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Abstract—In this paper, we describe a whole-system live 

migration scheme, which transfers the whole system run-time 
state, including CPU state, memory data, and local disk storage, 
of the virtual machine (VM). To minimize the downtime caused 
by migrating large disk storage data and keep data integrity and 
consistency, we propose a three-phase migration (TPM) 
algorithm. To facilitate the migration back to initial source 
machine, we use an incremental migration (IM) algorithm to 
reduce the amount of the data to be migrated. Block-bitmap is 
used to track all the write accesses to the local disk storage 
during the migration. Synchronization of the local disk storage in 
the migration is performed according to the block-bitmap. 
Experiments show that our algorithms work well even when I/O-
intensive workloads are running in the migrated VM. The 
downtime of the migration is around 100 milliseconds, close to 
shared-storage migration. Total migration time is greatly 
reduced using IM. The block-bitmap based synchronization 
mechanism is simple and effective. Performance overhead of 
recording all the writes on migrated VM is very low. 
 

I. INTRODUCTION 
VM migration refers to transferring run-time data of a VM 

from one machine (the source) to another machine (the 
destination). After migration, VM continues to run on the 
destination machine. Live migration is a migration during 
which the VM seems to be responsive all the time from 
clients’ perspective. Most research focuses on migrating only 
memory and CPU state assuming that the source and 
destination machines use shared disk storage. But in some 
scenarios, the source and destination machines cannot share 
the disk storage. So the local disk storage should also be 
migrated. This paper describes a whole-system live migration, 
which moves all the VM state to the destination, including 
memory data, CPU state, and local disk storage. During the 
migration, the VM keeps running with a negligible downtime. 

We propose a Three-Phase Migration (TPM) scheme to 
minimize the downtime while maintaining disk storage data 
integrity and consistency. The three phases are pre-copy, 
freeze-and-copy, and post-copy. The original VM is only 
suspended during the freeze-and-copy phase and then resumes 
on the destination machine. In the pre-copy phase, before the 
local memory is pre-copied, local disk storage data are 
iteratively transferred to the destination while using a block-
bitmap to track all the write accesses. In the freeze-and-copy 
phase, the block-bitmap, which contains enough information 
for later synchronization, is sent to the destination. In the post-

copy phase, we take an approach that combines pull and push. 
According to the block-bitmap, the destination pulls a dirty 
block if it is accessed by a read request, while the source 
pushes the dirty blocks continuously to ensure that the 
synchronization can be completed in a finite time. A write 
request in the destination to a dirty block will overwrite the 
whole block and thus does not require pulling the block from 
the source VM.   

We developed an Incremental Migration (IM) algorithm 
to greatly reduce the migration time. The block-bitmap 
continues to track all the write accesses to the disk storage in 
the destination after the primal migration and only the new 
dirty blocks need to be synchronized if the VM needs to 
migrate back to the source machine later on. IM will be very 
useful when the migration is used for host machine 
maintenance and the migration back and forth between two 
places to support telecommuting, for instance. 

In our design and implementation, we intend to minimize 
downtime and disruption time such that the clients can barely 
notice the service interruption and degradation. We further 
control total migration time and amount of data transferred. 
These metrics will be explained in detail in section III. 

The rest of the paper is structured as follows. In section II 
we discuss related work. In section III we analyze the problem 
requirements and describe the metrics to evaluate the VM 
migration performance. In section IV and section V we 
describe TPM and IM in detail, including their design and 
some implementation issues. In section VI we describe our 
evaluation methodology and present the experimental results. 
Finally we conclude and outline our future work in section VII. 

II. RELATED WORK 
In this section, we discuss the existing research on VM 

migration, including live migration with shared disk storage 
and whole-system migration with local disk storage. 

A. Live Migration with Shared Disk Storage 
Two representative live migration systems, Xen live 

migration [1, 11] and VMware VMotion, share similar 
implementation strategies. Both of them assume shared disk 
storage. Take Xen live migration as an example. It uses a pre-
copy mechanism that iteratively copies memory to the 
destination, while recording dirty memory pages. Then at a 
right time, it suspends the VM, and copies the remaining dirty 
memory pages and CPU state to the destination. It resumes the 



VM at the destination after all the memory has been 
synchronized. Because only a few pages may be transferred 
during VM pausing, the downtime is usually too short for a 
client to notice. Both Xen live migration and VMotion only 
focus on the memory state and run-time CPU state; So VM 
can be migrated only between two physical machines using 
shared storage. 

