live migration: VM keeps running during most time of
the migration process. In other words, clients can’t
notice that the services on the VM are interrupted
during the migration.

• Minimal downtime: An ingenious synchronization
method is required to minimize the size of the data
transmitted in the downtime.

• Consistency: The VM’s file system is consistent and
identical during migration except downtime.

• Minimizing performance overhead: A non-redundant
synchronization method and a set of simple protocols
must be designed. And the bandwidth used by the
migration process should be limited to ensure the
performance of the services on the migrated VM.

• Finite dependency on the source machine: The source
machine can be shutdown after migration. That means
synchronization must be completed in a finite period of
time.

• Transparency: Applications running on the migrated
VM don’t need to be reconfigured.

• Minimizing migration time: This can be achieved if a
part of the state data need not be transmitted.

Our TPM and IM algorithms are designed to satisfy these
requirements. The following two sections will describe TPM
and IM in detail.

IV. THREE-PHASE MIGRATION
The TPM algorithm aims at whole-system live migration.

This section describes its design and implementation.

A. Design
Migration is a process to synchronize VM state between the

source and the destination machine. Live migration requires
the synchronization complete with a short downtime, while
whole-system migration requires a large amount of state data
be synchronized. TPM is designed to migrate the whole
system state of VM while keeping a short downtime.

1) Three Phases of TPM: The three phases of TPM are
pre-copy, freeze-and-copy, and post-copy. Most of the run-
time data are transferred in pre-copy phase. The VM service is
not available only in freeze-and-copy phase. And local disk
storage data needs to be synchronized in post-copy phase. The
process of TPM is illustrated in Figure 1.

In the pre-copy phase, the storage data are pre-copied
iteratively. During the first iteration, all the storage data
should be copied to the destination. For the later iterations
only the latest dirtied data during last iteration need to be sent.
We limit the maximum number of iterations to avoid endless
migration. In addition, if the dirty rate is higher than the
transfer rate, the storage pre-copy must be stopped proactively.

In the freeze-and-copy phase, the migrated VM is
suspended on the source machine. Dirty memory pages and
CPU states are transferred to the destination. All inconsistent
blocks that have been modified during the last iteration of
storage pre-copy are marked in the bitmap. So only the bitmap
needs to be transferred.

Fig. 1. Three-Phase whole-system live migration

In the post-copy phase, the migrated VM is resumed on the

destination machine. The source begins to push dirty blocks to
the destination according to the bitmap, while the destination
uses the same block-bitmap to pull the dirty blocks requested
by the migrated VM. The pulling occurs and only occurs
when the VM submits a read access to a dirty block. So the
destination must intercept all I/O requests from VM and check
if a block must be pulled.

2) Block-bitmap: A bitmap is used to record the location of
dirty disk storage data during migration. A bit in the bitmap
corresponds to a unit in disk storage. 0 denotes that the unit is
clean and 1 means it is dirty.

Bit Granularity. Bit granularity means the size of a unit in
disk storage described by a bit. Though 512B sector is the
basic unit on which physical disk performs reading and
writing, modern OS often reads from or writes to disk by a
group of sectors as a block, usually a 4KB block. So we prefer
to choose the bit granularity at block level rather than at sector
level, that is, to map a bit to a block rather than to a sector. For
a 32GB disk, a 4KB-block bitmap costs only 1MB memory,
but a 512B-sector bitmap will use up to 8MB. When disk size
is not too large, a 4KB-block bitmap works very well.

Layered-Bitmap. For each iteration in the pre-copy phase,
the bitmap must be scanned through to find out all the dirty
blocks. If the bitmap is large, the overhead is severe. I/O
operation often show high locality, so bit 1’s are often
clustered together, and the overall bitmap remains sparse. A
layered bitmap can be used to decrease the overhead. That is,
a bitmap is divided into several parts and organized as two
layers. The upper layer records whether these parts are dirty.
If the bitmap must be checked through, the top layer is

checked first, and then only the parts marked dirty need to be
checked further. When using layered-bitmap, the lower parts
are allocated only when there is a write access to this part,
which can reduce bitmap size and save memory space.

Bradford et al. [6] use a forward and replay method to
synchronize disk storage data. During pre-copy phase, all the
write operations are intercepted and forwarded to the
destination. On the destination all these writes are queued and
will apply to the migrated disk after disk storage pre-copy is
completed. Write throttling must be used to ensure that the
network bandwidth can catch up with the disk I/O throughput
in some disk I/O intensive workloads. And after migrated VM
is resumed on the destination, its disk I/O must be blocked
until all the records in the queue have been replayed.
Furthermore, there will be some redundant records which
write to a same block. It will increase the amount of migrated
data so as to enlarge the total migration time and I/O blocked
time. We have checked the storage write locality using some
benchmarks. When we make a Linux kernel, about 11% of the
write operations rewrite those blocks written before. The
percentage is 25.2% in SPECweb Banking Server, and 35.6%
while Bonnie++ is running.

In our solution all the inconsistent blocks are marked in the
block-bitmap, and can be lazily synchronized until VM
resumed on the destination. It works well in I/O intensive
workloads, avoiding I/O block time on the destination and
essentially solving the redundancy problem in recording and
replaying all the write operations. Our solution may increase
the downtime slightly due to transferring the block-bitmap.
But in most scenarios, the block-bitmap is small (1MB-bitmap
per 32GB-disk, and smaller if layered-bitmap is used) and the
overhead is negligible.

3) Local Disk Storage Synchronization: We use a block-
bitmap based method to synchronize local disk storage. In the
pre-copy phase, a block-bitmap is used to track write
operations during each iteration. At the beginning of each
iteration, the block-bitmap is reset to record all the writes in
the new iteration, during which all the data marked dirty in the
previous iteration must be transferred.

In the freeze-and-copy phase, the source sends a copy of
the block-bitmap, which marks all the inconsistent blocks, to
the destination. So at the beginning of the post-copy phase, the
source and the destination both have a block-bitmap with the
same content. The post-copy synchronizes all the inconsistent
blocks according to these two block-bitmaps. At the same
time, a new block-bitmap is created to record the disk storage
updates on the destination, which will be used in IM described
in section V. The source pushes the marked blocks
continuously and sends the pulled block preferentially if a pull
request has been received, while the destination performs as
follows:

DEFINE:
− An I/O request R<O, N, VM>, where O is the

operation, WRITE or READ, N is the operated
block number, and VM is the ID of the domain
which submits the request.

− Transferred_block_bitmap: A block-bitmap marks
all the blocks inconsistent with the source at the
beginning of the post-copy.

− New_block_bitmap: A block-bitmap marks the new
dirtied blocks on the destination.

1. An I/O request R<O, N, VM> is intercepted;
2. Queue R in the pending list P;
3. IF R.VM != migrated VM
4. THEN goto 14;
5. IF R.O == WRITE // no pulling needed
6. THEN{
7. new_block-bitmap[N] = 1;
8. transferred_block_bitmap[N] = 0;
9. goto 14;
10. }
11. IF transferred_block-bitmap[N] == 0 //clean block
12. THEN goto 14;
13. Send a pulling request to the source machine for

block N, goto 16;
14. Remove R from P;
15. Submit R to the physical driver;
16. End;

The destination intercepts each I/O request. If the request is

from other domain than the migrated VM (line 3), submit it
directly. Otherwise, if the request is a write (lines 5-10), we
use a new block bitmap to track this update (line 7) and reset
the corresponding state in the bitmap for synchronization (line
8). If the request is a read (lines 11-13), a pulling request is
sent to the source machine only when the accessed block is
dirty (line 13).

Finally the destination must check each received block to
determine if it is a pushed block or a pulled one:

1. A block M is received;
2. IF transferred_block-bitmap[M] == 0
3. THEN goto 12;
4. Update block M in the local disk;
5. transferred_block-bitmap[M]=0;
6. For each request Ri in P
7. IF Ri.N == M
8. THEN{
9. Remove Ri from P;
10. Submit Ri;
11. }
12. End;

The pushed block is dropped if there was a write in the
destination that reset the bitmap (lines 2-3). If it is a pulled
block, the pulling request is removed from the pending request
queue (lines 6-11) and local disk will be updated accordingly
(line 10).

4) Effectiveness Analysis on TPM: TPM is a whole-system
live migration, which satisfies the requirements listed in
section III.