B. Whole-System Migration with Local Disk Storage 
Whole-system migration will migrate the whole-system 

state of a VM, including its CPU state, memory data, and local 
disk storage data, from the source to the destination machine. 

A simple way to migrate a VM with its local storage is 
freeze-and-copy, which first freezes the VM to copy its 
whole-system state to the destination, and then restarts the 
VM at the destination. Internet Suspend/Resume [3, 5] is a 
mature project using freeze-and-copy to capture and transfer a 
whole VM system. A copy and only the copy of all the VM 
run-time state are transferred without any additional 
redundancy. It results a severe downtime due to the large size 
of the storage data. The Collective [4, 10] project also uses the 
freeze-and-copy method. It introduces a set of enhancements 
to decrease the size of transmitted data. All the updates are 
captured in a Copy-on-Write disk. So only the differences of 
the disk storage need to be migrated. However, even 
transferring disk updates could causes significant downtimes. 

Another method is on-demand fetching [5], which first 
migrates memory and CPU state only with delayed storage 
migration. The VM immediately resumes on the destination 
after the memory and CPU state migration. It then fetches 
storage data on-demand over network. The downtime is the 
same to the shared-storage migration downtime. But it will 
incur residual dependence on source machine, even an 
irremovable dependence. So on-demand fetching can’t be 
utilized for source machine maintenance, load-balance 
migration, or other federated disconnected platforms such as 
Grids and PlanetLab. Furthermore, it actually decreases 
system availability, for its dependency on two machines. Let p 
(p<1) stand for a machine’s availability, then the migrated 
VM system’s availability is p2, which is less than p. 
Considering the network connection failure, the actual 
availability must be less than p2. 

Bradford et al. propose to pre-copy local storage state to the 
destination while VM still running on the source [6]. During 
the migration all the write accesses to the local storage are 
recorded and forwarded to the destination, to ensure 
consistency. They use a delta, a unit consisting of the written 
data, the location of the write, and the size of the written data, 
to record and forward the write access for synchronization. 
After the VM resumes on the destination, all the write 
accesses must be blocked before all forwarded deltas are 
applied. It shows the same downtime to the shared-storage 
migration. But it may cause a long I/O block time for the 
synchronization. Furthermore there may be some redundancy 
in the delta queue, which can frequently happen because of 
locality of storage accesses. 

In conclusion, there is still much to do to find out how to 
migrate large-size local storage in an endurable migration time 

while remaining a short downtime, how to synchronize 
storage state using as less redundant information as possible, 
and how to keep a finite dependency on the source machine. 
This paper addresses these questions. 

III. PROBLEM ANALYSIS AND DEFINITION 
The goal of our system is to migrate the whole-system state 

of a VM from the source to the destination machine, including 
its CPU state, memory data, and local disk storage data. 
During the migration time the VM keeps running. This section 
describes the key metrics and requirements for a whole-
system live migration. 

A. Definition of the Metrics 
The following metrics are usually used to measure the 

effectiveness of a live migration scheme: 
• Downtime is the time interval during which services 

are entirely unavailable [1]. It is the time from when 
VM pauses on the source machine to when it resumes 
on the destination. Synchronization is usually 
performed in downtime. So the synchronization 
mechanism impacts on downtime. 

• Disruption time is the time interval during which 
clients connecting to the services running in the 
migrated VM observe degradation of service 
responsiveness—requests by the client take longer 
response time [6]. It is the time during which the 
services on the VM show lower performance due to the 
migration from a client’s perspective. The transfer rates 
and methods for synchronization have influence on 
disruption time. 

• Total migration time is the duration from when the 
migration starts to when the states on both machines are 
fully synchronized [1]. Decrease the size of transferred 
data, e.g. to compress the transferred data before 
sending it, will show a reduction in total migration time. 