Live migration and minimal downtime: In the freeze-
and-copy phase, only dirty memory pages and the block-
bitmap need to be transferred. So the downtime depends on
the block-bitmap transfer time and memory synchronization
time. In most scenarios, the dirty bitmap is small. The size can
be even reduced greatly if we use the layered block-bitmap as
analyzed in section IV-A-2. And memory synchronization
time is very short as indicated in the Xen live migration
research [1].

To keep consistency: In the post-copy phase, all the I/O
requests from the migrated VM are intercepted and
synchronization is necessary only if it is a read to dirty data.

To minimize performance overhead: The performance
overhead can be limited if we limit the bandwidth used by
migration, which will increase total migration time
correspondingly (see section VI-C-3). Another approach is to
use a secondary NIC (Network Interface Card) for the
migration, which can help limit the overhead on network I/O
performance, but it has no effect on releasing the stress on
disk during migration.

To make a finite dependency on the source machine: We
use push-and-pull to make the post migration convergent,
avoiding a long residual dependency on the source by the pure
on-demand fetching approach.

To be transparent: Storage migration occurs at the block
level. The file system cannot observe the migration.

B. Implementation
We expand Xen live migration to implement a prototype of

TPM. To make our description easy to follow, we first
introduce some notations in Xen. A running VM is named
Domain. There are two kinds of domains. One is privileged
and can handle the physical devices, referred to as Domain0.
The other is unprivileged and referred to as DomainU. Split
drivers are used for DomainU disk I/O. A frontend driver in
DomainU acts as a proxy to a backend driver, which works
in Domain0 and can intercept all the I/O requests from
DomainU. VBD is the abbreviation of Virtual Block Device
acting as a physical block device of a Domain.

The process of our implementation of TPM is illustrated in
Figure 2. The white boxes show Xen live migration process,
and the grey boxes shows our extension.

Disk storage data are pre-copied before memory copying
because memory dirty rate is much higher than disk storage
and the disk storage pre-copy lasts very long. A large amount
of dirty memory can be produced during the disk storage pre-
copy. Simultaneous or premature memory pre-copy is useless.

We design a user process named blkd to do most work of
storage migration. Xen’s original functions xc_linux_save and
xc_linux_restore are modified to direct blkd what to do at
certain time. We modify the block backend driver, blkback, to
intercept all the write accesses in the migrated VM and record
the location of dirtied blocks into the block-bitmap. All the
modifications are described as follows.

Fig. 2. Process of TPM implemented based on Xen Live Migration

• Modify initialization of migration to ask the destination

to prepare a VBD for the migrated VM.
• Modify xc_linux_save. Before the memory pre-copy

starts, it will signal blkback to start monitoring write
accesses, and then signal blkd to start pre-copying local
disk storage and block itself until the disk storage pre-
copy completes. After the pre-copy phase, it will signal
blkd to send the block-bitmap and enter the post-copy
phase.

• Modify xc_linux_restore. Before receiving pre-copied
memory pages, it will signal blkd to handle local disk
storage pre-copy, and block itself until disk storage pre-
copy completes. After the migrated Domain is
suspended, it will signal the blkd to receive the block-
bitmap and enter the post-copy phase before resuming
the migrated Domain.

• Modify blkback to register a Proc file and implement its
read and write functions to export control interface to
blkd for communication. Then blkd can write the Proc
file to configure blkback and read the file for the block-
bitmap. Blkback maintains a block-bitmap and
intercepts and records all the writes from the migrated
domain. The block-bitmap is initialized when the
migration starts. At the beginning of each iteration of
pre-copy, after the block-bitmap is copied to blkd, it is
reset for recording dirty blocks in the next iteration. If
the blkback intercepts a write request, it will split the
requested area into 4K blocks and set corresponding
bits in the block-bitmap.

The user process blkd acts according to the signals from
xc_linux_save and xc_linux_restore. When it receives a local
disk storage pre-copy signal, it starts iterative pre-copy.
During each iteration, it first reads the block-bitmap from the
backend driver, blkback. Then it sends the blocks which are
marked dirty in the block-bitmap.

In the freeze-and-copy phase, xc_linux_save signals blk to
send the block-bitmap to the destination.

In the post-copy phase, as illustrated by Figure 3, the blkd
on the source machine pushes (action 1) the dirty blocks to the
destination according to block-bitmap BM_1, while it listens
to the pull requirements (action 3) and sends the pulled block
preferentially. On the destination, the blkback intercepts the
requests from the migrated VM and forward them to blkd
(action 2). Blkd checks if the blocks accessed by a request
must be pulled according to the block-bitmap BM_2 and the
rules described in section IV-A-3. It will send the source a
request if the block must be pulled (action 3). And blkd will
tell blkback (action 4) which requests can be submitted to the
physical disk driver after a pulled block has been received and
write into the local disk (action 5). All the writes in DomU are
intercepted in blkback and marked in block-bitmap BM_3,
which will be used in IM described in section V.

Fig. 3. The Implementation of Post-copy

V. INCREMENTAL MIGRATION
Our experiments show that the TPM can also result a long

migration time, due to the large size of the local storage data.
Fortunately, in many scenarios, migration is used to maintain
the source machine, or to relocate the working environment
from office to home, for instance. A VM migrated to another
machine may be migrated back again later, e.g., after the
maintenance is done on the source machine, or the user need
to move the environment back to his/her office. In these
scenarios, if the difference between the source and the
destination is maintained, only the difference needs to be
migrated. Even in those I/O intensive scenarios, the storage
data to be transferred can be decreased significantly using this
Incremental Migration (IM) scheme. Figure 4 illustrates the
process of IM.

The grey box shows that in the pre-copy phase, the block-
bitmap should be checked to find out all the dirty blocks after
last migration. Only those dirty blocks need to be transferred
back in the first iteration. So after the VM is resumed on the
destination all the newly dirtied blocks of the migrated VM
must be marked in a block-bitmap as mentioned in section IV-
A. So in the post-copy phase of TPM, two block-bitmaps are
used. One is transferred from the source and records all the
unsynchronized blocks; the other is initialized when the
migrated VM is resumed on the destination, and is used for
recording the newly dirtied blocks on the destination. When

the migrated VM needs to be migrated back to the source,
only the blocks marked in the new block-bitmap need to be
transferred.

Initialization

Pre-copy local disk storage data

Pre-copy memory

Pre-C
opy

Freeze-and-
C

opy
Post-C

opy The source continues to PUSH dirty blocks to the destination;
The destination PULLs the dirty blocks for READ from the source

Find out which blocks need to be migrated according to the bitmap

Suspend the VM, Migrate dirty memory pages and CPU states

Transfer block-bitmap

Resume the VM on the destination

Fig. 4. Process of IM

The implementation is a minor modification to the TPM.

We check if the bitmap exists before the first iteration. If it
does, only the blocks marked dirty in the block-bitmap need to
be migrated. Otherwise an all-set block-bitmap is generated,
suggesting that all the blocks need to be transmitted.

VI. EVALUATION
In this section we evaluate our TPM and IM

implementation using various workloads. We first describe the
experimental environment and list the workloads. We then
present the experimental results including downtime,
disruption time, total migration time, amount of migrated data,
and performance overhead.

A. Experimental Environment
We use three machines for the experiments. Two of them

share the same hardware configuration, which is Core 2 Duo
6320 CPU, 2GB memory, SATA2 disk. The software
configuration is also the same: Xen-3.0.3 with XenoLinux-
2.6.16.29 running on the VM. Two Domains run concurrently
on each physical machine. One is an unprivileged VM
configured with 512MB of memory and 40GB VBD. The
other is Domain0, which consumes all the remaining memory.
To reduce the context switches between VMs, the two VMs
are pinned to different CPU cores. The unprivileged VM is
migrated from one machine to the other to evaluate TPM and
migrated back to evaluate IM. The third machine emulates the
clients to access the services on the migrated VM. They are
connected by a Gigabit LAN.

B. Workloads for Migration Evaluation
Our system focuses on local storage migration, so we

choose some typical workloads with different I/O loads. They
are a web server serving dynamic web application, which

generates a lot of writes in bursts, a video stream server
performing continuous reads and only a few writes for logs to
represent latency-sensitive streaming applications, and a
diabolical server which is I/O-intensive, producing a large
number of reads and writes all the time. These workloads are
typical for evaluating the VM migration performance in the
past research.