• Amount of migrated data is the amount of data 
transmitted during the whole migration time. The 
minimal amount is the size of the run-time states, 
including the memory size, storage size, CPU state size, 
etc.. Usually it will be larger than the actual run-time 
state size, except for the freeze-and-copy method, 
because there must be some redundancy for 
synchronization and protocols. 

• Performance overhead is the decrement of the service 
performance caused by migration. It is evaluated by the 
comparison of the service throughput during the 
migration and without migration. 

A high-bandwidth network connection between the source 
and the destination will decrease downtime, disruption time, 
and migration time to a certain extent. 

B. Requirements for a Whole-System Live Migration 
Based on the metrics discussed in section III-A, an ideal 

VM migration is a whole-system migration with short 
downtime, minimized disruption time, endurable migration 
time, and negligible performance overhead. And it only 
transfers the run-time states without any redundancy. But this 



ideal whole-system live migration is hard to implement. 
Transferring large-volume local storage incurs a long 
migration time. It is difficult to maintain the consistency of 
the storage between the source and destination during such a 
long migration time while retaining a short downtime. The 
design of our system focuses on the following requirements: 

• Live migration: VM keeps running during most time of 
the migration process. In other words, clients can’t 
notice that the services on the VM are interrupted 
during the migration. 

• Minimal downtime: An ingenious synchronization 
method is required to minimize the size of the data 
transmitted in the downtime. 

• Consistency: The VM’s file system is consistent and 
identical during migration except downtime. 

• Minimizing performance overhead: A non-redundant 
synchronization method and a set of simple protocols 
must be designed. And the bandwidth used by the 
migration process should be limited to ensure the 
performance of the services on the migrated VM. 

• Finite dependency on the source machine: The source 
machine can be shutdown after migration. That means 
synchronization must be completed in a finite period of 
time. 

• Transparency: Applications running on the migrated 
VM don’t need to be reconfigured. 

• Minimizing migration time: This can be achieved if a 
part of the state data need not be transmitted. 

Our TPM and IM algorithms are designed to satisfy these 
requirements. The following two sections will describe TPM 
and IM in detail. 

IV. THREE-PHASE MIGRATION 
The TPM algorithm aims at whole-system live migration. 

This section describes its design and implementation. 

A. Design 
Migration is a process to synchronize VM state between the 

source and the destination machine. Live migration requires 
the synchronization complete with a short downtime, while 
whole-system migration requires a large amount of state data 
be synchronized. TPM is designed to migrate the whole 
system state of VM while keeping a short downtime. 

1)  Three Phases of TPM:  The three phases of TPM are 
pre-copy, freeze-and-copy, and post-copy. Most of the run-
time data are transferred in pre-copy phase. The VM service is 
not available only in freeze-and-copy phase. And local disk 
storage data needs to be synchronized in post-copy phase. The 
process of TPM is illustrated in Figure 1. 

In the pre-copy phase, the storage data are pre-copied 
iteratively. During the first iteration, all the storage data 
should be copied to the destination. For the later iterations 
only the latest dirtied data during last iteration need to be sent. 
We limit the maximum number of iterations to avoid endless 
migration. In addition, if the dirty rate is higher than the 
transfer rate, the storage pre-copy must be stopped proactively. 

In the freeze-and-copy phase, the migrated VM is 
suspended on the source machine. Dirty memory pages and 
CPU states are transferred to the destination. All inconsistent 
blocks that have been modified during the last iteration of 
storage pre-copy are marked in the bitmap. So only the bitmap 
needs to be transferred. 

 
Fig. 1.  Three-Phase whole-system live migration 

 
In the post-copy phase, the migrated VM is resumed on the 

destination machine. The source begins to push dirty blocks to 
the destination according to the bitmap, while the destination 
uses the same block-bitmap to pull the dirty blocks requested 
by the migrated VM. The pulling occurs and only occurs 
when the VM submits a read access to a dirty block. So the 
destination must intercept all I/O requests from VM and check 
if a block must be pulled. 

2)  Block-bitmap:  A bitmap is used to record the location of 
dirty disk storage data during migration. A bit in the bitmap 
corresponds to a unit in disk storage. 0 denotes that the unit is 
clean and 1 means it is dirty. 