C. Experimental Results
In all the experiments, services on the migrated VM seem

to keep running during the whole migration time from clients’
perspective. Table I shows experimental results of our
prototype of TPM. From the results, we can see that it
achieves the goal of live migration with very short downtime.
The migration can be completed in a limited period of time.
The amount of migrated data is just a little larger than the size
of the VBD (39070MB), which means that the block-bitmap
based synchronization mechanism is efficient.

TABLE I
RESULTS FOR DIFFERENT WORKLOADS

 Dynamic
web server

Low latency
server

Diabolical
server

Total migration time (s) 796 798 957
Downtime (ms) 60 62 110

Amount of migrated
data (MB) 39097 39072 40934

1) Dynamic web server: We configure the VM as a
SPECweb2005 [12] server that serves as a banking server.
100 connections are configured to produce workloads for the
server. Figure 5 illustrates the throughput during the migration.
We can see that during the migration time using our TPM, no
noticeable drop can be observed in terms of throughput.

SPECweb_Banking Throughput

0

10

20

30

40

50

60

70

80

90

10 110 210 310 410 510 610 710 810 910 1010 1110 1210 1310 1410 1510 1610 1710

Time(s)

Th
ro

ug
hp

ut
(M

B
/s

Throughput
Fig. 5. Throughput of the SPECweb_Banking server while migration

In this experiment, three iterations are performed in the pre-

copy phase. 6680 blocks have been retransferred. And 62
blocks are left dirty to be synchronized in the post-copy phase
which lasts only 349 milliseconds. Only one block is pulled,
the others are pushed by the source. The downtime is only
60ms.

2) Low latency server: We configure the VM as a Samba
[13] server. It shares a 210MB video file (.rmvb) with a

Windows client. The VM is migrated from the source to the
destination, while the shared video is played on the client with
a standard video player. During the whole migration time, the
video is played fluently, without any observable intermission
by the viewer. The write rate is very low in video server, so
only two iterations are performed and only 610 blocks have
been retransferred in the second iteration of the pre-copy
phase which lasted for about 796 seconds. Five blocks are left
unsynchronized which are pushed to the destination in the
post-copy phase in 380 milliseconds. The downtime is only 62
milliseconds. The video stream is transferred at a rate less
than 500kbps. The server works well even when the
bandwidth used by the migration process is not limited at all.

3) Diabolical server: We migrate the VM while Bonnie++
[14] is running on it. Bonnie++ is a benchmark suite that
performs a number of simple tests for hard disk drive and file
system performance, including sequential output, sequential
input, random seeks, sequential create, and random create [14].

Bonnie++ writes the disk at a very fast rate. Many blocks
have been dirtied and must be resent during migration. During
the pre-copy phase which lasts for 947 seconds, 4 iterations
are performed and about 1464 MB dirtied blocks are
retransferred. So the total migration time seems a little longer.
But the block-bitmap is small. The downtime is still kept very
short. The migration process reads the disk at a high rate. The
Bonnie++ shows a low performance in terms of throughput
during migration as illustrated by Figure 6.

Bonnie++ Throughput

0

50000

100000

150000

200000

250000

300000

350000

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500

Time(s)

Th
ro

ug
hp

ut
(K

B/
s)

putc write(2) rewrite getc
Fig. 6. Impact on Bonnie++ throughput

If we limit the migration transfer rate, the impact can be

reduced about 50%. We just simply limit the network
bandwidth used by the migration process in the pre-copy
phase. Correspondingly, the disk bandwidth used by the
migration will be decreased. The results show that the
Bonnie++ works much better. But the migration time rose
significantly. The pre-copy phase is about 37% longer than the
unlimited one. It suggests that the disk I/O throughput is the
bottleneck of the whole system performance.

4) Incremental migration: We perform migration from the
destination back to the source after the primary migration
using our IM algorithm. Table II show the results.

TABLE II
IM RESULTS COMPARED WITH TPM

The amount of data that must be migrated using IM is

much smaller than the primary TPM migration. So the total
migration time is decreased substantially.

5) I/O performance overhead of synchronization
mechanism based on block-bitmap: We configure Bonnie++
to run in the VM where all the writes are intercepted and
marked in the block-bitmap. Table III shows the results
compared with Bonnie++ running in the same VM without
writes tracked.