Bit Granularity. Bit granularity means the size of a unit in 
disk storage described by a bit. Though 512B sector is the 
basic unit on which physical disk performs reading and 
writing, modern OS often reads from or writes to disk by a 
group of sectors as a block, usually a 4KB block. So we prefer 
to choose the bit granularity at block level rather than at sector 
level, that is, to map a bit to a block rather than to a sector. For 
a 32GB disk, a 4KB-block bitmap costs only 1MB memory, 
but a 512B-sector bitmap will use up to 8MB. When disk size 
is not too large, a 4KB-block bitmap works very well. 

Layered-Bitmap. For each iteration in the pre-copy phase, 
the bitmap must be scanned through to find out all the dirty 
blocks. If the bitmap is large, the overhead is severe. I/O 
operation often show high locality, so bit 1’s are often 
clustered together, and the overall bitmap remains sparse. A 
layered bitmap can be used to decrease the overhead. That is, 
a bitmap is divided into several parts and organized as two 
layers. The upper layer records whether these parts are dirty. 
If the bitmap must be checked through, the top layer is 



checked first, and then only the parts marked dirty need to be 
checked further. When using layered-bitmap, the lower parts 
are allocated only when there is a write access to this part, 
which can reduce bitmap size and save memory space. 

Bradford et al. [6] use a forward and replay method to 
synchronize disk storage data. During pre-copy phase, all the 
write operations are intercepted and forwarded to the 
destination. On the destination all these writes are queued and 
will apply to the migrated disk after disk storage pre-copy is 
completed. Write throttling must be used to ensure that the 
network bandwidth can catch up with the disk I/O throughput 
in some disk I/O intensive workloads. And after migrated VM 
is resumed on the destination, its disk I/O must be blocked 
until all the records in the queue have been replayed. 
Furthermore, there will be some redundant records which 
write to a same block. It will increase the amount of migrated 
data so as to enlarge the total migration time and I/O blocked 
time. We have checked the storage write locality using some 
benchmarks. When we make a Linux kernel, about 11% of the 
write operations rewrite those blocks written before. The 
percentage is 25.2% in SPECweb Banking Server, and 35.6% 
while Bonnie++ is running. 

In our solution all the inconsistent blocks are marked in the 
block-bitmap, and can be lazily synchronized until VM 
resumed on the destination. It works well in I/O intensive 
workloads, avoiding I/O block time on the destination and 
essentially solving the redundancy problem in recording and 
replaying all the write operations. Our solution may increase 
the downtime slightly due to transferring the block-bitmap. 
But in most scenarios, the block-bitmap is small (1MB-bitmap 
per 32GB-disk, and smaller if layered-bitmap is used) and the 
overhead is negligible. 

3)  Local Disk Storage Synchronization:  We use a block-
bitmap based method to synchronize local disk storage. In the 
pre-copy phase, a block-bitmap is used to track write 
operations during each iteration. At the beginning of each 
iteration, the block-bitmap is reset to record all the writes in 
the new iteration, during which all the data marked dirty in the 
previous iteration must be transferred. 

In the freeze-and-copy phase, the source sends a copy of 
the block-bitmap, which marks all the inconsistent blocks, to 
the destination. So at the beginning of the post-copy phase, the 
source and the destination both have a block-bitmap with the 
same content. The post-copy synchronizes all the inconsistent 
blocks according to these two block-bitmaps. At the same 
time, a new block-bitmap is created to record the disk storage 
updates on the destination, which will be used in IM described 
in section V. The source pushes the marked blocks 
continuously and sends the pulled block preferentially if a pull 
request has been received, while the destination performs as 
follows: 

DEFINE:  
− An I/O request R<O, N, VM>, where O is the 

operation, WRITE or READ, N is the operated 
block number, and VM is the ID of the domain 
which submits the request. 

− Transferred_block_bitmap: A block-bitmap marks 
all the blocks inconsistent with the source at the 
beginning of the post-copy. 

− New_block_bitmap: A block-bitmap marks the new 
dirtied blocks on the destination. 

1. An I/O request R<O, N, VM> is intercepted; 
2. Queue R in the pending list P; 
3. IF R.VM != migrated VM 
4.    THEN goto 14; 
5. IF R.O == WRITE // no pulling needed 
6.    THEN{ 
7.             new_block-bitmap[N] = 1; 
8.             transferred_block_bitmap[N] = 0; 
9.             goto 14; 
10.         } 
11. IF transferred_block-bitmap[N] == 0 //clean block 
12.    THEN goto 14; 
13. Send a pulling request to the source machine for 

block N, goto 16; 
14. Remove R from P; 
15. Submit R to the physical driver; 
16. End; 

 
The destination intercepts each I/O request. If the request is 

from other domain than the migrated VM (line 3), submit it 
directly. Otherwise, if the request is a write (lines 5-10), we 
use a new block bitmap to track this update (line 7) and reset 
the corresponding state in the bitmap for synchronization (line 
8). If the request is a read (lines 11-13), a pulling request is 
sent to the source machine only when the accessed block is 
dirty (line 13). 

Finally the destination must check each received block to 
determine if it is a pushed block or a pulled one: 

1. A block M is received; 
2. IF transferred_block-bitmap[M] == 0 
3.    THEN goto 12; 
4. Update block M in the local disk;  
5. transferred_block-bitmap[M]=0; 
6. For each request Ri in P 
7.    IF Ri.N == M 
8.       THEN{ 
9.               Remove Ri from P; 
10.               Submit Ri; 
11.            } 
12. End; 

The pushed block is dropped if there was a write in the 
destination that reset the bitmap (lines 2-3). If it is a pulled 
block, the pulling request is removed from the pending request 
queue (lines 6-11) and local disk will be updated accordingly 
(line 10). 



4)  Effectiveness Analysis on TPM:  TPM is a whole-system 
live migration, which satisfies the requirements listed in 
section III. 

Live migration and minimal downtime: In the freeze-
and-copy phase, only dirty memory pages and the block-
bitmap need to be transferred. So the downtime depends on 
the block-bitmap transfer time and memory synchronization 
time. In most scenarios, the dirty bitmap is small. The size can 
be even reduced greatly if we use the layered block-bitmap as 
analyzed in section IV-A-2. And memory synchronization 
time is very short as indicated in the Xen live migration 
research [1]. 

To keep consistency: In the post-copy phase, all the I/O 
requests from the migrated VM are intercepted and 
synchronization is necessary only if it is a read to dirty data.  

To minimize performance overhead: The performance 
overhead can be limited if we limit the bandwidth used by 
migration, which will increase total migration time 
correspondingly (see section VI-C-3). Another approach is to 
use a secondary NIC (Network Interface Card) for the 
migration, which can help limit the overhead on network I/O 
performance, but it has no effect on releasing the stress on 
disk during migration. 

To make a finite dependency on the source machine: We 
use push-and-pull to make the post migration convergent, 
avoiding a long residual dependency on the source by the pure 
on-demand fetching approach. 

To be transparent: Storage migration occurs at the block 
level. The file system cannot observe the migration. 

B. Implementation 
We expand Xen live migration to implement a prototype of 

TPM. To make our description easy to follow, we first 
introduce some notations in Xen. A running VM is named 
Domain. There are two kinds of domains. One is privileged 
and can handle the physical devices, referred to as Domain0. 
The other is unprivileged and referred to as DomainU. Split 
drivers are used for DomainU disk I/O. A frontend driver in 
DomainU acts as a proxy to a backend driver, which works 
in Domain0 and can intercept all the I/O requests from 
DomainU. VBD is the abbreviation of Virtual Block Device 
acting as a physical block device of a Domain. 

The process of our implementation of TPM is illustrated in 
Figure 2. The white boxes show Xen live migration process, 
and the grey boxes shows our extension. 

Disk storage data are pre-copied before memory copying 
because memory dirty rate is much higher than disk storage 
and the disk storage pre-copy lasts very long. A large amount 
of dirty memory can be produced during the disk storage pre-
copy. Simultaneous or premature memory pre-copy is useless. 

We design a user process named blkd to do most work of 
storage migration. Xen’s original functions xc_linux_save and 
xc_linux_restore are modified to direct blkd what to do at 
certain time. We modify the block backend driver, blkback, to 
intercept all the write accesses in the migrated VM and record 
the location of dirtied blocks into the block-bitmap. All the 
modifications are described as follows. 