TABLE III
I/O PERFORMANCE COMPARISON (KB/S)

 putc write(2) rewrite
Normal 47740 96122 26125
With writes tracked 47604 95569 25887

The results show that the performance overhead is less

than 1 percent. So performance won’t drop notably when all
the writes are tracked and recorded in the block-bitmap
preparing for IM after the VM has been migrated to the
destination.

VII. CONCLUSION AND FUTURE WORK
This paper describes a Three-Phase Migration algorithm,

which can migrate the whole-system state of a VM while
achieving a negligible downtime and finite dependency on
the source machine. It uses a block-bitmap based approach to
synchronize the local disk storage data between the source
and the destination. We also propose an Incremental
Migration algorithm, which is able to migrate the migrated
VM back to the source machine in a very short total
migration time. The experiments show that both algorithms
are efficient to satisfy those requirements described in
section III for an effective live migration.

These two algorithms take the migrated VM as a black-
box, all the data in VBD must be transmitted including
unused blocks. If the Guest OS running on the migrated VM
can take part in and tell the migration process which part is
not used, the amount of migrated data can be reduced further.
Another approach is to track all the writes since the Guest
OS installation. Then all the dirty blocks are marked in the
block-bitmap. Only these dirty blocks need to be transferred
to a VM using the same OS image.

Our implementation of IM can only act between the
primary destination and the source machine. The future work

will focus on local disk storage version maintenance to
facilitate IM to decrease the total migration time of a VM
migrated among any recently used physical machines.

ACKNOWLEDGMENT
This work is supported by the National Grand

Fundamental Research 973 Program of China under Grant
No. 2007CB310900, National Science Foundation of China
under Grant No. 90718028, MOE-Intel Information
Technology Foundation under Grant No. MOE-INTEL-08-
09, and HUAWEI Science and Technology Foundation
under Grant No.YJCB2007002SS. Zhenlin Wang is also
supported by NSF Career CCF0643664.

REFERENCES
[1] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I.

Pratt, and A.Warfield. Live Migration of Virtual Machines. NSDI,
2005.

[2] M. Nelson, B. Lim, and G. Hutchins, Fast Transparent Migration for
Virtual Machines. 2005 USENIX Annual Technical Conference,
2005.

[3] Kozuch, M., and Satyanarayanan, M. Internet Suspend/Resume.
Fourth IEEE Workshop on Mobile Computing Systems and
Applications, 2002.

[4] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M.
Rosenblum. Optimizing the Migration of Virtual Computers. OSDI,
2002.

[5] M. Kozuch, M. Satyanarayanan, T. Bressoud, C. Helfrich, S.
Sinnamohideen. Seamless Mobile Computing on Fixed Infrastructure.
Computer, July 2004.

[6] R. Bradford, E. Kotsovinos, A. Feldmann, H. Schioberg, Live Wide-
Area Migration of Virtual Machines with local persistent state.
VEE’07, June 2007.

[7] P. Barham, , B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. SOSP, 2003.

[8] J.G. Hansen and E. Jul, Self-migration of Operating Systems. Proc. Of
the 11th ACM European SIGOPS Workshop, September 2004.

[9] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. D. Laat, J.
Mambretti, I. Monga, B. Oudenaarde, S. Raghunath, Phil Y. Wang.
Seamless live migration of virtual machines over the MAN/WAN.
Future Generation Computer Systems, 2006.

[10] R Chandra, N Zeldovich, C Sapuntzakis, MS Lam. The Collective: A
Cache-Based System Management Architecture. NSDI ’05: 2nd
Symposium on Networked Systems Design & Implementation, 2005.

[11] Xen, http://www.cl.cam.ac.uk/research/srg/netos/xen/.
[12] SPECweb2005, http://www.spec.org/web2005/.
[13] Samba, http://us1.samba.org/samba/.
[14] Bonnie++, http://www.coker.com.au/bonnie++/.

 Dynamic web server Low-latency server Diabolical server

 Migration
time (s)

Amount of migrated
data (MB)

Migration
time (s)

Amount of migrated
data (MB)

Migration
time (s)

Amount of migrated
data (MB)

Primary TPM 796.1 39097 798.0 39072 957 40934
IM 1.0 52.5 0.6 5.5 17 911.4

http://www.cl.cam.ac.uk/research/srg/netos/xen/
http://www.spec.org/web2005/
http://us1.samba.org/samba/
http://www.coker.com.au/bonnie++/