 

Fig. 2.  Process of TPM implemented based on Xen Live Migration 

 
• Modify initialization of migration to ask the destination 

to prepare a VBD for the migrated VM. 
• Modify xc_linux_save. Before the memory pre-copy 

starts, it will signal blkback to start monitoring write 
accesses, and then signal blkd to start pre-copying local 
disk storage and block itself until the disk storage pre-
copy completes. After the pre-copy phase, it will signal 
blkd to send the block-bitmap and enter the post-copy 
phase. 

• Modify xc_linux_restore. Before receiving pre-copied 
memory pages, it will signal blkd to handle local disk 
storage pre-copy, and block itself until disk storage pre-
copy completes. After the migrated Domain is 
suspended, it will signal the blkd to receive the block-
bitmap and enter the post-copy phase before resuming 
the migrated Domain. 

• Modify blkback to register a Proc file and implement its 
read and write functions to export control interface to 
blkd for communication. Then blkd can write the Proc 
file to configure blkback and read the file for the block-
bitmap. Blkback maintains a block-bitmap and 
intercepts and records all the writes from the migrated 
domain. The block-bitmap is initialized when the 
migration starts. At the beginning of each iteration of 
pre-copy, after the block-bitmap is copied to blkd, it is 
reset for recording dirty blocks in the next iteration. If 
the blkback intercepts a write request, it will split the 
requested area into 4K blocks and set corresponding 
bits in the block-bitmap. 

The user process blkd acts according to the signals from 
xc_linux_save and xc_linux_restore. When it receives a local 
disk storage pre-copy signal, it starts iterative pre-copy. 
During each iteration, it first reads the block-bitmap from the 
backend driver, blkback. Then it sends the blocks which are 
marked dirty in the block-bitmap. 

In the freeze-and-copy phase, xc_linux_save signals blk to 
send the block-bitmap to the destination. 



In the post-copy phase, as illustrated by Figure 3, the blkd 
on the source machine pushes (action 1) the dirty blocks to the 
destination according to block-bitmap BM_1, while it listens 
to the pull requirements (action 3) and sends the pulled block 
preferentially. On the destination, the blkback intercepts the 
requests from the migrated VM and forward them to blkd 
(action 2). Blkd checks if the blocks accessed by a request 
must be pulled according to the block-bitmap BM_2 and the 
rules described in section IV-A-3. It will send the source a 
request if the block must be pulled (action 3). And blkd will 
tell blkback (action 4) which requests can be submitted to the 
physical disk driver after a pulled block has been received and 
write into the local disk (action 5). All the writes in DomU are 
intercepted in blkback and marked in block-bitmap BM_3, 
which will be used in IM described in section V. 

 
Fig. 3.  The Implementation of Post-copy 

 

V. INCREMENTAL MIGRATION 
Our experiments show that the TPM can also result a long 

migration time, due to the large size of the local storage data. 
Fortunately, in many scenarios, migration is used to maintain 
the source machine, or to relocate the working environment 
from office to home, for instance. A VM migrated to another 
machine may be migrated back again later, e.g., after the 
maintenance is done on the source machine, or the user need 
to move the environment back to his/her office. In these 
scenarios, if the difference between the source and the 
destination is maintained, only the difference needs to be 
migrated. Even in those I/O intensive scenarios, the storage 
data to be transferred can be decreased significantly using this 
Incremental Migration (IM) scheme. Figure 4 illustrates the 
process of IM. 

The grey box shows that in the pre-copy phase, the block-
bitmap should be checked to find out all the dirty blocks after 
last migration. Only those dirty blocks need to be transferred 
back in the first iteration. So after the VM is resumed on the 
destination all the newly dirtied blocks of the migrated VM 
must be marked in a block-bitmap as mentioned in section IV-
A. So in the post-copy phase of TPM, two block-bitmaps are 
used. One is transferred from the source and records all the 
unsynchronized blocks; the other is initialized when the 
migrated VM is resumed on the destination, and is used for 
recording the newly dirtied blocks on the destination. When 

the migrated VM needs to be migrated back to the source, 
only the blocks marked in the new block-bitmap need to be 
transferred. 

Initialization

Pre-copy local disk storage data

Pre-copy memory

Pre-C
opy

Freeze-and-
C

opy
Post-C

opy The source continues to PUSH dirty blocks to the destination;
The destination PULLs the dirty blocks for READ from the source

Find out which blocks need to be migrated according to the bitmap

Suspend the VM, Migrate dirty memory pages and CPU states

Transfer block-bitmap

Resume the VM on the destination

 
Fig. 4.  Process of IM 

 
The implementation is a minor modification to the TPM. 

We check if the bitmap exists before the first iteration. If it 
does, only the blocks marked dirty in the block-bitmap need to 
be migrated. Otherwise an all-set block-bitmap is generated, 
suggesting that all the blocks need to be transmitted. 

VI. EVALUATION 
In this section we evaluate our TPM and IM 

implementation using various workloads. We first describe the 
experimental environment and list the workloads. We then 
present the experimental results including downtime, 
disruption time, total migration time, amount of migrated data, 
and performance overhead. 

A. Experimental Environment 
We use three machines for the experiments. Two of them 

share the same hardware configuration, which is Core 2 Duo 
6320 CPU, 2GB memory, SATA2 disk. The software 
configuration is also the same: Xen-3.0.3 with XenoLinux-
2.6.16.29 running on the VM. Two Domains run concurrently 
on each physical machine. One is an unprivileged VM 
configured with 512MB of memory and 40GB VBD. The 
other is Domain0, which consumes all the remaining memory. 
To reduce the context switches between VMs, the two VMs 
are pinned to different CPU cores. The unprivileged VM is 
migrated from one machine to the other to evaluate TPM and 
migrated back to evaluate IM. The third machine emulates the 
clients to access the services on the migrated VM. They are 
connected by a Gigabit LAN. 

B. Workloads for Migration Evaluation 
Our system focuses on local storage migration, so we 

choose some typical workloads with different I/O loads. They 
are a web server serving dynamic web application, which 



generates a lot of writes in bursts, a video stream server 
performing continuous reads and only a few writes for logs to 
represent latency-sensitive streaming applications, and a 
diabolical server which is I/O-intensive, producing a large 
number of reads and writes all the time. These workloads are 
typical for evaluating the VM migration performance in the 
past research. 

C. Experimental Results 
In all the experiments, services on the migrated VM seem 

to keep running during the whole migration time from clients’ 
perspective. Table I shows experimental results of our 
prototype of TPM. From the results, we can see that it 
achieves the goal of live migration with very short downtime. 
The migration can be completed in a limited period of time. 
The amount of migrated data is just a little larger than the size 
of the VBD (39070MB), which means that the block-bitmap 
based synchronization mechanism is efficient. 

TABLE I 
RESULTS FOR DIFFERENT WORKLOADS 

 Dynamic 
web server 

Low latency 
server 

Diabolical 
server 

Total migration time (s) 796 798 957 
Downtime (ms) 60 62 110 

Amount of migrated 
data (MB) 39097 39072 40934 

 

1)  Dynamic web server:  We configure the VM as a 
SPECweb2005 [12] server that serves as a banking server.  
100 connections are configured to produce workloads for the 
server. Figure 5 illustrates the throughput during the migration. 
We can see that during the migration time using our TPM, no 
noticeable drop can be observed in terms of throughput. 

SPECweb_Banking Throughput

0

10

20

30

40

50

60

70

80

90

10 110 210 310 410 510 610 710 810 910 1010 1110 1210 1310 1410 1510 1610 1710

Time(s)

Th
ro

ug
hp

ut
(M

B
/s

Throughput  
Fig. 5.  Throughput of the SPECweb_Banking server while migration 

 
In this experiment, three iterations are performed in the pre-

copy phase. 6680 blocks have been retransferred. And 62 
blocks are left dirty to be synchronized in the post-copy phase 
which lasts only 349 milliseconds. Only one block is pulled, 
the others are pushed by the source. The downtime is only 
60ms. 

2)  Low latency server:  We configure the VM as a Samba 
[13] server. It shares a 210MB video file (.rmvb) with a 

Windows client. The VM is migrated from the source to the 
destination, while the shared video is played on the client with 
a standard video player. During the whole migration time, the 
video is played fluently, without any observable intermission 
by the viewer. The write rate is very low in video server, so 
only two iterations are performed and only 610 blocks have 
been retransferred in the second iteration of the pre-copy 
phase which lasted for about 796 seconds. Five blocks are left 
unsynchronized which are pushed to the destination in the 
post-copy phase in 380 milliseconds. The downtime is only 62 
milliseconds. The video stream is transferred at a rate less 
than 500kbps. The server works well even when the 
bandwidth used by the migration process is not limited at all. 

3)  Diabolical server:  We migrate the VM while Bonnie++ 
[14] is running on it. Bonnie++ is a benchmark suite that 
performs a number of simple tests for hard disk drive and file 
system performance, including sequential output, sequential 
input, random seeks, sequential create, and random create [14].  

Bonnie++ writes the disk at a very fast rate. Many blocks 
have been dirtied and must be resent during migration. During 
the pre-copy phase which lasts for 947 seconds, 4 iterations  
are performed and about 1464 MB dirtied blocks are 
retransferred. So the total migration time seems a little longer. 
But the block-bitmap is small. The downtime is still kept very 
short. The migration process reads the disk at a high rate. The 
Bonnie++ shows a low performance in terms of throughput 
during migration as illustrated by Figure 6. 
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If we limit the migration transfer rate, the impact can be 

reduced about 50%. We just simply limit the network 
bandwidth used by the migration process in the pre-copy 
phase. Correspondingly, the disk bandwidth used by the 
migration will be decreased. The results show that the 
Bonnie++ works much better. But the migration time rose 
significantly. The pre-copy phase is about 37% longer than the 
unlimited one. It suggests that the disk I/O throughput is the 
bottleneck of the whole system performance. 

4)  Incremental migration:  We perform migration from the 
destination back to the source after the primary migration 
using our IM algorithm. Table II show the results. 



TABLE II 
IM RESULTS COMPARED WITH TPM 

 
The amount of data that must be migrated using IM is 

much smaller than the primary TPM migration. So the total 
migration time is decreased substantially. 

5)  I/O performance overhead of synchronization 
mechanism based on block-bitmap:  We configure Bonnie++ 
to run in the VM where all the writes are intercepted and 
marked in the block-bitmap. Table III shows the results 
compared with Bonnie++ running in the same VM without 
writes tracked. 

TABLE III 
I/O PERFORMANCE COMPARISON (KB/S) 

 putc write(2) rewrite 
Normal 47740 96122 26125 
With writes tracked 47604 95569 25887 

 
The results show that the performance overhead is less 

than 1 percent. So performance won’t drop notably when all 
the writes are tracked and recorded in the block-bitmap 
preparing for IM after the VM has been migrated to the 
destination. 

VII. CONCLUSION AND FUTURE WORK 
This paper describes a Three-Phase Migration algorithm, 

which can migrate the whole-system state of a VM while 
achieving a negligible downtime and finite dependency on 
the source machine. It uses a block-bitmap based approach to 
synchronize the local disk storage data between the source 
and the destination. We also propose an Incremental 
Migration algorithm, which is able to migrate the migrated 
VM back to the source machine in a very short total 
migration time. The experiments show that both algorithms 
are efficient to satisfy those requirements described in 
section III for an effective live migration. 

These two algorithms take the migrated VM as a black-
box, all the data in VBD must be transmitted including 
unused blocks. If the Guest OS running on the migrated VM 
can take part in and tell the migration process which part is 
not used, the amount of migrated data can be reduced further. 
Another approach is to track all the writes since the Guest 
OS installation. Then all the dirty blocks are marked in the 
block-bitmap. Only these dirty blocks need to be transferred 
to a VM using the same OS image. 

Our implementation of IM can only act between the 
primary destination and the source machine. The future work 

will focus on local disk storage version maintenance to 
facilitate IM to decrease the total migration time of a VM 
migrated among any recently used physical machines. 
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 Dynamic web server Low-latency server Diabolical server 

 Migration 
time (s) 

Amount of migrated 
data (MB) 

Migration 
time (s) 

Amount of migrated 
data (MB) 

Migration 
time (s) 

Amount of migrated 
data (MB) 

Primary TPM 796.1 39097 798.0 39072 957 40934 
IM 1.0 52.5 0.6 5.5 17 911.4 
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